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Two matrices can be added if they have the same number of rows and the
same number of columsns. To add two k x n matrices A = [¢;;] and B = [b;;], we
simply add their corresponding entries a;; and b;; as foliows:

{azlj U?z;] = [@'ij -+ bij]b

Hence, the resuliant matrix is also a & x 7 matriz. Two matrices can be multiplied
provided that the number of columns in ¢ I irix i equal to the number of
rows in the second matrix., Multiplying a & x { matrix
= [b;;], we obtain the product

@3

(“)

= A X B o= {ij]‘

In the resultant & x { matrix the entry ¢;; is equal to the inner product of the ith row
g; in A and the jth column b; in B; that is,

n—1

)
cij =@ by = } dirhy;.
=0

Let G be a k x n matrix over GF(2). The transpose of G, denoted by G7, is
an n x k matrix whose rows are columns of G and WHOQC columns are rows of C
Ak x k matrix is called an identiry matrix if it has 1’s on the main diagonal and
(s elsewhere. This matrix is usually denoted by I, A submatrix of a matrix G is a
matrix that is obtained by striking out given rows or columns of G

It is straightforward to generalize the concepts and results presented in this
section to matrices with entries from GF(g) with ¢ as a power of a prime.

PROBLEMS

1 Construct the group under modulo-6 addition.

2.2 Construct the group under modulo-3 multiplication.

3 Letm be a positive integer. If 1 is not a prime, prove that theset {1.2,--- .m —1}
is not a group under modulo-m multiplication.

2.4 Construct the prime field GF(11) with modulo-11 addition and muliiplication.
Find all the primitive elements, and determine the orders of other elements.

2.5 Letm be a positive integer. If m is not prime, prove thatthe set {0, 1,2, .-+ ,m —1}
is not a field under modulo-m addition and multiplication.

2.6 Consider the integer group G = {0, 1.2, -+ , 31} under modulo-32 addition. Show
that 7 = 10,4, 8,12, 16, 20, 24, 28} forms a subgroup of G. Decompose G inio
cosets with respect to 7 (or modulo 7).

2.7 Let A be the characteristic of a Galois field GF(g). Let 1 be the unit element of

GF(g). Show that the sums

2 3 r—1 X
LS L L e 31 1=0
=1 =1 i=1 =1
form a subfield of GF(q).

2.8 Prove that every finite field has a primitive element.
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Solve the following simultaneous equations of X, Y, Z, and W with modulo-2
arithmetic:
X+Y +W=1,
X + Z 4+ W =0,
X4+Y +Z+W=1,
Y+ Z+W=0.

Show that X + X* 4 1 is irreducible over GF(2).
Let f(X) be a polynomial of degree n over GF(2). The reciprocal of f(X) is

defined as
-k oy i
) =X"f (X)

a. Prove that f*(X) is irreducible over GF(2) if and only if f(X) is irreducible
over GF(2).

b. Prove that f*(X) is primitive if and only if f(X) is primitive.

Find all the irreducible polynomials of degree 5 over GF(2).

Construct a table for GF(2?) based on the primitive polynomial p(X) = 1+X+X3.

Display the power, polynomial, and vector representations of each element.

Determine the order of each element.

Construct a table for GF(2°) based on the primitive polynomial p(X) =1+ X* +

X, Lst o be a primitive element of GF(2°). Find the minimal polynomials of o

ando’.

Let 8 be an element in GF(2"). Let ¢ be the smallest nonnegative integer
such that g2° = B. Prove that g2, ,822. e ,/32"71, are all the distinct conjugates
of B.

Prove Theorem 2.21.

Let o be a primitive element in GF(2%. Use Table 2.8 to find the roots of
FX) =X +aX>+°X +o°.

Let o be a primitive element in GF(2%). Divide the polynomial f(X) =
X +aXC + o’ X + o2 X% + ot X + 1 over GF(2%) by the polynomial g(X) =
X* + o®X? + o°X + 1 over GF(2*). Find the quotient and the remainder (use
Table 2.8).

Let o be a primitive element in GF(2*). Use Table 2.8 to solve the following
simultaneous equations for X, Y, and Z:

X +o°Y+ Z =o',
X + oY +0(7Z:019,
?X+ Y 4a°Z= a.

Let V be a vector space over a field F. For any element ¢ in F, prove thatc¢-0 = 0.
Let V be a vector space over a field F. Prove that, for any ¢ in F and any v in
V. (—¢) v=oc-(—V) = —(c- V).

Let S be a subset of the vector space V, of all n-tuples over GF(2). Prove that §
is a subspace of V, if foranywandvin S,m+visin S.

Prove that the set of polynomials over GF(2) with degree n — 1 or less forms a
vector space G F(2) with dimension .

Prove that GF(2™) is a vector space over GF(2).

Construct the vector space Vs of all 5-tuples over GF(2). Find a three-dimensional
subspace and determine its null space.
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2.26 Given the matrices

(1101100 1000 1 10
01001 11

G=11110010] H=
01110001 00100 11
0001101

show that the row space of G is the null space of H, and vice versa.

2.27 Let S; and §; be two subspaces of a vector V. Show that the intersection of §;
and $; is also a subspace in V.

2.28 Construct the vector space of all 3-tuples over GF(3). Form a two-dimensional
subspace and its dual space.
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Suppose G is in systematic form, G = [P I, 2}. From (3.47), we can easily sec that
PP =1,p. (3.48)

¥ ai@m; (n, n/2) linear block code C satisfies the condition of (3.47)
self-dual code (the proof is ef@ as a problem),

m.
mde
)
fa¥)

Consider the (8, 4) linear block code generated by the matrix
11111111
o 60001111
T 00110011
010106101
The code h ate R = % It is easy to check that G - GT = 0. Therefore, it is a

self-dual code.

There are many good self-dual codes but the most well known self-dual code
is the (24, 12) Golay code, which will be discussed in Chapter 4.

PROBLEMS
3.1 Consider a systematic (8, 4) code whose parity-check equations are

vo = U1+ Uy + uz,

(
{

VU1 g -1+ Uy,

1%

i

o ity +us,
vy = ug + up + u3.

where g, 11, u2, and u3, are message digits, and vg, vy, vp, and v3 are parity-
check digits. Find the generator and parity-check mairices for this code. Show
analytically that the minimum distance of this code is 4.

3.2 Construct an encoder for the code given in Problem 3.1.

3.3 Construct a syndrome circuit for the code given in Problem 3.1.

3.4 Let H be the parity-check matriz of an (n, k) linear code C that has both odd-
and even-weight codewords. Construct a new linear code C; with the following
parity-check matrix:

Hy=1 :» HW

(Mote that the last row of H; consists of all I's.)
a. Show that Cqis an (n 4 1, k) linear code. Cy is called an extension of C.
lo. Show that every codeword of € has even weight.
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¢. Show that C; can be obtained from C by adding an extra parity-check digit,
denoted by v, to the left of each codeword v as follows: (1) if v has odd weight,
then ve = 1, and (2) if v has even weight, then v, = 0. The parity-check digit
Voo 1S called an overall parity-check digit.

Let C be a linear code with both even- and odd-weight codewords. Show that

the number of even-weight codewords is equal to the number of odd-weight

codewords.

Consider an (n, k) linear code C whose generator matrix G contains no zero

column. Arrange all the codewords of C as rows of a 2%-by-n array.

a. Show that no column of the array contains only zeros.

b. Show that each column of the array consists of 2¢~! zeros and 2¢~1 ones.

¢. Show that the set of all codewords with zeros in a particular component
position forms a subspace of C. What is the dimension of this subspace?

Prove that the Hamming distance satisfies the triangle inequality: that is, let X, y,

and z be three n-tuples over GF(2), and show that

d(x,y) +d(y,z) = d(x,2).

Prove that a linear code is capable of correcting X or fewer errors and simultane-
ously detecting /(! > A) or fewer errors if its minimum distance dpyin > A +17 + 1.
Determine the weight distribution of the (8, 4) linear code given in Problem 3.1.
Let the transition probability of a BSC be p = 1072. Compute the probability of
an undetected error of this code.

Because the (8, 4) linear code given in Problem 3.1 has minimum distance 4, it
is capable of correcting all the single-error patterns and simultaneously detecting
any combination of double errors. Construct a decoder for this code. The decoder
must be capable of correcting any single error and detecting any double errors.
Let I" be the ensemble of all the binary systematic (n, k) linear codes. Prove that
a nonzero binary n-tuple v is contained in either exactly 2¢~D@=% codes in I or
in none of the codesin I

The (8, 4) linear code given in Problem 3.1 is capable of correcting 16 error
patterns (the coset leaders of a standard array). Suppose that this code is used
for a BSC. Devise a decoder for this code based on the table-lookup decoding
scheme. The decoder is designed to correct the 16 most probable error patterns.
Let C; be an (n1,k) linear systematic code with minimum distance d; and
generator matrix G) = [Py I;]. Let C; be an (ny, k) linear systematic code with
minimum distance d, and generator matrix G, = [P, I;]. Consider an (ny + n2, k)
linear code with the following parity-check matrix:

P
H= KnlJrnsz: Ek
P!
Show that this code has a minimum distance of at least d; + dy.
Show that the (8, 4) linear code C given in Problem 3.1 is self-dual.

For any binary (1, k) linear code with minimum distance (or minimum weight)
2t+1 or greater, show that the number of parity-check digits satisfies the following

inequality:
n—kZlng[l—i-(I; >+< 3 >+---+(’; )}

The preceding inequality gives an upper bound on the random-error-correcting
capability ¢ of an (n, k) linear code. This bound is known as the Hamiming
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bound [14]. (Hint: For an (n,k) linear code with minimum distance 2r + 1 or
greater, all the n-tuples of weight r or less can be used as coset leaders in a
standard array.)

Show that the minimum distance dpy, of an (i, k) linear code satisfies the following
inequality:
n. 2kt
dmin T ]

(Hint: Use the result of Problem 3.6(b). This bound is known as the Plotkin
bound [1-3])

Show that there exists an (n, k) linear code with a minimum distance of at least
dif

d-1 N

Z( R REL

i=1

(Hint: Use the result of Problem 3.11 and the fact that the nonzero n-tuples of
weight d — 1 or less can be at most in

d—1
AN 1 k—1)(n—k
{L(WQU o

i=1

(n, k) systematic linear codes.)
Show that there exists an (n, k) linear code with a minimum distance of at least
dmin that satisties the following inequality:

dmin—1 . dimin n
% n—k N
) < Z

i=1

i=1

(Hint: See Problem 3.17. The second inequality provides a lower bound on the
minimuin distance attainable with an (1, k) linear code. This bound is known as
the Varsharmov—Gilbert bound [1-3].)

Consider a rate—% (n, n/2) linear block code C with a generator matrix G. Prove
that C is self-dual if G - GT = 0.

Devise an encoder for the (1, 7 — 1) SPC code with only one memory element (or
flip-flop) and one X-OR gate (or modulo-2 adder).
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FIGURE 4.6: Transmission of an interleaved code.

is a correctable pattern for the original code C. The interleaving technique is very
effective for deriving long, powerful codes for correcting errors that cluster to form
bursts. This topic will be discussed in a later chapter.

Interleaving a single code can easily be generalized to interleaving several
different codes of the same length. For 1 < < A, let C; be an (n, k;) linear block
code. Take L codewords, one from each code, and arrange them as A rows of a
rectangular array as follows:

v1.0- Vi1, -t Vin-1
v2.0, V21, -ty V251 (4 80)
U)».Oa U}\..l? T U)\,Il—-l

Then, transmit this array column by column. This interleaving of A codes results in
an (An, ki +ky+ - - -+ k) linear block code, denoted by C* = C; % Cy % - - - % C;. Each
column of the array given in (4.80) is a binary A-tuple. If each column of (4.80) is
regarded as an element in Galois field GF(2*), then C* may be regarded as a linear
block code with symbols from GF(2).

The interleaving technique presented here is called block interleaving. Other
types of interleaving will be discussed in later chapters and can be found in [26].

PROBLEMS

4.1 Form a parity-check matrix for the (15, 11) Hamming code. Devise a decoder for
the code.

4.2 Show that Hamming codes achieve the Hamming bound (see Problem 3.15).

4.3 Show that the probability of an undetected error for Hamming codes of length
2™ — 1 on a BSC with transition probability p satisfies the upper bound 27" for
p < 1/2. (Hint: Use the inequality (1 — 2p) < (1 — p)2.)
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Compute the probability of an undetected error for the (15, 11) code on a BSC
with transition probability p = 1072,

Devise a decoder for the (22, 16) SEC-DED code whose parity-check matrix is
given in Figure 4.1(a).

Form the generator matrix of the first-order RM code RM(1, 3) of length 8.
What is the minimum distance of the code? Determine its parity-check sums
and devise a majority-logic decoder for the code. Decode the received vector
r=(01000101).

Form the generator matrix of the first-order RM code RM(1, 4) of length 16.
What is the minimum distance of the code? Determine its parity-check sums
and devise a majority-logic decoder for the code. Decode the received vector
r=0011001001110011).

Find the parity-check sums for the second-order RM code RM(2, 5) of length 32.
What is the minimum distance of the code? Form the parity-check sums for the
code. Describe the decoding steps.

Prove that the (m — r — Dth-order RM code, RM{m — r — 1, m), is the dual code
of the rth-order RM code, RM(r, m).

Show that the RM(1, 3) and RM(2, 5) codes are self-dual.

Find a parity-check matrix for the RM(1, 4) code.

Construct the RM(Z, 5) code of length 32 from RM codes of length 8 using
lulu + v|-construction.

Using the |uju + v|-construction, decompose the RM(2, 5) code into component
codes that are either repetition codes of dimension 1 or even parity-check codes
of minimum distance 2.

Determine the Boolean polynomials that give the codewords of the RM(1, 3)
code.

Use Boolean representation to show that the RM(r, m) code can be constructed
from RM(r, m — 1) and RM(r — 1,m — 1) codes.

Construct the RM(2, 4) code from the RM(2, 3) and RM(1, 3) codes using
one-level squaring construction. Find its generator matrix in the form of (4.53) or
(4.68).

Using two-level squaring construction, express the generator matrix of the
RM(2, 4) code in the forms of {(4.60) and (4.61).

Prove that the (24, 12) Golay code is self-dual. (Hinr: Show that G - GT =0.)
Design an encoding circuit for the (24, 12) Golay code.

Suppose that the (24, 12) Golay code is used for error correciion. Decode the
following received sequences:

2, r=(101101110010000011000011),

b, r=(0011111100100006000000001).

Show that the digits for checking the parity-check digits of a product code array
shown in Figure 4.3 are the same no matter whether they are formed by using
the parity-check rules for C; on columns or the parity-check rules for C; on
TOWS.

Prove that the minimum distance of the incomplete product of an (nq, k1. dyp)
linear code and an (n2, ko, d2) linear code is dy +d» — 1.

The incomplete product of the (ny, ny — 1,2) and the (5. n2 — 1, 2) even parity-
check codes has a minimum distance of 3. Devise a decoding algorithm for
correcting a single error in the information part of a code array.
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For 0 <! < ny, let Q; be the mky x m submatrix that is formed by taking the /th
columns from Mg, My, --- , M,,,_{. Then, we can put G in the following form:

G, = [QOs Q1,---, Qng—l]'

Each column of {J; consists of mkq bits that are regarded as m kg-bit bytes (a byte
is a group of kg binary digits). In terms of bytes, €, is regarded as an m x m matrix
that has the following cyclic structure: (1) each row is the cyclic shift (to the right)
of the row immediately above it, and the top row is the cyclic shift of the bottom
row; (2) each column is the downward cyclic shift of the column on its left, and the
leftmost column is the downward cyclic shift of the rightmost column. The matrix ¢,
is called a circulant. Therefore, G, consists of ng circulants. Most often, quasi-cyclic
codes are studied in circulant form.

