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21.1 BOUND

IR-CORE

CTING CAPABILITY

Assume that e = (g, 1, ¢p, - - - ) represents the channel error sequence on a BSC,

DEFmNITION 210 A sequence of error bits ¢y, ¢/42, - -+ . e1p 18 called a burst
of lengith b relative 10 a guard space of length g if

-
i
o)

S
s

receding ¢; 1 and the g bits following ¢4 are all 0’s; and

W

;11 through ¢;4, contain no subsequence of g 0’s.
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EXAMPLE 21.1 Burst Lengths and Guard Spaces

Consider the error sequencee = (--- 0000001001111000011106010001
0011011000000 ---). This sequence contains a burst of length 5 = 28 relative
to a guard space of length g = 6. Alternatively, it contains two bursts, one of length
7 and the other of length 17, relative to a guard space of length 4, or three bursts, of
lengths 7, 6, and 8, relative to a guard space of length 3. This example illustrates that
the length of a burst is always determined relative to some guard space and that the
two cannot be specified independently.

Gallager [3] has shown that for any convolutional code of rate R that corrects
all bursts of length b or less relative to a guard space of length g,

1+R

g
8 , 21.1
b=1-R (21.1)

The bound of (21.1) is known as the bound on complete burst-error correction.!
Massey {10] has also shown that if we allow a small fraction of the bursts of length b
to be decoded incorrectly, the guard space requirements can be reduced significantly.
In particular, for a convolutional code of rate R that corrects all but a fraction ¢ of
buists of length b or less relative to a guard space of length g,

R+[log,(1—8)]/b R
1-R 1-R

g
! 212
e (21.2)

for small ¢. The bound of (21.2) is known as the bound on “almost all”” burst-error
correction.

EXAMPLE 21.2 Bounds on Burst-Error Correction

For R = 1/2, complete burst-error correction requires g/b > 3, whereas “almost
all” burst-error correction only requires a g/b ratio of approximately 1, a difference
of a factor of 3 in the necessary guard space.

554
s
i

BURST-ERROR-CORRECTING CONVOLUTIONAL CODES

In this section we discuss two classes of convolutional codes for correcting burst
errors, the Berlekamp~Preparata codes and the Iwadare—~Massey codes.

21.2.1 Berlekamp—Preparata Codes

Consider designing an (n, n — 1, m) systematic feedforward convolutional encoder
to correct a phased burst error confined to a single block of n bits relative to a guard
space of m error-free blocks; that is, a burst can affect at most one block within
a span of (m + 1) blocks. The code produced by such an encoder would have a
phased-burst-error correcting capability of one block relative to a guard space of m
blocks. To design such a code, we must assure that each correctable error sequence

"Wyner and Ash [4] earlier obtained a special case of this bound for phased-burst-error correction.
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(“»

[elm = (eg.e1. -+, ey) results in
implies that each error sequenc °
yield a distinct syndrome and LLC romes must be distinct from
the syndrome caused by a ] = 0 and a single block
e %= 0,1 =1.2,-.m. Under the ' i st error block e can be
correctly decoded if ’”16 first (m + 1) vlocks contain ai most one nonzero biock,
and assuming feedba i error tlock can be decoded in the
same way.
An (s, n

. Sm). This
-, m, must

the set of generator polynormnials
transpose of the parity-check

(21.3)
where
i (n—-1) (n—1) (=1 T

! 81.0 g1 e Elm
By = 1 : : 21.4
0 O(II*J) =1 (n—l) ( )

Sp—1.0 <n—1.1 Si—t.m
1 0 3

e H matrix in (11.45) for

is an n x (m -+ 1) mati D’( er i
comparison). For O < | < m, we obiain B ﬁmm B, 1 b 7 shifting B;_; one column
to the right and deleting ?mP last column. Mathemat j”xy, this operation can be
expressed as
[ 0 i 0 0 m]
6 0 1 0
m T . . . . A .
jﬁ;l = B’l—l : : . . . = Rl*l 1T, (215)
0 0 0 1
i 9 6 0 - 0

where T is an (m -+ 1) x (m + 1) shifting matriz. Using this notation, we can write
the syndrome as

[S]m = [Q?]m [EJIT]W = eglBy + &% SN 2By -+ ey By,
2

(21.6)

eglBg + e BT + 2 BT + - + ey BOT "

1 |

From (21.1), for an optimum burst-ermr—com
For the preceding case with R = (n — 1)/n

ecting code, g/b = (1 4+ R)/(1 — R
and g = mn = mbn this implies that

¢ 1+ nzl
R T L T (21.7)
b 1— 1=t

il

that is, Bg is an n x Zn matriz. We musi now choose By such that the conditions for
burst-errer correction are satisfied.
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If we choose the first n columns of By to be the skewed n x n identity matrix

ro... o017
0O .- 1 0
1 ... 0 0
then (21.6) implies that each error sequence witheg # Qande; =0,/ =1,2,--- , m,

will yield a distinct syndrome. In this case, we obtain the estimate of e simply by
reversing the first n bits in the 2n-bit syndrome. In addition, for each ep # 0, the
condition

eoBy # e/ BeT!, 1 =1,2,--- ,m, (21.8)
must be satisfied for e; 7~ 0. This ensures that an error in some other block will not

be confused for an error in block zero. We choose the last n columns of By to be the
n x n matrix

0 A B D
0 0 C E
0 0 0 F
6 6 6 --- O

where A, B, C, - -- must be chosen so that (21.8) is satisfied.

First, note that for any e; # @ and | > n, the first n positions in the vector
¢;BoT! must be all 0’s, since T shifts By such that BoT' has all 0’s in its first / columns;
however, for any eg # @, the vector egBg cannot have all 0’s in its first n positions.
Hence, condition (21.8) is automatically satisfied for n <7 <m = 2n — 1, and we
can replace (21.8) with the condition that for each eg # 0,

eoBo # eBoT, 1=1,2,---,n—1, (21.9)

must be satisfied for all ¢ #£ §. Now, note the following:

1. The matrix By has rank », since it contains a skewed n x » identity matrix in
its first n columns.

2. For1 </ < n — 1, the matrix BOT’ also has rank #, since it also contains a
skewed n x n identity matrix in some n columns.

