CHAPTER 20
Burst-Error-Correcting Codes

So far we have been concerned primarily with coding techniques for channels on
which transmission errors occur independently in digit positions (i.e., each trans-
mitted digit is affected independently by noise); however, there are communication
channels that are affected by disturbances that cause transmission errors to cluster
into bursts. In general, codes for correcting random errors are not efficient for
correcting burst errors, so it is desirable to design codes specifically for correcting
burst errors, namely, burst-error-correcting codes.

20.1 INTRODUCTION

A burst of length / is defined as a vector whose nonzero components are confined
to [ consecutive digit positions, the first and last of which are nonzero. For example,
the error vectore = (000010110100000) is a burst of length 6. A linear
code that is capable of correcting all error bursts of length [ or less but not all error
bursts of length / + 1 is called an [-burst-error-correcting code, or the coede is said to
have burst-error-correcting capability .

It is clear that for given code length n and burst-error-correcting capability 7, it
is desirable to construct an (i, k) code with as small a redundancy n — k as possible.
Next, we establish certain restrictions on n — k for given [, or restrictions on / for
given nn — k.

TueorEM 20.1 A necessary condition for an (n, k) linear code to be able to
correct all burst errors of length / or less is that no burst of length 27 or less can
be a codeword.

Froof. Suppose that there exists a burst v of length 2/ or less as a codeword.
This codeword v can be expressed as a vector sum of two bursts u and w of
length [ or less (except the degenerate case, in which v is a burst of length 1).
Then, u and w must be in the same coset of a standard array for this code. If
one of these two vectors is used as a coset leader (correctable error pattern),
the other will be an uncorrectable error burst. As a result, this code will not
be able to correct all error bursts of length / or less. Therefore, in order to
correct all error bursts of length / or less. no burst of length 2/ or less can be a
codeword. Q.E.D.

TueoreEM 20.2 The number of parity-check digits of an (x, k) linear code that
has no buist of length & or less as a codeword is at least b (i.e.,n —k > b).

Proof. Consider the vectors whose nonzero components are confined to the
first b digit positions. There are a total of 2” of them. No two such vectors can
be in the same coset of a standard array for this code; otherwise, their vector
sum, which is a burst of length b or less, would be a codeword. Therefore, these
2P vectors must e in 2" distinct cosets. There are a total of 27 % cosets for an

(n, k) code. Thus, n — k must be at least equal to b (i.e..n —k = b).  Q.E.D.

1104



Section 20.2 Decoding of Single-Burst-Eivor-Corraciing Cyclic Codes 1105

It follows from Theorems 20.1 and 20.2 that there must be a restriction on the
number of parity-check digits of an /-burst-error-correcting code.

rmeorEm 20.3  The number of parity-check digits of an /-bursi-error-correct-
ing code must be at least 2/; that is,

n—k=> 2l (20.1}

For a given n and k, Theorem 20.3 implies that the burst-error-correcting
capability of an (n. &) code 1s at most | (n — &)/2]; that is,

I < l_” ;kJ. (20.2)

This is an upper bound on the bursi-error-correcting capability of an (i, k) code
and is called the Reiger bound [5]. Codes that meet the Reiger bound are said to be
optimal. The ratio
21
7= (20.3)

n—k

-

s used as a measure of the bursi-error-correcting efficiency of a code. An optimal
ode has burst-error-correcting efficiency equal to 1.

It is possible to show that if an (1, k) code is designed to correct all burst
errors of lengih / or less and simultaneously to detect all bursi errors of length d >/
or less, the number of parity-check digits of the code must be at least I + d (see
Problem 20.1).

¢

20.2 DECODING OF GLE-BURST-ERROR-CORRECTING CYCLIC CODES

An [-bursi-error-correcting cyclic code can most easily be decoded by the error-
irapping technigue presented in Section 5.7, with a slight variation. Suppose that 2
codeword v{X) from an /-burst-error-correcting (11, k) cyclic code is transmitted. Let
(X)) and e(X) be the received and error veciors, respectively. Let

$(X) =50+ 51X 4+ sy X7

be the syndrome of r(X). If the errors in e(X) are confined to the [ high-order parity-
check digit positions, X%~/ ... x"k=2 xn=k=1 then the I high-order syndrorme
digits, $y—p—i, "+ Sp—k—2, Sp—i~ 1, Mmatch the errors of e(X), and the n — k — [ low-
order syndrome digits, sg, 51, . Sy—k-i—1, are zeros. Suppose that the errors in
e(X) are not confined to the pOSItlons Xkl xn—k=2 yn—t-l of 1(X) but are
confined to I consecutive positions of r(X) (mdudmg the end-around case). Then,
after a ceriain number of cyclic shifts of n”( (), say i cyclic shifts, the errors will be
shifted to the positions X" %=/ ...  xn=%=2 xn=k=1 of (X)), the ith shift of r(X).
Let s (X) be the syndrome of n’(”(X). Then, the first I high-order digits of s) (X
match the errors at the positions X" ¢~/ ... xn=k=2 xn=k=l of 1) (X} and the
n —k — I low-order digits of s")(X) are zeros. Using these facts, we may trap the
errors in the syndrome register by cyclic shifting r(2).

An error-trapping decoder for an /-bursi-correcting cyclic code is shown in
Figure 20.1, where the received vecior is shifted into the syndrome register from the
left end. The decoding procedure is as follows:
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FIGURE 20.1: An error-trapping decoder for burst-error-correcting codes.

Step 1.

Step 2.

Step 3.

Step 4.

