o)

Block Coole

@
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Viocdulation

Combining block coding and channel signal sets to construct bandwidih-efficient
codes is referved to as block coded modulation (BCM). Codes constructed by this
combination are called BCM (or block coded modulation) codes, analogous to
TCM codes. BCM codes are much easier to construct (or design) than TCM codes.
The most powerful method for constructing BCM codes is the muliilevel coding
technique devised by Imai and Hirakawa in 1976 [1]. This chapter is devoied to the
multilevel construction of BCM codes and multistage decoding of these codes. Also
presenied are concatenated coded modulation and product coded modulation for
achieving large coding gains and high spectral efficiencies with reduced decoding

o

g las
complezity, and multilevel coded modulation for unequal error protection.

19.1 DISTANCE CONCEPTS

Let s be a point (X(s), Y(s)) in a two-dimensional Euclidean space R 2 wiih x- and
y-coordinaies X (s) and ¥ (s), respectively. Let s and s” be wvo points in RY. The
squdred Euclidean (SE) distance between s and s, denoted by d 7(s,5"),is defined as

d2(s.5") 2 (X(9) — XN + (V(s) = V(5D

Lety = (sg. 851 ..... sp—1) and v/ = (sg. 87, .. .. 5. ) be two n-tuples over R?. Then,

ihe squared Euclidean distance between v and v/, denoted by (12 (v.v"), is defined as

in—1
)= S (X (sp) = XSO 4 (Visp) — Vs,

-

[am &

=

Let S be a two-dimensional modulation signal set (or signal space). Each signal
s € 8 is represented as a point (X(s). Y(s)) in R%. An n-iuple over § is simply a
sequence of » signals from S. A BCM code C of length n over the signal space S
is simply a collection of n-tuples over §. The minimum squared Euclidean (MSE)
distance of C, denoted by d2{C]. is defined as

dz[C) 2 min{dz(v,v) 1 v.v € C and v # v'}. (19.1)

The minimum Hamming distance of the code, dy[C], is also called the min-
imum symbol distance of the code in coded moduiation For two codewords
¥ = (50,51, ....8,—1) and v/ = (5§, s]. ..., s/ ) in C.the product distance between v
and v/, moied by 512 (v. ¥, is defined as

n—1
d%(v. v £ E—E dl%:(s,'. s7). (19.2)
iZO..S‘i 7&\/

406D
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The minimum product distance of the code, d5[C], is defined as

A
dxlCl = vy v,V e Canddy (v, v) = du[C]}. (19.3)

i)

For an AWGN channel, the error performance of a modulation code depends
primarily on its MSE distance and path multiplicity. For the fading channels, such as
Rayleigh or Ricean channels, the error performance of a modulation code depends
primarily on its minimal symbol and minimal product disiances and path multiplicity
(nearest neighbors) [29]. It depends on the MSE distance to a lesser degree. These
distances are called the distance parameters of the code.

If every message of k information bits is encoded into a codeword in C, the
spectral efficiency of the code is

n[C] = S bits/symbol.

Assume that the channel is an AWGN channel and all the codewords are
equally hikely to be transmitted. Let r = (xg. yo, X1, ¥1, .- ., ¥n—1. Yu—1) be the output
sequence of the receiver demodulator, where x; and y; are the x- and y-coordinates of
the ith received signal r;. For maximum likelihood decoding, the received sequence
r is decoded into a codeword v* such that

dx(v*, 1) < d&(vi. 1),
for v; # v*.

19.2 MULTILEVEL BLOCK MODULATION CODES

Multilevel coding [1] is a very powerful technique for constructing bandwidth-
efficient modulation codes systematically with arbitrarily large distance parameters
from Hamming distance component {block or convolutional) codes in conjunction
with a proper bits-to-signal mapping through signal set partitioning. It provides
the flexibility to coordinate the distance parameters of a code to attain the best
performance for a given channel. Furthermore, the multilevel codes constructed
by this method allow the use of multistage decoding procedures that provide good
trade-off between error performance and decoding compiexity.

Muitilevel coding is best explained by constructing a class of 3-level BCM
codes over the 8-PSK signal set with unit energy. For bits-to-signal mapping, each
8-PSK signal s is labeled by a sequence of 3 bits, qgaiaz, based on the 3-level binary
partition chain 8-PSK/QPSK/BPSK/{0}, as shown in Figure 18.12. For convenience,
the partition chain is reproduced in Figure 19.1. (Note: The order of bit labeling
given here is the opposite of that given in Figure 18.12.) Let Q(ap) denote the set
of signal points in § whose labels have ag as the prefix. Q(ag) forms a QPSK. Let
Q(apay) denote the set of two signal points in S whose labels have aga; as the prefix.
Each Q(apay) is a BPSK. Let Q(agaiar) denote the set that contains the signal point
s in § labeled with aga;ay. The intraset distances A%, A%, A%, and As of S, Q(ap),
Q(apar), and Q(apa)az) are 0.586, 2, 4, and oo, respectively. The signal set partition

and s}gnal 1akal;nm nrncace Aafi T that aneo ancrh Inhal

apayay into its corresponding signal point s; that is, f{apaia) = s.

afine o0 nna.tn.ana manninag £ at nha
Oy probCos GUILET d UHUU-OLic Hlapplilyg 7 () uilal Lidps cabu rauc
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FIGURE 19.1: 8-PSR/QPSK/BPSK/{0} partition chain and signal labeling.

For 0 < i < Z,let C; be a binary (n, k;, d;) linear block code of length n,

dimension &y, and minimum Hamming distance d;. Let

0 = (V9.0s V0. 1o+ V0, 5—1)-

Vi = (vl‘o, Videeers Vljoee s UL”,;).

¥ = A{U2.0. V210 - e V2 je e U210
be three codewords in Cg, C1, and Cy, respectively. We form the following sequence:
(19.4)

N B Jay
Vo k V1 % V2 = (V0.0VU1.0Y2.00 -« -

This sequence is simply obtained by interleaving the three codewords vg, vy, and v;.
For 0 < j < n,we take vy ;uy_jvz ; as the label for a signal point in the 8-PSK signal

space S. Then,
A Fal £
Fvo kv x7) = (f(voovioveo). f(0o1v1.1v2. ). . [V n—1V10-1v2.4-1)) (19.5)

is a sequence of n 3-PSK signals. Let
A L
C=flCoxCq* -Cz]

(19.6)
Cifor 0 <i <2}

{frosvixm) v €

Then, C is a 3-level 8-PSK modulation code of length » and dimension k = ky +
ki +ky. The code consists of 2" signal sequences. Because kg -+ k; + k; information
bits are encoded into a code sequence of n 8-PSK signals, the speciral efficiency of
the code is o .

nCl = w bits/symbol.

I
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my) Y

Encoder for €,

I (wor vy ¥ vy)

— Mol Encoderfor C | M rrslziagp;;:alr :>

m, Vo
- Encoder for G, ~

FIGURE 19.2: An encoder for a 3-level BCM code.

In this construction of a 3-level 8-PSK code, each binary component code con-
tributes a labeling bit. An encoder for such code is shown in Figure 19.2. In encoding,

the first component codeword vg = (vg.g. vo.1, - - -. Vo.n—1) simply selects a sequence
of n QPSK signal sets (O(vo.0), @{vo.1), .., Qg ,_1)). From this sequence of QPSK
signal sets, the second component codeword vi = (vig.v1.1,...,V1.5—1) selects a
sequence of n BPSK signalsets (Q(vo ov1.0), Qvg.1v1.1), ..., Qo —1v1.,-1)), Where

forO0<j <n,
Qvo_jvi ;) C Qv ).

Then, the third component codeword vo = (vp9. v2.1. ..., vy ,—1) Selects a sequence
of n signal points (Q(vo0v1.0v2.0), Qo 1V1.1v2.1) -+ -+ Qv -1V1,4-1v2,4-1)) from
the BPSK sequence (Q(vo.ov1,0), @(vo 1v1,1),. ... Qv n—1v12-1)), with Qg jvy
vy ;) € Q(vg jvy ;) for 0 < j < n. This sequence is the output signal sequence. With
this view of the encoding operation, the encoder of Figure 19.2 can be reconfigured
as shown in Figure 19.3.

The MSE distance of a 3-level 8-PSK BCM code is given by Theorem 19.1.