3. Condition (21.9) is equivalent to requiring that the row spaces of By and BT/
have only the vector § in common.

Hence, we can replace condition (21.9) with the condition that

1=

N4 rank Byl =5 +n —2n. (21.10)

L=V
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! BoT
Because | — — — — — is a 2 x 2n matyix, condition (21.10) is equivalent o
B i
requiring that this matriz be nonsingular, that is, that
BoT! 1
det| ————— #0. I=1.2-.n-1 (21.11)
By
We now show that A, B, C, - -+ can always be chosen so that (21.11) is satisfied.
Hivst, for w = 2, (21.11) yie!do the condition
6 0 1 0
6 1 6 ¢
det] ~———————— =1 (21.12)
0 i 0 A
1t 0 0 0|
which is satisfied by choosing A = 1. For # (21.11) vields two conditions
0 0 0 1 6 1 0 0 0 [V
6 & 1 6 0 0 ¢ 0 0 1 0
0 1 0 06 0 0 6 0 1 0 0
det| ——————————— =1, det|] —————— ————— =1,
0 0 1 06 1 &8 ¢ 0 1 0 1 B
6 1 0 0 0 C 0 1 6 9 C
1. 0 0 6 0 0 1 0 6 ¢ 0 |
(21.13)
which are 3ati d by choosing B = 1 and £ = 1. It can be shown by induction
ghru the missing el nents of [By can always be chosen so that (21.11) is satisfied (see

Problem 21.1).

EXAMPLE 21.3 An Optimum Phased-Burst-Error-Correcting Code
Forn =4, the 4 x § matrix B is given by
6 0610 1 11
6 61 600 1 1 ]
By = - (21.14)
6 1.0 00 0 0 1
100 0C 06 000

which resulis in a rate R = 3/4 systematic convolutional code with generator
u:ﬂ/gzonnai" (%)(D) D¥ D2+ D%y b7, ggﬂ(D) =D’ 4+ D%+ D7, and gf)(D =
D + D7 that is capable of correcting phased bursts of length n = 4 bits confined to a
single block relative to a guard space of m = 7 blocks (g = nm = 28 bits). Because
g/b=28/4="T,and (1 + R)/(1 - R) = (7/4)(1/4) = 7. this code meets the Gallager
bound of (21.1) and is optimal for phased-burst-error correction.




1132 Chapter 21 Burst-Error-Correcting Convoiutional Codes

The foregoing construction, discovered independently by Berlekamp [5] and
Preparata [6]. always results in a code that meets the Gallager bound of (21.1). Hence,
the Berlekamp— Preparata codes are optimum for phased-burst-error correction. We
can also extend this construction to generate optimum phased-burst-error correcting
codes for k < n — 1 (see Problem 21.2). In addition, we can use interleaving (see
Section 21.3) to convert any of these codes to phased-burst-error-correcting codes
that are capable of correcting bursts confined to A blocks relative to a guard
space of Am blocks, where A is the degree of interleaving. Because the ratio of
guard space to burst length remains the same, these interleaved codes are still
optimum.

The Berlekamp-Preparata codes can be decoded using a general decoding
technique for burst-error-correcting convolutional codes due to Massey [11]. We
recall from (21.6) that the set of possible syndromes for a burst confined to
block 0 is simply the row space of the n x 2n matrix Bg. Hence, if eg # @ and
e, =0,1 =1,2,--- ,m, [s}n is a codeword in the (2n, n) block code generated by
By: however, if e = 0 and a single block e; # 0 for some /,1 </ < m, condition
(21.8) ensures that [s],, is not a codeword in the block code generated by By.
Therefore, ey confains a correctable ervor pattern if and only if [s],, is a codeword
in the block code generated by Bg. This requires determining if [S]mHg =0,
where Hg is the »n x 2n block code parity-check matrix corresponding to By.
Because

B ‘ T
O ... 00 1.0 A4 B D -
0 ... 01 0,0
Bo=l9o .. 100,00 0 F - | (21.15)
1 . 00000 0 -+ 0 |

the corresponding block code parity-check matrix is given by

0 L0 00 1
FE DO 6 1 0
Ho=1 o 0 C B: 0 - 100 (21.16)
0 OOAE
|0 00 0.1 - 00 0|

if [§]171Hg = 0. the decoder must then find the correctable error pattern eg
that produces the syndrome [s],. Because in this case [s], = epBo. we obtain
the estimate of ey simply by reversing the first n bits in [s],,. For a feed-
back decoder, the syndrome must then be modified to remove the effect of
eg. But for a correctable error pattern, [s], = eyBy depends only on eq, and
hence when the effect of ey is removed the syndrome will be reset to all
Zeros.
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arity-check matrix H is given by
g1 1 1 ¢ 0 061
6 6 1 1 0 ¢ 1 0 ma
oo (21.17)
g 00 1 0 1 090
¢ 09 0 106 090
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o all zercs. Because
two error-iree guard
i operation following a

12 f Berle and Preparaia also can
be used o cor ic a guard space of length g, where
b and g are not confined to an integral number of blocks. In general, though. the
Gallager vill not be met with equality in this case; th at is, the codes will
not achieve the optimum ratio of G‘U‘ﬁk space to burst length. However, for a code
interleaved to degree A, the shortest bursi affecting A + 1 blocks contains (A —1)n 42
bits. Hence, the ¢ d: il ,ouew ﬂ bursis of length b = (A — 1)n + 1 bits. Similarly,
i e required to cover Am bﬂorko is g = (Am + 1) — 1 bits, and

¢ (um+Dn—-1 m4d 1+
g _Gmtln-1 dm+ 7 o 1HE (21.18)
b (hA-—-Dn+1 )Lf”T—IL 1+R

whern A is large. | the Bevlekamp-Preparata codes are almost optimum for

3 e
ordinary bursi-error correction when the degree of interleaving A is large.

(o]

2 . . . . . - . .