EXAMPLE 5.14

Consider the (15, 5) quasi-cyclic code with parameters m = 5, ng = 3, and kg = 1
that is generated by the following generator matrix:

001 100 010 110 110
110 001 100 010 110
G=| 110 110 001 1060 010
010 110 116 001 100
100 010 110 110 001

My M; M, M; My

This quasi-cyclic code has a minimum distance of 7. In circulant form, the generator
matrix takes the following form:

01011 00111 10000
10101 10011 01000
G =] 11010 11001 00100
01101 11100 00010
10110 01110 00001

Qo Q1 Q;

PROBLEMS

5.1 Consider the (15, 11) cyclic Hamming code generated by g(X) =1+ X + X*.
a. Determine the parity polynomial k(X) of this code.
b. Determine the generator polynomial of its dual code.
¢. Find the generator and parity matrices in systematic form for this code.
5.2 Devise an encoder and a decoder for the (15, 11) cyclic Hamming code generated
by g(X) =1+ X + X%
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Show that g(X) = 1+ X2 + X* + X® + X7 + x10 generates a (21, 11) cyclic code.
Devise a syndrome computation circuit for this code. Let 1(X) = 1 + X° + XV
be a received polynomial. Compute the syndrome of r(X). Display the contents
of the syndrome register after each digit of r has been shifted into the syndrome
computation circuit.

4 Shorten this (15, 11) cyclic Hamming by deleting the seven leading high-order

message digits. The resultant code is an (8, 4) shortened cyclic code. Design a

decoder for this code that eliminates the extra shifts of the syndrome register.

Shorten the (31, 26) cyclic Hamming code by deleting the 11 leading high-order

message digits. The resultant code is a (20, 15) shortened cyclic code. Devise

a decoding circuit for this code that requires no extra shifts of the syndrome

register.

Let g(X) be the generator polynomial of a binary cyclic code of length n.

a. Show thatif g(X) has X + 1 as a factor, the code contains no codewords of odd
weight.

b. If n is odd and X + 1 is not a factor of g(X), show that the code contains a
codeword consisting of all 1's.

¢, Show that the code has a minimum weight of at least 3 if n is the smallest
integer such that g(X) divides X" + 1.

Consider a binary (n, k) cyclic code C generated by g(X). Let

gk(x) — ankg(X—l)

be the reciprocal polynomial of g(X).

a. Show that g*(X) also generates an (n, k) cyclic code.

b. Let C* denote the cyclic code generated by g*(X). Show that C and C* have
the same weight distribution.

(Hint: Show that

VIX)=vg+ X 4+ vy X v, X!
is a code polynomial in C if and only if
X”_lv(/‘(kl) = vy F Vg2 X A+ U1X”*2 + UOXn—l

is a code polynomial in C*.)

Consider a cyclic code C of length n that consists of both odd-weight and even-
weight codewords. Let g(X) and A(z) be the generator polynomial and weight
enumerator for this code. Show that the cyclic code generated by (X +1)g(X) has
weight enumerator

A1(z) = A + A=)

Suppose that the (15, 10) cyclic Hamming code of minimum distance 4 is used for
error detection over a BSC with transition probability p = 10~2. Compute the
probability of an undetected errox, P, (E), for this code.
Consider the 27 — 1,2" — m — 2) cyclic Hamming code C generated by g(X) =
(X + 1)p(X), where p(X) is a primitive polynomial of degree m. An error pattern
of the form

eX) =X+ x'*1
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is called a double-adjacent-error pattern. Show that no two double-adjacent-error
patterns can be in the same coset of a standard array for C. Therefore, the code is
capable of correcting all the single-error patterns and all the double-adjacent-error
patterns.
Devise a decoding circuit for the (7, 3) Hamming code generated by g(X) =
(X +D(X3+ X +1). The decoding circuit corrects all the single-error patterns
and all the double-adjacent-error patterns (see Problem 5.10).
For a cyclic code, if an error pattern e(X) is detectable, show that its ith cyclic
shift ¢/ (X) is also detectable.
In the decoding of an (n, k) cyclic code, suppose that the received polynomial r(X)
is shifted into the syndrome register from the right end, as shown in Figure 5.11.
Show that when a received digit r; is detected in error and is corrected, the effect
of error digit e; on the syndrome can be removed by feeding ¢; into the syndrome
register from the right end, as shown in Figure 5.11.
Let v(X) be a code polynomial in a cyclic code of length n. Let / be the smallest
integer such that

v(X) = v(X).

Show thatif/ s 0, [ is a factor of n.
Let g(X) be the generator polynomial of an (n, k) cyclic code C. Suppose C is
interleaved to a depth of A. Prove that the interleaved code C* is also cyclic and
its generator polynomial is g(X*).
Construct all the binary cyclic codes of length 15. (Hint: Using the fact that X'° +1
has all the nonzero elements of GF(2%) as roots and using Table 2.9, factor X 13 41
as a product of irreducible polynomials.)
Let B be a nonzero element in the Galots field GF(2™), and B # 1. Let ¢(X) be
the minimum polynomial of §. Is there a cyclic code with ¢(X) as the generator
polynomial? If your answer is yes, find the shortest cyclic code with ¢(X) as the
generator polynomial.
Let $; and B, be two distinct nonzero elements in GF(2"). Let ¢1(X) and ¢, (X)
be the minimal polynomials of 1 and 8, respectively. Is there a cyclic code with
g(X) = ¢1(X) - ¢,(X) as the generator polynomial? If your answer is yes, find the
shortest cyclic code with g(X) = ¢1(X) - ¢,(X) as the generator polynomial.
Consider the Galois field GF(2™), which is constructed based on the primitive
polynomial p(X) of degree m. Let « be a primitive element of GF(2"") whose
minimal polynomial is p(X). Show that every code polynomial in the Hamming
code generated by p(X) has « and its conjugates as roots. Show that any binary
polynomial of degree 2" — 2 or less that has « as a root is a code polynomial in
the Hamming code generated by p(X).
Let C; and C; be two cyclic codes of length » that are generated by g;(X) and
g, (X), respectively. Show that the code polynomials common to both Cy and C;
also form a cyclic code 3. Determine the generator polynomial of Cs. If d; and
dy are the minimum distances of C; and C», respectively, what can you say about
the minimum distance of C3?
Show that the probability of an undetected error for the distance-4 cyclic Hamming
codes is upper bounded by 2~ 1,
LetCbea (2" —1,2" —m—1) Hamming code generated by a primitive polynomial
p(X) of degree m. Let C4 be the dual code of C. Then, Cyis a 2™ — 1, m) cyclic
code generated by

hk(x) — XZ’” —m—lh(Xfl).
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where "
XZ -1 +1

h(X) =
0= m
2. Let v(X) be a codeword in Cy and let v (X) be the ith cyclic shift of v(X).
Show that for 1 <i < 2" — 2, v¥0(X) #£ v(X).
b, Show that C; contains the all-zero codeword and 27 — 1 codewords of weight
2171—1-
(Hint: For part (a), use (5.1) and the fact that the smallest integer n such that
X" 4+ 1 is divisible by p(X) is 2" — 1. For part (b), use the result of Problem
3.6(b).)
For an (n, k) cyclic code, show that the syndrome of an end-around burst of length
# — k cannot be zero.

24 Design a Meggitt decoder that decodes a received polynomial r(X) = g +r; X +

5.26
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wvn—1
4

ook, X7 from the lowest-order received digit rg to the highest-order received
digit r,,_1. Describe the decoding operation and the syndrome modification after
each correction.

Consider the (15, 5) cyclic code generated by the following polynomial:

s =14+X+ X+ x4+ X%+ x84 x1°,

This code has been proved to be capable of correcting any combination of three or
fewer errors. Suppose that this code is to be decoded by the simple error-trapping
decoding scheme.

a. Show that all the double errors can be trapped.

b. Can all the error patterns of three errors be trapped? If not, how many error
patterns of three errors cannot be irapped?

Devise a simple eivor-trapping decoder for this code.

Devise a simple error-trapping decoder for the (23, 12) Golay code.

How many error patterns of double errors cannot be trapped?

¢. How many error patterns of three errors cannot be trapped?

Suppose that the (23, 12) Golay code is used only for error correction on a
BSC with transition probability p. If Kasami's decoder of Figure 5.18 is used for
decoding this code, what is the probability of a decoding error? (Hint: Use the
fact that the (23, 12) Golay code is a perfect code.)

Use the decoder of Figure 5.18 to decode the following received polyno-
mials:

a 0(X) =X+ X%

bo r(X) = X4+ xH 4 x2

At each step in the decoding process, write down the contents of the syndrome
register.

Consider the following binary polynomial:

T e

g(X) = (X + Dp(Xx),

where (X3+1) and p(X) are relatively prime, and p(X) is an irreducible polynomial
of degree m with m > 3. Let n be the smallest integer such that g(X) divides
X" + 1. Thus, g(X) generates a cyclic code of length n.
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a. Show that this code is capable of correcting all the single-error, double-
adjacent-error, and triple-adjacent-error patterns. (Hint: Show that these error
patterns can be used as coset leaders of a standard array for the code.)

b. Devise an error-trapping decoder for this code. The decoder must be capable
of correcting all the single-error, double-adjacent-error, and triple-adjacent-
error patterns. Design a combinational logic circuit whose output is 1 when
the errors are trapped in the appropriate stages of the syndrome register.

¢. Suppose that p(X) = 1 + X + X*, which is a primitive polynomial of degree
4. Determine the smallest integer n such that g(X) = (X> + 1)p(X) divides
X"+ 1.

5.30 Let C; be the (3, 1) cyclic code generated by g1(X) =1+ X + X2, and let C; be

the (7, 3) maximum-length code generated by g,(X) = 1+ X + X2 + X*. Find the
generator and parity polynomials of the cyclic product of C; and C,. What is the
minimum distance of this product code? Discuss its error-correcting capability.

5.31 Devise an encoding circuit for the (15, 5) quasi-cyclic code given in Exam-

ple 5.14.
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summarize the preceding results above as follows: For a 7-error-correcting primitive
BCH code of length n = 2™ — 1 with number of parity-check digits n — k = mt
and m > mg(t), its probability of an undetected error on a BSC with transition
probability p satisfies the following bounds:

(1 + ro-n~V10y2-nll=R+EEP]  for p < ¢

(1 + Ag - n~1/10)p—n(=R) for p > ¢ (6.52)

P(E) = {

where ¢ = 2t + 1)/n, R = k/n, and Aq 1s a constant.
The foregoing analysis indicates that primitive BCH codes are very effective
for error detection on a BSC.

6.10 REMARKS

BCH codes form a subclass of a very special class of linear codes known as Goppa
codes {21, 22]. It has been proved that the class of Goppa codes contains good
codes. Goppa codes are in general noncyclic (except the BCH codes), and they
can be decoded much like BCH codes. The decoding also consists of four steps:
(1) compute the syndromes; (2) determine the error-location polynomial ¢ (X);
(3) find the error-location numbers; and (4) evaluate the error values (this step is
not needed for binary Goppa codes). Berlekamp’s iterative algorithm for finding
the error-location polynomial for a BCH code can be modified for finding the
error-location polynomial for Goppa codes [26]. Discussion of Goppa codes is
beyond the scope of this introductory book. Moreover, implementation of BCH
codes is simpler than that of Goppa codes, and no Goppa codes better than
BCH codes have been found. For details on Goppa codes, the reader is referred
to [26]-[30].

Our presentation of BCH codes and their implementation is given in the time
domain. BCH codes also can be defined and implemented in the frequency domain
using Fourier transforms over Galois fields. Decoding BCH codes in the frequency
domain sometimes offers computational or implementation advantages. This topic
will be discussed in Chapter 7.

PROBLEMS

6.1 Consider the Galois field GF(2*) given by Table 2.8. The element g = o’ is
also a primitive element. Let go(X) be the lowest-degree polynomial over GF(2)

that has

BB 8, p*
as its roots. This polynomial also generates a double-error-correcting primitive
BCH code of length 15.

a. Determine go(X).
b. Find the parity-check matrix for this code.
¢. Show that go(X) is the reciprocal polynomial of the polynomial g(X)
that generates the (15, 7) double-error-correcting BCH code given in
Example 6.1.
6.2 Determine the generator polynomials of all the primitive BCH codes of length 31.
Use the Galois field GF(2°) generated by p(X) = 1+ X% + X°.
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6.4

6.5

6.6

®.7

6.8

6.9

6.10

611
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Suppose that the double-error-correcting BCH code of length 31 constructed
in Problem 6.2 is used for error correction on a BSC. Decode the received
polynomials r(X) = X7+ %0 andry(X) =1+ XV + X8,

Consider a -error-correcting primitive binary BCH code of length n = 2™ — 1.
If 2¢ + 1 is a factor of n, prove that the minimum distance of the code is exactly
2t + 1. (Hint: Let n = [(2¢ + 1). Show that (X" + 1)/(X' +1)is a code polynomial
of weight 2r +1.)

Is there a binary f-error-correcting BCH code of length 2” + 1 for m > 3 and
t < 219 If there is such a code, determine its generator polynomial.

Consider the field GF(2%) generated by p(X) = 1+ X + X* (see Table 2.8). Let
« be a primitive element in GF(2% such that pla) = 0. Devise a circuit that is
capable of multiplying any element in GF(2*) by .

Devise a circuit that is capable of multiplying any two elements in GF(2%). Use
pX)=1+ X2+ X to generate GF(2%).

Devise a syndrome computation circuit for the binary double-error-correcting
(31, 21) BCH code.

Devise a Chien’s searching circuit for the binary double-error-correcting (31, 21)
BCH code.

Consider the Galois field GF(25) given by Table 6.2. Let g = o3 1y = 2, and
d = 5. Determine the generator polynomial of the BCH code that has

B2, 8% 8% B°

as its roots (the general form presented at the end of Section 6.1). What is the
length of this code?

Let lp = —t and d = 2¢ + 2. Then we obtain a BCH code of designed distance
2t + 2 whose generator polynomial has

ﬂ*fv...,lg*l’ﬂongl’...,ﬂf

and their conjugates as all its roots.

a. Show that this code is a reversible cyclic code.

. Show that if 7 is odd, the minimum distance of this code is at least 2¢ + 4.
(Hint: Show that =+ and g'*1 are also roots of the generator polynomial.)
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and the values of the erased symbols at positions X2 and X3 are

—Zo(a_zg) 0
f= Y8y  o® 0,

—Zo(O{_53) 0
3= = =0

Y ®) o«
Then, the estimated error polynomial is
e(X) = a5 X0 + o7 x%20 4ot x4,

Subtracting e(X) from r*(X), we obiain the decoded code polynomial v(X) = 0,
which is the transmitted code polynomial.

PROBLEMS

7.1 Consider the triple-error-correcting RS code given in Example 7.2. Find the code
polynomial for the message

aX)=1+X +aXx*+a’X8

7.2 Using the Galois field GF(2°) givenin Appendix A, find the generator polynomials
of the double-error-correcting and triple-error-correcting RS codes of length 31.

7.3 Using the Galois field GF(2°) given in Table 6.2, find the generator polynomials
of double-error-correcting and triple-error-correcting RS codes of length 63.