TueorEM 19.1 The MSE distance d%[C] of the 3-level 8-PSK block mod-
ulation code C = [[Cy* Cy % (3] defined by (19.6) is lower bounded as

follows:
d2[C] > min{0.586 x do.2 x dy. 4 x da). (19.7)
My Encoder for €, el 8 PSK/QPSK
m, y M
Encoder for C, QPSK/BPSK
m — ] v Output
——>——=-|  Encoder for C, - BPSK/{0}

FIGURE 19.3: Another encoder configuration for a 3-level 8-PSK BCM code.
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[ (v =¥ xvy) be two different signal sequences
ne the squared Euchuan distance between these two signal
ust consider three cases.

[y
=

For the first case, suppose vy # v,. Because the minimum Hamming
listanice of Cq is «’oa o and f/é must differ in at least dp places. At each of
s of the corresponding signals in f(vg * vy % v2) and
the first labeling bit. Because f(.) is a one-to-one
* ’1 * \»ﬁ, must differ im these places. In mF
i 7gy, two ewnai vhose labels diffe

squawi Euclidean distance of at leas?

a, (F{vg* v %v2), f(¥y % 7] % 7,)) > 0.586 x dy. (19.83)
second case, s,uppuse vy = v, and v) # v|. Because the minimum
(j @“nstance of Crisdy, vy d Jl must uife? in at least dy places. At
u%z‘c the Iabels of th rresponding signals in f(vg x vy ¥p)

v,) are identical at the first labeling bit bui differ i e

ling bit. These iwo signals in the 8-PSK signal constellation must
be separa wd by a squared Euclidean distance of at least L“ = 2. Therefore,
the squared B Euclidean distance between fvgxvxvy) and f Vo % V) * V,) must

"1
be atleast 2 x d;: that is,

d2(f (30 % v * 7). F(Vhy#Vy xv2)) =2 x d (19.9)

VA

The lagt case is that vo = v, v = yl, and v % v,. Because the minimum

LTRInG dmau(e of €y is d, v and v, must dlffﬁr in at least ¢> places. This

ﬂmphes "mt flrg* vy va) and fvy x vy x v5) differ in at least ¢y places. A
hese places the labels of the two COH@CPOHdM’W signials are identical at

the first iwo labeling bits but differ in the third bit. These two signals musi be
in the same BPEK signal set and separated by a squared Euclidean distance
0% =4, Consequently,

(] (1¥\/0 * Y] ok V2), f(VO Vi * ‘Vz)) >4 x dh. (1910)

Combining (19.8), (19.9). and (19.10), we have
"'“(/ (v # vy * ¥a). f(vy % 7| % v5)) > min{0.586 x dy. 2 x di. 4 x dy}.

This result implies the bound of ( 19.7). Q.E.ID.

4
i

Sappose we want to constiuct a 3-level 8-PSK BCM code C of length n = 8, with
MSE distance d% [Cj = 4 and spectral efficiency n[C] = 2 bits/symbol. It follows
from Theorem 101 (19.7) that the minimum Hamming distances of three binary
component codes must be 8,2, and 1. respectively. To achieve 2 bits/symbol spectral
efficiency, the sum kg + ki + k> of dimensions of three component codes must be
16. Under these conditions, the three binary component codes may be chosen as
fpllows:
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1. Cp is the (8, 1, 8) repetition code that consists of the all-zero and all-one

2. (i is the (8, 7, 2) even-parity-check {or SPC) code that consists of all the
even-weight 8-tuples over GF(2).

3. Cyis the (8, 8, 1) universal code that consists of all the 8-tuples over GF(2).

Then, C = f[Cy x C1 * C3] is a 3-level 8-PSK BCM code of length n = 8 and MSE
distance

d2[C] > min{0.586 x 8,2 x 2,4 x 1} = 4.

In fact, d%[C] = 4 (see Problem 19.1). Because kg + k; +k» =1+ 7 + 8 = 16, the
spectral efficiency is n[C] = 16/8 = 2 bits/symbol. This 8-PSK BCM code has the
same MSE distance and spectral efficiency as the 8-PSK TCM code (code 2) given
in Example 18.4. It achieves a 3-dB asymptotic coding gain over the uncoded QPSK
system with the same spectral efficiency.

This code also has a very simple trellis structure. To construct the trellis for C,
we first construct the trellises for the component codes. The trellises for the three
component codes are shown in Figure 19.4. Taking the Cartesian product of these
three trellises, we obtain the trellis of the interleaved code Cp * C1 * Cy, as shown
in Figure 19.5. Then, we map each branch label into an 8-PSK signal based on the
partition and labeling shown in Figure 19.1. The result is the trellis for the 3-level
8-PSK code C shown in Figure 19.6. It consists of two parallel and structurally
identical 2-state subtreilises. The code is phase invariant under multiples of 45°
rotation [7]. Its bit-error performance with Viterbi decoding is shown in Figure 19.7.
It achieves a 2-dB real coding gain over the uncoded QPSK at a BER of 1076.

(b) An 8-section trellis for the (8,7,2) even-parity-check code C,

0 0 0 0 0 0 8] 0
@ o or ol el ol el ol o
1 1 1 1 1 1 1 1

(¢) An 8-section trellis for the (8.8, 1) universal code C

FIGURE 19.4: Trellises for the binary component codes.
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161 161 101 101

11) 100 (11) 100 (11 100 (11) 100 (11} 100 (11} 100 (11

1/ <N 175N i1l
Nﬂ;\ 110 \/10 /%1\
11 ‘11 NN i1t \/
110 110 110 110 410

100 100 100 100 160

001 601 001 001 001

11 \ ou 011
010\, 01\\ /\/\/\AAW

NN 010 010 010

on A\ /\ o2

000 000

FIGURE 19.5: Eight-section trellis for the interleaved code (8.1, 8) % (8,7, 2) % (8, 1, 1).

FIGURE 19.6: Eight-section trellis for the 3-level 8-PSK code f[(8,1,8) = (8,7, 2) %
@.1,1)].
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FIGURE 19.7: Bit-error performance of the 3-level 8-PSK BCM code f[(8,1,8) =
(8,7,2) % (8,8, D]

The preceding example shows that Theorem 19.1 (or (19.7)) can be used as a
guideline for constructing good 3-level 8-PSK BCM codes for an AWGN channel.
For a given MSE distance, the three component codes should be chosen to maximize
the spectral efficiency and minimize the decoding complexity.

The other two distance parameters of a 3-level 8-PSK BCM code are given in
Theorem 19.2 [9].

TueoreM 19.2 Consider a 3-level 8-PSK BCM code C = f[Cy x C1 * (3]
with component codes Cp, C1, and C,, whose minimum Hamming distances
are dp, d1, and dy, respectively. Let AZ A%, and A% be the intraset distances at
the three levels of the partition chain 8-PSK/QPSK/BPSK, respectively. Then,
the minimum symbol distance d [C] and the minimum product distance d5[C]
are given by

1.
dy[C]=min{d; : 0 < i <2}, (19.11)

2. Let ¢ be the smallest integer in the index set 7 = {0, 1,2} for which
d, = dp[C]. Then,

d3[C] = (AD)%. (19.12)

Proof. T

ix

distance d

T p
e
M
—
aq
=
<
a
i)
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The proof of the SGCOHd part of the theovem is as follows. For 0 < j < 2,
1

N ( s -
let v\ = (vé" Uo”* e ) denou@ a codeword in the component code C;.
Because ¢ is the smailest mtegef in I = {0, 1,2} for which d, = du{C]. rheua
must exist two codewords, v(¢) and v<‘/’ in C, such that the Hamming distance

between them is
([j{(“\"“”, T}((/>) = [,i[/ = CZH[C].

Consider two signal sequences, x = f(vQsvxv@and & = fFEFO 30452,
in C such that dy(v'9, 99 = 4, = dy[C], and v'/) = 3 for j # 4. These
two signal sequences differ in exactly 4, placps At each of these d, places. the

' iwo orresponding swnels in x and & are iden“cﬂ in every label bit

J

pt for ¢th label bit. Based on the 8-F ‘-\"-//Q SK/BPSK partition and
signal la beﬁl Shown in Figure 19.1, the squared uchaean dlS{’rJTﬂ.CC between
these two conespondmg signals is equal to the intraset distance A{Zj at the ¢th
partition level. Consequently, ii follows from the definition of product distance
given by {19.2) thai the product distance between x and % is

2. 0 2.4,
dp(8. %) = (A(/ ¥y

g lies t . 2 - ; . ot 77
This implies that d3[C] < (A ). In the following, we prove that d3[C] <
(Azl) !t cannot be true.

Withoui loss of generality, we assume ¢ = 1. Then, dy > dq, and dy > 4.