The received vector r(X) is shifted into the syndrome and buffer
registers simultaneously. (If we do not want to decode the received
parity-check digits, the buffer register needs only & stages.) As soon as
r(X) has been shifted into the syndrome register, the syndrome s(X)
is formed.

The syndrome register starts to shift with gate 2 on. As soon as its
n —k — | leftmost stages contain only zeros, its / rightmost stages
contain the burst-error pattern. The error correction begins. There
are three cases to be considered.

If the n — k — [ leftmost stages of the syndrome register contain all
zeros after the ith shift for 0 < i <n — k — [, the errors of the burst
e(X) are confined to the parity-check positions of r(X). In this event,
the k received information digits in the buffer register are error-free.
Gate 4 is then activated, and the k error-free information digits in the
buffer are shifted out to the data sink. If the n —k — [ leftmost stages of
the syndrome register never contain all zeros during the firstn —k — [
shifts of the syndrome register, the error burst is not confined to the
n — k parity-check positions of r(X).

If the n — k — [ leftmost stages of the syndrome register contain all
zeros after the (n — k — 1 +i)th shift of the syndrome register for 1 <
i <[, the error burst is confined to positions xn=ioooo xr-lox0 oo
X'=i=1 of p(X). (This is an end-around burst.) In this event, the [ —i
digits contained in the / —i rightmost stages of the syndrome register
match the errors at the parity-check positions, X, X1, ... x/==1 of
r{X), and the i digits contained in the next i stages of the syndrome
register match the errors at the positions X"~ ... X"=2 X"l of
r(X). At this instant, a clock starts to count from (n—k—{+i+1). The
syndrome register is then shifted (in step with the clock) with gate 2
turned off. As soon as the clock has counted up to n —k, the i right-
most digits in the syndrome register match the errors at the positions
xniooo xn=2 oxn—l of r(X). Gates 3 and 4 are then activated. The
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by the channel. Having comwalet ed ’mhese precorreciion ahrﬁs the decoder begins
its correction Hrocess. Tz”ﬁ syndrome register starts to shift again. As soon as the
shortest bursi reappears in the 3’7 xigmmoat stages of m; yindrome register, the
decoder starts o make corrections as described earfier. This decoding is an optimum
decoding for bursi-error-correcting codes that was pmpo"ed by Gallager [20].

20.3 SINGLE-BURST-ERROR

20.3.1 Fire Codes

Fire codes were the first class of cyclic codes constructed systematically for correciing
burst errors. Let p(X) be an irreducible polynomial of degree m over GF(2). Let
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p be the smallest integer such that p(X) divides X# + 1. The integer p is called
the period of p(X). Let ] be a positive integer such that ! < m, and 2/ — 1 is not
divisible by p. An [-burst-error-correcting Fire code is generated by the following
polynomial:

g(X) = (X*7' + Dp(X). (20.4)
The length n of this code is the least common multiple (LCM) of 2/ — 1 and the

period p of p(X), that is,
n=LCMQ! —1. p). (20.5)

The number of parity-check digits of this code is m + 2/ — 1. Note that the two
factors X241 4+ 1 and B(X) of g(X) are relatively prime.

EXAMPLE 20.1

Consider the irreducible polynomial p(X) = 1+ X?+ X°. Because p(X) is a primitive
polynomial, its period is p = 2° — 1 = 31. Let [ = 5. Clearly, 31 does not divide
21 — 1 = 9. The Fire code generated by

g(X) = (X°+ DA+ X? + X°)
=14+ X2+ x5+ x7 + xM o xM

has length n = LCM(9, 31) = 279. Therefore, it is a (279, 265) cyclic code that is
capable of correcting any burst error of length 5 or less.

To prove that the Fire code generated by the polynomial of (20.4) is capable
of correcting any burst of length 7 or less, it is sufficient to show that all bursts of
length I or less are in different cosets of the code. Thus, they can be used as coset
leaders and form correctable error patterns. The proof is left as a problem (see
Problem 20.3).

Fire codes can be decoded with the error-trapping circuit shown in Figure 20.1.
The error-trapping decoder for the (279, 265) Fire code considered in Example 20.1
is shown in Figure 20.2.

In a data transmission {(or storage) system, if the receiver has some computation
capability, a fast decoder for Fire codes may be implemented. Consider a Fire code
with generator polynomial g(X) = (X%~ 4 1)p(X), where 2/ — 1 and the period p of
p(X) are relatively prime. Let #(X) be the received polynomial. Let s1(X) and s3(X)
be the remainders resulting from dividing r(X) by X*~! 4 1 and p(X), respectively.
Then, we may take

[s1(X), s2(X)]

as a syndrome of r(X). We can readily see that s;(X) = s2(X) = 0 if and only it r(X)
is a code polynomial. If r{X) coniains a nonzero error burst of length 7 or less, we
must have s1(X) # 0 and sp(X) # 0. If s(X) = 0 and sp(X) # 0 [or 5;(X) # 0 and
s2(X) = 0], then r(X) must contain a detectable but uncorrectable error burst of
length greater than /.

Now, consider an error-trapping decoder as shown in Figure 20.3. This decoder
consists of two syndrome registers: the error-pattern register and the error-location
register. The feedback connections of the error-pattern register are based on the
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FIGURE 20.2: Error-irapping decoder for the (279, 265) Fire code.



