CHAPTER 18
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All the coding schemes discussed so far have been designed for use with binary-input
channels; that is, the encoded bits are represented by one-dimensional BPSK signals
according to the mapping 0 — —E; and | — +E,,0or0 - —land 1 — +1 for
unit energy signals. {We note here that even nonbinary codes, such as RS codes, are
usually transmitted using binary signaling by representing each symbol over GF(2™)
as a binary m-tuple.) In this case the spectral efficiency n of the coded system is
equal to the code rate R; thatis, n = R < 1 bit/dimension or 1 bit/transmitted BPSK
symbol, and at most one bit of information is transmitted each time a BPSK symbol
is sent over the channel. Thus, since the bandwidth required to transmit a symbol
without distortion is inversely proportional to the transmission rate, combining
coding with binary modulation always requires bandwidth expansion by a factor of
1/R. In other words, compared with uncoded modulation, the coding gains resulting
from binary modulation are achieved at the expense of requiring a larger channel
bandwidth.

For the first 25 or so years after the publication of Shannon’s paper, research
in coding theory concentrated almost exclusively on designing good codes and
efficient decoding algorithms for binary-input channels. In fact, it was believed
in the early 1970s that coding gain could be achieved only through bandwidth
expansion and that coding could serve no useful purpose at spectial efficiencies > 1
bit/dimension. Thus, in communication applications where bandwidth was limited
and large modulation alphabets were needed to achieve high speciral efficiencies,
such as data transmission over the dial-up telephone network, coding was not
thought to be a viable solution. Indeed, the modulation system design emphasis was
almost exclusively on constructing large signal sets in two-dimensional Euclidean
space that had the highest possible minimum Euclidean distance between signal
points, given certain constraints on average and/or peak signal energy.

In the next two chapters we introduce a combined coding and modulation
technique, called coded modulation. that achieves significant coding gain without
bandwidth expansion. Indeed, coding gain without bandwidth expansion can be
achieved independently of the operating speciral efficiency of the modulation
system. Thus. coded modulation is referred to as a bandwidth-efficient signaling
scheme. In this chapter we discuss twrellis-coded modulation (TCM) [1], a form of
coded modulation based on convolutional codes, and in the next chapter we discuss
block-coded modulation (BCM), based on block codes. Basically, TCM combines
ordinary raie K = k/{(k + 1) bwary convolutional codes with an M-ary signai
constellation (M = 251 > 2) in such a way that coding gain is achieved without
increasing the rate at which symbols are transmitted, that is, without increasing
the required bandwidth, compared with uncoded modulation. For example, a rate
R = 2/3 convolutional code can be combined with 8-PSK modulation by mapping
the three encoder output bits in each T-second time interval into one 8-PSK symbol.
This TCM scheme can then be compared with uncoded QPSK modulation, since

952



introduction to Tretlis-

o) expand the siz
. Tms coded modulation

rinimr free Hfﬂ':mn 1g dist
ourapu:,o are mapped to signal poinis
itly of the code selection. coding g’m is not
! el signal mapping are designed joinily to i Nize
lidean disiance oetween signal sequences, coding gain ﬂ be
i idth or increasing the average energy of the
lished using a technique known as mapping by

M was introduced in a paper by Ungerboeck
)76. and the esseniial elements of the idea were later
} ners by Ungerboeck [1, 3. 4]. Other early contributions ic
&\mme nt of TCM include those by Massey [5], Anderson and Taylos
i Longstall, and Qureshi [7], Calderbank 1
nd Fo n"ﬁ/[ 0, 1“
vk has also been devoted to the design of TCM 5
mm“wt As in the case of BPSK mmuﬂauo n, chai
o ensuie that received symbols are affected ind
1 binary modulation, however, new
d for a TCM sysiem lo achieve the besz

>se iszues are developed in a sevies of papers by UW‘% ﬂ
in [15].