Suppose d3[C] < (A,f})”t/. Then, there exist two signal sequences,

y= 5y vy = (vovo. v

and
= FED %50 %5y = Gg. Dor - Faet),s
in C such that ciH (y,$) = d1 = dy[Cland

ii—1

A3y = [] diOi. $) < (aD™. (19.13)
=0
.“z?é,\ﬁ'f

This implies that there is a j such that
di(y;. 5,) < AL (19.14)

Because y; = f(v'” ,<], )an( vy = £8P, the inequality of (19.14)

implies that v< ” # v/ md v £ 50 Letz = £FD 5 v« 9Dy, Then, we
can readily see that

du(y, ) = du(y. 2). (19.15)
Because v(@ = Oy (y.2z) > dy. It follows from (19.15) that
dy(y.5) > dy > dy,

which contradicts the fact that dy (y, §) = d;. Hence, the hypothesis. d3[C] <
(A%)"', does not hold, and we must have d3[C] = (A%)‘/'. This concludes the
preof. Q.E.D,
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EXAMPLE 19.2

Suppose we want to construct a 3-level 8-PSK code with minimum symbol distance 4,
minimum product distance of at least 4, and spectral efficiency around 2 bits/symbol.
From (19.11) we find that the smallest minimum Hamming distance of the component
codes must be 4. From (19.12) we find that for a minimum product distance of at
least 4, the first component code cannot be the code with the smallest minimum
Hamming distance. In this case, we should choose either the second or the third
component code to have the smallest Hamming distance. Possible choices of the
component codes are

1. Cyisthe (32, 16, 8) second-order RM code of length 32.
2. (1 is the third-order (32, 26, 4) RM code of length 32.
3. (7 is the same as Cq; thatis, C, = Cj.

The resultant 3-level 8-PSK code, C = f[Cy * C; x C3]. has the following distance
parameters: d2[C] = 4.688, dy[C] = 4, d3[C] = 16, and n[C] = 2.125 bits/symbol.

The construction and developments of 3-level 8-PSK codes can be generalized
to multilevel codes over any M-ary PSK or QAM signal set. Let § be either an
MPSK or a QAM signal space with 2/ signal points. We form a binary partition
chain S/81/--- /S for the signal space §, where 81, §3, -+ . § = {0} are subspaces
of §, and S; consists of 2/~ points for 1 <i <[ . For0 <i </ let A;‘ denote the
intraset distance at the ith level of partition. For i = 0, A% is the intraset distance of
the signal space S. The partition of § is carried out such that the intraset distances
increase monotonically, that is,

A2 <A <. .. < A% 19.16
0 1 !

Based on this partition chain, each of the 2! signal points in $ is labeled by a unique
binary string of length /, denoted by apa; ---a;—;. This signal labeling defines a
one-to-one bits-to-signal mapping f(-). For each label aga| - - - a1, fagar - aj—1)
is its corresponding signal. For 1 <i </, let Q(apay - - -a,_;) denote the set of 2/~
signal points in S whose labels have agay - - - @,_1 as the common prefix. The intraset
distance of Q(apay ---a;_1) is AI,Z‘

Anl-level BCM code over a signal space (MPSK or QAM) with 2/ signal points
is constructed in the same manner as a 3-level 8-PSK BCM code. For 0 <i < [, let
C; be a binary (n, k;. d;) linear block code of length n, dimension k;, and minimum
Hamming distance d;. Let

vo = (V0.0.V0.1. V0 V0. —~1)s
Vi o= (V10 VI UL V-1
Vier = (W10 vt Va1t Ve la—1),
be [ codewords in Cy, Cy, --- . Cj_1, respectively. We interleave these / codewords

to form the following sequence:
Yo VLK -k Vo = (V,0V1.0 " U—1,00 5 VO VL

Uit js 2 Vo=tV =1 Y~ 11}
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For0 = j < n,wetake vy jui ;- - vi—1; as the label of a signal point s € S. Then.

Frokvysxv_) = (f{voovio- - v—1.0). - flvo v

UI—]._/)w T J'I(UC).nflvl,n—l Vi1 )

(19.17)

(-
-~
&
)

(~
*
*

=
<
=
!
—_
N

2
~
m
€

nsion k = kg + ;,1 + <+ k;_1. Because all
rleaved code Cox C <-x(y_pisiinear. For
Mi code C = flCo*xCy#- - xCy_]asalinear code.

Coﬂc are characterized by T Heo; em 19.3, which is
h eorems 19.1 and 19.2.

t § be either an MPSX or a QAM signal space with 2
Iu[C], and d3[C] be the MSE distance, minimum symbol
nimum product distance of an [-level BCM code over S,

1.
{Z%[C} > min{d; A,?“ 0=<i <y (19.18)
Adg[Cl=min{d; : 0 <i </}. (19.19)

3. Let g be the smallest integer in the index set 7 = {0,1,-..,1 -~ 1} for

1R1C] = (a2)% (19.20)

where A,%, \f «/ﬁ\]z_l are the intraset distances of the partition chain

§/81/ -+ /5 = {0},
The construction of an [-level BCM code over a signal space § with 2/ signal
points consists of four steps:

1. Label each signal point in § with a unigue binary siring of [ bits through a
binary partition chain for .

2. Choose I binary component codes, Co, Cy, -+, Cj_;.

3. Interleave the component codes.

4. Map each interleaved sequence, vy % v1 % --- % v;_1, at step 3 into a signal
sequence f(vgk vy k.- %k v_) over §.

Amn n-section trellis for an /-level code, C = f[Co* Cy % -+ % C;_1], over S can be
constructed in Iwo steps. For 0 <i < /,let 7T be the n-section bit-level trellis for the
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ith binary component code C;. We construct an n-section trellis 7" for the interleaved
code Cq s Cy % --- % C;_1 by taking the Cartesian product of 7@ 71 ... 7¢=D
and labeling each branch in 7 with [ bits. These /[ bits form a label for a signal
point in §. We map each branch label in 7 into a signal point in S. The result
is an n-section signal-level trellis for the /-level code C = f[Cy* Cy % -+ % Cj_1]
over S.

EXAMPLE 19.2

Suppose we want to construct a 4-level 16-QAM code with MSE distance 8A(2)
and spectral efficiency around 3 bits/symbol. The 4-level binary partition chain for
16-QAM is shown in Figure 19.8. For i = 0,1,2, A? | = 2AZ, a possible choice of
the component codes is

1. Cgisthe (16, 5, 8) first-order RM code of length 16.

2. C;isthe (16, 11, 4) second-order RM code of length 16.
3. Cyis the (16, 15, 2) SPC code of length 16.

4. Csisthe (16, 16, 1) universal code.

The resultant 4-level 16-QAM code, C = f[Cy * Cy x Cy x C3], has the following
parameters: d2[C] = 8A(2), and n[C] = 2.9375 bits/symbol.

Multilevel coded modulation systems can also be designed using convolu-
tional codes (or a combination of block and convolutional codes) as component

codes.
E-TEX-]
eelee 2
EEEE &1
eelee

FIGURE 19.8: The 4-level binary partition chain for 16-QAM.
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MULTISTAGE DECODING OF MULTILEY

For short BCM codes, maximuim likelihood decoding can be implemented based on

19.

W

Section 19.3 Multistage Decoding of Multilevel BCM Codes 1075

L BCIVI CODES

their full code trellises using a trellis-based decoding algorithm. The trellises of long
BCM codes, may be too compiex for practical implementation of any trellis-based
MLD algorithm; however, the muliilevel stracture of these codes allows the use of
multistage decoding that provides an effective trade-oif between ertor performance
and decoding complexity [6, 11,12, 16].

In multistage sofi-decision decoding of a i _lﬂl el BCM code, component
codes are decoded with sofi-decision ML, one at a tin stage by stage, as described
in Section 15.3. The decoded information at each sta assed to the next stage.
The decoding process begins with ihe first-level mmp nent code and ends at the
last-level component code.

For simplicity, the decoding process is explained by using a 3-level 8-PSK BCM
code C = f[Co* Cy % Co]. Assume an AWGH channel. Letr = (rg, rg, - -+, rp—1) be
the received sequence at the outpui of the demodulator, where for 0 <i <n

02

=

Flrst-Stage [

coding

Let vg = (vg.0, v0.1. -+ » Voi—1) be a codeword in Cp. Let d%[ri, Q(vg.;)] be the MSE
distance between the ith received symbol and the signal points in Q(vg ;). The SE
distance between the received sequence 1 and the codeword vy is defined as

n—1
diw vy = Y dilr. Qwon)]. (19.21)

For every codeword vo € (o, we cmnpu”[e the distance d%(m vo) and decode r
into the codeword 99 = (00.0. Ug.1. - -+ » Vg.n—1) tOF which dl% (r, ¥p) is minimum. This
concludes the firsi-stage decoumg.