1110 Chapter 20 Burst-Error-Correcting Codes

r(X)
—=->*—>®ﬁ> Istages [ — 1stages
Input

> Buffer register

Error-pattern register

eee Test for all 0’'s
1

f
]

Comparator e Counter 1

test for a match b > Iy
coe i : Computation
' forn —g¢g

Error-location register LI Cou;ter 2

A 2

FIGURE 20.3: A high-speed error-trapping decoder for Fire codes.

factor X¥~! + 1, and the feedback connections of the error-location register are
based on the factor p(X). The received polynomial r(X) is first read into the two
syndrome registers and the buffer register. As soon as the entire r(X) has been
shifted into the two syndrome registers, s;(X) and s2(X) are formed. The decoder
tests s1(X) and sp(X). If 51 (X) = s5(X) = 0, the received polynomial #(X) is assumed
to be error-free and is then delivered to the user. If s{(X) = 0 and sp(X) # 0
[or s1(X) s 0 and s;(X) = 0], then r(X) contains a detectable but uncorrectable
error burst and is thercfore discarded. If s{(X) # 0 and s2(X) # 0, then r(X) is
assumed to contain a correctable error burst and the decoder starts the following
error-correction process:

Step 1.

Step Z.

Step 3.

Shift the error-patiern register and test for zeros at the / — 1 high-order
stages. Stop shifting as soon as the / — 1 high-order stages contain all
zeros. The error burst is then trapped in the [ low-order stages of the
error-pattern register. Let A1 be the number of shifts performed (in
counter 1). Note that no more than 2/ — 2 shifts are needed to trap
the error burst.

Shift the error-location register until the contents in its / low-order
stages match the burst pattern in the / low-order stages of the error-
pattern register. Let the number of shifts be &, (in counter 2). In this
step, no more than p — 1 shifts are required.

Because 2/ — 1 and p are relatively prime, there exists a unique non-
negative integer ¢ less than n (code length) such that the remainders
resulting from dividing ¢ by 2/ — 1 and p are A; and X;. respectively.
Determine the integer ¢ by computation. Then. the error burst begins
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at position X"~¢ and ends at position X"+ =1 of v(X). In the case
ihat ¢ = 0, the error burst begins at position X° and ends at position
X! of v(X).

Let B(X) be the burssi pattern trapped in the error-pattern register.
Add X"71B(X) to r(X) in the buffer register. This compleies the
erTor-Correction process.

w
=
@
=)
S

If in step 1 the / — 1 high-order stages of the error-patiern register never contain
all zeros by the time the vegisier has been shifted 2/ — 2 times, an uncorreciable
error burst has been detected. In this event, the decoder stops the error-correction
DTOCEss.

The error-location number n — ¢ can be computed easily. Because 2/ — 1 and
o are relatively prime, there exist two integers A| and A; such that

AL =1+ Azp = 1.
The 4 is simply the remainder resulting from dividing
A1 = Dro + Azphy

by n. Once Ay and A are determined, the numbers Ay (2! — 1) and A, p can be stored
in the receiver permanently for use in each decoding. Therefore, compuiing n — ¢
requires two multiplications, one addition, one division, and one subtraction.

We note that the error-trapping decoder for Fire codes described here requires
at most 2/ + p — 3 shifts of the two syndrome regisiers and five arithmetic operations
to carry out the error-correction process; however, the error-trapping decoder
described in Section 20.2 takes n shifts (cycle times) to complete the error-correction
process. Because n = LCM2[ — 1, p), it is much greater than 2/ 4+ o — 3. Therefore,
decoding speed is improved. This improvement in decoding speed is possible only
when the receiver has some computation capability, or computation facility is
available at the receiver. Furthermore, the fasi error-trapping decoder requires
more logic.

EAAMPLE 20.2

Consider the (279, 265) Fire code considered in Example 20.1. This code is capabie
of correcting any error burst of length I = 5 or less. The fast error-trapping decoder
for this code is shown in Figure 20.4. Suppose that the error burst

e(Xy=X>+ X3+ X4+ x5 4 x5
has occurred. It is a solid burst of length 5 starting at position n — g = 2. The
syndromes s1(X) and s;(X) are remainders resulting from dividing e(X) by x4

and p(X) = 1 + X2 + X°, respectively:

S =X+ X3+ X+ X0+ x5,
5(X) =1+ X + x*.
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FIGURE 20.4: A high-speed error-trapping decoder for the (279, 265) Fire code.

TABLE 20.1: Contents in
the error-pattern register
of the decoder shown in
Figure 20.4 after each shift.

Shifft Contents

0 001111100
1 000111110
2 000011111
3 100001111
4 110000111
5 111000011
6 111100001
7* 111110000

* At the seventh shift, all con-
tents in the four high-order
stages are all zeros.

As soon as the entire received polynomial r(X) has been shifted into the error-
pattern and error-location registers, the contents in the two registers are s;(X) and
$2(X). Because all four high-order stages of the error-pattern register do not contain
all zeros, the error burst is not trapped in the five low-order stages. The error-pattern
register starts to shift. Table 20.1 shows the contents in the error-pattern register
after each shift. We see that the error burst is trapped in the five low-order stages
after Ay = 7 shifts. Now, the error-location register begins to shift. Table 20.2
displays the contents in the error-location register after each shift. At the 29th shift,

the contents in the error-location rpmctm— match the contents in the five low-order

stages of the error-pattern register. Therefore, A2 = 29. Next, we need to compute
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¢ n register of the decodes
shown in Figure 20.4 afier each shift.

i
Shift Contemts Shift Contents

0 11001 15 01600
1 11000 16 00106
2 01160 17 06010
3 00110 18 00001
4 000601 19 101660
5 10101 20 61010
6 iti1¢e 21 00101
7 61111 22 101160
3 10011 23 01011
9 11101 24 10001
10 110160 25 111060
11 01101 26 01110
i2 106610 27 00111
13 01001 28 10111
14 16060 29 11111

* At the 29th shift, the contents match
the burst pattern in the error-pattern
register.