be included in bandwidih-efficient versions of con-

6, 17]) and turbo coding (see, e.g., 18, 19, 20]). For
ing io investigate the various aspects of TCM in more detail than is
yw: med here. [21] contains a comprehensive view of the subject up to 1990. Also,
[22] presenis a good overview of the state of the art in 1998,

g T
(see, nv.g.» li,
J_

T AN T oY
TTRORE T TR

D MODULATION

TCM we assume that the transmitied symbols are drawn from
consiellation in either one- or two-dimensional Euclidean space.
Several i gnal constellations appear in Figure 18.1. Some one-dimensional, or

1p/11m’ ﬂoa’z'rimmw (AM), signal constellations are shown in Figure 18. 1(11\ The
Omplm of these, 2-AM. is equivalent to BPSK. Figure 18.1(b) illustrates several

In our treatment of
an M-ary wncﬂ

'Thwuohom this chapter we denote spectral efficiency in units of bits/symbol, where one signal
(symbol) is iransmitied in each T-second time interval. With this notation, the required bandwidth is
proportional to 1/ 7. and higher spectral efficiencies are thus more bandwidth efficient.
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4-QAM

two-dimensional s
modulation and phase modulanon (AM/PM) Rectanoulal constellatlons w1th M =
(21’)2 = 47 signal points, p = 1,2, - - -, are also referred to as quadrature amplitude
modulation (QAM) signal sets, since they can be generated by separately applying
amplitude modulation to two quadrature carriers (a sine wave and a cosine wave)
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using a discrete set of 27 possible amplitudes and then combining the two modulated
signals. All practical one-dimensional AM and two-dimensional AM/PM signal
constellations can be viewed as SUbSGlS ol a lattice, an infinite array of regularly
spaced points translated to its minimum average energy configuraiion. For example,
4-AM is a (iranslate r‘) suhset of the one-dimensional integer lattice Z', whose points
consist of all integers in one dimension, and 16-QAM is a (translated) subset of the
two-dimensional mneger }af{ﬁce 7, whose points consist of all pairs of integers in

two dimensions. Fina Mys some two-dimensional M-ary phase-shift-keying (MPSK)

signal sets are shown in Figure 18.1(c). MPSK signals ail have the same "amrhwcw
and thus thev are a form of phase modulation. The simplest of these, 4-FSK (also

denoted \PS;KA)s is equivalent to 4-QAM.

Because TUM schemes use signal set expansion rather than additional transmii-
ted symbols to accommodate the redundant bits introduced by coding, performance
"“sor\ must be made with uncoded modulation sysiems that use smaller signal
have the same specirai eificiency, that is, the same number of informa-
tion b its per transmitied symbol. Thus, care must be exercised to ensure that the

pli
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different schemes being compared have the same average ener y per transmitied
symbel. As an illustration, we can compute the ’wemre mgnal ergy of the three
one-dimensional AM signal sets shown in Figure 18.1{a}, where we have assumed
that the minimum Euclidean distance between signal po:imo is dipiy, = 2, as follows:
r 2
(+1) )
E, = Zl‘—ff] =1 (2-AM) (18.1a}
2
2 2
(+1) + (+3)* .
E, = 2(—1—4 =5 (4-AM) (18.1b)
/,..
L2 2 o2 )
(D2 + 3+ D+ D ) )
E, = 2—{ = =21. (8-AM) {18.1¢c)

Thus, in comparing a TCM scheme with one information bit and one redundant bit
that uses 4-AM modulation with an uncoded scheme using 2-AM modulaiion, we
must reduce the energy of each signal point in the coded system by a factor of 5, or
almost 7 dB, to maintain the same average energy per transmitted symbol; that is,
we must scale the amplitude of each signal by the factor 1/4/5. If a TCM scheme with
one information bit and two redundant bits using 8-AM is compared with uncoded
2-AM, the energy in the coded system must be reduced by a factor of 21, or more than
13 dB. This reduced signal energy results in a reduced minimum distance between
signal points that must be overcome by coding for TCM to achieve a positive coding
gain compared with an uncoded system with the same average energy. To minimize
the reduction in signal energy of coded sysiems, practical TCM schemes employ
codes with just one redundant bit, thatis, rate R = k/(k+1) codes. Thus, TCM system
design involves the use of high-rate binary convolutionai codes. In Table 18.1 we list
the average energies of cach signal set shown in Figure 18.1, where the minimum
distance between signal points dy;, = 2, and each consiellation is in its minimum
average energy configuration. The energy requirements of one signal set compared
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TABLE 18.1: Average energies for the signal sets