“In this chapter, as in Sections 13.5-13.7. we use the labeling order of input and cutput sequences
for rate R = (n — 1)/n systematic feedforward encoder realizations given in Figure 11.5 for reasons of
consistency with the published literature.
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Section 21.2

Another eﬁﬁ i
mlauve ) a

reciing burst errors of length b
independently by Iwadare [2]
vadare—Massey codes. For
any 71, a systemm convolutional code can be
consiructed with the following parameters:

b= nA (21.19)
g=ng—1l=nlm+1) -1

where A 1s any positive inieger. The (n — 1) generator pelynomials ave given by

@(’771)(1)‘; = pa o+ ot 1.7, n—1. (21.20)

A . )
whereg(i) = (A4 D —1) -1
these codes can besi be e

/i — i+ i — 3. The decoding of

Je with n = 3 and A = 3. In
raicr polynomials are @1 (D) =

f‘7 + D18 and m //D) = 1. The T canonical form encoding circuit {or
this code is shown in Fig )]

Assume that a bu h the first bit of block 0:

; IR PR
e = (e ef ey Vel VeV NP 000 ), (21.21)

Then, from (13.57) the syndrome sequence ¢(2) is given by

2 ¥
s(D) = e (D)g (D) + (D
— @ + (7(12).@ + 6’(2'4)5
n (21.22a)
DT 4 g‘IO)D‘“ ]
5(0)_D18 + 6(10)-’D19
11}‘» T U}U)
i’;:) — J T v;:’
| |
) /‘1\ v (2)

AT T O T T T T LT T T

FIGURE 21.2: Encoding circuit for the (3. 2, 18} Twadare—-Masseey code with & = 3.
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or

s = (¢ @ 2,01, (15,0 0 05 a6606.0),0) 1,000 PN
={eg e ey ege) ey Uey e ey 000G0G0ey e; ey e e ey ). (21.22b)

Examining this syndrome sequence, we note the following:

1. Each information error bit appears twice in s.
2. el(l) appears in s before 61(0)’ [=0,1,2.

3. The number of positions between the two appearances of e,(j Vs 10 + j, for
j=01land/=0,12

The integer 10+ j is called the repeat distance of e,(j ! and we see that the information

error bits el(o) and 61(1) have distinct repeat distances of 10 and 11, respectively. This
fact will be useful in decoding.

If the burst starts with the second bit of block 0, then

= (0cf e eV e e eV eV el 7000 (21.23)
and
s = (602>€§2)e§2)e(()1) b (])OO ;O’eémeéo)()()()() él)egl 6(21)0(3(0) SO)E;O)) (21.24)

If the burst starts with the third bit of block 0,

= (0 Oe(z)eio)eil)eiz) (O) ;1’e§2)e§0>e(“000 ) (21.25)
and
s = (e e eP0e eV elP0eV el e0000 0NN eV ey (21.26)

In each of these cases, the repeat distance for the information error bit e(’ ) is still
10+ ;.

The decoding circuit for this code is shown in Figure 21.3. It consists of
a systematic feedforward encoder (in controller canonical form) for syndrome
calculation and a correction circuit. The two inputs of AND gate A| are separated
by 11 stages of the syndrome register (the repeat distance of e,m). Two of the inputs
of AND gate Ay are separated by 10 stages of the syndrome register (the repeat
distance of elO)) The third input to Ag ensures that both AND gates cannot have a
1 output at the same time. A careful examination of the syndromes reveals that Aq

cannot be activated until error bit eél) appears at both its inputs, and then its output

will be the correct value of e(()l). At the same time, the received information bit r(()l)

is at the output of the fifteenth stage of the buffer register that stores the received
information sequence r'’. Correction is then achieved by adding the output of A

to ro(l). The output of A is also fed back to reset the syndrome register. After one

€8]

shift of the syndrome register, ¢, appears at both inputs of A;. Hence, the output

of A1 will be the correct value of e1 , which 1s then used to correct the received

68

mformat10n blt ry . After the next shift of the syndrome register, the decoder

estimates 62 ) and corrects rgl) in exactly the same way.



Section 21.2 Bursi-Error-Correcting Convolutional Codes 1137

Systematic feedforward encoder

FIGURE 21.3: Decoding circuit for the (3, 2, 18) Iwadare—Massey code with A = 3.

MNote that the output of the last stage of the syndrome register is inveried and
fed into Ag asinput 7, which prevents Ag from making any ehoweous estimates while
u,él)w e(ll"a and e(zl) are being estimated by A|. For example, when e . appeats at boih
impuisof Ay, e(“ and e(ll’ appear asinputs of Ag. Iif input 7 is not provided, :mdute =
om = 1, then the output of Ag will be a 1, which would cause an erroneous correction
at the output of the buffer register that stores the received information sequ@ncg (0,

After J?“ is corrected, the syndrome register is shified once, and eo appears
at two inputs of Ag. The last stage of the syndrome register contains a 0, and hence
Ay is prevented from making any erroneous esﬂmates, and input { of Agis a L.
Therefore, the output of no is the correct value of e . At the same time, the
received information bit "0 " is at the output of the last stage of the buffer register
that stores the received mifomnﬁon sequence 10, Correction is then achieved by
adding the ountput of Ag io r . The output of Ag is also fed back to reset the
syndrome register. Hence, aﬁer one shift, f[hp ]mst staoe of the syndrome register
again contains a 0, and the mputs of Agars 1, ‘1 ), and e1 ' Therefore, the output of
Ag is the correct value of ¢! e ' which is then used to correct the received in‘f@rmatioq

bit r( ). After the next shlf‘ of the syndrome register, the decoder estimates e7 ) and

corrects ;( ' in exactly the same way. Because a correctable error burst of length

b = 9 must be followed by an error-free guard space of length ¢ = 56, a caveful
examination of the error bursts and syndromes reveals that the next burst cannot
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0 .
rrects ré ), ai which time the syndrome

et

1 in Figure 21.4. Mote
ates Ag. Ap, -+ L Ap3
fhat unlimited error
';‘ El decoamg error is
be cleared and

Urst-e1ror correction is

(21.27)
For the [wadare-Massey codes,
g wlmFH—1 (Zn — Dk +nGn—-2)—1
SN = . (21.28)
b A nA

i these codes require an excess gua@d space of 2n(n — 1) — 1 Dits

n optimum code. Hence, they are very efficient {or small values

7, nawm%rr the interleaved Berlek p Preparata codes require

smaller guard spaces if the inierleaving degree A ul ge er aOUGh' but a comparison
of decod er hardware shows that Iwadare—Massey cocﬁ re simpler to implement