(A1 =7, and Ay = —2). Then, we compute
T x9x294+(=2) x 31 x7=1393.

Dividing 1393 by n = 279, we obtain ¢ = 277. Consequently, n — g = 2, which
is exactly the error-location number. Eiror correction is achieved by adding the
error burst X2 4+ X3 + X* + X5 + X% to the received polynomial r(X) in the buffer
register. The error-correction process takes at most 8 + 30 = 38 cycle times. With
the decoder shown in Figure 20.2, the error-correction process takes n = 279 cycle
times.

The fast error-trapping decoder for Fire codes was first devised by Peterson
[21] and then vefined by Chien [17].

The burst-error-correcting efficiency of a Fire code is 7 = 2I/(m + 20 — 1). If ] is
chosen to be equal to m, then z = 2Zm/(3m — 1). For large m, z is approximately 2/3.
Thus, Fire codes are not very efficient with respeci to the Reiger bound; however,
they can be simply implemented.

A Fire code that is capable of correcting any burst of length [ or less and
simultaneously detecting any burst of length d > / is generated by

g(X) = (X + Dp(0),



20.3.2

1114 Chapter 20 Burst-Error-Correcting Codes

where ¢ > [/ +d — 1, and c is not divisible by the period p of p(X). The length of this
code is the LCM of ¢ and p.

Short Efficient Burst-Error-Correcting Codes

Besides Fire codes, some very efficient cyclic codes and shortened cyclic codes for
correcting short single bursts have been found either analytically or with the aid of
a computer [7, 11, 12]. These codes with their generator polynomials are listed in
Table 20.3. These codes and the codes derived from them by interleaving are the
most efficient single-burst-error-correction codes known.

TABLE 20.3: Some burst-error-correcting cyclic and shortened cyclic codes.

Code Burst-error-correcting Generator
n—k-—21 (n, k) capability polynomial g(X)*
0 (7.3) 2 35
(15,9) 3 171
(15, 7) 4 721
(15.5) 5 2467
(19,11) 4 1151
(21.9) 6 14515
(21,7) 7 47343
(21,5) 8 214537
(21, 3) 9 1647235
(27,17) 5 2671
(34,22) 6 15173
(38,24) 7 114361
(50, 34) 8 224531
(56, 38) 9 1505773
(59, 39) 10 4003351
1 {15,10) 2 65
(21, 14) 3 171
(21,12) 4 11663
(21,10) 5 7707
(23,12) 5 5343
(27,20) 3 311
(31, 20) 5 4673
(38,29) 4 1151
(48, 37) 5 4501
(63, 50) 6 22377
(63, 48) 7 105437
(63, 46) 8 730535
(63, 44) 9 2002353
(67.54) 6 36365
(96, 79) 7 114361
(103, 88) 8 501001
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TABLE 20.3: (continued)

Single-Burst-Error-Correcting Codes

Code Burst-error-correcting Gemnerator
n—k—2I (n, k) capability / polynomial g(X)*
z (17,9 3 471
(21,15 Z 123
(31, 25) 2 161
(31, 21) 4 3551
(35, 23) 5 13627
(39.27) 5 13617
(41,21) 9 6647133
(51.41) 4 3501
(51,35) 7 304251
(55,35) 9 7164555
(57,39) 8 1341035
(63, 55) 3 711
(63, 53) 4 2263
(63, 51) 5 16447
(63, 49) 6 61303
(73, 63) 4 2343
(85,75) 4 2651
(85,73) 5 10131
(105, 91) 6 70521
(131, 119) 5 15163
(169, 155) 6 55725
3 (51,42) 3 1455
(63, 56) 2 305
(85,76) 3 1501
(89,78) 4 4303
(93,82) 4 6137
(121,112) 3 1411
(151, 136) 6 114371
(164, 153) 4 6255
(195, 182) 5 22475
(217, 202) 6 120247
(290, 277) 5 24711
4 (43, 29) 5 52225
(91,79} 4 10571
(93, 83) 3 2065
(117, 105) 4 13413
(133,115} 7 1254355
(255, 245) 3 3523
(255, 243) 4 17667
(255, 241) 5 76305
(255,239) 6 301565

{continued overleaf)

1115
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TABLE 20.3: {continued)

Code Burst-error-correcting Generator
n—k-—2 (n, k) capability { polynomial g(X)*
4 (273,261) 4 10743
(511, 499) 4 10451
(595, 581) 5 64655
5 (465, 454) 3 7275
(1023, 1010) 4 22365

*Generator polynomials are given in octal representation. Each digit represents
three binary digits according to the following code:

0«—>000 2«—>010 4«—=100 6<«—110
1«—001 3«—011 S5«—101 7«—111

The binary digits are then the coefficients of the polynomial, with the high-order
coefficients at the left. For example, the binary representation of 171is0011 1
100 1, and the corresponding polynomial is g(X) = X0 4+ x> + x* + x3 + 1.

20.3.3 Burst-Error-Correcting Codes Constructed by Interleaving

Code interleaving, presented in Section 4.8, is a powerful technique for construct-
ing long powerful burst-error-correcting codes from short efficient burst-error-
correcting codes. Suppose we interleave a burst-error-correcting (#, k) linear code
C by a degree A. An (An, Ak) linear code C* results. A code array in C is shown
in Figure 4.5. Obviously, a pattern of errors can be corrected for the whole array
if and only if the pattern of errors in each row is a correctable pattern for C. No
matter where it starts, a burst of length A will affect no more than one digit in
each row. Thus, if C corrects single errors, the interleaved code C* will correct
single bursts of length A or less. If C corrects any single burst of length [ or less,
the interleaved code C* will correct any single burst of length Al or less. If C has
maximum possible burst-error-correcting capability (i.e., n — k — 2/ = 0), the inter-
leaved code C* also has maximum possible burst-error-correcting capability. By
intericaving short codes with maximum possibie burst-error-correcting capabiiity,
it is possible to construct codes of practically any length with maximum possible
burst-error-correcting capability. Therefore, the interleaving technique reduces the
problem of searching long efficient burst-error-correcting codes to searching good
short codes.