in Fioure 181
m rigure 13,14

{2) One-dimensional signal sets
Signal set | £ (dB)
2-AM 1 0.0
4-AM 5 7.0
8-AM 21 13.2
(b) Two-dimensional rectangular signal sets
Signal set | Es (dB)
4-QAM 2 3.0
8-CROSS | 55 7.4
16-QAM 10 10.0
32-CROSS | 20 13.0
64-QAM 42 16.2
(¢) PSK signal sets
Signal set | Ej (dB)
4-PSK 2 3.0
8-PSK 6.8 83
16-PSK 26.3 14.2

with another can be determined by simply taking the difference (in decibels) of the
values listed in Table 18.1. For example, if uncoded 8-PSK is compared with coded
16-PSK with one redundant bit, we say that the constellation expansion factor y, of
the coded system relative to the uncoded system is y,. = 14.2dB — 8.3 dB = 5.9 dB.

Now, consider the transmission of a signal sequence (coded or uncoded)

from an M-ary signal set S = {so.s1. - ,sy—1} over an AWGN channel. Let
y(D) =y + D+ y2D? + ... be the transmitted sequence, where y; € S for all /,
andletr(D) = rg+r D+mnD*+. .. = y(D) +m(D) be the received sequence, where

n(D) = ng+ny D +nyD? + - -+ is the noise sequence, #; 1s an independent Gaussian
noise sample with zero mean and variance Ny/2 per dimension for all [, and
and n; belong to either one- or two-dimensional Euclidean space. depending on
whether S is one- or two-dimensional. We can also represent the transmitted, noise,
and received sequences by the vectors y = (vg, vi.v2,---), o = (ng, 0y, n2,---),
and r = (rg, 1, r2. - - - ), and for two-dimensional signal sets, we denote transmitted,
noise, and received signal points by v = (vir. yj1), mp = (njp, njp), and rp = (L rjp),
respectively. Throughout the chapter we assume that r is unquantized; that is, soft
demodulator outputs are available at the receiver.

To compute the symbol-error probability P; of an uncoded system, we can
consider the transmission of only a single symbol. For example, for the QPSK signal
set shown in Figure 18.1(c), if each signal point has energy E,, that is, its distance
from the origin is E,, we can approximate its symbol error probability on an
AWGN channel with one-sided noise power spectral density Ny with the familiar
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union gpper bound as folio:

A P
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whese 4. = 2E; 16 the minimun squared Zuclidean (MSE) distance between signal
p@m aﬂd A,,,” = 2 18 the number of nearest neighbors in the QFSK consteliation.
o corapuie the exact value for 2, in this case, but the approzumate

,) adows for a direct comparison with the performance
ds o [Podpd system )

For coded transimission, we assume that v is decoded using maximum-likelihcod
soffi—deusmn Viterbi decocmw as presented in ﬂnameﬂ‘ 12. (For two-dimensional
signal constellations, the Viterbi algorithm metric is simply the distance i the two-
dimensional Euclidean space.) In this case, given fhe transmission of a particular
coded sequence v, the general form of 22 maoz upper bound on the eveni-error

1)#‘01’3(!3)1!17}/ F.{y) becomes

(18.3)