7.4 Consider the triple-error-correcting RS code of length 15 given in Example 7.2.
Decode the received polynomial

r(X) =a*x3+ %8 + o3 x 1

using the Berlekamp algorithm.

7.5 Continue Problem 7.4. Decode the received polynomial with the Euclidean
algorithm.

7.6 Consider the triple-error-correcting RS code of length 31 constructed in Prob-
lem 7.2. Decode the received polynomial

r(X) = o +a? X1 4 o X%

using the Euclidean algorithm.

7.7 Continue Problem 7.6. Decode the received polynomial in the frequency domain
using transform decoding.

7.8 For the same RS code of Problem 7.6, decode the following received polynomial
with two erasures:

HX) = X+ 00X + )X + o2 xH

with the Euclidean algorithm.
7.9 Prove that the dual code of a RS code is also a RS code.
7.10 Prove that the (2™ —1, k) RS code with minimum distance d contains the primitive
binary BCH code of length 2" — 1 with designed distance d as a subcode. This
subcode is called a subfield subcode.
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7.11

7.12

7.13

Let o be a primitive element in GF(2™). Consider the (2" — 1, k) RS code of
length of 2" ~ 1 and minimum distance d generated by

2(X) = (X —a)(X —a?)...(X —ai7h).
Prove that extending each codeword v = (v, v1, - -+ , von_3) by adding an overall

parity-check symbol
om_2

Voo = — Z v
i=0

produces a (2™, k) code with a minimum distance of d + 1.

Consider a ¢-symbol error-correcting RS code over GF(2™) with the following
parity-check matrix:
1 « o? e o1
1 C(2 ((12)2 . (aZ)n—l
H= ,
i Ol‘ZI (aZ.t)Z (a21.~)11~1

where n = 2" — 1, and « is a primitive element in GF(2™}. Consider the extended
Reed-Solomon code with the following parity-check matrix:

0 1
00
Hi=|: ' H
00
1 0

Prove that the extended code also has a minimum distance of 2¢ + 1.

LetalX) =ag+ @ X+ + a1 X*1bea polynomial of degree k — 1 or less
over GF(2™). There are (2™)* such polynomials. Let & be a primitive element
in GF(2™). For each polynomial a(X), form the following polynomial of degree
2™m — 2 or less over GF(2™):

v(X) =al) +a(@X +a@HX>+ . +a@® x> 2

Prove that the set {v(X)} forms the (2" — 1, k) RS code over GF(2™). (Hint: Show
that v(X) has «, a2, .. @2 k1 ag roots). This original definition of a RS code is
given by Reed and Solomon [1].
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exactly the same way, simply by replacing 2 with p and GF(2°) with GF(p*).
Construction of codes based on the flats and points in these finite geometries results
in a much larger class of majority-logic decodable codes. Construction of finite
geometries over GF(p®) and their application to the construction of low-density
parity-check codes will be discussed in Chapter 17.

PROBLEMS
81

8.2

8.3

8.4

8.5

8.6

8.7

Consider the (31, 5) maximum-length code whose parity-check polynomial is
p(X) = 1+ X% + X°. Find all the polynomials orthogonal on the digit position
X30 Devise both type-I and type-II majority-logic decoders for this code.

P = {0, 2,3} is a perfect simple difference set. Construct a difference-set code
based on this set.

a. What is the length n of this code?

b. Determine its generator polynomial.

¢. Find all the polynomials orthogonal on the highest-order digit position X"~ 1,
d. Construct a type-I majority-logic decoder for this code.

Example 8.1 shows that the (15, 7) BCH code is one-step majority-logic decodable
and is capable of correcting any combination of two or fewer errors. Show that
the code is also capable of correcting some error patterns of three errors and
some error patterns of four errors. List some of these error patterns.

Consider an (11, 6) linear code whose parity-check matrix is

10000111111
6100011 0100
H=)0 01 0 01010120
000100116001
0 000610O0O0CI1 11

(This code is not cyclic.)

a. Show that the minimum distance of this code is exactly 4.

b. Let € = (e, €1, €2, €3, ey, €5, €6, €7, €3, €9, €1g) be an error vector. Find the
syndrome bits in terms of error digits.

c. Construct all possible parity-check sums orthogonal on each message error
digite; fori =5,6,7,8, 9, 10.

d. Is this code completely orthogonalizable in one step?

Let m = 6. Express the integer 43 in radix-2 form. Find all the nonzero proper

descendants of 43.

Let o be a primitive element of GF(2%) given by Table 2.8. Apply the affine

permutation Z = a>¥ + &!! to the following vector of 16 components:

Location Numbers

a® a@ al aZ 053 0{4!, aS aﬁ o ob a9 aw 0‘11 0612 “13 0614

w=(¢¢ 1 1 0 6 1 0 1 0 1 1 0 0 0 0 1

What is the resultant vector?

Letm = 6. Then, 2 — 1 can be factored as follows: 20 — 1 =7 x 9. Let J = 9 and
L = 7. Find the generator polynomial of the type-I DTI code of length 63 and
J = 9 (use Table 6.2). Find all the polynomials (or vectors) orthogonal on the
digit position X% (or a%2).
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Find the generaior polynomial of the type-I DTI code of length 63 and 7 = 7.
Find all the polynomials orthogonal on the digit position X2,

Show that the ali-one vector is not a code vector in a maximum-length code.

Let w(X) = vg + v1X + - + van 2 X2 72 be a nonzero code polynomial in the
2" — 1, m) maximum-length code whose parity-check polynomial is p(X). Show
that the other 2" — 2 nonzero code polynomials are cyclic shifts of v(X). (Hint:
Let v\7(X) and v\ (X) be the ith and jth cyclic shifts of v(X), respectively, with
0<i<j<2"—2 Show that v/ (X) # v\/)(X).)

Agrrange the 2™ code vectors of a maximum-length code as rows of 2 2" x (2™ — 1)
array.

2. Show that each column of this array has 2"~! ones and 27" ~! zeros.

Ir. Show that the weight of each nonzero code vector is exactly 2"~ 1,

Example 8.12 shows that the (15, 5) BCH code is two-step majority-logic decod-
able and is capable of correcting any combination of three or fewer errors. Devise
a type-I majority-logic decoder for this code.

Show that the extended cyclic Hamming code is invariant under the affine
permutations.

14 Show that the extended primitive BCH code is invariant under the affine permu-

tations.
Let P = {lp,l1, 02, .... 1>} be a perfect simple difference set of order 27 such that

O<loy<li<b <. - <l <2°Q2°+1).

Construct a vectorof 7 = 2% + 25 + 1 components,

v = (Vg, V1, .- -, Up—1),
whose nonzero components are vy,. vy, ... , v, ; that is,
U]” = ‘[}[l = ... U[}\. = 1

Consider the following n x 2n matrix:
G = [@ ﬂl?]v

where (1) T, is an n x n identity matrix, and (2) @ is an 7 x n matrix whose n rows
are v and »n — 1 cyclic shifts of v. The code generated by G is a (2n, n) linear (not
cyclic) code whose parity-check matrix is

H = (I, Q7.

2. Show that J = 2* 4 1 parity-check sums orthogonal on any message error digit
can be formed.

b. Show that the minimum distance of this codeisd = J +1 = 2% 4+ 2. (This code
is a half-rate quasi-cyclic code [20).)

Prove that if J parity-check sums orthogonal on any digit position can be formed

for a linear code (cyclic or noncyclic), the minimum distance of the code is at least

J+1.

Consider the Galois field GF(2%) given by Table 2.8. Let § = &°. Then, {0, 1, 8, 2}

form the subfield GF(2?) of GF(2*). Regard GF(2*) as the two-dimensional

Euclidean geometry over GF(2%), EG(2, 2%). Find all the 1-flats that pass through

the point o’
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8.18 Consider the Galois field GF(2%) given by Table 6.2. Let § = «?!. Then,
{0,1, 8, %} form the subfield GF(2%) of GF(2%). Regard GF(2°) as the three-
dimensional Euclidean geometry EG(3, 2°).

a. Find all the 1-flats that pass through the point ¢®.
b. Find all the 2-flats that intersect on the 1-flat, {«® + nal, where n € GF(22).

8.19 Regard GF(2%) as the two-dimensional Euclidean geometry EG(2,23). Let
B = o’ Then, {0,1, 8, 82, 8, g%, 8°, 8%} form the subfield GF(2®) of GF(2°).
Determine all the 1-flats that pass through the point !

8.20 Letm =2ands =3.

a. Determine the 23-weight of 47.
b. Determine Omlax3 W3 (470,

¢. Determine all the positive integers /i less than 63 such that

0 < max W)y <2’ -1.
O0<l<3

8.21 Find the generator polynomial of the first-order cyclic RM code of length 25 — 1.
Describe how to decode this code.

8.22 Find the generator polynomial of the third-order cyclic RM code of length 26 — 1.
Describe how to decode this code.

8.23 Letm =2 ands = 3. Find the generator polynomial of the (0, 3)th-order EG code
of length 22*3 — 1. This code is one-step majority-logic decodable. Find all the
polynomials orthogonal on the digit location «% where « is a primitive element
in GF(22*3). Design a type-I majority-logic decoder for this code.

8.24 Letm =3 and s = 2. Find the generator polynomial of the (1, 2)th-order twofold
EG code of length 2°*? — 1. Describe how to decode this code.

8.25 Prove that the (i —2)th-order cyclic RM code of length 2™ — 1 is a Hamming code.
(Hint: Show that its generator polynomial is a primitive polynomial of degree m.)

8.26 Prove that the even-weight codewords of the first-order cyclic RM code of length
2" — 1 form the maximum-length code of length 2 — 1.

8.27 Let 0 < u < m — 1. Prove that the even-weight codewords of the (m — u — 1)th-
order cyclic RM code of length 2 — 1 form the dual of the uth-order RM code of
length 2" — 1. (Hint: Let g(X) be the generator polynomial of the n — u — 1)th-
order cyclic RM code C. Show that the set of even-weight codewords of C is a
cyclic code generated by (X + 1)g(X). Show that the dual of the uth-order cyclic
RM code is also generated by (X + 1)g(X).)

8.28 The pth-order cyclic RM code of length 2 — 1 has a minimum distance of
dpip = 2" % — 1. Prove that this RM code is a subcode of the primitive BCH
code of length 2" — 1 and designed distance 2" # — 1. (Hint: Let g(X)zrm be
the generator polynomial of the RM code and let g(X)pcn be the generator
polynomial of the BCH code. Prove that g(X)gc g is a factor of g(X)gas.)

8.29 Show that extended RM codes are invariant under the affine permutations.

8.30 Letm = 3,s = 2 and u = 2. Find the generator polynomial of the (2, 2)th-order
PG code constructed based on the projective geometry PG(3, 2°). This code is
two-step majority-logic decodable. Find all the orthogonal polynomials at each
step of orthogonalization.

8.31 Let £ bealine in the two-dimensional Euclidean geometry EG(2, 2°) that does not
pass through the origin. Let v/ be the incidence vector of £. For 0 < i < 2% —2,
let Vg) be the ith cyclic shift of v-. Prove that

V(EI) # V.
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8.32 Let £ be a line in the two-dimensional projective geometry PG(2, 2°). Let v, be

the incidence vector of £. For 0 < i < 225 4+ 25 let Wg) be the ith cyclic shift of v.
Prove that

/)
W(LI 75 V.

o]
[ &%)
(28}

.33 Prove that a cyclic shift of the incidence vector of a p-flat in EG(m, 2°) not

)
(%)
LN
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passing through the origin is the incidence vector of another p-flatin EG(m. 2%)
not passing threugh the origin.

4 Consider the cyclic product code whose component codes are the (3, 2) cyclic
code generated by g1(X) = 1 + X and the (7, 4) Hamming code generated by
X))y =1+X+X 3. The component code Cy is completely orthogonalizable
in one step, and the component code C; is completely orthogonalizable in two
steps. Show that the product code is completely orthogonalizable in two steps. (In
general, if one component code is completely orthogonalizable in one step, and
the other component code is completely orthogonalizable in L steps, the product
code is completely orthogonalizable in L steps [37].)
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Figure 9.26, and the Shannon product of these two 4-section trellises gives a 4-
section trellis, as shown in Figure 9.27, which is the same as the 4-section trellis for
the (8, 4, 4) RM code shown in Figure 9.17.

PROBLEMS
9.1

9.2

9.3
9.4

9.5
9.6

9.7

9.8

9.9

9.16

8.11

Consider the (6, 3) linear code generated by the following matrix:

101101
G=| 110001
101010

Put this generator in trellis-oriented form.
. Determine the active time spans of the rows in the trellis-oriented generator
matrix.
¢. Determine the state space dimension profile of the bit-level 6-section trellis
for the code.
. Determine the state-defining information set at each time instant.
Determine the input information bit at each time instant.
Determine the output function in each bit interval.
Construct the trellis-oriented generator matrix for the first-order RM code, RM(1,
5), of length 32.
a. Determine the active time spans of the rows.
. Determine the state space dimension profile of the bit-level treliis for the code.
Determine the state-defining information set at each time instant.
. Determine the input information bit at each time instant.
e. Determine the output function in each bit interval.
Construct the bit-level trellis for the (6, 3) code given in Problem 9.1. Label the
states based on the state-defining information set using ppyax(C) bits.
Find a parity-check matrix for the (6, 3) code given in Problem 9.1. Label the
states of its bit-level trellis based on the parity-check matrix.
Construct the bit-level minimal trellis for the (8, 7) even-parity-check code.
Construct the bit-level trellis for the first-order RM code, RM(1, 5), of length 32.
Label its states based on the state-defining information set using pmax(C) bits.
Determine the past and future subcodes of the (6, 3) linear code given in
Problem 9.1 at each time instant. Determine the cosets in the partition

e T

ap o

C/Cyq @ Cyp.

Determine the past and future subcodes of the first-order RM code, RM(1, 4), of
length 16 at time instants 4, 8, and 12. Determine the cosets in the partition

C/Cos & Cs 16-

For the first-order RM code of length 16, determine the punctured code py4 g(C)
and punctured code C{g between time-4 and time-8. Determine the partition

1)4,8(C)/C4I1’:8~

Determine the state space dimension profile of the bit-level trellis for the primitive
(15,5) BCH code. Construct its bit-level trellis.

Consider the first-order RM code of length 16 given in Example 9.13. Construct a
4-section trellis for the code with section boundary locations at 0, 4, 8, 12, and 16.



Bibliography 391

9,12 Continue Problem 9.5. Construct a 4-section trellis for the firsi-order RM code of

length 32.

9.13 Consider the first-order RM code of length 16 given in Example 9.13. 1 ero;npose

9.14 Continue Problem 9.13. After decomposition, consiruct an

the bit-level trellis into two parallel subtrellises without exceeding the maxirmum
state space dimension.
8-section trellis for

the code.

9.15 Canthe first-order RM code of length 16 be decomposed into 4 paraliel subtrellises

without exceeding its maximum state space dimension?

9.16 Can the bit-level irellis for the primitive (15, 5) BCH code be decomiposed into

two parallel subtrellises without exceeding its mazzimum state space dimension?
If yes, decompose the trellis.

9.17 Prove that the bit-level trellis for the first-order RM code of length 16 has

mirror-image syminetry.

9.18 Prove that the bit-level trellis for the first-order RM code, RM(r, m}, has mirror-

image symmetry.