N
51
(see Pio i 21 11) There is a second class of Iwadare— /I ssey codes that requires
r guard space than the class described here, but for large A resulis
in simpﬂ =T mcor ing and decoding circuits (see Problems 21.5 and 21.6).

ierleaving used to obtamn good long bursi-error-correcting

random- or burst-error-correcting codes, discussed in the

o codes, also can be applied to convolutional codes. The

idea of ] eﬂea‘vi‘m is simply to multiplex the ouipuis of A separate encoders for
transmission over the channel, where A is the interieaving degree. The received bits
are then den Mlp}e ed nd sent to A separate decoders. A burst of length ) on the
channel 'WM then look like single errors to each of the separate decoders. Hence,
if each decoder is ¢ ,amblp of correciing single errors in a decoding length n1 4. then,
with interleaving, ’1“ bm~ ; of length X or less relaiive to a guard space of length
(na—DAwill be cOo ed. Similarly, 7 bursts of length A on the channel will look like
weight-r ervor iences 1o each of the separaie decoders. Hence, if each decoder
is capable of PO“I@ “ting ¢ errors in a decoding length, then, with interleaving, all
sequences of 7 or fewe b Hsf{s of length A or less relative o a guard space of at most
(na — i)A will be rected.” More geacrally, a burst of length 6') on the channel
will lock like bursts of ,,eng[h b’ or less to each of the separate decoders. In this case

3The actual guard space requirements between groups of ¢ or fewer bursts depends on how the bursts
are di sir ibuted. In essence. there can be no more than 7 bursts of length A or less in any A decoding lengths
of received bits {see Problem 21.8).
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FIGURE 21.5: An (n, k, m) convolutional coding system with interleaving degree A.

if each decoder is capable of correcting bursts of length b’ relative to a guard space
g, then the interleaved code will correct all bursts of length 'A or less relative to
a guard space g'i. In practice it is not necessary to use A separate encoders and
decoders but only to implement one encoder and one decoder in such a way that
their operation is equivalent to A separate encoders and decoders.

An (n, k, m) convolutional coding system with interleaving degree X is shown
in Figure 21.5, where it is assumed that A — 1 is a multiple of n. The interleaver is
placed between the encoder and the multipiexer and separates the n encoded bits in
a block by A — 1 interleaved bits prior to transmission over the channel. In addition,
the encoder is modified by replacing each delay unit with a string of A delay units.
This makes the encoder equivalent to A separate encoders whose n-bit encoded
blocks are formed in succession and ensures that there will be A — 1 interleaved bits
between the last bit in one block and the first bit in the next block corresponding
to the same encoder. Hence, the encoder of Figure 21.5 achieves an interleaving
degree of A relative to the original convolutional code.

The interleaver of Figure 21.5 requires

0= ,0=b o 6= D _0=De-1
n n n 2

(21.29)

delay units. In addition, assuming & m-bit registers for encoding the received
information sequences in controller canonical form and (n — k) m-bit syndrome
registers, the decoder in Figure 21.5 requires a total of Anm delay units. Hence, the
total memory required in the interleaved decoder is given by (A — 1)(n — 1)/2 4+ Anm
delay units.
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FIGURE 21.6: An interleaved system for a (Z, 1, 1) convolutional code with A = 5.

EXAMPLE 21.5 An Interleaved Random-Error-Correciing Code

T

Consider the (2, 1. 1) systematic convolutional code with g (D) = 1+ D. This code
can correct single errors in a decoding length of 14 = n(m + 1) = 4 bits using the
simple feedback decoding circuit shown in Figure 21.6(a}. Hence, when inierleaved
to degree ), where A — 1 is a multiple of # = 2, this code will correct all bursts of
length A or less with a guard space of 3A. Because 31 /A = 3, the ratio of guard space
to burst length meets the Gallager bound for rate R = 1/2 codes, and this simple
interleaved code is optimum for complete burst-error correction! The total memory
required in the interleaved decoder is (A — D(n — 1)/2 + Anm = 5\ — 1)/2, which
equals 12 for & = 5. The compleie interleaved convolutional coding sysiem is shown
in Figure 21.6(b) for A = 5.

kS

EXAMPLE 21.6 An Interleaved Burst-Error-Correcting Code

Consider the (4, 3, 7) Berlekamp—Preparata code of Example 21.3 and Figure 21.1,
which is capable of correcting phased bursts of one block relative to a guard space
of m = 7 blocks. If this code is interleaved to degree A, it can correct bursts confined
to A blocks relative to a guard space of 7 blocks. Alternatively, it can correct all
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bursts of length b = 4(A — 1) + 1 bits, relative to a guard space of g =4(7A + 1) ~ 1
bits, and for X = 5, g/5 = 143/17 =~ 84, which ic about 20% above the Callager

bound of g/b = 7 for rate R = 3/4 codes.

21.4 BURST-AND-RANDOM-ERROR-CORRECTING CONVOLUTIONAL CODES

Several convolutional coding techniques are available for correcting errors on
channels that are subject to a combination of random and burst errors. As noted in
the previous section, interleaving a code with random-error-correcting capability 7
to degree A results in a code that can correct 1 or fewer bursts of length X or less.
This is called multiple-burst-error correction and requires only that there be no more
than ¢ bursts of length A or less in any A decoding lengths of received bits. Because
some of the bursis may contain only scattered errors, this code in effect corrects a
combination of burst and random errors.

Codes also can be constructed to correct a specific combination of burst
and random errors. The diffuse convolutional codes of Kohlenberg and Forney [7]
and Massey [8] are an example of this type of construction. Adaptive decoding
algorithms also can be employed to determine which type of error pattern has been
received and then switch to the appropriate correction circuit. Gallager’s [3] burst-
finding codes and Tong’s [9] burst-trapping codes make use of adaptive decoding
algorithms.