If the original code C is cyclic, the interleaved code C* is also cyclic. Let g(X) be
the generator polynomial of C. Then. the generator polynomial of the interleaved
code C* is g(X*) (see Problem 5.15 or Problem 19.7). Therefore, encoding and
syndrome computation can be performed by shift registers. The decoder for the
interleaved code can be derived from the decoder of the original code C simply by
replacing each register stage of the original decoder by X stages without changing the
other connections. This essentially allows the decoder circuitry to look at successive
rows of the code ariay in successive decoder cycles. Therefore, if the decoder of the

original code is simple, so is the decoder for the interleaved code.

e

B
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EXAMPLE 20.2

Consider the first code given in Table 20.3. Itis a (7, 3) cyclic code C generated by

() = (X + DX +X+1)
=142+ 20+ x°
This code is capable of correcting any burst of length 2 or less. It is optimal, since its
7 (n —ky =2 x2/4 = 1. Suppose we interleave

burst-correcting efficiency is 7 = 2/
this code to degree A = 10. The int
generator polynomial

erteaved code €19 is a (70, 30) cyclic code with

- £

This interleaved code is capable of correcting any burst of length 20 or less. The
burst-correcting efficiency of this code is 7 = 2 < 20/40 = 1. I'ence it is also optimal.

In decoding an inierleaved code C* decoder firsi rearranges the received

sequence inio an aitay, then decodes each_ row of the array based on C. If C 1s
cyclic, error-trapping decoding can be used io decode each row, or a single error-
irapping decoder can be devised for the interleaved cyclic code C* by modifying the
error-trapping decoder for C.

. th

Burst-Error-Correctin Q) « Product

Code product, presenied in | powﬂ ful technique for construct-
ing long powerful burst-error-correcting mdes from short burst-error-correcting
codes. Let /1 and I be the burst-error-coirecting ce Lp b‘llmes of codes €1 and C,
respectively. The bursi-error-correciing capability of the product 1 x C of Cy and
C, can be analyzed as follows. Suppose that 2 code almy as shown in Figure 4.3 is
transmitied row by row, and at the ouiput rf ihe channel, the received digits are
rearranged back into an array row by row. 1 lo matter where it starts, any existing
error burst of length ny/y or less will affect no more than f» - 1 consecutive rows;
when the received digits are rearranged | af‘k‘ into an array, each columm will at most
affected by a burst of length /». Now, il the array is decoded on a column-by-column
basis, the burst will be corrected. Thercfore, the burst-error-correcting capability
of the product code is at least n;/». Suppose that a code array is transmitted on a
column-by-column basis and decoded on a row-by-row basis. By a similar argument,
it is possible to show that any error burst of length ny/y or less can be corrected.
Thus, the burst-error-correcting capability of the product code is at least nyly.
Consequently, we may conclude that the burst-error-correciing capability / of the
product code is at least max {r11/2, nol1}.
Consider a cyclic produci code Cy x C

N
&
T <
= ®
s
<D
k’)
,ﬂ

n 5.11). Suppose that the
a

cyclic code € has random-error-corr ,n,mg ce 7‘1 and burst-error-correcting
capability /1, and cyclic code €y has random-error-correctin emablhty f and burst-
error-correcting capability /5. Then, he burst-error-cor fec ng capability / of the

cyclic product code Cy x Oy is at least equal to max (nyr + 1y, noty + 1) [23]; that s,

[ > max(nii + 1. 120 + D). (20.6)
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This result can be shown as follows. Suppose that an error burst of length nyty + I»
or less occurred during the transmission of a code array (see Figure 523 for
transmission of a code array). When the received digits are rearranged back into
an array, all except l; adjacent rows will contain #; or fewer errors. Each of these
[ adjacent rows will contain #; + 1 or fewer errors. If the rows are decoded first,
these [, adjacent rows may contain errors after the row decoding. Therefore, after
row decoding, each column of the array contains an error burst of at most length .
Because the column code C; is capable of correcting any error burst of length [ or
less, all the remaining errors in the array will be corrected by column decoding. By
a similar argument, any error burst of length ny# + /1 or less will be corrected if the
column decoding is performed before the row decoding. Therefore, we obtain the
result as stated by (20.6).

20.4 PHASED-BURST-ERROR-CORRECTING CODES

20.4.1

Consider an (n, k) code whose length n is a multiple of m, say n = om. The om digits
of each codeword may be grouped into ¢ subblocks; each subblock consists of m
consecutive code digits. For example, let

v = (UOv Vi, V2, -, Ucm—l)

be a codeword. Then, the ith subblock consists of the following consecutive code
digits:
Vims Vim41s " » VG4 m—1s

with 0 <i < 0. A burst of length Am or less is called a phased burst if and only
if it is confined to A consecutive subblocks, where A is a positive integer less than
o. A linear code of length n = om that is capable of correcting all phased error
bursts confined to & or fewer subblocks is called a Am-phased-burst-error-correcting
code. Because a burst of length (A — 1)m + 1, no matter where it starts, can affect
at most A subblocks, it is clear that a Am-phased-burst-error-correcting code is
capable of correcting any single burst of length (A — I)m + 1 or less. Thus, a
Aam-phased-burst-error-correcting code can be used as a [(A — 1)m + 1]-single-burst-
error-correcting code.