BIBLIOGRAPHY

L

-

Zo

10,

G. D. Forney, Jr., “The Viterbi Algorithm.” Proc. JEEE, 61: 268-78, 1973,

A. J. Viterbi, “BError Bounds for Convoluiional Codes and Asympiotically
Optimum Decoding Algorithm,” IEEE Trans. Inform. Theory, IT-13: 260-69,
1967.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Opiimal Decoding of Linear
Codes for Minimizing Symbol Error Rate,” IEEE Trans. Inform. Theory, [T-20:
284-87, 1974,

. J. K. Wolf, ““ Efficient Maximum-Likelihood Decoding of Linear Biock Codes

Using a Trellis,” IEEE Trans. Inform. Theory, IT-24: 76-80, 1978.

99

J. L. Massey, “Foundation and Methods of Channel Encoding, " in Proc. {at.
Conf. Inform. Theory and Systems, NTG-Fachberichte, Berlin, 1978.

G. D. Forney Jr., “Coset Codes II: Binary Lattices and Related Codes,” IEEE
Trans. Inform. Theory, IT-34: 115287, 1988.

S. Lin, T. Kasami, T. Fujiwara, and M. P. C. Fossorier, Trellises and Trellis-Based
Decoding Algorithms for Linear Block Codes, Kluwer Academic, Bosion, Mass.,
1998.

A. Vardy, “Trellis Structure of Codes” in Handbook of Coding Theory, edited
by V. Pless, W. Huffman, and R. A. Brualdi, Elsevier Science, Amsterdam,
1998.

D.J. Muder, “Minimal Trellises for Block Codes,” IEEE Trans. Inform. Theory,
34:1049-53, 1988.

Y. Berger and Y. Be'ery, “Bounds on the Trellis Size of Linear Block Codes,”
IEEE Trans. Inform. Theory, IT-39: 203-9, 1993.



(=
=
=]

Problems

LA
DAL

10

167! ":‘*“%1;“‘%:.? T -

0| RS |

Bit-error probability

10*3 | g\‘\\ \\\\' j\\ °»®\\ 1
R N
-==: UMP APP-based decoding  \\ g\ .
N\ N
10+~ - —:UMP BP-based decoding \ AN ., —|
% \Q
—-—: BP decoding ONA .
B\ 8\ AN
x50 iterations \ vy N
1077 VAN ]
o :200 Iterations A \ N
\ X N
AN
1076 I | \ \ | b |
0 0.5 i 1.5 2 2.5 3 3.5 4

E,/N, (in dB)

FIGURE 10.16: Error performance for iterative decoding of the (1008, 504) LDPC
code with BP, UMP BP-based, and UMP AFP-based decoding algorithms, and at
most 50 and 200 iterations.

decoding of the (504, 252) and (1008, 504) LLDPC codes (constructed by computer
search), respectively, with the BP, UMP BP-based, and UMP APP-based decoding
algorithms, and at most 50 and 200 iterations. The (504, 252) LDPC code has three
check-sums of weight 6 orthogonal on each position, and the (1008, 504) LDPC code
has four check-sums of weight 8 orthogonal on each position. We observe that the
error performance of the simplified UMP BP-based algorithm is close to that of the
BP algorithm and achieves a significant gain over the UMP APP-based decoding
algorithm of Section 10.10.1; however, the number of required iterations is quite
large, and little improvement is observed by increasing the number of iterations
from 50 to 200 for BP-based decoding algorithms.

Construction of LDPC codes and various algorithms for decoding LDPC codes
will be discussed in Chapter 17.

PROBLEMS

10.1 Prove the sufficient condition for optimality of a codeword given by (10.47).
10.2 Consider the value G(v1, wy; v2, wy) given in (10.46).

a. Discuss G(v, wiy; v2, w1) in the case where the codeword delivered by an
algebraic decoder is known. What is the problem in trying to use this result for
all received sequences?

. Discuss G(vy, wy; 72, wy) for vi = vy.

10.3 GMD decoding considers only |(dym + 1)/2] erasures in the dy;, — 1 LRPs.

Explain why not all d,,;;, — 1 possible erasures are considered.
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16.4 Consider an (n, k) binary linear code with even minimum distance d,;i,. Show
that it is possible to achieve the same error performance as for the conventional
Chase algorithm-Z by erasing one given position among the {dy,;, /2| least reliable
positions (LRPs) of the received sequence and adding to the hard-decision
decoding of the received sequence r all possible combinations of 0’s and 1’s in the
remaining {dp; /2] — 1 LRPs.

10.5 Consider an error-and-erasure algebraic decoder that successfully decodes any
input sequence with ¢ errors and s erasures satisfying s -+ 2t < d,y;, and fails to
decode otherwise. Define S,(a) as the set of candidate codewords generated by
the algorithm A, (a) presented in Section 10.4. Fora =1, - - -, [dinin /2] — 1, show
that S.(a) € S.(a + 1).

10.6 In the KNIH algorithm presented in Section 10.6, show that any codeword v in
J(i) rather that the one that has the smallest correlation discrepancy with the
received sequence r can be used for evaluating G, (v). Discuss the implications of
this remark (advantages and drawbacks).

10.7 In the RLSD algorithm presented in Section 10.7, show that there exists at most
one (n — k)-pattern that is not (n — k — 1)-eliminated.

16.8 For the RLSD algorithm presented in Section 10.7, determine the complete
reduced list for the (15, 11, 3) Hamming code.

10.9 Determine the complete reduced list for the (8, 4, 4) extended Hamming code.
Show that this complete list can be divided into two separate lists depending on
whether the syndrome s is a column of the parity check matrix H. (Hint: Each list
is composed of five distinct patterns).

10.1¢ In the RLSD algorithm presented in Section 10.7, prove that all n(v)-patterns
with n(v) > n — k can be eliminated from all reduced lists. For n(vl) < n(v),
determine an n(v )-pattern that justifies this elimination.

10.11 Let C and C; be the two codes defined in Section 10.8.1. Explain why if ¢ is the
decoded codeword in Cy, then 7, 1”2— %] is simply the decoded codeword in C.

10.1Z Prove that the most reliable basis and the least reliable basis are information sets
of a code and its dual, respectively.

10.13 Prove that order-1 reprocessing achieves maximum likelihood decoding for the
(8,4,4) RM code.

19.14 Which order of reprocessing achieves maximum likelihood decoding of an (n, n —
1, 2) single parity-check code? Based on your answer, propose a much simpler
method for achieving maximum likelihood decoding of single parity-check codes.

19.15 Describe the types of errors that can be corrected by Chase algorithm-2, but not
by order-i reprocessing.

10.16 Assume that an rth-order RM code RM(r, m) is used for error control.

a. Show that all error patterns of weight at most ¢, as well as all error patterns of
weight ¢ + 1 with one error in a given position can be corrected.

. Assuming reliability values are available at the decoder, propose a simple
modification of majority-logic decoding (Reed algorithm) of RM(r, m) RM
codes in which the error performance can be improved based on (a).
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[v]f = (11,01,00,00,---,00), even in the limit as [ — co. Note, however, that
all finite-length paths in the state diagram that diverge from and remerge with the
all-zero state Sy have a weight of at least 4, and hence, dj.. = 4. In this case we have
a situation in which lim; , oo dj = 3 # dfe. = 4; that is, (11.168) is not satisfied.

It is characteristic of catastrophic encoders that an infinite-weight information
sequence produces a finite-weight codeword. In some cases, as in the preceding
example, this codeword can have a weight less than the free distance of the
code, owing to the zero-output weight cycle in the state diagram. In other words,
an information sequence that traverses this zerc-output weight cycle forever will
itself pick up infinite weight without adding to the weight of the codeword. In a
noncatastrophic encoder, which contains no zero-output weight cycle other than the
zero-weight cycle around the state Sp, all infinite-weight information sequences must
generate infinite-weight codewords, and the minimum weight codeword always has
finite length. Unfortunately, the information sequence that produces the minimum-
weight codeword may be quite long in some cases, and hence the calculation of d,
can be a difficult task.

The best achievable dj.. for a convolutional code with a given rate R and
overall constraint length v has not been determined in general; however, upper and
lower bounds on df.. have been obtained using a random coding approach. These
bounds are thoroughly discussed in References [16], [17], and [18]. A comparison
of the bounds for nonsystematic encoders with the bounds for systematic encoders
implies that more free distance is available with nonsystematic feedforward encoders
of a given rate and constraint length than with systematic feedforward encoders.
This observation is verified by the code construction results presented in the next
two chapters and has important consequences when a code with large dp., must be
selected for use with ML, MAP, or sequential decoding. Thus, if a systematic encoder
realization is desired, it is usually better to select a nonsystematic feedforward
encoder with large dj.. and then convert it to an equivalent systematic feedback

encoder.
PROBLEMS
18.1 Consider the (3, 1, 2) nonsystematic feedforward encoder with
g® = (110),
gl =100,
g? =@111).

a. Draw the encoder block diagram.

b. Find the time-domain generator matrix G.

¢. Find the codeword v corresponding to the informationsequencem = (111 01).
11.2 Consider the (4, 3, 3) nonsystemaiic feedforward encoder shown in Figure 11.3.

a. Find the generator sequences of this encoder.

b. Find the time-domain generator matrix G.

¢. Find the codeword v corresponding to the information sequence mw =

(110,011, 101).
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11.4

11.7

11.8

1.9

11.10

11.11

514

Consider the (3, 1, 2) encoder of Problem 11.1.
a. Find the transform-domain generator matriz G(D).
. Find the set of output sequences V() aﬂd tﬂF codewo

5 d,
to the information sequence w(D) = 1 + L D3 - DY
Consider the (3, 2, 2) nonsystematic tcedxm wa;d encoder shown i

a. Find the composite generator polynoinials g (D) and g (D).

b. Find the codeword v(D) cor reopondmg to the set of i
U(D) =[1+D+D* 14+ D>+ D7

Cousider the (3, 1, 5) sysiematic feedforward encoder with

g = (101101),
g? = (110011).

trix G

NIF.

..},(3\

@, Find the time-domain generator ma

b. Find the parity sequences v'! and
sequenceuw = (1 10 1),

Consider the (3, 2, 3) sysiematic feedforward encoder with

,_‘

2

@Dy =1+ D%+ D,
@D(py=1+D+D%

a. Draw the controller canonical form realization of this encoder. How ma
delay elements are required in this realization?

b, Draw the simpler observer canonical form realization that req
delay elements.

Verity the sequence of elementary row opeiaﬁonc leading from the nonsysie

atic feedforward realizations of (11.34) and (11.70) to the systematic feedba

realizations of (11.66) and (11.71).

Draw the observer canonical form reali iza ation of the generator matrix G (D) in
(11.64) and determine its overall constraint length v
Consider the rate R = 2/3 noasysiem iic fee dfoﬂ\mm encoder w
matrix

D D 1

G(D) = 2 |-

I D~ 1+D+D

a. Draw the controller canonical form encoder realization for G( D). What is the

overall constraint length v?

b. Find the generator matrix G (D) of the equivalent systematic feedback
encoder. Is G (D) realizable? If not, find an equivalent realizable genera-
tor matrix and draw the corresponding minimal encoder realization. Is this
minimal realization in controller canonical form or observer canonical form?
What is the minimal overall constraint length v?

Use elementary row operations to convert the rate R = 2/3 generaior mairiz of

(11.77) to systematic feedback form, and draw the minimal observer ccnomcal

form encoder realization. Find and draw a nonsystemaiic feedback controlle:

canonical form encoder realization with the same number of states.

Redraw the observer canonical form realization of the (3, 2, 2) systematic feed-

back encoder in Figure 11.7(b) using the notation of (11.82) and the relabeling

scheme of Figure 11.11.
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11.12

1113

11.14

11.15

11.16
12,17

1118
1119

11.20

11.21

11.22

11.23

Consider the (3, 1, 2) systematic feedback encoder shown in Figure 11.6(c). Deter-
mine the v = 2 termination bits required to return this encoder to the all-zero
state when the information sequence u = (10111).

Consider the (4, 3, 3) nonsystematic feedforward encoder realization in controller

canonical form shown in Figure 11.3.

@a. Draw the equivalent nonsystematic feedforward encoder realization in
observer canonical form, and determine the number of termination bits
required to return this encoder to the all-zero state. What is the overall
constraint length of this encoder realization?

b. Now, determine the equivalent systematic feedback encoder realization in
observer canonical form, and find the number of termination bits required to
return this encoder to the all-zero state. What is the overall constraint length
of this encoder realization?

Consider the (2,1,2) nonsystematic feedforward encoder with G(D) = {1 +

D’ 1+ D+ D%

a. Find the GCD of its generator polynomials.

b. Find the transfer function matrix G~1( D) of its minimum-delay feedforward
inverse.

Consider the (2,1, 3) nonsystematic feedforward encoder with G(D) = [1 +

D? 14+ D+ D?*+ D3

Find the GCD of its generator polynomials.

Draw the encoder state diagram.

Find a zero-output weight cycle in the state diagram.

Find an infinite-weight information sequence that generates a codeword of

finite weight.

e. Is this encoder catastrophic or noncatastrophic?

Find the general form of transfer function matrix G~ 1(D) for the feedforward

inverse of an (u, k, v) systematic encoder. What is the minimum delay [?

Verify the calculation of the WEF in Example 11.13.

Verify the calculation of the IOWEF in Example 11.12.

Consider the (3, 1, 2) encoder of Problem 11.1.

a. Draw the state diagram of the encoder.

b. Draw the modified state diagram of the encoder.

¢. Find the WEF A(X).

d. Draw the augmented modified state diagram of the encoder.

e. Find the IOWEF A(W, X, L).

Using an appropriate software package, find the WEF A(X) for the (4,3,3)

encoder of Figure 11.3.

Consider the equivalent systematic feedback encoder for Example 11.1 obtained

by dividing each generator polynomial by g¥ (D) = 1+ D? + D3

a. Draw the augmented modified state diagram for this encoder.

b. Find the IRWEF A(W, Z), the two lowest input weight CWEFs, and the WEF
A(X) for this encoder.

¢. Compare the results obtained in (b) with the IOWEF, CWEFs, and WEF com-
puted for the equivalent nonsystematic feedforward encoder in Example 11.1.

Verify the calculation of the IOWEF given in (11.124) for the case of a terminated

convolutional encoder.

Consider the equivalent nonsystematic feedforward encoder for Example 11.14

obtained by multiplying G(D) in (11.140) by g (D) =1 + D + D?.