21.4.1 Diffuse Codes

Consider the (2, 1, m) systematic convolutional code with m = 31 + 1 and g“)(D) =
14 D* + D?* 4+ D¥*1 where A is any positive integer greater than 1. The syndrome
sequence is given by

s(D) = e (D)gV (D) + eV(D), (21.30)
and four orthogonal check-sums on e(()o) can be formed as follows:
S0 = e(()o) + e(()l)
Sa = e(()o) + eﬁ\o) + eil)
s tsm =ep) + el b))
S3r+1 = e(()o) -+ egl ~+ egi) 1 -+ eg(i) PR egi) e

(21.31)

Hence, if there are two or fewer errors among the 11 error bits checked in (21.31),
they can be corrected by a majority-logic decoder.
Now, suppose thai a bursi of lengin 24 or less appears on ihe channel. If

e(()m =1, then the only other error bit in (21.31) that could have value 1 is e(()l), since
the other error bits in (21.31) are at least 2A posiiions away from eéo); however, if
eéo) = 0, a burst of length 2 can affect at most two of the four check-sums. In either

case, the estimate é(()o) made by a majority-logic decoder will be correct. Hence, the
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code correcis any 77, = 2 or fewer random eirrors among the 11 exror bits i (21.31)
as well as bursts of length b = 2\ or less with a guard space g = 2034 + 1) =64 + 2.
With a feedback decoder, if all past decoding decisions have been correct, the same
error-correcting capability applics to the decoding of all information error bits. A
complete encoder/decoder block diagram for this code is shown in Figure 21.7. Note
that for large A,

¢_ora s (21.32)

which is optimum for a rate R = 1/2 code accovding to the Gallager bound for
complete bursi-error correction.

The code of Figure 21.7 is an example of a diffuse convoluiional code. A
convohiutional code is A-diffuse and iy -error correcting if 7fM, orthogonal check-
sums can be found on each block-0 information ervor bit 60 such that for each
i0<i<k-1:

1. Error bits other thm eé)” from a burst of length ni or less that starts in block

0 and includes 60 are checked by no more than 7y, — 1 of the check-sums

orthogonal on eé’).

. Hrror bits from a burst of length nd or less that staris anywhere after the
ith position in block 0 are checked by no more than ry7 of the check-sums
orthogonal on e(()' ',

Heﬂce a majority-logic decoder will correctly estimate each information error bit
eo ) when there are 17, ot fewer random ertors in the 261 orthogonal sums checking
e(()'), or when the first decoding length of received bits contains a burst of length
b = n or less with a guard space g = na — . With feedback decoding, the same
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error-correcting capability applies to all information error bits if all past decoding
decisions have been coriect. The error-propagation properiies of diffuse codes are
examined in Problem 21.13.

For the special case in which t37;, = 1 and R = (n — 1)/n. the Iwadare—Massey
codes discussed in Section 21.2 form a class of A-diffuse, single-error-correcting
codes. For any 1y, Ferguson [12] has constructed a class of A-diffuse codes with
rate R = 1/2 and g/b =~ 4, and Tong[13] has constructed a similar class of
asymptotically optimum rate R = 1/2, A-diffuse codes for which g/b — 3 as i
becomes large. Some of Tong’s rate R = 1/2 diffuse codes are listed in Table 21.1.
In addition, Tong [14] has constructed a class of A-diffuse, 737 -error-correcting,
seif-orthogonal codes. These codes are easy to impiement, have limited error
propagation, and their g/b ratio, although much larger than the Gallager bound,
is optimum within the class of self-orthogonal diffuse codes. A list of Tong’s self-
orthogonal diffuse codes with rates R = 1/2, 2/3.3/4, and 4/5 is given in Table 21.2.
Note that the g/b ratio for the diffuse codes in Table 21.1 is much less than for the

TABLE 21.1: Rate R = 1/2, A-diffuse, ryp -error-correcting orthogonalizable codes.

tpr m Arn g(m Orthogonalization rules’
2 3x+3 2 {02,234+ 3,30+ 3} Br+3.204+1)
3 3r+12 5 0L A+1,20+7, Gr+9, 20 +HCA+12. 4+ 4)

35 49,30 4+ 12}
4 3437 17 {0.2,3,A43.20 418, (2A+23,1+8)

2A 423,30+ 27, GBr+27.204+ 12,20 +7)
30+ 37} Gr+37.0+13)

5 30488 44 {0.3.4.5.0+520+40, 5. D@L +54, 4 +19)(2A 467,
2% + 54, 3% + 60, A+A2YGh+ 60, 20 + 11,20 +25)
31+ 67,31 4 88} (3% + 88, 1+ 33, 1 +26)

6 34217 120 {0,2,3,7,8, 1+ 8, (8.4,5,6)(20 + 118, 1 + 38)
2h 4 88,21 + 118, (20 + 138, 0 + 58, A +28)
2A + 138,34 + 147, (Bx 4+ 147,20 + 17,21 + 67,

3 4 157,30 + 217} 2h +37)(3BA + 157, 1 4-18)

(3r 4217, A+ 68, A+ T78)

7 3x+374 233 {0,6,7,9,10, 11, A+ 11, (10,3. 1)(11, 8, H (2 4+ 154,
20+ 141, 23 + 154, A4 24Y(20 + 245, 1+ 115,
20+ 245,3x 4+ 257, A+ 102Y(Ga + 257, 20 + 23,
3% 4296, 30 + 322, 25+ 127, 0+ 114 (3 + 296,
i+ 374) A4 50)(3x 4322, A + 76,
A+ 37)(3A 4+ 374, A+ 89,
A+ 63)

Adapted from [13].
*The minimum value of A for which these codes are A-diffuse and 77 -error-correcting.
T (x,y,---)indicates that the sum s, + 5y + - - - forms an orthogonal check-sum on C(()O)_ Only

those orthogonal equations that require a sum of syndrome bits are listed.
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TABLE 21.2: A-diffuse, 1y -error-coirecting self-orthogonal codes.