WICTe
5 . 2
e (v.¥) = ) de(w.v) = ]
, )
(18.4)

is the gquared Euclidean distance between the coded sequences y and . Mow,
defining d? free 28 the mininum free squared Euclidean (MIFSE) distance bet ween y
and any othex coded se quence j v, and A

can approzimate the bound on P,(3) as

as the number of nearest neighbors, we
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(18.5)
14(]/-,_“, €' /, o /7/\/“
2
The expressions for event-error probability given in (18.2) and (185) are
‘P i 5 \
conditioned on the transmission of a particular sequence y, because, in general, TCM

{coded)



systems are nonlinear: however, most known schemes have many of the symmetry
properties of linear codes. Typically, o!ﬁ(,(, is independent of the transmitted seguence.
but Ay, can vary depending on the transmitted sequence. The error analysis of
TCM schemes 18 investigated more thoroughly in Section 18.3.

Because the exponential behavior of (18.2) and (18.5) depends on the MSE
distances of the uncoded and coded systems, respectively, the asymptotic coding
gain y of coded TCM relative to uncoded modulation can be formulated as follows:

2
d/'ree/wded / E"’”/C({

(18.6)

5 .
dnlm/uncmlvd/E””f(’d“d

where Eqodeq and Eypeod04 are the average energies of the coded and uncoded signail
sets, respectively. We can rewrite (18.6) as

2
Evncoded d_,ﬁ'ce/mdu] 1

Y = =Y. Y- (187)

2 ( ¢

Ecodea d-

minfuicoded

where y, 1s the constellation expansion facior, and y, is the distance gain factor.

We proceed by letting d,i, and Ay, represent the minimum distance between
signal points in the uncoded and coded consteliations, respectively, and by assuming
that the minimum distance between points in the coded {expanded) constellation is
reduced, so that the average energies of the coded and uncoded signal sets are equal;
that is, Apn < dpin. and y. = 1. Then, the TCM system must have a free disiance
between coded sequences that is greater than the minimum distance between signal
points in the uncoded system to achieve coding gain. In other words, even though
Apin < din» @ TCM system must achieve dfyee > dipin.

In the design of cedes for binary modulation, the MFSE distance between two
signal sequences y and vy’ is given by (see Problem 18.1)

d}z).(,(, =4E.dy free. (binary modulation) (18.8)

where dy 100 15 the minimum free Hamming distance of the convolutional code.
Thus, for binary modulation. the best sysiem design is achieved by choosing the
code that maximizes dy_sr... We will shortly see that, in general, this is not true for
TCM system design.

In the TCM case, consider a rate R = k/(k + 1) convolutional code with
minimum {ree Hamming distance dy ;0. in which we denote the & + 1 encoder
ouiput bits at any tme unit / by the vecior v; = (v,(/‘}. v/(/"*l'. cee u,m). {Throughout
the remainder of this chapter, when it is not necessary to specifically denote the time
unit / of a vector. the subscript / will be deleted; that is, vectors such as v; will be
denocied simply by v.) Then, assume that the 25! binary vectors v are mapped into
clements s; of an M-ary signal set § using a one-to-one mapping function f(v) — s,
where M = 2f+1,

We see from (18.3) that the performance of a TCM system depends on the
squared Euclidean (SE) distances between signal sequences. Thus, the set of SE
distances between all possible pairs of signal points must be determined. Denoting
the binary labels of two signal points by the vectors v and v/, we define the error



i, It follows that wH(e) = dHf’\
vector equals the Hamming distance !
. For each er rov vector e, there are fu’
= v @ e, and thus M possible SE dist
is set of distances, we iniro
Y, defined as follows:

=ty

/‘»27; _ ’l“r@c)'l/
8 i~

[T /f'/uz’ &1

PYP- AR AL S (18.9a}

nal constellation S and the ma
in the MESE dlSLcll(“f“ d?

free
minimun Euclidean weis
A2 () min AZ(e)
< AN {0 ® o yAS 10 Oia
A= =X {18.9%}
whers
9 A N
L(e) = n[xmv} 3
1 weight {E ‘/\/\ of e

i 1]