Burton Codes

Next, we present a class of phased-burst-error-correcting cyclic codes similar to the
class of Fire codes and was discovered by Burton [18]. Let p(X) be an irreducible
polynomial of degree m and period p. Let n be the LCM of m and p. Then, n = om.
For any positive integer m there exists an m-phased burst-error-correcting Burton
code of length n = om that is generated by

g(X) = (X" + Dp(X), (20.7)

The number of parity-check digits of this code is 2m. Thus, it is a (om, (6 — 2)m)
cyclic code. Each codeword consists of o subblocks. To show that the Burton code
generated by g(X) = (X" + 1)p(X) is capable of correcting all phased bursts confined
to a single subblock of m digits, it is necessary and sufficient to prove that no two

hinirete are in tha same cncat af o ctandard array for the code The nroanf i Iaft ag an
bursts are in the same ceset of a standard array for the code. The proof is left as an

exercise (see Problem 20.8).



Section 20.5 Burst-and-Random-Error-Correcting Codes 1119

A Burton code can be decoded with the error-trapping decoder described
in Section 20.2, except that the conients of the m leftmost stages of the syadrome
register are tested for zero at every mth shift. If m and the period p of p(X) are
relatively prime, and if the receiver has some computation power, Burton codes can
be decoded with the fast error-irapping algorithm described in Section 20.3.

1t is possible to interleave an m-phased-burst-error-correcting Burton code in
such a way that the interieaved (hn, Ak) code is capable of correcting any phased
bursi that is confined to A consecutive subblocks. To do this, we arrange A codewords
in the m-phased-burst-error-correcting code into A rows of a rectangular array as
usuial. We regard a subblock of each row as a single element. Then, the array consists
of o columns, and each column consists of A subblocks. The array is transmitted
column by column, one subblock at a time from each row. Therefore, a codeword
in the inierleaved code consists of Ao subblocks. Mo matier where it staris, any
phased-error busst confined to A or fewer subblocks will affect no more than one
subblock in each row. Thus, a phased burst of length Am will be corrected if
he array is decoded on a row-by-row basis. I the interleaved code is used as a
(A — Dym + 1]-bursi-error-correcting code, its burst-error-correcting efficiency is

_ {0 = Dm 4 1] 1 1 (m — 1\)\
7t

2hmi A
A the interleaving degree A becomes large the burst-error-correcting efficiency of
a Burton code approaches 1. Thus, by interleaving the Burion codes, we obtain a
class of asympiotically optimal burst-error-coriecting codes.

The obvious way to implement an interleaved Burion code is io set up
the code array and operate on rows in encoding and decoding. Thus, the encoder of
the interleaved code consisis of the encoder of the original code and a buffer for the
storage of the row vectors cf the code array; the decoder consisis of the decoder of
the original code and a buffer for the storage of the received code array. Of course,
ihe interleaved code can be decoded with the error-trapping decoder of Figure 20.1,
in which the contents of the Am lefimost stages are tested for zeros at every mith shifi.

)

{

<

20.5 BURST-AND-RANDOM-ERROR-CORRECTING CODES

On many communication channels, errors occur neither independently at random
not in well-defined single bursts but in a mizxed manner. Random-error-correcting
codes or single-burst-error-correcting codes will be either inefficient or inadequate
in combating these mixed errors. Consequently, it is desirable to design codes that
are capable of correcting randoin errors and/or single or multiple error bursts. There
are several methods of constrncting such codes. The most effective method is the
interleaving technique. By interleaving a r-random-error-correcting (n, k) code to
degree A, we obtain a (An, Ak) code capable of correcting any combination of 7 bursts
of length A or less.

A product code alsc can be used for simultaneous random-error correction
and burst-error correction. Let dy and ¢y be the minimum distances of codes € and
C,. respectively. Then, it is possible to show that the product code of C; and > is
capable of correcting any combination of 1 = | (d1dp — 1) /2] or fewer random errors
and simultaneously correcting any error burst of length [ = max (s, n1pty) o less,
where 1y = |[(dy — 1)/2], and 1y = [(da — 1)/2] [23. 24]. To prove this assertion if is
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sufficient to show that an error burst of length / or less and a random-error pattern

4 vy - - ot 1 - ~t
of r or fewer errors cannet be in the same coset of 2 standard array for the product

code. Suppose that nit > nat;. Then, [ = nyt. Consider a burst of length nit; or
less. When this vector is arranged as an array of ny rows and ny columns, each
column contains at most ; errors. Suppose that this burst and some random-error
pattern of  or fewer errors are in the same coset of the product code. Then, the sum
of these two error patterns (in array form) is a code array in the product code. As
a result, each column of the sum array must cither have no nonzero components or
have at least d; nonzero components. Each nonzero column of the sum array must
be composed of at least dy — 1, errors from the random-error pattern and at most
r; errors from the burst-error patiern. Because there are at most ¢ random errors,
these errors can be distributed among at most [7/(dy — )} columns. Thus, the sum
array contains at most [t/{d> — rn) [t + t nonzero components; however,

t t
r2+r§r( 1) <o
d—1 dr— 1

Hence, the sum array contains fewer than 21 < dyd> nonzero components and cannot
be a code array in the product code. This contradiction implies that a burst of length
[ = nirp or less and a random-error pattern of r or fewer errors cannot be in the
same coset of a standard array for the product code. Theretore, they can both be
used as coset leaders and are correctable error patierns. i naf; > ninp, then! = naty.
The same argument can be applied to rows instead of columns of the sum array.