EOEFP
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2. Draw the augmented modified state diagram for this encoder.
b. Find the IOWEF A(W, X, L), the three lowest input weight CWEFs, and the
WEF A(X) for this encoder.
c. Compare the results obtained in (b) with the IRWEF, CWEFs, and WEF
computed for the equivalent systematic feedback encoder in Example 11.14.
11.24 In Example 11.14, verify all steps leading to the calculation of the bit WEF in
(11.154).
11.25 Consider the (2,1, 2) systematic feedforward encoder with G(D) = [1 1+ D?].
8. Draw the augmenied modified state diagram for this encoder.
. Find the IRWEF A(W, Z, L), the three lowest input weight CWEFs, and the
WEFE A(X) for this encoder.
11.26 Recalculate the IOWEF A(W, X, L) in Example 11.12 using the state variable
approach of Example 11.14.
11.27 Recalculate the WEF A(X) in Example 11.13 using the state variable approach
of Example 11.14.
11,28 Consider the (3, 1, 2) code generated by the encoder of Problem 11.1.
a. Find the free distance dp...
b. Plot the complete CDF.
¢, Find the minimum distance dpiy.
11.29 Repeat Problem 11.28 for the code generated by the encoder of Problem 11.15.
11.30 a. Prove that the free distance dj., is independent of the encoder realization, i.e.,
it is a code property.
. Prove that the CDF d; is independent of the encoder realization; that is, it is a
code property. (Assume that the k x n submatrix Gy has full rank.)
11.31 Prove that for noncatastrophic encoders

Hm di = dyree.
{— 00
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We see from Table 12.6 that, in general, for a given rate R, and constraint
length v, the minimum distance d,;,, of the best block (tail-biting convolutional)
code increases, or the number of nearest neighbors decreases, as the information
block length K* increases. Once K* reaches a certain value, though, the minimum
distance dy;;, of the best block (tail-biting convolutional) code is limited by the
free distance dj.. of the best terminated convolutional code with constraint length
v, and no further increase in dp;, is possible; however, the number of nearest
neighbors Ay, continues to grow linearly with K*. Once this limit is reached, the
generator sequences gt/ (parity-check sequences h'/) in the rate R;, = 2/3 case)
and the minimum distance dn;, stay the same, and in Table 12.6 we simply list
the growth rate of 4, , . In other words, for a given R;;, and v, block (tail-biting
convolutional) codes improve as K* increases up to a point, and then the codes
get worse. Similarly, we can see from Table 12.6 that for a given R;;, and K*, block
(tail-biting convolutional) codes improve as v increases up to a point, and then dyn
and Ay, remain the same. Thus, the best block (tail-biting convolutional) codes
are obtained by choosing the length K* or the constraint length v only as large as is
needed to achieve the desired combination of dj,;, and Ay, . It is worth noting that
many of the best binary block codes can be represented as tail-biting convolutional
codes, and thus they can be decoded using the ML (Viterbi) or MAP (BCJR)
soft-decision decoding algorithms (see Problem 12.39).

PROBLEMS

12.1 Draw the trellis diagram for the (3, 2, 2) encoder in Example 11.2 and an
information sequence of length # = 3 blocks. Find the codeword corresponding
to the information sequence u = (11, 01, 10). Compare the result with (11.16) in
Example 11.2.

12.2 Show that the path v that maximizes Z,N:?)l log P(rlv;) also maximizes
Z,]i?)l c2[log P (r1|v) + c1], where ¢1 is any real number and c; is any positive real
number.

12.3 Find the integer metric table for the DMC of Figure 12.3 when ¢y = land ¢; = 10.
Use the Viterbi algorithm to decode the received sequence r of Example 12.1
with this integer metric table and the trellis diagram of Figure 12.1. Compare your
answer with the result of Example 12.1.

12.4 Consider a binary-input, 8-ary output DMC with transition probabilities P (r/|v;)
given by the following table:

#
W ! L 0, 03 04 1q 13 1> 1y

0 0.434 0.197 0.167 0.111 0.058 0.023 0.008 0.002

1 0.002 0.008 0.023 0.058 0111 0.167 0.197 0434

Find the metric table and an integer metric table for this channel.
12.5 Consider the (2, 1, 3) encoder of Figure 11.1 with

GD)={1+D*+D* 1+D+D*+ D%
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a. Draw the trellis diagram for an information sequence of length /4 = 4.

b. Assume a codeword is transmitted over the DMC of Problem 12.4. Use the
Viterbi algorithm to decode the received sequence r = (1514, 12071, 0301, 0113,
1,05, 0314, 0307).

The DMC of Problem 12.4 is converted to a BSC by combining the soft-decision

outputs 01, 0. 0z, and 0, into a single hard-decision output 0, and the soft-decision

outputs 11, 12, 13, and 14 into a single hard-decision output 1. A codeword from the
code of Problem 12.5 is transmitted over this channel. Use the Viterbi algorithm
to decode the hard-decision version of the received sequence in Problem 12.5 and

compare the result with Problem 12.5.

7 A codeword from the code of Problem 12.5 is transmitted over a continuous-

output AWGN channel. Use the Viterbi algorithm to decode the (normalized by

J/Es) veceived sequence © = (+1.72, +0.93, +2.34. —3.42, —0.14, —2.84, —1.92,

+0.23, +0.78, —0.63, —0.05, +2.95, —0.11, —0.55).

Consider a binary-input, continuous-output AWGN channel with signal-to-noise

ratio E,/Ng = 0 dB.

2. Sketch the conditional pdf’s of the (normalized by E|) received signal r;
given the transmitted bits vy = £1.

. Convert this channel into a binary-input, 4-ary output symmetric DMC by
placing guantization thresholds at the values r; = —1, 0, and + 1, and compute
the transition probabilities for the resulting DMC.

¢, Find the metric table and an integer metric table for this DMC.

d. Repeat parts (b) and (c) using quantization thresholds r; = —2,0, and + 2.

Show that (12.21) is an upper bound on P, for d even.

Consider the (2, 1, 3) encoder of Problem 12.5. Evaluate the upper bounds on

event-error probability (12.25) and bit-error probability (12.29) for a BSC with

transition probability

2 p =01,

b, p = 0.01.

(Hint: Use the WEFs derived for this encoder in Example 11.12.)

Repeat Problem 12.10 using the approximate expressions for P(E) and Py (E)

given by (12.26) and (12.30).

Consider the (3, 1, 2) encoder of (12.1). Plot the approximate expression (12.36)

for bit-error probability P,(E) on a BSC as a function of £,/Ny in decibels.

Also plot on the same set of axes the approximate expression (12.37) for

Py(E) without coding. The coding gain (in decibels) is defined as the difference

between the E,/Np ratio needed to achieve a given bit-error probability with

coding and without coding. Plot the coding gain as a function of P,(£). Find
the value of Ej,/Ng for which the coding gain is 0 dB, that is, the coding
threshold.

Repeat Problem 12.12 for an AWGN channel with unquantized demodulator

outputs, that is, a continuous-output AWGN channel, using the approximate

expression for P,(F) given in (12.46).

Consider using the (3, 1, 2) encoder of (12.1) on the DMC of Problem 12.4.

Calculate an approximate value for the bit-error probability P,(E) based on the

bound of (12.39b). Now, convert the DMC to a BSC, as described in Problem

12.6, compute an approximate value for P,(FE) on this BSC using (12.29), and

compare the two results.

Prove that the rate R = 1/2 quick-look-in encoders defined by (12.58) are

noncatastrophic.
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12.16

12.17

12.18

12.19

12.20

12.21

12.22

Consider the following two nonsystematic feedforward encoders: (1) the encoder
for the (2, 1, 7) optimum code listed in Table 12.1(c) and (2) the encoder for the
(2,1, 7) quick-look-in code listed in Table 12.2. For each of these codes find

a. the soft-decision asymptotic coding gain y;

b. the approximate event-error probability on a BSC with p = 107%;

¢. the approximate bit-error probability on a BSC with p = 1072;

d. the error probability amplification factor A.

Using trial-and-error methods, construct a (2, 1, 7) systematic feedforward

encoder with maximum df... Repeat Problem 12.16 for this code.

Consider the (15,7) and (31,16) cyclic BCH codes. For each of these codes find

a. the polynomial generator matrix and a lower bound on dp, for the rate
R = 1/2 convolutional code derived from the cyclic code using Construction
12.1;

b. the polynomial generator matrix and a lower bound on dy. for the rate
R = 1/4 convolutional code derived from the cyclic code using Construction
12.2.

(Hint: dy is at least one more than the maximum number of consecutive powers

of « that are roots of h(X).)

Consider the (2, 1, 1) systematic feedforward encoder with G(D) =[1 1+ DJ.

a. For a continuous-output AWGN channel and a truncated Viterbi decoder with

path memory t = 2, decode the received sequence r = (+1.5339, +0.6390,

—0.6747, —3.0183, +1.5096, +0.7664, —0.4019, +0.3185, +2.7121. —0.7304,

+1.4169, —2.0341, +0.8971, —0.3951. +1.6254, —1.1768, +2.6954, —1.0575)

corresponding to an information sequence of length 7 = 8. Assume that at

each level the survivor with the best metric is selected and that the information
bit  time units back on this path is decoded.

Repeat (a) for a truncated Viterbi decoder with path memory 7 = 4.

Repeat (a) for a Viterbi decoder without truncation.

. Are the final decoded paths the same in all cases ? Explain.

C0n51der the (3, 1, 2) encoder of Problem 11.19.

a, Find A1(W, X, L), Ap(W, X, L), and A3(W, X, L).

b. Find 1,,,.

¢. Findd(r)and Agy fort =0,1,2, -, Tyn.

d. Find an expression for im;_, », d (7).

A codeword from the trellis diagram of Figure 12.1 is transmitted over a BSC. To

determine correct symbol synchronization, each of the three 21-bit subsequences

of the sequence

go T

r=01110011001011001000111

must be decoded, where the two extra bits in r are assumed to be part of a

preceding and/or a succeeding codeword. Decode each of these subsequences

and determine which one is most likely to be the correctly synchronized received

sequence.

Consider the binary-input, continuous-output AWGN channel of Problem 12.8.

a. Using the optimality condition of (12.84), calculate quantization thresholds for
DMCs with Q = 2, 4, and 8 output symbols. Compare the thresholds obtained
for O = 4 with the values used in Problem 12.8.

b. Find the value of the Bhattacharyya parameter Dy for each of these channels
and for a continuous-output AWGN channel.

c. Fixing the signal energy +/E; = 1 and allowing the channel SNR E; / Ng to vary,
determine the increase in the SNR required for each of the DMCS to achieve
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the same value of Dy as the continuous-output channel. This SNR difference is
called the decibel loss associated with receiver quantization. (Note: Changing
the SNR also changes the quantization thresholds.)
(Hint: You will need to write a computer program to solve this problem.)
Verify that the two expressions given in (12.89) for the modified metric used in
the SOV A algorithm are equivalent.
Define L(r) = In A(r) as the log-likelihood ratio, or L-value, of a received symbol
r at the output of an unquantized binary input channel. Show that the L-value of
an AWGN channel with binary inputs 4+/E; and SNR E/Nj is given by

L(r) = (4+/E;/No)r.

Verify that the expressions given in (12.98) are covrect, and find the constant c.

Consider the encoder, channel, and received sequence of Problem 12.19.

2. Use the SOV A with full path memory to produce a soft output value for each
decoded information bit.

. Repeat (a) for the SOV A with path memory r = 4.

Derive the expression for the backward metric given in (12.117).
_ Lu(u])/2

Verify the derivation of (12.123) and show that A; = e 1+ """ is independent

of the actual value of uy.

Derive the expressions for the max*(x, v) and max*(x, y, z) functions given in

(12.127) and (12.131), respectively.

Consider the encoder and received sequence of Problem 12.19.

a. For an AWGN channel with E5/Ng = 1/2 (=3 dB), use the log-MAP version
of the BCJR algorithm to produce a soft output value for each decoded
information bit. Find the decoded information sequence .

b. Repeat (a) using the Max-log-MAP algorithm.

Repeat Problem 12.5 using the probability-domain version of the BCJR algorithm.

Show that using the normalized forward and backward metrics A;(s) and B;(s’)

instead of a;(s) and B;(s"), respectively, to evaluate the joint pdf’s in (12.115) has

no effect on the APP L-values computed using (12.111).

Verify all the computations leading to the determination of the final APP L-values

in Example 12.9.

Repeat Example 12.9 for the case when the DMC is converted to a BSC,

as described in Problem 12.6, and the received sequence r is replaced by its

hard-decision version. Compare the final APP L-values in the two cases.

Consider an 8-state rate R = 1/2 mother code with generator matrix

G(D)=[1+D+D* 1+D*+ D

Find puncturing matrices P for the rate R = 2/3 and R = 3/4 punctured codes
that give the best free distances. Compare your results with the free distances
obtained using the 8-state mother code in Table 12.4.

Prove that the subcode corresponding to any nonzero state §;, i # 0, in a tail-
biting convolutional code is a coset of the subcode corresponding to the all-zero
state Sp.

For the rate R = 1/2 feedback encoder tail-biting trellis in Figure 12.24(b),
determine the parameters dy,;» and Ag,,, for information block lengths K* =7, 8,
and 9. Is it possible to form a tail-biting code in each of these cases?

Verify that the row space of the tail-biting generator matrix in (12.164) is identical
to the tail-biting code of Table 12.5(a).



602 Chapter 12 Optimum Decoding of Convolutional Codes

12.39 Consider the rate R = 4/8, constraint length v = 4 feedforward convolutional
encoder with generator matrix

i+D 0 1 0 i1+D 1 1 i
0 14D 1 1 D 1+D 1 0
Goy=1 | D 14D 0 0 D 14D 1
0 D 0O 1+D D D D 1+D

a. Draw the controller canonical form encoder diagram.

b. Draw an h =3 (K™ = 12), 16-state tail-biting trellis for this encoder.

¢. Find the tail-biting generator matrix G’bb for the resulting (24, 12) tail-biting
code.

d. Show that this code has d,;;;; = 8 and is equivalent to the (24, 12) extended
Golay code.

(Note: The convolutional code generated by G(D) is called the Golay convolu-

tional code.)
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13.1 Consider the (2, 1, 3) encoder with

+Dp* 4+ D%

a. Draw the code 11
lb. Find the codew
For a binary-inpu
symbols, show that the QHQ‘U

C(ms der the (Z 1. .))

of length 4 = 4.

ation sequencem = (100 1).
AC with equally likely input
es satisfy (13.7).
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c table for the Fano metric.
b. D

=160, 1% 00,01, 10, 11)
using the stack algorithm. C

number required b u/ the Viterbi aigoz‘iihrﬁ.
¢. Repeat (b) for the received sequence

number of decoding steps with the

Compare the final decoded path with the results of Problem 12.6, where the
same received sequence is decod m using the Viterbi algorithm.
13.4 Consider the (2.1 )encorle" of Prob 3.1
@, For the binary-i riput S-ary output D Mf‘ of T‘;oble”n 12.4, find an integer metric
table for the Fano metric. {Hin: Scale each metric by an appropriate factor
and round to the neavest integei.)
b. Decode the received sequence

r= (1211, 1207, 030:. Oyi3, 12070, 031y, 0307)

using the stack zﬂgouthm Compare the final decoded path with the result
of Problem 12.5(b), wheve the same received sequence is decoded using the
Viterbi algorithm.

13.5 Consider the (2,1, 3) encoder of Problem 13.1. For a binary-input, continuous-
output AWGN channel with E,/Ng = 1, use the stack algorithm and the
AWGNHN channel Fano metric from (13.16) to decode the received sequence r =
(+1.72,40.93, +2.34, —3.42, ~0.14~, —2.84, —1.92, +0.23, +0.78, —0.63, —0.05,

+2.95, -0.11, —0.55). Compare the final fiec ded path with the result of Prob-
lem 12.7, where the same i"eceived sequenice is decoded using the Viterbi
algorithm.
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13.6

13.7

13.8

13.9

13.10

13.11

13.12

13.13

13.14

13.15

13.16

13.17

13.18

13.19
13.20

Repeat parts (b) and (c) of Problem 13.3 with the size of the stack limited to
10 entries. When the stack is full, each additional entry causes the path on the

AL Latloty L

bottom of the stack to be discarded. What is the effect on the final decoded path?

a. Repeat Example 13.5 using the stack-bucket algorithm with a bucket quan-
tization interval of 5. Assume the bucket intervals are --- +4 t0 0, —1 to
-5, —6to —10, ---.

b. Repeat part (2) for a quantization interval of 9, where the bucket intervals are
<+ 4+8t00, —1to -9, —10to0 —18, ---.