P ~ £ .
zil’zg‘/ giciion Ay (X

used to compute the average Angf
i€ Jismi ce d;‘;w of a TCM system, respec
wigue s as io ‘l wls W(v abel each bran h of a conventional
for a tate R = k/ (k + l) ear binary convolutional code Wﬁh a vector v

ing the 0t en lei &,r_u@m mfs Ahprmw cl/

that thig error li’”[fm ig i ucnmcd e fhﬂ )
or trellis by replacing its binary labels with ¢
) of each bmnch we can compuie the weig
ninimuin free Hamming distance dy rree of
o an errov state di lagram and using the s’undaw
UNRCHion apo:fo ﬂl in Ch r 11, If cevtain L/

ral const H"md 05 an \1 > mappi g ’u ncijon f{-) ares cil
TCM systems, even though they are m Zenera 1 nonlineas

T

labels on the error trellis of th
s from (18.9), depending on wh :
EWEs are in general polynomials in X, indic

= ‘*//W or ME R
. The A

can correspond (¢ a given ervor vector e, where
f)y repiesent only the minimum distance corresponding 1o a given
a3 in the case of binary convolutional codes. To explain wnen the
method can be applied to TCM systems. we now introduce the

1 signal set § into two subsets, ¢ (0) and Q (1), such
mi points iabeled by a vector v with v!% = 0, and
$ COrTe ooudmc Io lcgb"“ s with U(O) =] N xt, we let

5
t the subses

XY and 8;_ o (X ). are deﬁnec in an anaiogous way.



260 Chapter 18 Trellis-Coded Modulation

DErFintTION 18.1 A one-to-one mapping function f(v) — s from a rate
R = k/(k + 1) convolutional encoder output vector v = (v, v ... O
to a signal point s; belonging to a 2¢+1-ary signal set S is uniform if and only if
A%,O(X) = Ail(X) for all error vectors e.

EXAMPLE 18.1 Uniform Mapping

Consider the three 8-PSK signal sets shown in Figure 18.2 along with their associated
labels. Using the signal point labeled by v = (000) as a reference and assuming unit
energy signals, we see that there are four distinct Fuclidean distances between
8-PSK signal points:

@ = [1/&]2 n [1 . (1/&)]2 —1/2+ (3/2 - ﬁ) ~0.586, (18.10a)

PP=12+1=2, (18.10b)
2= [1/\/2]Z + [1 + (m/i)f —1/2+ (3/2 + «/E) —3.414, (18.10¢)
d> =2 =4 (18.10d)

We now examine the eight possible SE distances corresponding to the error
vector e = (001) for the labeling of Figure 182(a). We sec that there are a
total of four code vectors v for which A%(@) = {f"»-f (v e)|? = 2: the
vectors v = (000), (001), (110), and (111), and four code vectors v for which
A%(e) = 3.414, that is, the vectors v = (010), (011). (100), and (101). Thus, the
AEWE for the error vector e = (001) is A2(X) = (1/2)X? + (1/2) x> If we
now partition the 8-PSK signal set into two subsets Q (0) and @ (1), depending
on the value of the bit v in the label vector, we see that for the error vector
e = (001), each subset contains exactly two signal points for which AZ(e) = 2,
and two signal points for which Al(e) = 3.414; that is, AZ (X) = AZ (X) =
(%)X2 + (%)X“H. Repeating this calculation for each possible error vector e gives
us the AEWES listed, along with the corresponding MEWESs, in Table 18.2(a) for
each subset Q(0) and Q (1). Because A%_O(X) = Aél(X) for all e, the mapping
is uniform.

o1 o1 010
100" R 0010 100~ . 010 011~ T*~._001
. a. ‘ \ ' v
01l @——d—H000 1106 ©000  100© ©000
110 111 011~ 111 H1 g7 101
101 101 110
(a) (b) (c)

FIGURE 18.2: Three 8-PSK signal sets with different labelings.



E 18.2: The AEWEs and MEWESs corresponding to the three 8-PS

K signal sets in Figure 18.2.