Second-5tage Decoding

The decoded information, ¥y, at the firsi-stage decoding is passed to the second
stage. Let vy = (v10,v1.1. . v1.4—1) be a codeword in Cy. Let a’%[r,-, Q(0g.v1.)]
be the MSE distance between the ith received symbol r; and the signal points in
Qg v1.,). For every codeword vy € Cy, we compute the distance

ri Q(0g 1v1,)] (19.22)

Then, we decode r into the codeword ¥ in C; for which d (r, Yo * V1) 1S minimum.
This completes the second-stage decoding.
Third-Stage Decoding

The decoded information at the first and second stages, vp and vy, is made
available to the third decoding stage. For every codeword vy € €y, we compute
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the distance

n—1
L A N
dg (e Vo * Vi va) = D de[rs, Q(Do,ii1.iv2,i)]
i=0
(19.23)

n—1

=Y dglri. f @oib1iv2.0)

i=0

We decode r into the codeword ¥, € C; for which d% (r, ¥p * ¥1 * ¥2) is minimum.
This completes the entire decoding process, and {¥g, 91, 92} forms the decoded set.
A decoder is shown in Figure 19.9.

The foregoing multistage decoding is known as the closest coset decoding. A
trellis-based MLD algorithm can be used for decoding each component code. The
entire decoding complexity is the sum of decoding complexities of the component
codes, Owing to the possibility of error propagation from one stage to the next, the
preceding multistage decoding algorithm is not optimum even though each stage of
decoding is MLD; it is suboptimum.

EXAMPLE 19.4

Consider a 3-level 8-PSK BCM code, C = f[Cy = Cy = C2], of length n = 32, where
(1) Cy is the first-order (32, 6, 16) RM code, (2) Cy is the third-order (32, 26, 4)
RM code, and (3) (> is the (32, 31, 2) even-parity-check code. The total number
of information bits is k = 6 4+ 26 + 31 = 63. Therefore, the spectral efficiency of C
is n[C] = 63/32 = 1.96875 bits/symbol (almost 2 bits/symbol). From (19.7) we find

First-stage Yo
decoder

Second-stage Vi
decoder

I/

§

<>
N

Third-stage
decoder

FIGURE 19.9: A three-stage decoder for a 3-level BCM code.



=y

67

LN

Section 19.3 Multistage Decoding of Multileve! BUM Codes

that the MSE dis:ia,nce, of C is d2{C] = 8. This 3-level 8-PSK code has almosi
same spectral efficiency as the uncoded QPSK, 2 bits/symbol. 1t achiceves a 6 dir
asymptotic code galﬁ over the uncoded QPSK with optimal MLD.

The first component code Co has a 4-section 16-siate trellis. The second
component code «"1 also has a 4-section 16-state trellis. The third component code

has a 32-section Z-state frellis. The C( tesian i oc uct of ihe three treilises would
resulf in a 4-section treilis with 512 stat Dec oding based on this overal 1 trellis is
rather complicaied: however, three-sia g 5 nbwl rﬂUﬂ r"ﬁcodmc of this BCIM f’odp
makes the decoding relatively much less complex. The bit-ervor performance of th

code with 3-stage subopiimum deceding is shown in Figure 19.1@. i heL cisa 3.6—@1;@
real coding gain over the uncoded QPSK at a BER of 10-5.

The 3-stage deco&mo of a 3-level RCM code can be generalized in a straightior-
a,d*nawe 0] tage decoding of an/-level BCM code, C = ;’[LQM,]*u»kC,,l}

o

over a signal space 5. For 0 < j < i, let

Yo = (D0.0. Dg.1. -+« Do.u—1)
¥ = (01,0, 014, -+ . O1=1)

3

-1 = (v]~1 0- U/--ll : va_/fl;n—l)

3-level 8-PSK

Bit-error probability

8 10 12

E,/N, (dB)

FIGURE 19.10: Bit-error performance of the 3-level 8-PSK code f[(32, 6) = (32.
(32, 31)].

o8}
33
B
=)
=
3%
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be the decoded codewords of the first j stages. For every codeword v; = (v;q.

Vi1, Vja-1) € C;, we compute the distance
A n—1
2006 L N 2 A a .
dip@ Fo* 915w ¥, %v) = Y dplr, Qo -, 85-14v0] (19.24)
i=0
where d%[r,, Q(Vp;014, -+, 0j-1,v;,)] denotes the MSE distance between the ith
received symbol r; and the signal points in Q(vg;v1;,---.0;-1,v;;). Then, the

(j + 1)th stage decoding decodes r into codeword ¥; in C; for which d2(x, ¥p * ¥1 *
% V1 % V) is minimum. Decoding stops at the /th stage.

EXAMPLE 19.5

Consider a 4-level 16-QAM BCM code, C = f[Cq x C1 % Cy * C3], of length n = 16,
where (1) Cq is the first-order (16, 5, 8) RM code, (2) C; is the second-order (16,11, 4)
RM code, (3) Cy is the (16, 15, 2) even-parity-check code, and (4) Cz is the (16, 16, 1)
universal code. The total number of information bits is k = 5+ 11 + 15 4+ 16 = 47.
Therefore, the spectral efficiency of C is n[C] = 47/16 = 2.9375 bits/symbol (almost
3 bits/symbol). From (19.18) we find that the MSE distance of C is d2[C] = 8AZ.
This 4-level 16-QAM code has almost the same spectral efficiency as the uncoded
8-AM-PM constellation obtained at the first pariitioning level of Figure 19.8, which
achieves 3 bits/symbol. Hence, it achieves a 6-dB asymptotic coding gain over the
uncoded 8-AM/PM with optimal MLD. The bit-error performance of this code with
4-stage suboptimum decoding is shown in Figure 19.11. There is a 2.8-dB real coding
gain over the uncoded 8-AM/PM considered at a BER of 107°. Note that although
the 16-QAM and 8-AM/PM constellations considered in this example have the same
average energy, this is no longer the case in general, since several 8-point QAM
constellations can be chosen as an uncoded reference. As a result, a given 8-point
QAM constellation with the same average energy as the 16-QAM constellation has
to be considered as an uncoded reference, which auiomatically determines the SE
distance of this 8-AM/PM constellation.

An upper bound for each stage of muitistage decoding of multilevel codes
can be derived based on the union bound. First, consider a 2/-PSK BCM code, and
assume that the all-zero codeword is sent at level 1. Then, a decoding error at stage
1 is made if there exists g # @ with

d2(r. 9g) < dz(r, 0). (19.25)

Let o represent the Hamming weight of . Then, for each nonzero position of ¥,
each point in Q(0) has two nearest neighbors in Q(1) at SE distance A%. Because
at stage 1 of the decoding, it is assumed that any n-tuple is a valid codeword for
the remaining stages, vg can be mapped into 2¢ sequences at SE distance a)A% from
any given sequence of n points in Q(0). Let AP represent the number of codewords
of Hamming weight w in code C; used at level-i. It follows that the word-error
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F 8-AM/PM E

i T 16-QAM BCM 1
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5077 =
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[4a] 0t - -
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! | !
107 2 4 6 3 10 12

16-QAMcode F[(15.5)%(16, 11)*

probatil

ecoding is upper bounded by

, o
. [ (n[ClE, A2

Poo< S 2040l 1 ,j‘ PT0 0 (19.26)
Lt © Y 2y I
w=dy \\' ’ /

PEK - < i < [, each point 0((!0(!1 -+ a; 10y has two nearest neighbors at
Anct A4 in ‘W“o/ﬂ . 11) follows that for 1 < i < I, the word-error
oding is upper bounded by

n :—w 2
3 77[L ]ﬂ/r&‘ \ P
Pw.i < i\ 2(0A£;)0 ( —‘7[;[—1 , + Pw.i—lv (19/‘7)
w=d; \ -0
s vh@ ombaoﬂw of error prepagation from stage-

3

Finally. stnce the decoding

Epn?
“#J + Pyia. (19.28)
/

For the 3-level 8-PEK BCM code of Example 19.4, Figure 19.12 shows the
nion bound on P, ;_; computed from (19.27), which vsually dominaies the overall
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FIGURE 19.12: The union bound of the 3-level §-PSK BCM code of Example 19.4.

union bound for multistage decoding of BCM codes. In general, when a powerful
code Cp is used al level 1, the union bound on P, ; tends to become quite loose at
low-to-medium SNR values.