Repeat Example 13.7 for the Fano algorithm with threshold increments of A = 5

and A = 10. Compare the final decoded path and the number of computations to

the results of Examples 13.7 and 13.8. Also compare the final decoded path with

the results of the stack-bucket algorithm in Problem 13.7.

Using a computer program, verify the results of Figure 13.13, and plot p as a

function of E; /Ny (dB) for R = 1/5and R = 4/5.

Show that the Pareto exponent p satisfies limg_.g p = oo and limg_, ¢ p = 0 for

fixed channel transition probabilities. Also show that 3R/3p < 0.

a. For a BSC with crossover probability p, plot both the channel capacity C
and the cut-off rate Ry as functions of p. (Note: C =1+ plog, p + (1 —
p)logy (1 — p).)

b, Repeat part (a) by plotting C and Ry as functions of the SNR Ej,/Ny. What is

the SNR difference required to make C = Ry = 1/27

Calculate Ry for the binary-input, 8-ary output DMC of Problem 12.4.

b. Repeat Example 13.9 for the DMC of part (a) and a code rate of R = 1/2.
(Hint: Use a computer program to find p from (13.23) and (13.24).)

¢. For the value of p calculated in part (b), find the buffer size B needed to
guarantee an erasure probability of 1073 using the values of L, A, and u given
in Example 13.9.

a. Sketch Poqeure versus E /Ny for arate R = 1/2 code on a BSC using the values
of L, A, u,and B given in Example 13.9.

b. Sketch the required buffer size B to guarantee an erasure probability of 103
as a function of £,/ Ny for a rate R = 1/2 code on a BSC using the values of L,
A, and p given in Example 13.9. (Hint: p can be found as a function of £,/ Ny
using the results of Problem 13.9.)

Repeat Problem 13.4 using the integer metric tables of Figures 13.14(a) and (b).

Note any changes in the final decoded path or the number of decoding steps.

For a BSC with crossover probability p, plot both the computational cutoff rate

Ry from (13.27) and R,y from (13.35) as functions of p.

Find the complete CDFs of the (2,1,3) optimum free distance code in

Table 12.1(c) and the (2, 1,3) quick-look-in code in Table 12.2. Which code

has the superior distance profile?

Show that for the BSC, the received sequence v is a codeword if and only if the

error sequence e is a codeword.

Using the definition of the Hl matrix for rate R = 1/2 systematic codes given by

(13.42), show that (13.41) and (13.46) are equivalent.

Draw the complete encoder/decoder block diagram for Example 13.11.

Consider the (2, 1, 11) systematic code with

g

gVDy=1+D+D*+D°+p*+ D+ D04 pl.
a. Find the parity-check matrix H.
. Write equations for ihe syndiome bils sg, 51, -+ -, s11 i terins of the chainiel
error bits.



13.21

13,22

59

>v
(%]

13.24
13.25
13.26

13.29

13.31
13.32

Problems 687

¢, Write equations for the modified syndrome bits Si/’SI/H’ _ ,S;JFH, assum-
ing that the effect of error bits prior to time unit [ has been removed by
feedback.

Consider the (3,2, 13) code of Example 13.12 and the (3, 1, 4) code of Exam-

ple 13.13.

a. I'ind the generator matrix G(D).

b. Find the parity-check matrix BI(D).

¢. Show that in each case G(D)H (D) = 0.

Consider the (3, 2, 13) code of Example 13.12.

2. Write equations for the unmodified syndrome bits s;, 5741, -, 5/+13 that
include the effect of error bits prior to time unit/ (assume / > 13).

b. Find a set of orthogonal parity checks for both @,(D) and e](l) from the unmodified

syndrome equations.

Determine the resulting majority-logic error-correcting capability 7377 and

the effective decoding length nyp and compare these values with those in

Example 13.12.

d. Draw the block diagram of the decoder. (Note that in this case the decoding
estimates are not fed back to modify the syndrome. This alternative to feedback
decoding is called definite decoding.)

Find arate R = 1/2 nonsystematic feedforward encoder with the smallest possible

value of m such that J = 4 orthogonal parity checks can be formed on the error

bits e(()o) and egl).

Prove (13.65).

Prove (13.66).

Prove that if the weighting factors w;, i = 0,1, -, J, are calculated using (13.64)

and (13.67) for a BSC with crossover probability p, the APP threshold decoding

rule is equivalent to the majority-logic decoding rule only if all J orthogonal
check-sums include the same number of bits, that is, only ifn) = ny = - - =ny.

Consider an (n, k, m) convolutional code with minimum distance dy,;;, = 2ipp + 1.

Prove that there is at least one error sequence e with weight 175 + 1 in its first

(m + 1) blocks for which a feedback decoder will decode my incorrectly.

Consider the (2, 1, 11) code of Problem 13.20.

2. rind the minimum distance diyi.

b. Is this code self-orthogonal?

¢, Find the maximum number of orthogonal parity checks that can be formed
on eéo),

d. Is this code completely orthogonalizable?

Consider the (3, 1, 3) nonsystematic feedforward encoder with G, (D) = [1 + D

+D% 1+ D% 14D+ D?].

a. Following the procedure in Example 13.14, convert this code to a (3,1,3)
systematic feedforward encoder with the same dy,;y.

b. Find the generator matrix G, (D) of the systematic feedforward encoder.

¢. Find the minimum distance d,,;,.

Consider the (2, 1, 6) code of Example 13.15.

2. Estimate the bit-error probability P,(E) of a feedback decoder with error-
correcting capability 775 on a BSC with small crossover probability p.

. Repeat (a) for a feedback majority-logic decoder with error-correcting capa-
bility 371

¢. Compare the results of (a) and (b) for p = 1072,

Repeat Problem 13.30 for the (2, 1, 5) code of Example 13.16.

Find and compare the memory orders of the following codes:

€]
1
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a. the best rate R = 1/2 self-orthogonal code with dy;ip = 9.

b. the best rate R = 1/2 orthogonalizable code with d,,;, = 9.

¢. the best rate R = 1/2 systematic code with dy;, = 9.

d. the best rate R = 1/2 nonsystematic code with dgee = 9.
13.33 Consider an (n, n — 1, ) self-orthogonal code with J; orthogonal check-sums on

), j=0,1,---,n—2. Show that dy, = J + 1, where J £ min(< <2 J;.
13.34 Consider the (2, 1, 17) self-orthogonal code in Table 13.2(a).

a. Form the orthogonal check-sums on information error bit e,

b. Draw the block diagram of the feedback majority-logic decoder for this code.
13.35 Consider an (n, 1, m) systematic code with generator polynomials g(j)(D), j=

1,2,---,n — 1. Show that the code is self-orthogonal if and only if the positive

difference sets associated with each generator polynomial are full and disjoint.
13.36 Find the effective decoding length ng for the (3, 1, 13) code of Example 13.19.
13.37 Consider the (2, 1, 11) orthogonalizable code in Table 13.3(a).

2. Form the orthogonal check-sums on information error bit e,

b. Draw the block diagram of the feedback majority-logic decoder for this code.
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known. Hence,

log(e®t + -+ 4 &%) = log(A + )
(14.126)
=max{log A, §;} + f.(llog A — &),

with A = e + ... 4 ¢%-1. Based on this recursion, we modify the Max-log-MAP
algorithm by using simple correction functions. This algorithm, called the log-MAP
algorithm [31], gives the same error performance as the MAP algorithm but is easier
to implement. Each correction term needs an additional one-dimensional lookup
table and two additions based on (14.125). Consequently, the Jog-MAP algorithm
requires only additions and comparisons to compute the LLRs.

The storage requirement for the log-MAFP algorithm is the same as those for
the MAP and Max-log-MAP algorithms, assuming the storage of the lookup tables
is negligible.

Consider the computational complexity of the log-MAP algorithm. Because
two extra additions are required per comparison to calculate f.(-) in (14.125), a
total of NI (y) + 3N/ (y), Ni(a) + 3N/ (e), N.(B) + 3N/ (). and NI(L) + 3N/(L)
addition-equivalent operations are required to compute log y’s, loga’s, log 8’s, and
LLRs in T;, respectively, where N, ;()’s and N j()’s are the numbers of additions and
comparisons evaluaied for the Max-log-MAP algorithm.

Table 14.5 gives optimum sectionalizations (in terms of minimizing the number
of addition-equivalent operations) of trellises for some RM codes with the log-MAP
decoding. For comparison, the computational complexities and siorage requirements
of these codes based on bit-level trellises are also included. We also see that proper
sectionalization reduces computational complexity and storage requirements for the
log-MAP algorithm.

PROBLEMS

14.1 Suppose the (8, 4) RM code is decoded with the Viterbi algorithm. Determine the
number of real operations (additions and comparisons) required for the following
trellises:

a. The eight-section bit-level trellis.
b. The uniform four-section (two-bits per section) trellis shown in Figure 9.17.
¢, Optimum sectionalization based on the Lafourcade—Vardy algorithm.

14.2 Suppose the (8, 4) RM code is decoded with the differential Viterbi decoding
algorithm based on the uniform 4-section trellis of the code. Determine the
number of real operations required to decode the code.

14.3 The first-order RM code of length 16 is a (16, 5) linear code with a minimum
distance of 8. Decode this code with the Viterbi algorithm. Determine the
number of real operations required for the decoding based on the following trellis
sectionalizations:

a. The i6-section bit-level treilis.

Ip. The uniform eight-section trellis.

¢. The uniform four-section trellis.

d. Optimum sectionalization based on the Lafourcade—Vardy algorithm.

14.4 Decode the (16, 5) first-order RM code with the differential Viterbi decoding
algorithm based on the uniform four-section trellis. For each section, determine
the parallel components, the set of branches leaving a state at the lefl end ol a

paratiel compoient, and the sei of branches eniering a siaie at the right end of
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a component. Decompose each component into 2-state butterflies with doubly
complementary structure. Determine the total number of real operations required
to decode the code.

14.5 Decode the (8,4) RM code with the trellis-based recursive MLD algorithm. At the
beginning {or bottom} of the recursion, the code is divided into four sections, and
each section consists of 2 bits. The composite path metric table for each of these
basic sections is constructed directly. Devise a recursion procedure to combine
these metric tables to form metric tables for longer sections uatil the full length
of the code is reached (i.e., a procedure for combining raetric tables). For each
combination of two tables using the CombCPMT(x, yv; 2} procedure, construct
the two-section trellis 7' ({x, y; z}) for the punctured code p, ,(C). Determine the
number of real operations required to decode the code with the RMLD-(I,V)
algorithm.
Decode the (16, 5) RM code with the RMLD-(1,V) algoritbm using uniform
sectionalization. At the beginning, the code is divided into eight sections, of 2 bits
each. Devise a recursion procedure to combine composite path metric tables. For
each combination of two adjacent metric tables, construct the special two-section
trellis for the corresponding punctured code. Determine the total number of real
operations required to decode the code.

14.7 Repeat Problem 14.6 by dividing the code into four sections, 4 bits per section,
at the beginning of the recursion. Compare the compuiation complexity of this
recursion with that of the recursion devised in Problem 14.6.

14.8 Devise an iterative decoding algorithm based on a minimum-weight trellis search
using the ordered statistic decoding with order-1 reprocessing (presenied in
Section 10.8.30) to generate candidate codewords for optimality tests. Analyze the
computational complexity of your algorithm. To reduce decoding computational
complexity, the order i should be small, say i = 0,1, or 2. The advantage of
ordered statistic decoding over the Chase-II decoding is that it never fails to
generate candidate codewords.

14.9 Simulate the error performance of the iterative decoding algorithm devised in
Problem 14.8 for the (32, 16) RM code using order-1 reprocessing to generate 17
candidate codewords for testing and search of the ML codeword. Deterimine the
average numbers of real operations and decoding iterations required for various
SNE.

14,30 Decode the (32, 16) RM code with MAP and Max-log-IMap decoding algo-
rithims based on a uniform four-section trellis. Simulate and compare the error
performances for fwo algorithms, and compare their computational complexities.

14.11 The (32, 16) RM code can be decomposed into eight parallel and structurally
identical four-section subtrellises. Decode this code with the parallel Max-log-
MAP algorithm. Compute the number of real operations required to process a
single subtrellis and the total number of real operations required to decode the
code. Also determine the size of the storage required to store the branch metrics,
state metrics, and the likelihood ratios.

=
o,
5
an
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original form for the inner code decoding. This alternate permutaiion and inverse
permuiation is performed in each decoding iteration. Binary concatenaiion with
this type of iterative decoding results inn amazingly good error performance very
close to the Shannon limit—of course, at the expense of decoding complexity and
decoding delay.

The two-dimensicnal product codes without the checks on checks present ed
in Section 4.7 are quite suitable for the described type of iterative decoding. After
the row (or column) encoding, the information bits of the information arvay are
permuted pseudorandomly before the colmmn (or row) encodings. This permutation
allows the two sets of parity bits to provide two sets of uncorrelated estimates for
the same set of informaiion bits with iterative decoding. Row and column decodings
are carried out alternately in an iterative mannes.

The binary concatenation described here is in serial form; however, it can also
be implemented in parallel form, in which the information sequence is encoded
by two encoders independently using a pseudorandom interleaver. This encoding
generates iwo independent sets of parity biis for the same information sequence.
At the decoding side, iterative decoding is performed by two decoders based on
these two sets of parity bits. Parallel concatenation is usually implemented using
two convoluiional encoders.

Binary concatenated coding schemes in paralle]l form using pseudorandom
interleaving and iterative decoding, commonly called turbo coding, is the subject of
Chapter 16.

PROBLEWMIS

18,1 Prove that the concatenation of aun (n1, ky) inner code with minimuin distance d,
and an (n12, ko) outer code with minimum distance ¢> has a minimum distance of
at least did».

15.2 Prove the lower bound of the minimum distance of an m-level concatenated code
given by 15.12.

15.3 Consider the concatenation of a RS outer code over GF(2") and the binary
(m-+1,m, 2) single parity-check inner code. Devise an error-erasure decoding for
this concatenated code. [Hint: During the inner code decoding, if parity failure
is detected in m + 1 received bits, an erasure is declared. If no parity failure is
detecied, the parity bit is removed to form a symbol in GF(2')].

15.4 Forim a 5-level concatenated code with a minimum distance of 16 using RM codes
of length 16 to form inner codes. Choose either binary or RS codes {or shorfened
RS codes) of length 16 as outer codes to maximize the overall code rate.

15.5 Decompose the RM (2, 5) code into a 3-level concatenated code, and describe the
trellis complexities of the component concaienated codes at the three levels.

15.6 Decompose the RM(2, 6) code into a 3-level concatenated code, and give the
trellis complexities of the component concatenated codes at the three levels.

15.7 Decode the RM(2, 5) code with 3-stage decoding based on the decompo-
sition obtained in Problem 17.5. Plot the bit- and block-error performances
versus SNR.

15.8 Decode the RM(2, 6) code with 3-stage decoding based on the decompo-
sition obtained in Problem 17.6. Plot the bit- and block-error performances
versus SNR.

15.9 Repeat Problem 17.7 with the IMS-MLD algorithm.

15.10 Repeat Problem 17.8 with the IMS-MLD algorithm.
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FIGURE 16.21: A concatenation of an outer cyclic code with an inner turbo code.

prematurely. For this reason it is usually advisable not to check the syndrome of the
outer code during the first few iterations, when the probability of undetected error
may be larger than the probability that the turbo decoder is error free. This method
of stopping the iterations is particularly effective for large block lengths, since in this
case the rate of the outer code can be made very high, thus resulting in a negligible
overall rate loss.