T m )L:;mfm g(m
1 3A 1 {0. 1,34}
2 An+1 2 {0, 1,30 440 + 1}
3 Sh+4 4 {0, LLA+3,30+3. 40+ 3,50+ 4}
4 6A + 10 8 01,30+ 7,30+ 7,40+ 7,54 + 8,64 + 10}
5 Th+19 13 {0,1,4.6, A + 12,30 + 12,40 + 12,50 + 13,61 4+ 15,72 + 19}

(a) Rate R = 1/2 codes

2 2
PML m )\;mﬁnn g% ) gé, )
2 8\ +3 3 {0, h.4A, 8% + 3} {0,20, 60 + 1. 7h + 2}
3 100 4+ 10 7 {0, 1, A +2,40+4,8.+5, {0,2,2A+2,61+4,7)+4,
1020 + 10} A+ 7}
4 124 4+ 26 12 (0,14 0 +7. 40 4+ 11, {0,2.7,2x + 7,64 4+ 11,
SA+ 12,90+ 13, 11a + 24} a4+ 11,10x + 20, 122 + 26}
(b) Rate R =2/3 codes
3 3 2
1378 m )L]'];;m g%‘)) gg) gi(;)
2 12045 6  {0,A, 61,9042} (0,20, 110 4+ 3,120 4+ 5} {0,4x, 7%, 81 + 1}
3 Ba+12 9 {0, 1,20 +3, 11x+6, {0,2,40 43,70+ 3, {0,3, 4, 61,94 + 2,
120 + 7,150 + 12} 81+ 5,130 + 7} 14 + 8}

(c) Rate R = 3/4 codes
. 4 (4 4 4
ML st Ain g% ) %g ) gé ) gg )

2 160+8 7 {0,A, 100 +3, {0,220, 13x+5, {0.3x,7x,16A +8} {0,541, 8% + 1,
120 + 4} 14x + 7} Or +72}

(d) Rate R = 4/5 codes

Adapted from [14].
*The minimum value of A for which these codes are A-diffuse and ryy7 -error-correcting.

corresponding rate R = 1/2 self-orthogonal diffuse codes in Table 21.2; however,
the self-orthogonal diffuse codes are easier to implement and less sensitive to error
propagation.

EXAMPLE 21.7 A Rate R = 1/2 Self-Orthogonal Diffuse Code

Consider the (2, 1, 9) systematic code with g2 (D) = 1 + D3 + D7 4+ D°. The parity
triangle for this code is given by
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— 1
01
00 1
- 10 0o [1]
01 0 0 1
00 1 0 0 1
00 0 1 0 0 1
-~ 10 0 o 1o o [1
o1 0 0 0 1 0 0 1
—~ 10 [1] o o o [1] o o [1]

and we see that the code is self-orthogonal with majority-logic error-correcting-

capability 7377, = 2. The four syndrome bits orthogonal on e(()()) are given by
0 1
So = e(() ) + eé )
() (0 {n
§3 = eQO) + e o N -+ 631) (21.33)
57 = eé + ei + e; -+ ef/
0 0 0 1
S9::€(()) —!—eg) —i—eé) —i—eém —|—eé).

The error bits other than e(()(» that belong to a burst of length b = 4 or less including

eéo) can affect only syndrome bit 5. In addition. error bits from a burst of length

0)

b = 4 or less that starts after eé can affect at most two of the syndrome bits

orthogonal on e(()o) . Hence, this is a & = 2 diffuse, 1377 = 2 error-correcting code that
can correct any two or fewer random errors in a decoding length or any burst of
length b = 4 or less with a guard space g = 18.

Burst-Finding Codes

Consider the (2, 1, L+ M +5) systematic convolutional code with g(l) (D) =1+D3+
D* + D> + DM+ 1n general, a Gallager burst-finding code corrects ““almost all”
bursts of length & = 2(L — 5) or less with a guard space g = 2(L + M + 5) as well as
iy, Ot fewer randoin errors in a decoding lengih. In ali cases tyr < ML, and in this
example t;,, = 1. Typically, L is on the order of hundreds of bits, whereas M is on
the order of tens of bits. The encoding circuit for this code is shown in Figure 21.8.

The first five delay units in the encoder along with their associated connections
form a set of J = 4 orthogonal check-sums on each information error bit (see
Example 13.11). By themselves, these orthogonal check-sums could be used to
correct fp; = 2 or fewer random errors in a decoding length. The key to the
Gallager burst-finding code is that only patterns of 7;,, or fewer random errors are
corrected, where 13, < 7y, and the additional error-correcting capability of the
orthogonal check-sums is used to detect bursts.

The decoding circuit for this burst-finding code is shown in Figure 21.9. To
understand the functioning of the decoder, assume that the /th block has just been

veceived, that all past decoding estimates have been correct, and that the decoder

Ak, Guaata Ge e Loy

is in the “random mode” (or r-mode) rather than the “burst mode” (or b-mode).
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FIGURE 21.2: Encoding circuit for the rate R = 1/Z Gallager burst-finding code.
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2. Mode selector switches to r-mode when M consecutive r-mode estimates have value 0.

FIGURE 21.9: Decoding circuit for the rate R = 1/2 Gallager bursi-finding code.

In the r-mode, the input to the mode selecior with subscript » is taken as the
decoding estimate, whereas in the b-mode, the input with subscript b is taken as
the decoding estimate. Because all past estimaies have been correct. the feedback

of these estimates along the ““main feedback line” removes the effect of e;jLa M5
)

from the syndrome, since at this time ¢;, _, < is the error bit that is fed to the
syndrome from the last stage of the encoder replica. Hence, the modified syndrome
bits entering the syndrome register are precisely those that would enter if the iast
M + L stages of the encoder replica and the associated connection were removed.
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This modified code is decoded just as if it were a random-error-correcting code,
except that the syndrome bits are delaved by 7. time nnits hefore decoding hegins.
Now, assume that there are ry,; = 1 or fewer errors in the ng = 11 error

bits affecting the J = 4 orthogonal check-sums on el@Lis. Then, if e[(O_)L_S =1,all
0

four check-sums will equal 1, and if ¢,”', _< = 0, at most one of the check-sums will
equal 1. Hence, the estimate [él(ofL__s],ﬂ. which is the decision accepted by the mode
selector in the r-mode, will be correct, and the decoder will stay in the r-mode and
decode correctly as long as there is at most one error in a decoding length. Note also
that there is an additional M time unit delay before the r-mode decision is actually
accepted by the mode selecior.