Codes Derived from RS Codes

In Chapter 2 it was pointed out that any element § in the Galois field GF(2") can

be expressed uniquely as a sum of 1, &. &, - - -, ! in the following form:

B =ao+ame +aw’ + - a2
where ¢ is a primitive element in GF(2™), and a; = 0 or 1. Thus, the correspon-
dence between g and (ag, @y, - , ;1) is one-to-one. We shall call the m-tuple
(ag, a1, -+ . a;—1) an m-bit byte representation of §.

Consider a r-error-correcting RS code with code symbols from GF(27). If each
symbol is represented by its corresponding m-bit byte, we obtain a binary linear
code with the following parameters:

n=m@2" —1).
n—k = 2mt.

This binary code is called a binary image of the RS code and is capable of correcting
any error pattern that affects r or fewer m-bit bytes. It is immaterial whether a
byte has one error, or all the m bits are in error: they are counted as one byte
error, as follows. At the channel output the binary received vector is divided into
2" — 1 bytes; each byte is transformed back into a symbol in GF(2™). Thus, if an
error pattern affects r or fewer bytes, it affects r or fewer symbols in a RS code.
Obviously, the error pattern can be corrected by the decoding methods described in

Chntaw T WRn alaall Anll shic hin it
Chapier /. W snau Can this omnary code a #- u]’IC cor ,'(,’Cfll’lg code, but it ig actua!ly a

multiple-phased-burst-error-correcting code.
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codes are more effective against clustered errors
3 erTors usua _ﬂy involve several errors per byte
ors. For example, since a burst of length 3m + 1
, a 4-byie-correcting code can correct any single
£ g n also simulianeously correct any combination of
two bussis of length e + 1 or less, because each such burst can affect no more than

COH’S C ef

ny combination of four or fewer random

™ Q

RE code is capable of correcting any

T+ +m—2)m]

ecumo any s sin -1& burst of length (¢ — Um + 1 or

gainst a mixture
1 of bytes not correctable by the inner code
pattern for the outer code () if the concatenated
i patiern. Sc,ai;‘[@, ed 1 andom errors are corrected by the
7 a’ufect fative few bytes but probably so badly that

T m. These few byies can then be corrected by

C musi form a correcta
code is 1o corr I
mnner f‘r‘d@ <y

Stmultar ion of Burst and Random Errors

Let 8 be an element of order n in the Galois field GF(2™). It follows from
Theorem 2.5 that n is a factor of 2" — 1. Let ¢(X) be the minimal polynomial of .
The period of ¢(X) is n. The degree of #(X), my, is either equal to m or a factor of
n1. Suppose that 1 has a proper factor b such that

b+

3

< mg.
Letn=a- b Then,
Xl = (Xh (L Xb + XZ/; U X(afl)b).

Because the order of 8isn, and b < i1, 8 cannot be a root of X -1 and must be a root
X% 4o 4 xe=Db Therefore, $(X) divides 1 J—X]’+X2b +o X Db,

g (X) = (X" + D () (20.8)
is a Fire code C; of length n that is capable of correcting any ervor burst of length
(b+1)/2 of les

Let fgo(“\’) b@ the generator polynomial of a cyclic code €5 of length n that is
capable of correcting 7 or fewer random errors. Clearly, g (X) is a factor of X" + 1.
Let g(X) be the least comimon multiple of g1 (X) and g (X):

g5(X) = LCM {g;(X), 22 (X)) (20.9)
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Clearly, g(X) divides X" + 1 and can be expressed in the form
g(X) = (X" + Dgo(X), (20.10)

where go(X) is a factor of 1 + X + X2 4 ... 4 X@DV Now, we consider the cyclic
code C of length n generated by g(X). This code C is a subcode of both the Fire code
C1 generated by g1 (X) = (X b+ 1)¢(X) and the t-error-correcting code C; generated
by g,(X). Because C is a subcode of the Fire code Cy, C is capable of correcting
any single error burst of length (b + 1)/2 or less, and since C is a subcode of the
r-error-correcting code C», it is capable of correcting any combination of ¢ or fewer
random errors. Because g(X) has (X + 1) as a factor, the minimum distance of C is
even and is at least 21 + 2. It is possible to show that C is capable of correcting any
single error burst of length (b + 1)/2 or less as well as any combination of ¢ or fewer
random errors. To show this, it is necessary and sufficient to prove that a burst of
fength (b +1)/2 or less and an error pattern of weight 1 or less cannot be in the same
coset of C unless they are identical (see Problem 20.15).

EXAMPLE 20.4

Let « be a primitive element of the Galois field GF(2°). The order of a is 26 — 1 = 63,
and the minimal polynomial of « is

P(X) =1+ X+ x5.
The integer 63 can be factored as follows: 63 = 7 - 9. Thus, we have
XP 4 1=+ DA+ X%+ x84 X7 4+ X0 4 x¥ 4 x5,
The code generated by the polynomial
g1 (X) =X’ + DA+ X + x5

is a Fire code of length 63 that is capable of correcting any single error burst of length
5 orless. Let g (X) be the generator polynomial of the double-error-correcting BCH
code of length 63. From Table 6.4 we find that

2X) =1+ X+ x50+ X+ x>+ x* + X5,

Note that both factors of gz (X) are factors of 1 + X4 X184 X274 x30 4 x4 x4,
The LCM of g, (X) and g(X) is

gX) = X2+ DA+ X+ X501+ X + X%+ X+ X%,

Hence, g(X) generates a (63, 42) cyclic code that is a subcode of both the Fire
code generated by g1 (X) = (X? + (1 + X 4+ X% and the double-error-correcting
BCH code generated by go(X) = (1 + X + X1 4+ X + X2 + X* 4+ X9). Therefore,
it is capable of correcting any single error burst of length 5 or less as well as any

combination of two or fewer random errors,
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] Decoder I o,
Burst trapping ’
t\
\\
S o——= Output
npm ﬂ

Decoder it

e Random-error e
correction

FIGURE 20.5: Parallel decoding for sirnultaneous correction of burst and random
EITOTS.
Decoding of the code defined by ( nentedin astraightforward
J A i
manner, as shown in Fjgure 20.5, where | two decoders operate in parallel.