For large biock lengths, the foregoing idea can be extended to include outer
codes, such as BCH codes, that can correct a small number of errors and still
maintain a low undetected error probability. In this case, the iterations are stopped
once the number of hard-decision errors at the output of the turbo decoder is within
the error-correcting capability of the outer code. This method also provides a low
word-error probability for the complete system; that is, the probability that the
entire information block contains one or more decoding errors can be made very
small. The idea of combining a turbo code with a high-rate outer BCH code was
introduced in [45] and further analyzed in [46].

PROBLEMS

16.1 Prove that the general rate R = 1/3 turbo encoder shown in Figure 16.1(a), where
encoders 1 and 2 are linear convolutional encoders (not necessary identical)
separated by an arbitrary interleaver, is a linear system.

16.2 For the length K = 16 gquadratic interleaver of (16.7), determine all pairs of
indices that are interchanged by the permutation.

16.3 Consider a PCBC with two different constituent codes: the (7, 4,3) Hamming
code and the (8§, 4, 4) extended Hamming code. Find the CWEFs, IRWEFs, and
WEFs of this code assuming a uniform interleaver.

16.4 Find the IRWEFs and WEFs for Example 16.5.

16.5 Repeat Example 16.5 for the case & = 4. What is the minimum distance of the
(40,16) PCBC if a 4 x 4 row-column (block) interleaver is used?

16.6 Consider a PCBC with the (24, 12, 8) extended Golay code in systematic form as
the constituent code.

a. Find the CWEFs A, (Z), w = 1,2,--- .12, of this code by generating the
codewords of the (23, 12, 7) Golay code in systematic form and then adding
an overall parity check.

Assuming a uniform interieaver,

b. find the CWEFs A2C(Z), w =1,2, -, 12;

e. find the IRWEFs AT¢(W, Z) and BYC (W, Z); and

d. find the WEFs A”¢(X) and BP“ (X).
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e. Mow, consider a PCBC with the 12- 1epeama (24,12, 8) exiended Golay code

i Syszemamc form as the constituent code. Assume that the information bits
are arranged in a sguare array and thai a row—column interleaver is used; that
is, enco dPr 1 encodes across rows of the array, and encoder 2 encodes down
colurnns of the arvay. Find the parameters (57, &, o) of the PCBC

Pi'ovP {16. 37“

[

and WEF for the PCCC in Example 16.6.
WEFs for the P¢ C mEs 2mple 16.6.
the encoder m‘[ the reversed generators given

the encoder with the reversed generators given

o code (PCCCT) with constituent encoder

D+ 55 )1+ D))

e 1andoﬂ m’(e lewers (see Figure 16.2). Assuming a uniform

:ﬁaneCW EFs A{jC(z yand 8PC(7) forw =2,3,4,5;

ate IRWEFs APC(W. Z) and BPC(W. Z);

the ; 'mave WEFs APC(X) and 27C(X); and

b the urion bounds on PI,V(E) and ,(£) for K = 1000 and X = 10000,

1“1g a binary-input, unquantized- OU'pUi AWGN channel.

16,15 F minimum-weight codewords corresponding to input weights 2 and 3 for
the PCCCs whose generators are given in Table 16.6. Tn each case determine the

free distance dp., assuming large K.

—w
16.16 Zhow that for any (n, 1, v) systematic feedforward encoder A AT [A;D(Z)J

and that for any (n, 1, v) systematic feedback encoder A 71;’)(/) = [A(;)(Z)]u

16.17 Show that a weight-1 input sequence cannot terminate an (n, 1, v) systematic
feedback encoder, but there always exists a weight-2 input sequence, of degree
no greater than 2" — 1, that does terminate the encoder.

16.18 For an (n. 1, v) systematic feedback encoder, show that the input sequence u =
(1600 - - - ) produces a cycle with input weight zero starting in state §; = (10---0),
arriving in siate S, = (0---01) after at most 2" — Z steps, and returning to state
51 in one StPD

1619 For an (n.1, v) systematic feedback encoder, show that a 1 input from state
Syt = (O~ .- 01) terminates the encoder.

16.20 Compute 2y, and deg for the turbo codes with primitive and nonprimitive 16-staie
consti 1t codes I and E of Table 16.6.

16.21 Show i at the bound of (16.97) is also valid for nonprimitive denominator
polynomials.

16.22 Use the S-random interleaver algorithm to constructa length X = 32 permutation
that breaks up all weight-2 input sequences with a spacing of S = 4 or less
between 1's.
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16.23 Prove that the Gaussian random variable Lcrl(o) in (16.17) has variance 2L, and
mean +71..

16.24 Prove that for any real numbers w, x, and y, max*(w+x, w+y) = w+max*(x, y).

16.25 Verify the o* and g* expressions in (16.114).

16.26 Verify all entries in Figure 16.19 that were not computed in the text.

16.27 Complete two more iterations of decoding in Examples 16.14 and 16.15. Is there
any change in the decoded output?

16.28 Calculate the cross-entropy at the end of each complete iteration in Examples

16.14 and 16.15 and Problem 16.27.

16.29 [15] Consider the (8, 4, 3) PCBC formed by using & = 2 codewords from the

(3, 2, 2) systematic single parity check (SPC) code, that is, a (6, 4, 2) 2-repeated

SPC code, as the constituent code, along with a 2 x 2 block (row-column)

interleaver of overall size K = 4. The information block is given by the vector

w = [u11, 12, up1, w2z}, where u;; represents the jth information bit in the ith

row of the interleaver, i, j = 1, 2; the ith parity bit in the row code is given by

p;‘l),i = 1, 2; and the jth parity bit in the column code is given by 1)52), J =

1, 2. The arrangement is shown in Figure P-16.29(a). Assume the particular bit

values given in Figure P-16.29(b) and the set of received channel L-values given

in Figure P-16.29(c).

a. Use the trellis shown in Figure P-16.29(d) and the log-MAP algorithm to
compute the extrinsic L-values for the first iteration of row and column
decoding, and the soft-output L-values after the first complete iteration for
each of the K = 4 information bits.

b. Repeat (a) using the Max-log-MAP algorithm.

16.30 Starting from (16.132), derive the cross-entropy expressions given in (16.133),

(16.136), and (16.139).

uy | wp | pt" 1] -1] -1 —05|-15|-1.0

uy | uyp | ptY -1 +1 | +1 —4.0|-1.0{+15

21 pat? -1 +1 —2.0|+2.5

(8,4,3) PCBC Coded values Received L-values
(a) (b) (c)

+1

S )

So B
Y
Decoding trellis

(d)
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17.2

17.6

17.7

17.8

17.9

17.10

17.11

17.12

17.13

17.14

17.15

17.16
17.17
17.18
17.19
17.20

17.21

Chapter 17 Low-Density Parity-Check Codes

Form the transpose H of the parity-check matrix H given in Problem 17.1. Is H”
a low-density parity-check matrix? Determine the rank of H’ and construct the
code given by the nuil space of H’.

Prove that the (n, 1) repetition code is an LDPC code. Construct a low-density
parity-check matrix for this code.

Consider the matrix H whose columns are all the m-tuples of weight 2. Does H
satisfy the conditions of the parity-check matrix of an LDPC code? Determine
the rank of H and its null space.

The following matrix is a low-density parity-check matrix. Determine the LDPC
code given by the null space of this matrix. What is the minimum distance of this
code?

1 1 0 1 0 0 07
001 10100
06 011010
H={00 01101
10001 10
0100011

. 101 0 0 0 1 |

Prove that the maximum-length code of length 27 — 1 presented in Section 8.3 is

an LDPC code.

Construct the Tanner graph of the code given in Problem 17.1. Is the Tanner
graph of this code acychc? Justify your answer.

Construct the Tanner graph of the code given in Problem 17.2. Is the Tanner
graph of this code acyclic? Justify your answer.

Construct the Tanner graph of the code given by the null space of the parity-check
matrix given in Problem 17.5. Does the Tanner graph of this code contains cycles
of length 6? Determine the number of cycles of length 6 in the graph.

Determine the orthogonal check-sums for every code bit of the LDPC code given
by the null space of the parity-check matrix of Problem 17.5.

Prove that the minimum distance of the Gallager-LDPC code given in Exam-
ple 17.2is 6.

Determine the generator polynomial of the two-dimensional type-I (0, 3)th-order
cyclic EG-LDPC code constructed based on the two-dimensional Euclidean
geometry EG(2, 2%).

Determine the parameters of the parity-check matrix of the three-dimensional
type-1 (0,2)th-order cyclic EG-LDPC code ng;'c(& 0, 2). Determine the genera-
tor polynomial of this code. What are the parameters of this code?

Determine the parameters of the companion code of the EG-LDPC code given
in Problem 17.13.

Decode the two-dimensional type-I (0, 3)th-order cyclic EG-LDPC code with
one-step majority-logic decoding and give the bit- and block-error performance
for the AWGN channel with BPSK signaling.

Repeat Problem 17.15 with BF decoding.

Repeat Problem 17.15 with weighted majority-logic decoding.

Repeat Problem 17.15 with weighted BF decoding.

Repeat Problem 17.15 with SPA decoding.

Decode the three-dimensional type-II (0, 2)th-order quasi-cyclic EG-LDPC code
given in Problem 17.14 with SPA decoding, and give the bit- and block-error
performance of the code for the AWGN channel with BPSK signaling.

Consider the parity-check matrix H(El(); . of the three-dimensional type-i (0, 2)th-
order cyclic EG-LDPC code given in Problem 17.13. Split each column of this
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inieger ¢ less than 241 such that ¢® + 1 = o¢.

17.29 Design a concaienated turbo coding system with a finite-geometyy LDPC code of
your choice as the outer code. Construct the inner tuibo code by using the second-

order (32, 16) RM code as the component code. Give the bit-error performance

of your designed system.
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V.29 modem standard was adopted in 1976 little progress was made in increasing

the speed and guality of data transmission over voice-grade telephone lines until the

o AL GRRal L ddL 183310380 11 4 VILOmgi Gl «vnC Ui 12100 Wil e

appearance of the V.32 and V.33 standards in 1986 (see Example 18.14). The V.29
standard used uncoded 16-QAM and a 2400 symbols/second signaling rate to achieve
a spectral efficiency of # = 4.0 bits/symbol and a transmission speed of 9600 bps in
a half-duplex (one-way) mode. Owing to the bandwidth constraints of the channel,
signaling rates higher than 2400 symbols/second were not considered feasible. Thus,
the only avenue to increased data rates was to expand ihe size of the signal
constellation; however, because of the SNR constraints of the channel, this meant
that signals had to be packed closer together, resulting in degraded performance.
Thus, a clear need developed for a scheme that could allow constellation expansion
at the same signaling rate, thus achieving higher data rates, and yet provide a coding
gain to at least recover the noise margin lost by the closer packing of signals. TCM
proved to be just such a scheme and, combined with some sophisticated signal-
processing techniques, has resulted in a series of improvements that have pushed
modem speeds to 56 Kbps.

PROBLEMS

18.% Prove equation (18.8).

18.2 Find, as functions of the parameter d, the AEWESs Aﬁ(X ) and the MEWEs 8§(X )
for the two signal set mappings shown in Figure P-18.2, and determine if they are
uniform. Assume each constellation has unit average energy.

18.3 Determine if an isometry exists between the subsets Q(0) and Q(1) for the two
signal set mappings in Problem 18.2.

18.4 Use Lemma 18.1 to prove that for uniform mappings, A,,(X) can be computed
by labeling the error trellis with the AEWESs and finding the transfer function of
the modified state diagram.

18.5 Construct a counterexample to show that Lemma 18.1 does not necessarily hold
for rate R = k/(k + 2) codes. State a rate R = k/(k + 2) code lemma, similar to
Lemma 18.1, specify the conditions for uniformity, and prove the lemma.

2d 2
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d

/001 A~ 000 \\ /001 /—5{\0000 N\
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FIGURE P-18.2
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6 Determine the AEWESs A,Ze( X) and the MEWEs 82(X) for Gray- and naturally

mapped 4-AM and show that they are both uniform mappings.

Consider mapping a rate R = 2/3 convolutional code into 8-AM using natural

mapping.

a. Determine the AEWEs AZ(X) and the MEWEs 82(X) for this mapping.

b, Determine if the mapping is uniform.

e. Find the coding gain (or loss) y for the three 4-state, rate R = 2/3 convolutional
codes of Example 18.4 compared with uncoded QPSK.

d. Can you find a 4-state, rate R = 2/3 convolutional code with a beiter coding
gain when used with naturally mapped 8-AM?

Show that the Gray mapping of the 8-PSK signal set shown in Figure P-18.8 is not

uniform.

Repeat Example 18.4, finding the MFSE distances and asymptotic coding gains

for three rate R = 2/3 trellis-coded 8-PSK systems, if natural mapping is replaced

by the uniform mapping of Figure 182(a). Compare the resulis with natural

mapping.

Repeat Example 18.5 by finding a counterexample to the raie 8 = k/(k 4- 1) code

lemmma for the nonuniform signal set mapping in Problem 18.2(a).

Repeat Example 18.4, finding the MFSE distances and asympiotic coding gains

for three rate R = 2/3 trellis-coded 8-PSK systems, if natural mapping is replaced

by the nonuniform Gray-mapped 8-PSK signal set in Problem 18.8. (In this case,

since the rate R = k/(k + 1) code lemma is not satisfied, the distances between

all possible path pairs must be considered.) Compare the results with natural

mapping.

Show that set partitioning of the infinite two-dimensional integer lattice 77 results

in a regular mapping.

Apply mapping by set partitioning to the 32-CROSS signal constellation and

determine the error vectors e for which (18.26) is not satisfied with equality.

Construct an example in which (18.25) and (18.27) do not give the same result.

Apply mapping by set partitioning to the 8-AM signal constellation and determine

the MSSDs A,.z, i = 0,1,2. Find the asymptotic coding gain y and the average

number of nearest neighbors A, when the 4-state code of Table 18.6(a) is

applied to 8-AM. Repeat for the one-dimensional integer lattice Z!.

Compute, as functions of the parameter d, the asymptotic coding gains of the 16-

QAM codes in Table 18.6(b) compared with the following uncoded constellations:
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18.17
18.18

18.19

18.20

18.21

18.22

18.23

18.24

18.25

18.26
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(a) (b)

FIGURE P-18.16

(i) the 8-CROSS constellation shown in Figure P-18.16(a) and (i1) the 8-QAM
constellation shown in Figure P-18.16(b). Assume each constellation has unit
average energy.

Calculate AL (W, X) for Example 18.9.

Apply mapping by set partitioning to the 8-QAM signal constellation shown in
Problem 18.16 and determine the MSSDs A?,i = 0,1,2. Find Al (W, X) and
AL, (W, X) for the code of Example 18.9 using this constellation.

Let (D) =1+ D+ D? + D3 + - in Example 18.10 and recalculate (18.37) and
(18.40). Are the conditions for rotational invariance affected?

Derive general conditions on the number of terms in b‘" (D) and hP (D) to satisfy
(18.46).

Show that (18.52) is still satisfied when the rotated binary sequences for naturally
mapped QPSK given in (18.38) are substituted into the equation, and h® (D) has
an odd number of nonzero terms.

Verify that (18.52) is satisfied for the encoder of (18.53) when the rotated binary
sequences for naturally mapped QPSK given in (18.38) are substituted into the
equation.