© Aol A 1 (50 85X | 82,0 | 83X
000 x° %0 %0 *0 X9
001 %Xz + %}AEJH %XZ + %XS.—HJ XZ X—Z X2
010 %XO 586 4 ;XZ %( 0.586;1_ % h2 ;{04586 X0.586 XO.SSG
011 %;{0.586 + %}{4 %XO 586 4 %x{% ;{0.586 3¢0.586 X(),SSG
100 %X}H'-Z- + %X-l %X}.-!H . %X‘l ;{3.—”4 X3‘4M XZ.L!H
101 %;{0,586 + 1 YZ %v‘OSSG 4 %;52 ;{0.586 ;{0,586 ;{04586
110 3X? 4 X34 1302 4 Jx3al 3 x? x? x2
111 %XO.SSG 4 %}{34—11—1 %XO 386 - %XE 4id 0.586 _,: 71 3.4 0.586 XO 586 XO.586
% e AZ (X0 AZ () 2000 | 8200 | 84X)
000 X0 x0 70 X0 x°
001 2 + %X&J.H + 154 32 - %}{3.414 4 % X2 - 1 7}‘,3 414 < [\:(2 X2 XZ
010 ~;{(1586 ZXO 5%6 e %;{3 414 v«_zO,SSG XOA586 XO.SS(J
Qi1 (0586 L X2 ¥4 + v-l> (XO 586 - 2 _l._HX3 41 50586 y0.586 5{0.586
100 X3A414 ;: 72 4 % 54 /\{34414 ;{2 XZ
101 %XQSSG s %X2 1%0.586 _; %Xz . XO.586 ;{0.586 ;{0.586
110 %XZ * %X4 1570,586 + ;;;{344 ; X?).é!-l'—l + Xi) XZ ;{0.586 5{0.586
L 111 }!_XO’S% + %5{2 4 %XSAM 586 & %35211_ %}{341 -+ %XZ + }TXS-MLL XO.586 XO.586 X0A586

{continued overleaf’)
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TABLE 18.2: (continued)

(©)

e A% \(X) A (X0 ALX) 82 o) 8% (X 54 X)
000 x0 x0 x0 x0 x0 x0
001 %XO.SSG + %X?’AM %X0.586 < %X3‘414 %X0.586 4 %XSAM X0.586 XO.586 X0.586
010 x? x? x? X2 x? x?
011 %XO.586 + %X3'414 %XO.586 € %X3‘414 %XO.586 + %XSAM x0.586 x0.586 x0.585
100 x? x? 1xT+ x4 x4 x? x?
101 %X0.586 + %X3'414 }TXO'S% + %X3A414 %X0.586 + %X3A414 x0.586 x0.586 x0.586
110 x? x4 1x?+ x4 x? x4 x2
111 %XOA586 + %X3.414 %XO.SSG + %X3'414 %X0.586 + %X3‘414 X0.586 XO.586 X0.586
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Thus, this mapping cann

We now let v(D) and v/ (D) = v(D) @ () be any two sequences in the binary
code trellis, where

WD) =vo+ 7D+ D (18.11a}
V(D) =vy+ 7D+ waDZ e (18.11b}

and

(D) = ey D 4oy BT b e DM ey ey £ 00 L > 005 >0, (18.110)
is a nonzero path through the er 10 i

v'(D) differ in at roost L -+ 1 branches. The Ie‘m E(D) then Tepremnt@ an error event
oflength L+1. If y(D) and 7' (D) are the two channel signal sequences corresponding
to v{D) and v/(D), respectively, that is, 3/( )= f{vg)+ f(vp) D+ f(m)Dz - and
y(D)y = f (WO) -+ f(vl)D + j(\17)D2 + -+, then the SE distance between y(D) and
y' (D) is given by
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th<i<h41)

A

>l F - fyee |

(h<l<h+L)

Z A (@)

(h<l<h+L)

S a¥e) = AMeD)].