Now, suppose that at some time two or three of the four check-sums have
value 1. This situation wili always occur when there are two or three errors in the
ng = 11 error bits affecting the check-surmns, and the r-mode estimate is incorrect.
(Note that it is possible for two or three errors to cause zero, one, or all four
of the check-sums to equal 1, but in this case the estimate will be correct, since
two of the errors must have canceled their effect on the check-sums.) When this
occurs, the mode selector changes to the b-mode, and [é,(g)L_M_S}b is now chosen
as the estimate. This causes the preceding M decisions of the r-mode decoder to
be rejected, which ensures that when a burst occurs the r-mode decoder will have
detected the burst before any of its estimates of error bits in the burst are accepted
by the mode selector. If the bits in a burst have probability % of being in error,
then when the first bit in the burst reaches the end of the syndrome register, all
2% = 16 possible outcomes for the four check-sums are equally likely. Because

( ; + ;!" ) = 10 of these outcomes cause the mode selector to switch to the

b-mode, the probability that the bursi is not detecied in time for the mode selector
to switch to the b-mode before accepting an r-mode estimate for any error bit in the
burst is
M+1
Pr (undetected burst) ~ (16) . (21.34)
Clearly, this probability is quite small for M greater than about 10.
The decoding estimate in the b-mode is given by

) () O 0 ()

~(0) 1
") pyslb=si=¢ ; y ste ste_yte s+e +e¢ . (21.35)

If e](O_)L_ 1i—s 18 part of a burst, the other error bits in (21.35) must come from the
guard space if the guard space has length ¢ = 2(L + M + 5) or more. Hence, the
decoding estimate in the h-mode will be correct. Note that it is possible for a burst
to cause a switch to the b-mode as soon as its first bit reaches the first input to a
check-sum in the syndrome register, which would cause up to M + 5 guard-space
error bits to be estimated in the b-mode. For these estimates to be correct, the burst
length should not exceed L — 5 blocks, or b = 2(L — 5) bits, since otherwise, error
bits from the burst would affect the decoding of these guard-space error bits.

While the decoder is in the b-mode, the r-mode estimates continue to be
monitored as an indicator of when the decoder should switch back to the r-mode.

When M consecutive r-mode estimates have value 0, this is taken as evidence that
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the most recent L + M + 5 received blocks have been in a guaid gpare c»ﬂd mne mode
selector is returned (o the r-mode, Beecause, during a burst, only ([ O } J~ 1{ \h =5

1 value of 0 for the
e during a burst i

which meets the lower bound of {(721.2) on “almost-all” bursi-error correction for
rate R ]/ 2 codes.
Gallager originally descri
but Reddy [15] genevalize
property thai the lower bm
with near equaliiy. No
il i sensitive {0 £1707S in
codes can be modified to provi
by lowering the code rate.

.
1

ing Codes

to Galla gew s burst-finding codes, except

Tong's burst-irapping codes are giv
that they are based on blo ,! odes
code remains convolutional, however, since th

1tional codes. The overall
ory in the encoder

hey ‘ih 7

Consider an (n = 3M. k = 2M) Syﬂpfmﬁ bl r:k codu with rate R 273,
error-correcting capability 7, and generaior mafrix
' v?:;l —]
G=1 Ty-—— |- (21.38)
i . G

where G, and G, are M x M submatrices of G. The codeword v = [mD u'?]G =
D w? pl, where w! and n® contain M information bits each, and p is the M-bit
parity vecior given by

p=uVG +u?G,. (21.39)

7
i

The encoder for this T
addition to the operations required by the block encoder, ne mory has been added
to the encoder. This converts the block code into an (n = 3M. k = 2M.m = 2L)

Tong bursi-trapping code is shown in Figure 21.10. Note that, in
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FIGURE 21.10: Encoding circuit for the rate R = 2/2 Tong burst-trapping code.

convolutional code. The code is still systemaiic, and the encoding equations at time
unii / are given by

V/(O) _ M;l)
v =ul (21.40)

2 1 2 1 2
W/( e Rﬂ[( >Gl + aﬁ/( )(Grg + uﬂ}_’L -+ “/(—)ZL'

The decoding circuit for the Tong burst-trapping code is shown in Figure 21.11.
Assume that the /th block has just been received, that all past decoding decisions
have been correct, and that the decoder is in the r-mode. The feedback of the
decoding estimates uAu}PL and Iﬁl;z)z ; to the parity input line of the block decoder
removes the effect of past decisions from the encoding equations, so that the block
decoder simply decodes the original block code; however, the block decoder is
designed to correct only 1’ or fewer random ervors, where 1* < 7, and the additional
error-correcting capability of the code is used to detect patterns of ' + 1 or more
errors. As long as the block decoder estimates 1 or fewer crrors in a block it remains
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FIGURE 21.11: Decoding circuit for the rate R = 2/3 Tong burst-trapping code.

in the r-mode. Note that, just as for burst-finding codes, the decoding estimates of
the block decoder are delayed by 2L time units before they are accepted as final.

When the block decoder detects a pattern of t' + 1 or more errors, say at time
unit [ — L, it emits a single 1 from its “burst detected” output. L time units fater,
at time unit /, this 1 reaches the first mode selector in Figure 21.11 and causes it (0
switch to the p-mode for that block only. At this time the output of the first mode
selector is

~(1 ~(1 A2
8, =@ 1 =5+ 87,1

= (mz}l) + e,(o))Gl + (un](Z) + e,(l))Gz + M}I)Gl + MPGQ

SORe) @) @
twy Ty, et )

(21.41)

b (2) ~(2) 0 ey @
=’ +wy F ) e Gbe G ey

. . . . (2
From our earlier assumption that past decoding decisions are all correct, [m][(JZ =

2 . . . .
un](sz. Also, assuming that time unit ! comes from the error-free guard space
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following the burst at time unit/ — L, it follows that

~(1) lui1(1_)

W, = (21.42)

L

and the b-mode decoding estimate will be correct. A similar argument shows that at
time unit! + L, when the “burst detected” output reaches the second mode selector
and causes it to switch to the b-mode for that block only, the output of the second
mode selector will be the correct estimate for mal(% )L, provided that time unit [ + L
also comes from the error-free guard space.