4

Decoder I is an eiror-ir « o .
generated by g (X) = X” - Dp(X); and decoder 'tI is 1 mplbmemed based on the
random-error-correcting code generaied by g(X). The received polynomial r(X) is
shifted into both decoders simultanecusly. Both decoders attempt to decode r(X).
The ervor-trapping decoder gives a decoded message only if the error pattern is
either a burst of length (b + 1) /2 or less or an undeieciable burst. The random-error
decoder gives a decoded message only if the error patiern either coniains ¢ of fewer
errors or is an undetectable error pattern. The on Ky v'”le when both decoders will
provide decoded messages simultaneoi sﬂy is only when the error pattern is in a coset
with a coset leader thai is a burst of lengih < (b - a)/ uc of weight < ¢. In this case
the decoded messages from the two d coders are wonucd If both decoders fail to

decode v(X0), errors are detected.

nted based on the Fire code

EXAMPLE 20.5

at

In Example 20.4,let us choose gy (X) as the generator polynomial of the (1, 3)th-order
twolold (63, 45) EG code. From Example 8. ?i we find that

X)) =0+X+ X0+ X+ X2+ X4 x50+ X + X2+ X0+ x5,
Then, the LCM of gi(X) = (X° + D1 + X 4 X5, and g (X) is
() =X+ DA+ X+ XA+ 2+ 22+ 2+ 250 + X + 22+ 25 + X5,

Hence, g(X) generates a (63, 36) cyclic code that is capable of correcting any single
error burst of length 5 or less as well as any three or fewer random errors with
majority-logic decoding.

There is a (63, 6) BCH code that is ca pable of correcting any combination
of five or fewer errors. Clearly, this BCH code is more powerful than the foregoing
(63, 36) code; however, decoding for the (63 6) BCH code is more complex than
the decoding of the (63, 36) code here.
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By combining Fire codes and BCH codes and with the aid of a computer, Hsu

et al. have consiructed several classes of shortened cyclic codes thai are capable of
correcting burst errors as well as random errors [26]. Other works on constructing
burst-and-random error-correcting block codes can be found in [11, 19, and 26-28].

PROBLEMS
20.1

20.2

20.3

20.4

20.5

20.6

20.7

20.8

20.9

26.10

26.11

20.12

20.13

20.14

20.15

Show that if an (n, k) cyclic code is designed to correct all burst errors of length
[ or less and simultaneously to detect all burst errors of length 4 > [ or less, the
number of parity-check digits of the code must be at least [ + d.

Devise an error-trapping decoder for an [-burst-error-correcting cyclic code. The
received polynomial is shifted into the syndrome register from the right end.
Describe the decoding operation of your decoder.

Prove that the Fire code generated by (20.4) is capable of correcting any error
burst of length / or less.

The polynomial p(X) = 1 + X 4+ X* is a primitive polynomial over GF(2). Find
the generator polynomial of a Fire code that is capable of correcting any single
error burst of length 4 or less. What is the length of this code? Devise a simple
error-trapping decoder for this code.

Devise a high-speed error-trapping decoder for the Fire code constructed in
Problem 20.4. Describe the decoding operation.

Use a code from Table 20.3 to derive a new code with burst-error-correcting
capability [ = 51, length n = 255, and burst-error-correcting efficiency z = 1.
Construct a decoder for this new code.

Let g(X) be the generator polynomial of an (n, k) cyclic code. Interleave this code
to degree 1. The resultant code is a (An, Ak) linear code. Show that this interleaved
code is cyclic and its generator polynomial is g(X*).

Show that the Burton code generated by g(X) = (X" + 1)p(X), where p(X) is
an irreducible polynomial of degree m, is capable of correcting all phased bursts
confined to a single subblock of m digits.

Letm = 5. Construct a Burton code that is capable of correcting any phased burst
confined to a single subblock of five digits. Suppose that this code is interleaved
to degree A = 6. What are the length, the number of parity-check digits, and the
burst-error-correcting capability of this interleaved code?

Interleave the (164, 153) code in Table 20.3 to degree A = 6. Compare this
interleaved code with the interleaved Burton code of Problem 20.9. Which code
is more efficient?

Interleave the (15, 7) BCH code to degree 7. Discuss the error-correcting
capability of this interleaved code. Devise a decoder for this code and describe
the decoding operation.

Consider the (31, 15) RS code with symbols from GF(2°). Convert this RS code
to a binary code. Discuss the error-correcting capability of the binary RS code.
Suppose that the Fire code constructed in Problem 20.4 is shortened by deleting
the 15 high-order message digits. Devise a decoder for the shortened code such
that the 15 extra shifts of the syndrome register after the received vector has
entered can be avoided.

Find a modified Fire code of length 63 that is capable of correcting any single
burst of length 4 or less as well as any combination of two or fewer random errors.
Determine its generator polynomial.

Consider the modified Fire code C generated by g(X) of (20.9). Show that a burst

of ]Pngth b+ 1)/2 or less and error nattern of ‘Ngigh[ t or less cannot be in the

Ca 0l QL 20ss ALl CIIOL paucll S Lalilion 341w

same coset.
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