Find minimal encoder realizations for the 90° rotationally invariant v = 4 and
v = 5 nonlinear rate R = 1/2 codes based on the parity-check matrices

H(D) = [(D*+ D)/(D*+D+1) 1]

and
H(D) = [(D* + D)/(D° + D>+ 1) 1],

respectively. Show that the v = 5 case cannot be realized with 32 states.

Derive general conditions on the number of nonzero terms in h@ (D), kW (D),
and @ (D) to satisfy (18.59).

Show that the 45° rotated binary code sequences for naturally mapped 8-PSK are
given by v (D) = v&(D) ® v(V(D) o vO(D), vV(D) = v?V(D) @ v (D), and
v(D) = v®(D) & (D).

Show that (18.61) is still satisfied when the rotated binary sequences for naturally

mapped 8-PSK given in Problem 1825 are substituted inte the equation, and

.... FENS AN

19 (D) has an odd number of nonzero terms.
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327 Show (D) in 65k i be rewrtitien § 1t e e )
18.27 Show how f(D) i (1 written o correspond to the encodes

realization showi in ]
18.28 Use the method of
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VEFs in Example
C, and estimate

the wal o
18.34 Repeat Exai

bits/symbol and
A5(c ) withg = 0.

gﬁ_ﬂlpmnw calculate the average
34 and of its shaped 4-D version

(2} trellis-code d 7 \
18.35 Assuming a distance of d bﬂwaen nmziweri
energies of the 192-point signal set in Figure
as functions of 4, and compute the shaping gain
18.36 Assuming a distan > of d between neighboting signal poinis, compute the CERs
(mrpoa;e«l with 2- AN /I) and the PAFs of the 1-D signal sets 2-AM, 4-AM, and
8-AM as functions of 4.
Draw the encoder corresponding to the rate R = 2/3 p'u'i‘tv check matrix of
(18.112), and show that it is c:uwaiem to the encoder in Figure 18.35.
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FIGURE 19.29: Bit-error performance of various levels of a 3-level 8-PSK BCM code
for unequal error protection with hybrid signal set partition.

PROBLEMS
19.1

19.2

19.3

19.4

19.5

19.6

Prove that the minimum squared Euclidean distance of the 3-level 8-PSK code

given in Example 19.1 is equal to 4.

Construct a 3-level 8-PSK code with the following three binary component codes:

(1) Cq is the (16, 1, 16) repetition code; (2) C; is the (16, 11, 4) second-order RM

code; and (3) Cs is the (16, 15, 2) single parity code.

2. Determine the spectral efficiency of the code.

b. Determine the minimum squared Euclidean, symbol, and product distances of
the code.

¢. Analyze the trellis complexity of the code.

Decode the 3-level 8-PSK code constructed in Problem 19.2 with a single-stage

Viterbi decoding, and compute its error performance for an AWGN channel.

Replace the first component code €y in Problem 19.2 with the first-order (16, 5, 8)

RM code. Construct a new 3-level 8-PSK code. Determine its spectral efficiency,

minimum squared Euclidean, symbol, and product distances. Analyze its trellis

complexity.

Decode the code constructed in Problem 19.4 with a three-stage soft-decision

decoding. Each component code is decoded with Viterbi decoding based on its

trellis. Compute its error performance for an AWGN channel.

Design a single-level concatenated coded modulation system with the NASA

standard (255, 223) RS code over GF(2%) as the outer code and a 3-level 8-PSK

code of length 16 as the inner code. The inner code is constructed using the

following binary codes as the component codes: (1) € is the {16, 1, 16) repetition

code; (2) Cy is the (16, 15, 2) single-parity-check code; and (3) C; is the (16, 16, 1)
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Chapter 20 Burst-Error-Correcting Codes

By combining Fire codes and BCH codes and with the aid of a computer, Hsu

et al. have consiructed several classes of shortened cyclic codes thai are capable of
correcting burst errors as well as random errors [26]. Other works on constructing
burst-and-random error-correcting block codes can be found in [11, 19, and 26-28].

PROBLEMS
20.1

20.2

20.3

20.4

20.5

20.6

20.7

20.8

20.9

26.10

26.11

20.12

20.13

20.14

20.15

Show that if an (n, k) cyclic code is designed to correct all burst errors of length
[ or less and simultaneously to detect all burst errors of length 4 > [ or less, the
number of parity-check digits of the code must be at least [ + d.

Devise an error-trapping decoder for an [-burst-error-correcting cyclic code. The
received polynomial is shifted into the syndrome register from the right end.
Describe the decoding operation of your decoder.

Prove that the Fire code generated by (20.4) is capable of correcting any error
burst of length / or less.

The polynomial p(X) = 1 + X 4+ X* is a primitive polynomial over GF(2). Find
the generator polynomial of a Fire code that is capable of correcting any single
error burst of length 4 or less. What is the length of this code? Devise a simple
error-trapping decoder for this code.

Devise a high-speed error-trapping decoder for the Fire code constructed in
Problem 20.4. Describe the decoding operation.

Use a code from Table 20.3 to derive a new code with burst-error-correcting
capability [ = 51, length n = 255, and burst-error-correcting efficiency z = 1.
Construct a decoder for this new code.

Let g(X) be the generator polynomial of an (n, k) cyclic code. Interleave this code
to degree 1. The resultant code is a (An, Ak) linear code. Show that this interleaved
code is cyclic and its generator polynomial is g(X*).

Show that the Burton code generated by g(X) = (X" + 1)p(X), where p(X) is
an irreducible polynomial of degree m, is capable of correcting all phased bursts
confined to a single subblock of m digits.

Letm = 5. Construct a Burton code that is capable of correcting any phased burst
confined to a single subblock of five digits. Suppose that this code is interleaved
to degree A = 6. What are the length, the number of parity-check digits, and the
burst-error-correcting capability of this interleaved code?

Interleave the (164, 153) code in Table 20.3 to degree A = 6. Compare this
interleaved code with the interleaved Burton code of Problem 20.9. Which code
is more efficient?

Interleave the (15, 7) BCH code to degree 7. Discuss the error-correcting
capability of this interleaved code. Devise a decoder for this code and describe
the decoding operation.

Consider the (31, 15) RS code with symbols from GF(2°). Convert this RS code
to a binary code. Discuss the error-correcting capability of the binary RS code.
Suppose that the Fire code constructed in Problem 20.4 is shortened by deleting
the 15 high-order message digits. Devise a decoder for the shortened code such
that the 15 extra shifts of the syndrome register after the received vector has
entered can be avoided.

Find a modified Fire code of length 63 that is capable of correcting any single
burst of length 4 or less as well as any combination of two or fewer random errors.
Determine its generator polynomial.

Consider the modified Fire code C generated by g(X) of (20.9). Show that a burst

of ]Pngth b+ 1)/2 or less and error nattern of ‘Ngigh[ t or less cannot be in the

Ca 0l QL 20ss ALl CIIOL paucll S Lalilion 341w

same coset.
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PROBLEMS

21.1 Using mathematical induction, show that the unknown elements of the matiix By
can always be chosen so that (21.11) is satisfied.
Show how to construct optimum phased-burst-error-correcting Berlekamp-
Preparata codes with &k <n — 1.
21.3 Consider the Berlekarap—Preparata code withn = 3.
2. Find m, b, and ¢ for this code.
b. Find the By matrix.
¢. Find the generator polynomials g «) (J) and gm( D).
. Find the Hy matrix.
e. Draw the complete encoder/decoder block diagram for this code.
214 Consider the ITwadare -Massey code withn = 2 and A = 4.
a. Find m, b, and ¢ for this code.
b. Find the generator polynomial gV (D).
c. Find the repeat distance of the information error bit el(o)
d. Draw the complete encoder/decoder block diagram for this code.
215 A second class of Iwadare~Massey codes exists with the following parameters:

212

°

m=2n— DA+ (n? —n— 2)/2
b =nk
g=n(n+1 -1

The n — 1 generator polynomials are given by (21.20), where a(7) 2 %(:z — )4+

n—1—3y+n—1,and b{) 2 %(n — D@\ 4n—i—1 +n-+ 22— 2. Consider the
code withn =3andA =3.
2. Find m, b, and g for this code.
b. Find the generator polynomials gf)( D) and @F (D). )
¢. Find the repeat distance of the information eitor bits ()/(0> and e,(”,
d. Construct a decoding circuit for this code.
21.6 Counstruct a general decoding circuit for the class of Iwadare--IMassey codes in
Problem 21.5. For the two classes of Iwadare—Massey codes
2. compare the excess guard space required beyond the Gallager bound; and
b. compare the number of register stages required to implement a general
decoder.
21.7 Show that for the Iwadare—Massey code of Example 21.4, i a{m-+(A+2)n—1]—
95 consecutive error-free bits follow a decoding error, the syndrome will return
to the all-zero state.
218 Consider the (2,1.5) double-error-correcting orthogenalizable code from
Table 13.3 interleaved to degree L = 7.
a. Completely characterize the multiple-burst-error-correcting capability and the
associated guard-space requirements of this interleaved code.
b, Find the maximum single-burst length that can be corrected and the associated
guard space.
¢. Find the ratio of guard space to burst length for (b).
d. Find the total memory required in the interleaved decoder.
e. Draw a block diagram of the complete mterleaved system.
21.9 Consider the interleaved encoder shown in Figure 21.6(b). Assume thai an
information sequence ug, 11, 1z, - - - enters the encoder. Write down the string of
encoded bits and verify that an interleaving degree of A = 5 is achieved.
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21.10 Consider the Berlekamp—Preparata code of Problem 21.3 interleaved to degree

h="17.
a. Find the g/b ratio and compare it with the Gallager bound.
. Draw a block diagram of the complete interleaved system.

21.11 Consider the n = 3 Berlekamp—Preparata code interleaved to degree A = 7 and

the n = 3 Iwadare-Massey code with A = 7.

a. Compare the g/b ratios of the two codes.

. Compare the number of register stages required to implement the decoder in
both cases.

21.12 Consider the (2, 1, 9) systematic code with gm(D) =1+ D*+ D> + D°.

2. Is this code self-orthogonal? What is 3, for this code?

b. Is this a diffuse code? What is the burst-error-correcting capability b and the
required guard space g7

¢. Draw a complete encoder/decoder block diagram for this code.

21.13 For the diffuse code of Figure 21.7, find the minimum number of error-free bits

that must be received following a decoding error to guarantee that the syndrome
returns to the all-zero state.

21,14 Consider using the (2, 1, 11) triple-error-coirecting orthogonalizable code from

Table 13.3 in the Gallager burst-finding system.

@, Draw a block diagram of the encoder.

b. Draw a block diagram of the decoder.

e. With t;,, = 1, choose M and L such that the probabilities of an undetected
burst and of a false return to the r-mode are less than 1072 and the ¢/b ratio is
within 1% of the bound on ““almost all”* burst-error correction for rate R = 1/2
codes.

d. Repeat (c) forry,, =2.

21.15 Consider the rate R = 2/3 burst- trappmg code of Example 21.8.

BIELIOGRA
1L

[ ]

a. Choose L such that the g/b ratio is within 1% of the bound on “‘almost all”
burst-error correction for rate R = 2/3 codes.
b. Describe the generator matrix G of the (30, 20, 2L} convolutiona!l code.
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FIGURE 22.26: Lower bound on the throughput eificiency.
the concatenated code is B = Ry x £ = 1 x 192/224 = 0.857 (or speciral efficiency

of 1.714 bits/signal).

The half-rate invertible code €, for parity retransimission is the shortened (64,
32) RS code over GF(28) obtained from shortening the outer code Cy. C, is capable
of correcting up to 16 symbol errors over a span of 64 symbols and hence is very
powerful. Therefore, even in a very noisy situation, a transmitied data array should
be recovered with at most one retransmissiorn.

The reliability and throughput efficiency of this system have been analyzed
in {51] and are shown in Figures 22.25 and 22.26, respectively. The system performs
extremely well for SNR E;/Ny greater than 7 dB (or, equivalently, channel bit-
error probability p < 1072). For SNR E,/Ny = 8 dB, error-free communication
is practically achieved and the system throughput efficiency is equal to the system
rate, 0.857.

Other hybrid ARG schemes using coded modulation for error conirol can be
found in [51, 53, and 64-66].

PROBLEMS
221 In (22.5) we saw that the throughput of the go-back-N ARQ depends on the
channel block error rate P = 1 — (I — p)", where n is the code block length,
and p is the channel (BSC) transition probability. Let v be the data rate in bits
per second. Let 7 be the round-trip delay time in seconds. Then, N =7 - 7/n.
Suppose that p and k/n are fixed. Determine the block length ng that maximizes
the throughput ngey. The block length ng is called the optimal block length.
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Optimal block lengths for the three basic ARQ schemes were investigated by
Morris [7].

22.2 Consider a continuous ARQ scheme that operates as follows. When the trans-
mitter receives a NAK for a particular vector v under the condition that the
N — 1 vectors preceding v have been positively acknowledged, the transmit-
ter stops sending new vectors and simply repeats the vector v continuously
until an ACK for v is received. After recciving an ACK, the transmitter
renews transmission of new vectors. At the receiver, when a received vec-
tor v is detected in error under the condition that all the vectors preceding
¥ have been successfully received, the receiver rejects ¥ and all the N — 1
subsequent received vectors until the first repetition of v arrives. Then, the
receiver checks the syndrome of ¥ and the following repetitions of v. An ACK
is sent to the transmitter as soon as one repetition of v has been successfully
recetved.

a. Derive the throughput of this scheme.
b. Compare the throughput of this scheme and the throughput of the conventional
go-back-N ARQ.

22.3 Suppose that we use the retransmission strategy described in Problem 22.2 but
with a buffer of size N provided at the receiver. When a received vector v is
detected in error, the receiver stores the subsequent successfully received vectors.
When a repetition of v is successfully received, the receiver releases ¥ and the
error-free vectors held in the receiver buffer in consecutive order until the next
erroneous vector is encountered.

a. Derive the throughput of this ARQ scheme.
b. Compare its throughput with that of the conventional go-back-N ARQ.

22.4 We may shorten the (31, 16) BCH code to obtain a (30, 15) invertible code.
Devise an inversion circuit for this code.

22.5 In a stop-and-wait ARQ system, suppose that the forward channel is a BSC
with transition probability p1, and the feedback channel is a BSC with transition
probability p,. Derive the throughput efficiency of this system.

22.6 Repeat Problem 22.5 for the go-back-N ARQ system.

22.7 Repeat Problem 22.5 for the ideal selective-repeat ARQ system.

22.8 Design a type-1I hybrid ARQ system using a rate-1/3 convolutional code similar
to the system presented in Section 22.7.

22.9 Let C be a half-rate invertible (2%, k) systematic linear block code. Let w be an
information sequence of k bits and f(m) be its corresponding parity sequence.
Prove that both (u, f(w)) and (f(w), w) are codewords in C.

22.10 Consider the RS outer code C; defined in Section 22.7. Prove that the parity word
R{v(X)] given by (22.30) is also a codeword in C.

22.11 Design a type-1I hybrid ARQ system in which a RS code C; over GF(2™) is used
for forward error correction, and a half-rate RS code C, obtained by shortening
C; is used for parity retransmission. This is simply the hybrid system presented in
Section 22.8 without an inner code.

22.12 The inner code C; of the hybrid system presented in Section22.8 can be
chosen as a binary (n, k) code designed for simultaneous error correction
and detection. Design a concatenated hybrid ARQ system with C; as the
inner code.
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