This analytical approach for 2/-PSK BCM can be generalized for evaluat-
ing an upper bound for each stage of multistage decoding of multilevel codes
in general. We define Nf){} as the average number of nearest neighbors at SE
distance Ai‘. corresponding to stage-;j of the partitioning. Then, it follows that
for 0 < { < I, the word-error probability at stage-i of the decoding is upper
bounded by

n : w . 2
Ppi< Y (N‘;;) A0 o E[CZ];:?;’A' + Pyt (19.29)

w=d;
For the 4-level 16-QAM BCM code of Example 19.5, we find that

N = (4-443.8+2.4)/16,=3, (19.30)

N =(1-2+2-4+4-2)/8.=225 (19.31)

For this 16-QAM BCM code, Figure 19.13 depicts the union bound on P, 1 computed
from (19.29).
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FIGURE 19.13: The union bound of the 16-QAM BCM code of Example 19.5.

CONCATENATED CODED MODUILATION

Coded modulation can be used in conjunciion with concatenated coding to achieve
large coding gain, high reliability, and high spectral efficiency with reduced decoding
complexity. This combination of two coding techniques is called concatenated coded
modulation (CCM). CCM systers, either with one level or with multilevels, can be
constructed in exactly the same manner as concatenated coding systems presented
in Chapter 15, ezcept that BCM codes are used as the inner codes.

dulation Systems

Single-Level Concatenated Coded M

In a single-level CCM sysiem, the outer code, denoted by B, is an (N, K) linear
block code, say an RS code, with symbols from GF(2”). The inner code, denoted
by A, is a multilevel BCM code of length # and dimension k = Ab over a certain
signal space 5. The encoding consists of two stages. At the first stage of encoding, A
outer-code codewords are formed and stored in a buffer as a Ab xX IV array, as shown
in Figure 19.14. Each column of the array is Ab bits long and consists of A code
symbols, one from each outer-code codeword. At the second stage of encoding,
each column of the array is encoded into a sequence of n signals in the signal space
S based on the BCM inner code A. This signal sequence is then transmitted. The
outer code is interleaved by a depih of M.

The decoding also consists of two stages, the inner and outer decodings. When
a sequence of n signals is received, it is decoded into Ab bits based on the BCM inner
code A using a soft-decision decoding algorithm, say, muliistage decoding presented
in the previous section. These Ab bits are then stored as a column of a Ab x N arrayin
a buffer for the second-stage decoding. After I inner code decodings, the received
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I N 1
i An outer
b ) ® ® ° ® ° ° ~—— code
¥ codeword
T
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aQ
Ab
@
e
T
b
v

FIGURE 19.14: An array of 1 outer code codewords.

buffer contains a Ab x N decoded array. Each column of this array consists of A
estimated symbols, one for each transmitted outer-code codeword. Therefore, the
array contains A received words for the outer code B, and they are decoded based
on the outer code. To maintain low decoding complexity, the outer code is decoded
with an algebraic decoding algorithm (or a reliability-based decoding algorithm).

EXAMPLE 19.6

For this example, the outer code B is the NASA standard (255, 223) RS code
over GF(2%) with minimum Hamming distance 33 [13]. The inner code A is the
3-level 8-PSK BCM code of length n = 8 and dimension k = 16 constructed in
Example 19.1. Because k£ = 16 and b = 8,1 = 2. Therefore, the outer code is
interleaved by a depth of A = 2. The spectral efficiency of the overall CCM system
is (223/255) - n[A] = (223/255) - 2 = 1.749 bits/symbol. Figure 19.15 depicts the
system. Because the inner code has a very simple 4-state trellis (see Figure 19.6),
it is decoded with a Viterbi algorithm based on the full-code trellis. The outer RS
code is decoded with the Euclidean decoding algorithm presented in Section 7.5.
The error performance of this CCM system is shown in Figure 19.16. The system
achieves a 5-dB coding gain over the uncoded QPSK at a BER of 107° with 14.3%
bandwidth expansion. For SNR E,/Ny = 6.2 dB, the system practically provides
error-free data transmission.

Multilevel Concatenated Coded Modulation Systems

In a g-level concatenated coded modulation system, ¢ pairs of outer and inner codes
arcused.Forl </ < g,let B; bean (N, K;) linear block code over GF(2™) with mini-
mum Hamming distance D;. These codes are used as the outer codes. The inner codes
are constructed from a multilevel BCM code A and a sequence of g subspaces of Ag.
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9.15: A single-level concatenated coded modulation systerm with the MASA
standard (255, 223} RS code as the outer code and an (8. 16, 4) 3-PSK code as the
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FIGURE 19.16: Bit-error performance of the single-level CCM system with the NASA

standard (255, 223} RS code as the outer code and an (8, 16, 4) 3-level 8-PSK BCM
code as the inner code.



Let Ag = f[CoxCy*---xC;_1] be an [-level BCM code over signal space § of
length i, dimension kg, and MSE distance 42 2 42 [Agl. We require that
=} ¥ Yy 4] EL 1
ko =my +my+ - +my. (19.32)

For 0 <i <, let C! be a linear subcode of the ith component code C; of Ag. Then,
the interleaved code Cpy* C{ % --- % C;_, is a linear subcode of Cg * Cy -+ - % Cj_1.
After bits-to-signal mapping based on f (), Ay = f[Cj*Cy*---*C|_,]is asubspace
of Ag. A6 is said to be a linear subcode of Ag. We can partition Ag based on A{) by
first partitioning Co x C1 x - - - % ;1 based on the subcode Cj * C| % --- % C]_; and
then performing bits-to-signal mapping based on f(-). Let k; be the dimension of
Ay Then, the partition Ag/A( consists of 2k% cosets (or cospaces) of Aj.

Now, we are ready to construct ¢ inner codes for a g-level CCM system. First,
we form ¢ linear subcodes of Ap, denoted by Aj, A;, .-, A, such that the following
conditions are met:

L. AgD A1 DDA,
2. Ay = {f ()}, where § is the all-zero codeword in Co * Cp * - - Cj_1.
3. For0 < i < g, letk; be the dimension of A;. Then,

ki =ki_y —my. (19.33)
It follows from (19.32) and (19.33) that

ky =my+mz+---+my,

ky =m3 +mg+---+my,

(19.34)
kg1 = myg,

kg = 0.

For 0 < i < ¢, let d? 2 dA[A;] be the MSE distance of 4;. Then,
dj <df =<+ < d’.

We partition Ap into 2™ cosets based on A; (or modulo-Ar). Let Ag/A;
denote this partition. The MSE distance of each coset in A;/A4g is df. Ag/ A1 is
called the coset code of Ag modulo-A|. Next, we partition each coset in Ag/A,
into 272 cosets based on Aj. Let Ag/A/A, denote this second-level partition of
Ag. Then, Ag/A1/A; consists of 27172 cosets of Ay in Ag. The MSE distance of
each coset in Ag/A1/Az is dzz. Ag/A1/Ay is called the coset code of Ag/A; modulo-
Ay. We continue this partition process to form coset codes. For 1 < i < ¢, let
Ag/A1/ - /A;—1 be the coset code of Ag/A1/---/A; o modulo-A; . We partition
each coset in Ag/A1/---/A;_1 into 2™ cosets based on A;. Then, Ag/A1/ - /A;
is the coset code of Ag/A;/ - /A;_1 modulo-4;. The MSE distance of a coset in
Ag/Ay/ /A is diz. Hach cosetin Ag/Ay/--- /A, consists of only one codeword in
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The output of the gth inner-code encoder is a sequence of codewords from the base
code Ap. It is a sequence of Na signals from the signal space S. The overall g-level
CCM system generates a concatenated modulation code C of length Nn, dimension

K =mKi +mpKp+ -+ myKy,

and MSE distance

dZ[C] > min {D;d? |} (19.35)

l=izg

(see Problem 19.3). The spectral efficiency of C is

- K .
nCl= N bits/symbol.