The probability of failing to switch to the b-mode during a burst can be
estimated as follows. Assume that an (, k) block code is designed to correct ¢/

or fewer errors. There are then a total of N(t") e ( ’(7) > + ( ’; ) 4+t ( ?/ )

correctable error patterns. Hence, for each of the 2F codewords, there are N(1')
received blocks that will be corrected and not cause a switch to the b-mode. Assuming
that during a burst all 27 received blocks are equally likely, the probability of failing
to switch to the b-mode during a burst is given by

2K '
Pr(undetected burst) =~ N(r’)? = N2 (21.43)

EXAMPLE 21.8 Burst-Error-Detection Failure Rate
Consider a (30. 20) shortened BCH code witht' = 1. Then, N(t') = 1 +30 = 31, and

Pr(undetected burst) =~ 31,210 = 3.0 x 1072, (21.44)

which implies about a 3% failure rate in detecting bursts.

The burst-trapping code just described corrects “almost all”™ bursts that can
affect at most L consecutive received blocks. Hence, b = (n — 1)L + 1 bits. The
guard space must include at least 2L consecutive error-free blocks following the
burst. Hence, g = 2nL + (n — 1). Therefore, for large L and n,

g 2nL+m-1)

=" - 21.45
b n—1DL+1 ’ ( )

which meets the lower bound of (21.2) on “almost ali” burst-error correction for
rate R = 2/3 codes.

Although the preceding discussion concerned only rate R = 2/3 codes, burst-
trapping codes can easily be generalized to any rate R = AM/(A + 1)M. These
systems all meet the lower bound of (21.2) on “almost all”” burst-error correction
with near equality. Like the closely related burst-finding codes, burst-trapping
codes are sensitive to errors in the guard space when the decoder is in the b-
mode. Burton et al. [17] have shown, however, that the system can be modified
to provide some protection against errors in the guard space by lowering the

ering the
code rate.
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PROBLEMS

21.1 Using mathematical induction, show that the unknown elements of the matiix By
can always be chosen so that (21.11) is satisfied.
Show how to construct optimum phased-burst-error-correcting Berlekamp-
Preparata codes with &k <n — 1.
21.3 Consider the Berlekarap—Preparata code withn = 3.
2. Find m, b, and ¢ for this code.
b. Find the By matrix.
¢. Find the generator polynomials g «) (J) and gm( D).
. Find the Hy matrix.
e. Draw the complete encoder/decoder block diagram for this code.
214 Consider the ITwadare -Massey code withn = 2 and A = 4.
a. Find m, b, and ¢ for this code.
b. Find the generator polynomial gV (D).
c. Find the repeat distance of the information error bit el(o)
d. Draw the complete encoder/decoder block diagram for this code.
215 A second class of Iwadare~Massey codes exists with the following parameters:

212

°

m=2n— DA+ (n? —n— 2)/2
b =nk
g=n(n+1 -1

The n — 1 generator polynomials are given by (21.20), where a(7) 2 %(:z — )4+

n—1—3y+n—1,and b{) 2 %(n — D@\ 4n—i—1 +n-+ 22— 2. Consider the
code withn =3andA =3.
2. Find m, b, and g for this code.
b. Find the generator polynomials gf)( D) and @F (D). )
¢. Find the repeat distance of the information eitor bits ()/(0> and e,(”,
d. Construct a decoding circuit for this code.
21.6 Counstruct a general decoding circuit for the class of Iwadare--IMassey codes in
Problem 21.5. For the two classes of Iwadare—Massey codes
2. compare the excess guard space required beyond the Gallager bound; and
b. compare the number of register stages required to implement a general
decoder.
21.7 Show that for the Iwadare—Massey code of Example 21.4, i a{m-+(A+2)n—1]—
95 consecutive error-free bits follow a decoding error, the syndrome will return
to the all-zero state.
218 Consider the (2,1.5) double-error-correcting orthogenalizable code from
Table 13.3 interleaved to degree L = 7.
a. Completely characterize the multiple-burst-error-correcting capability and the
associated guard-space requirements of this interleaved code.
b, Find the maximum single-burst length that can be corrected and the associated
guard space.
¢. Find the ratio of guard space to burst length for (b).
d. Find the total memory required in the interleaved decoder.
e. Draw a block diagram of the complete mterleaved system.
21.9 Consider the interleaved encoder shown in Figure 21.6(b). Assume thai an
information sequence ug, 11, 1z, - - - enters the encoder. Write down the string of
encoded bits and verify that an interleaving degree of A = 5 is achieved.
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21.10 Consider the Berlekamp—Preparata code of Problem 21.3 interleaved to degree

h="17.
a. Find the g/b ratio and compare it with the Gallager bound.
. Draw a block diagram of the complete interleaved system.

21.11 Consider the n = 3 Berlekamp—Preparata code interleaved to degree A = 7 and

the n = 3 Iwadare-Massey code with A = 7.

a. Compare the g/b ratios of the two codes.

. Compare the number of register stages required to implement the decoder in
both cases.

21.12 Consider the (2, 1, 9) systematic code with gm(D) =1+ D*+ D> + D°.

2. Is this code self-orthogonal? What is 3, for this code?

b. Is this a diffuse code? What is the burst-error-correcting capability b and the
required guard space g7

¢. Draw a complete encoder/decoder block diagram for this code.

21.13 For the diffuse code of Figure 21.7, find the minimum number of error-free bits

that must be received following a decoding error to guarantee that the syndrome
returns to the all-zero state.

21,14 Consider using the (2, 1, 11) triple-error-coirecting orthogonalizable code from

Table 13.3 in the Gallager burst-finding system.

@, Draw a block diagram of the encoder.

b. Draw a block diagram of the decoder.

e. With t;,, = 1, choose M and L such that the probabilities of an undetected
burst and of a false return to the r-mode are less than 1072 and the ¢/b ratio is
within 1% of the bound on ““almost all”* burst-error correction for rate R = 1/2
codes.

d. Repeat (c) forry,, =2.

21.15 Consider the rate R = 2/3 burst- trappmg code of Example 21.8.

BIELIOGRA
1L

[ ]

a. Choose L such that the g/b ratio is within 1% of the bound on “‘almost all”
burst-error correction for rate R = 2/3 codes.
b. Describe the generator matrix G of the (30, 20, 2L} convolutiona!l code.
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