Muitistage decoding of a multilevel concatenated modulation code is similar
to the multistage decoding of a multilevel BCM code presented in the previous
section. Let V = (vg, v, ..., ¥y_1) be a codeword in C, where for 0 < J<N,v;
is a codeword in the base inner code Ag. Each v; must be in one of the cosets of
the coset code Ag/A;. Let R = (rp,r1,...,ry_1) be the received sequence. R is
decoded in ¢ steps, from the first level to the gth level, as shown in Figure 19.18.
At the first level of decoding, r; is decoded into one of the cosets in Ag/A;. Based

R First-level First-level
inner-code outer-code
decoder decoder
Second-level Second-level
inner-code outer-code
decoder decoder
@ e
2] °

gth level gth level
inner-code outer-code e
decoder decoder

FIGURE 19.18: A decoder for a ¢-level concatenated modulation code.
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on the decoded coset, the m -bit byie :a(/.l) is identified that is the estimate of the
output byte of ‘hp firsi-level outer-code B; encoder at time-j. Then, the sequence
(a(l). a(ll)“ . N 1) 15 decoded based on the outer code By. Let (bm (D b(l) )
be the decade@ codeword. Then, the estimated message sequence is retueved
from this decoded codeword. Furthermore, from this decoded codeword, a coset
sequence

is reproduced at the ouipui of the firs neﬂ lecoder, where SZ( ' e Ag/A;p. This
coset sequence is then applied at the input o [he second-level decoder
Now, the second-level decoding begms. For 0 < ] < N, based on the input

© e . . 1 1
inforimation §Z(] we decode r; into one of the cosets ( ) /Ay, Based on the

r"'h

Bty

decoded coset, the corresponding miy-bit byte a; T idemﬁed that is the es‘umate

of the ompm byte of the second-level cuter-code 2 encodel at time-j. The
2) (2 22

sequence \310 .8, oayl ) s decoded into a codeword ( 2 1(2’ N—l) in
. 2) L 2)
the second-level outer code B;. Based on (bé ) bg Lo bf\,g ), a coset sequence
@) @ @
(g7 S Q)

0% e Ag/A1/ Az,

is reproduced at the output of the second-level decoder, where
at a:he mput of the third-level decoder. Other

This coset sequence is then applied

levels of decoding are carried out in the same manner.
To keep decoding complexity lo i hﬂ maintain good error performance,
the inner codes are decoded with a sofi-decision decoding algorithm, and the outer

codes are decoded algebraically.

This example gives a two-level CCM sysiem with m = my = 8. The first-level outer
code By is the NASA standard (255, 223) RS code over GF(2%), and the second-level
outer code B is the (255, 239) RS code over GF(23). The base modulation inner
cade Ag is the 3-level 8-PSK BCM code f{Cy x €1 x C3], where Cg is the (8, 1)
repetition code, C; is the (8,7) SPC code, and (5 is the (8, 8) universal code. The
dimension of Aq is kg = 16, and (ZZE(AO) = 4. To consiruct a subspace A; of Ag with
dimension ky = kg —m1 = 8, we choose the follomng three binary component codes:
1 Cél) = (8,0) is the code of length 8 consisting of only the all-zero sequence,
(2) C;D = (8, 1) is the repetition code of length 8, (3) Cél) = (8,7) is the SPC
code of len@th et Ay = F [Cé“ * C;l] * Cél)]. The dimension of Ay is k; = &.
Because C\") € Co, C “ C Cy. C;D C Cy, Ay is a subspace of Ag. From (19.7) the
MSE c‘hstanw of Ay is d* = d2 2[A1] = & The coset code Ag/A consists of 28 cosets
modulo-Aj.

Let Ay = {f(D)}). Then, thec de Ag/ A, ] A consists of 216 cosets modulo-
As. Each coset consists of only onie codeword in Ag. The overall encoder for the
2-level CCM systern is shown in Figure 19.19. The 2-level concatenated modulation
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Input (255,223) AylA,
encoder 8-bit byte encoder
[nput (255,239) AolAA,
:> RS Coset-code >
encoder 8-bit byte encoder Output

FIGURE 19.19: An encoder for a 2-level concatenated coded modulation system.

code C; has length 2040, dimension 3696, and MSE distance d2[C] = 132. The
spectral efficiency is

- 3696 .
n[Cl = 2080 1.818 bits/symbol.
Ap has a 4-state 8-section trellis, as shown in Figure 19.6. A; also has a 4-state
8-section trellis but without paralle] branches between two adjacent states (see
Problem 19.3). Soft-decision decodings of inner codes are relatively simple. The
error performance of this 2-level CCM system is shown in Figure 19.20. It achieves
a 5.3-dB real coding gain over uncoded QPSK at a BER of 107°. This 2-level
CCM system has higher spectral efficiency and better error performance than the
single-level CCM system constructed in Example 19.6.

In general, a g-level CCM system can achieve higher spectral efficiency and
better error performance than a single-level CCM system.

19.5 PRODUCT CODED MODULATION

Coded modulation also can be combined with the product coding technique to form
product coded modulation [22] systems to achieve large coding gains with high
spectral efficiencies.

Let S be a signal space with 2/ signal points. Each signal point s € S is labeled
with a binary string of [ bits, a'?a" ... 4~ through a binary partition chain. Let
f(-) be the bits-to-signal mapping defined by the binary partition of §, for which
f(a(o)am a9y =

For0 <i <[, let P, = C;1 x C;2 be a two-dimensional product code, where

1. C;1isthe row code andis an (N, k; 1, d; 1) linear block code.
2. C; s the column code and is an (#, k; 2, d; 2) linear block code.

Let AQ AD . AU=D be [ two-dimensional code arrays in the product codes
Py, P1...., Py, respectively. For0 < g <[,0<i <n,and0 < j < N, let a,.(flf) be
the code bit at the ith row and jth column of the gth code array AY. We form the
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FIGURE 19.20: Bit-eivor performonce of the iwo-level CCM system given in Exam-
ple 19.7.

following n x N signal array over 5t

2

f(A(O) * A(l) ek A(/—l))

[f(af_();a;‘l; amO)

“Hig o<i<n, 0<j<N -~

A
(19.26)

. ‘ : . A
Fach row of A, is a codeword in the I-level BRCM code ®g = fiCo 1 T * ... %

Cj_11] over S, and each column of A, is a codeword in the /-level BCM code

A, , ) . . .
@y = f{CooxCrox...%Ci_1 2] over S. Therefore, the following collection of signal
arrays

. A

@, = flPy*x P ... % P_
i f[ 0 | 1 i 1] (19'37)

= (AP % AD s ATDY AW e P with0 < g < 1)

is the product of @y and ®;, which are called the row and column component
codes of ©,. @, is an /-level produci BCM code with length Nn and dimension
kog x koo + kg x kg4 -+ k-1 x k12 The spectral efficiency of @, is

. Yok < ki
n[®,] = = ————= bits/symbol
Nn
and the MSE distance of @, is
1—1

20 T
dpl@pl = ) dix xdiax A,za
i=0
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where AI?“ 1s the intraset distance of the ith level of the binary partition of the signal
space S.

A signal array 4 in @, consists of / layers of binary code arrays. Each layer
coniributes a labeling bit in the bits-to-signal mapping. Multistage decoding of ¢,
can be carried out layer by layer. Decoding a layer consists of two steps. At the
first step, the columns (or rows) are decoded with soft-decision multistage decoding
based on the column (or row) code @1 (or ®g). After column (or row) decoding, the
rows (or columns) are decoded algebraically based on the binary row code C; 1 {or
the binary column code C;»). At the end of row (or column) decoding, a decoded
array is obtained. This decoded array is then passed down for decoding the next
layer. This process continues until the last layer i1s decoded. A layer is decoded with
a combination of soft- and hard-decision decoding to decrease decoding complexity.
Other decoding arrangements are possible. For example, columns and rows of a layer
can be decoded separately based on column code ®; and row code ®g, respectively,
using multistage soft-decision decoding. The two decodings are compared, and
the mismatches are declared erasures. Erasure decoding [23] is then performed to
correct the erasures. This completes the layer decoding. Decoding this way improves
the error performance but also increases decoding complexity.

EXAMPLE 19.8

This example demonstrates the construction of a 3-level 8-PSK product code.
The three binary row codes are Cg 1 = (1023, 648), C; ) = (1023,893), and ¢y 1 =
(1023, 1003) BCH codes with minimumn designed distances 83,27, and 5, respectively.
The three binary column codes are as follows: (1) Cy, is the (16, 5) RM code of
minimum distance 8; (2) C;» is the (16, 15) even-parity-check code; and (3) Cy»
is the (16, 16) universal code. The resultant 3-level 8-PSK product code &, has
a spectral efficiency of 1.9968 bits/symbol. In multistage decoding. the column
code &1 = f[(16,5) * (16, 15) * (16, 16)] is decoded with multistage soft-decision
decoding. The row code of each layer is decoded algebraically. The (16, 5) RM
code has an 8-state 4-section trellis, and the (16, 15) SPC code has a 2-state trellis.
Therefore, trellis-based 3-stage decoding of the column code ®; is relatively simple.
The product modulation code &, achieves a 5-dB real coding gain over the uncoded
QPSK system at BER = 107% and a 6.1-dB coding gain at BER = 107 [22].

19.6 MULTILEVEL CODED MODULATION FOR UNEQUAL ERROR PROTECTION

In certain communication systems an information sequence may consist of several
parts that have different degrees of significance and hence require different levels of
protection against noise. Codes that are designed to provide different levels of data
protection are known as unequal error protection {UEP) codes. UEP codes were first
studied by Masnick and Wolf [24] and later by many others. Multilevel BCM codes
with multistage decoding are quite suitable for unequal error protection. When
such a code is used, different code levels provide different degrees of protection for
different parts of a transmitted information sequence.

Let m = (mg, my, ..., my_;) be a message of k bits, where for 0 <i < [, my
is the ith part of the message and consists of k; information bits. Suppose mg is
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my_1 15 the least significant part
nst errors than the other parts, and
[.let C; be an (u, k;. d;) binary
nd minirmum Hamming disiance
% Cj_1] over a signal space 5.
Iﬂl’\[ 1) 15 o bs encoded into a signal sequence
ith pas encoded into a codewm‘d v
! eTICe YV % V1 ok ...k Vyoy 1S mapped into a signal
w‘:'[.1} in the [-level BCM code ﬂ ox Cj % .. % ‘C[,ﬂ. This
£552LE T, Fm simplicity, we use f(m) to

tm L T A
n L. Then,
3eqi

signal seqy

lenc ;m; ) be another message such that
tor O J < i. It follows from the prooi of
Theocre
dE(fam), f(m) = di A

In fact

di 1F =m; for j < i), (19.38)
This simnply says that if two messages are identical ini the first7 — 1 parts but different
in the /ih part, then then‘ co_ﬂfws“ onding codewoids are s&pamted by a squared
Buclidean distance of a 5t d Z\— This implies that the ith part of 2 message is

protecied by‘ the SE
unequal e17or protection |
disiances,

!,-A.Z. herefore, for an /-level BCM code io provide
for various paris of a message, the following condition on

.{f?oﬁ% > dj A\% > .= a’/_lA]Z_l. (19.39)

™

So far, the constiuction of TCM and BCM codes presented here and in
previous chapters is based on the conventional Ungerboeck symmetrical binary
partition of a conventional symmetrical signal space S, either an MPSK or a QAM
signa lcgmwihuon This conventional signal set partitioning for maximizing intraset
distance at each level is good for constructing modulation codes for one-level error
pro ecmon however, multilevel BCM codes constructed based on this conventional
signal set partitioning and the distance condition of (19.39) do not perform well for
unequal error protection with multistage decoding, especially for small-to-medium
SNRs, owing to the large increase in effective error coefficients in the first several
decoding siages. Let A f,?)) denote the number of nearest neighboers of a codeword
in Cp. With multistage decoding, the error coefficient at the first decoding stage
becomes 24 . (0) rather than A< . For large dqg, 2% . A(O) becomes very large. For
small-to- medwm \\IR\ the ei 107 performance is mdrﬂy determined by the error
coefficient. This large increase in error coefficient degrades the error performance
at the first several sta g of decoding sc much that it desiroys the unequal error
protection capability for which the code is designed. The most significani part,
my., of a message is no longer well protected. The poor performance of the firsi
stage of decoding propagates o the subsequent stages and results in poor overall
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FIGURE 19.21: Bit-error performances of various levels of a 3-level 8-PSK BCM code
for unequal error protection with Ungerboeck’s signal partition.

performance in terms of unequal error protection. Figure 19.21 shows the error
performances at various levels of a 3-level 8-PSK BCM code with (64, 18, 22), (64,
57, 4), and (64, 63, 2) extended BCH codes as binary component codes. The MSE
distances at three levels are dj - A% =22 %« 0.586 = 12.892, d; - A% =4 x2=28, and
dy - A% = 2 x 4 = §, respectively. The spectral efficiency of the code is n[C] = 2.156
bits/symbol. From Figure 19.21 we see that for large SNR this code does provide
two levels of error protection; however, for small-to-medium SNRs, the increase in
error coefficient by a factor of 222 at the first decoding stage totally destroys the
unequal error protection capability, and all three levels perform poorly; in fact, the
first level, with larger MSE distance, performs even worse than the other two levels,
For BERs greater than 107, there is no unequal error protection.

Several approaches have been proposed [25-28] for designing good multilevel
BCM codes to provide distinct unequal error protection for various levels. These
approaches use either nonconventional signal set partition or nonconventional
signal constellations or both. In this section we present a nonconventional signal set
partition of conventional signal constellations for designing multilevel BCM codes
for unequal error protection. The approach is to reduce the error coefficient and
to prevent or minimize error propagation from the first stage of decoding. Special
examples with different signal spaces are used to explain the signal set partitioning,
code construction, and multistage decoding.

Consider the conventional 8-PSK signal space. We partition this signal space
and label 1ts signal points as shown in Figure 19.22. At the first level, the signal set
is partitioned into two subsets of equal size, denoted by Q(0) and Q(1); the four
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FIGURE 19.22: Block pastition of the 8-PSK constellation.

signal points of Q(0) lie in the left-half plane with first labeling bit ap = 0, and the

four signal points of Q(1) lie in the right-half plane with first labeling bit g = 1. At
the second level of partition, Q(0) is partitioned into two subsets, denoted by @ (00)
and Q(01); the two signal points in 0(00) lie in the upper quadrant of the left-half
plane with second labeling bit gy = 0, and the two signal points in ©(01) lie in the
fower quadrant of the left-half plane with second labeling bit 4, = 1. (1) is also
partitioned into two subsets of equal size, denoted by Q(10) and Q(11); the two
signal points of Q(10) lie in the upper quadrant of the right-half plane with second
labeling bit a; = 0, and the two signal points of Q(11) lie in the lower quadrani
of the right-half plane with second labeling bit ¢; = 1. Finally, each subset at the
second level is partitioned into two subsets, cach with only one signal point with the
ihird labeling bit a; = 0 or 1. Lei (x, y) denote the coordinaies of an 8-PSK signal
point in the real plane R?. The labeling has the following properties:

[y

. x > O for all the signal points with first labeling bit ag = 1, and x < §for all the
signal points with first labeling bit ag = 0.

)

. v > 0 for all the signal points with the second labeling bit ¢; =0, and y < 0
for all the signal points with second labeling bit a; = 1.

28]

. The third labeling bit g, specifies the point in the quadrant given by apa;.

Therefore, the first and second labeling bits of a signal point correspond to its x- and
y-coordinates, respectively. With this labeling structure, the first and second stages of
decoding can be carried out independently and simultaneously in parallel, as shown
in Figure 19.23. This removes the ervor propagation from the first stage of decoding
to the second stage and also reduces decoding delay; however, the foregoing partition
does not have the mouotonically increasing muasw distance property; in fact, the
intraset distances at all three levels are equal: A = AZ = A3 = 0.586. For small-
to-medium SNR, this loss of intraset distances of Lhe second and third level is more
than compensated for by the drastic reduction in error coefficients, as will be shown
later.
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FIGURE 19.23: Decoder for 3-level coded 8-PSK modulation.

Let v = ((rx.0,7y.0). (rx1. 70,15 - (Fe i1, Ty.n—1)) be the two-dimensional
received vector at the output of the matched filter, where (r,;.r,;) denotes

. . . . A
the coordinates of the jth received signal. Let v, = (ry 0,741, ..., c.n—1) and

Ty 2 (ry,0,Ty.1+ - .- Iy n—1) denote the projections of r on the x- and y-axes, respec-
tively, called the in-phase and quadrature components of r. Then, the decoders
at the first and second stages simply operate on r, and r,, independently. Let
vo = (v0.0,¥0.1» ---» V0n—1) and v; = (v10,v11....,Y1,-1) be the decoded code-
words at the first and second stages. They are then passed to the third decoding stage
for decoding the third component code C,. The third stage of decoding is carried
out as follows, First, we form a one-dimensional projection of r = (rx, r,),

/ ;o ’
r = (rg, ST S B
where
—(I’,\-‘/‘ - I’yj) for vo,j =V = 0,
;o ~(l‘,\-_,' + I‘_\,j) for v, j = 0 and vy, o= 1,

I (ryj —ry;) for wy;=wv; =1
(ryj +ry) for wvg;=1landv; =0.

(19.40)

Analysis shows that for i = 0 and 1, the bit-error probability of the /th stage of
decoding is upper bounded as follows [27]:

n

Pp< Y fi‘()z—w Z (w) o (). (19.41)

w==d; j=0
where

1. AY is the number of codewords in C; with weight w,
2,

1
2 s o 2 o e
dp(J) = —Us1 T (= 7)62)°. (19.42)
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3.
&1 = sin(/8) and % = cos(w/8), (19.43)
A 1 ;.f « _
O(x) = N g (19.44)

- NAO [/ J/ \/)}T/:
(n is the speciral efficiency of the 3-level 8-PSK BCM code).

The bit-error probability of the t

- wAl
Pp< ) —= Glo “( J wE; ) (19.45)

hird-stage decoding is upper bounded by

w=cd>

if ithe Ungerboeck partitioning is used for labeling signal points, the bit-error
probability of first-stage decoding is upper bounded by

PO = Zalro] /cof—‘ ) (19.46)

Lu‘—-([( )

The bound of (19.41) shows that the nonconveniional swnai set partition
shown in Figure 19.22 resulis in an error coeificient of 2 """A at the first-stage
decoding; howeverﬂ the conventional Ungerboeck signal set amaion results in an
error coefficient of 7”0A(0’ at the firsi-stage decoding, as shown in (19.46). Thus,
there is a facior of 2,2‘]“ reduction in error coefficient. This reduction in error
coefficient resulis in a significant codmo gain tor small-ic-medivm SNR that more
than compensates for the intraset ddSlaﬂCu loss.

Consider the 3-level 8-PSK BCM codP /{Fo C1 x C] in which the binary
component codes are (64, 18, 22), (64, 45, 8). and (64, 63, 2) extended BCH
codes. This BCM code has apemaﬂ efficicnc / 3;[ 7] of alimost 2 bus/svlnbol and SE
distances fIOA% = 12.892, z’/lA% = 4.688, and dh A5 = 1.172 at three levels. Bit-error
performances at three levels and their couespondm@ upper bounds of this code
are given in IFigure 19.24, which shows that the code possesses three distinct levels
of error protection, even for very low SNR. At BER = 107>, an 8.8-dB coding
gain over the uncoded OQPSK is attained at the first decoding level, whereas the
corresponding asymptotic coding gain is only 101og,(12.892/2) = 8.02 dB.

The foregoing nonconventional signal set partitioning is calied block partition-
ing. This partitioning technique can be applied to partition a QAM signal space and
label its signal points. Block partitions of the 16-QAM and 64-QAM are shown in
Figures 19.25 and 19.26, respectively. Let (x. y) be the coordinates of a signal point.
Again, the signal labeling has the following polarity property:

1. x > O for all the signal points with first labeling bitag = 1, and x < 0 for all the
signal points with first labeling bit ¢g = C.
2. vy > 0ot all the signal points with second labeling bit ¢y = 0, and y < 0 for alt
the signal points with second labeling bit | = 1.
if a 6-level 64-OAM BCM code is constructed based on the preceding block
partitioning and signal labeling, the first and second stages of decoding can be
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FIGURE 19.26: Block partition of a 64-QAM.

carried out independently. For i = 0 and 1, the bit-error probabilities of the first and
second stages of decoding are the same and are upper bounded by

w (r)—i] (U*i[ 71'2

I R . . .
Oy T [@N (- {o—i—i2) N
Py< ;Agm IS (i )( i >\< i )Q (\ d})(zl,zzvu))ﬂ
w=d; i1=01i>=0 i3=0 1 2 3

(19.47)

where di(iy, iz, i3) = L{i1&) + &r + i3k + (w — iy — 2 — i3)&), and & = 1//42,
& = 3&1. & = 58, and &4 = T7§y.
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If we assume correct decoding at the first and second decoding stages. the
bit-error probabilities of the third and fourih decoding stages are upper bounded as
follows: Fori = 2 and 3,

Py < Z AW‘“Z() dZ(M, (19.48)

w=d,

where
d%(j) = [1g1+(w—1)§2] .

If we assume that all the previous decodmgs are correct, the bit-error probabilities
of the fifth and sixth decoding stages are upper bounded by

Py < Z A<' (Jw&d). fori=4ands5. (19.49)

w=d;

Figure 19.27 shows the bit-error performance of a 6-level 64-QAM BCM code
whose binary component codes are (64, 24, 16), (64, 24, 16), (64, 45, 8),(64, 51, 6),
(64,57, 4) and (64, 57, 4) extended BCH codes. This 6-level 64-QAM code provides
four levels of error protection. The first and second levels have the same degree of
error protection. These two levels consist of 48 information bits. The fifth and sixth
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FIGURE 19.27: Bit-error performance of various levels of a 6-level 64-QAM BCM
code for unequal error protection with block signal set partition.
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levels also have the same degree of error protection. The speciral efficiency of the
code is 4013125 bits/symbol. At a BER of 107>, the first two levels achieve a 12-dB
coding gain over the uncoded 16-QAM.
The disadvantage of block partitioning of a signal sei is that the intraset
stance at each partition level is the same. As a result, the error performance
at the lower decoding levels may be poor. For example, Figure 19.24 shows that
the third-level decoding vesulis in an error performance worse than thai of the
uncoded QPSK. To overcome this problem, hybrid partitioning of a signal set
n be used. Block partitioning is used at the first several partitio Eeve\is, say
’ﬂne fivst and second levels, to provide independent decodings and to reduce error

[

i
+
i

coefficients for minimizing the error propagaiion effect. Then, the conventional
Ungerboeck partitioning is used for the remaining pariition levels to increase
intraset distances fov improving the error performance of the lower decoding
levels.
Figure 19.28 depicts a hybrid partition of the 8-PSK signal space. The firsi-level
pai‘nuon 1s block partition. The other two levels are que]‘boeck”s partition. This
hyb,;id partition results in intraset distances A- = A— = {(.586 and A7 = 2. Consider
the 3-level 8-PSIK BCM code given earlier in tms section constructed by using the
biock signal set partitioning as shown in Figure 19.22. Suppose the same three binary
component codes are used to constiuct a 3-level 8-PSK BCM code based on the
hybrid partition shown in Figure 19.28. The MSE distances at three code levels are
then doAZ = 12.892, dy A? = 4.688, and dy A3 = 4. The MSE distance of the third
code level is increased from 1.172 to 4. The bit-error performances of this code at
three levels are shown in Figure 19.29. Compared with Figure 19.24, we see that the
hybrid partition results in 4.4-dB coding gain at the third level at a2 BER of 107°
but a loss of 2.3-dB coding gain ai the second level. This is a good trade-off if the
second part of a message is not much more significant than the third part of the
message.
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FIGURE 19.28: Hybrid partition of the 8-PSK constellation.



1100

Chapter 19 Block Coded Modulation
e I I -
FY STeoescs [ QPFSK = ]
107} - \ m ‘% ~Level 3 SI(64,18) == _]
g S s Y SI(64, 45) o= 3
w02k " 5,/ SI(64,63) = ]
1073 -
2 g E
3 07 E
...Ié =
=107 =
S g ]
5 100k .
&
07 E
10 E
F ]
107 = 3
10*1() | f
-5 15 20

E,/N, (dB)

FIGURE 19.29: Bit-error performance of various levels of a 3-level 8-PSK BCM code
for unequal error protection with hybrid signal set partition.

PROBLEMS
19.1

19.2

19.3

19.4

19.5

19.6

Prove that the minimum squared Euclidean distance of the 3-level 8-PSK code

given in Example 19.1 is equal to 4.

Construct a 3-level 8-PSK code with the following three binary component codes:

(1) Cq is the (16, 1, 16) repetition code; (2) C; is the (16, 11, 4) second-order RM

code; and (3) Cs is the (16, 15, 2) single parity code.

2. Determine the spectral efficiency of the code.

b. Determine the minimum squared Euclidean, symbol, and product distances of
the code.

¢. Analyze the trellis complexity of the code.

Decode the 3-level 8-PSK code constructed in Problem 19.2 with a single-stage

Viterbi decoding, and compute its error performance for an AWGN channel.

Replace the first component code €y in Problem 19.2 with the first-order (16, 5, 8)

RM code. Construct a new 3-level 8-PSK code. Determine its spectral efficiency,

minimum squared Euclidean, symbol, and product distances. Analyze its trellis

complexity.

Decode the code constructed in Problem 19.4 with a three-stage soft-decision

decoding. Each component code is decoded with Viterbi decoding based on its

trellis. Compute its error performance for an AWGN channel.

Design a single-level concatenated coded modulation system with the NASA

standard (255, 223) RS code over GF(2%) as the outer code and a 3-level 8-PSK

code of length 16 as the inner code. The inner code is constructed using the

following binary codes as the component codes: (1) € is the {16, 1, 16) repetition

code; (2) Cy is the (16, 15, 2) single-parity-check code; and (3) C; is the (16, 16, 1)
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