(h<l<h+l)

Il

(18.12)

v

where the inequality follows from the definition of Euclidean weight given in (18.9¢),
and A?[e(D)] is called the Euclidean weight of the error sequence e(D). We now
prove a lemma that establishes the conditions under which the Euclidean weights
can be used to compute the MFSE distance dfzm of a TCM system.

Lemma 181 (Rare R = &/(k 4 1) Cope LEMMa) [1] Assume the mapping
from the output vector v ol a rate R = k/(k + 1) binary convolutional encoder
to the elements of a 28! -ary signal set S is uniform. Then, for each binary
error sequence (D) in the ervor trellis, there exisis a pair of signal sequences
y(£) and y'(D) such that (18.12) is satisfied with equality.
Proof. From the definition of Euclidean weight, A%(e;) = minv,v[vu\; 21 0]

Sy Y

A%/ (e/) for all time uniis /. Because the mapping is uniform, minimizing over
the k-bit vector [v[“‘”, cee v[(l)] yields the same result in the subset Q (0) with

v,(m = 0 as in the subset Q (1) with v,(O)

independent of the value of vl(o), and A(e;) = min

= 1; that is, the Euclidean weight is
M ] A%,/(el). Further,
a rate R = k/(k + 1) encoder can produce any sequence of k-bit vectors
{vl(/‘), e .vl(”] (only one bit is constrained); that is, every such sequence of
k-bit vectors corresponds to a path through the trellis. Thus, for each binary
error sequence e(D), there exists an encoder output sequence v(D) such that
(18.12) is satisfied with equality. Q.E.D,

Lemma 18.1 implies that the MFSE distance d,zm, between signal sequences
can be computed by replacing the binary labels on the error trellis with the MEWESs
and finding the minimum-weight path through the trellis: that is.

dﬁ‘ﬂ' = MIPe(p)£0(D) /—\Z[Q(Dﬂ

(18.13)

A similar argument can be used to show that the average weight enumerating
function A,,(X) can be computed by labeling the error trellis with the AEWESs and
finding the transfer funciion of ithe modified state diagram (see Problem 18.4). If
the mapping is nonuniform, the rate R = k/(k + 1) code lemma does not hold, and
the computation of A,,(X) and d]z.w becomes much more complex. An example
illustrating this point is given later in this section.

The technique for using the AEWEs to compute A,,(X) will be presented
in Section 18.3. In the remainder of this section we present a series of examples
illustrating the basic principles of designing a TCM system to maximize d/%_“.
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From Table 18.3 we see that all the AEWESs are monomials and that A%(X ) =
(S,%(X ) for all e. Such mappings are called regular mappings, which implies that ihey
are also uniform mappings. Further, in the case of Gray-mapped OPSK, the two
error vectors for which wy(e) = 1 result in A%(@) = 2 for all v, and the error
vector for which wy(e) = 2 results in A%(e) = 4 for all v; that is, A%(@) = 2wy (e)
for all e and v. In other words, there is a linear relationship between SE distance
and Hamming distance. Thus, the rate R = 1/2 convolutional codes with the best
minimum free Hamming distance dy ., will also have the best MESE distance d]%,ee
when combined with Gray-mapped QPSK. For example, the optimum free distance
(2,1.2) code with dy s = 5, when used with Gray-mapped QPSK, results in
an MESE distance of clzm = 10. Compared with uncoded BPSK with unit energy

signals and d]%”.” = 4, this (2, 1, 2) code results in an asymptotic coding gain of
y = 1010g10(dj%rec/d31in) = 10log;(10/4) = 3.98 dB, exactly the same as when this
code 1s used with BPSK modulation. Thus, designing optimum TCM schemes for
Gray-mapped QPSK is identical to finding optimum binary convolutional codes for
BPSK modulation.

For naturally mapped QPSK, however, the situation is different. The two error
vectors for which wy(e) = 1 give, for all v, A?‘,(e) = 2 in one case and A%(@) =4in
the other case, and the error vector for which wg (e) = 2 gives AZ(e) = 2 for all v.
In other words, there is no linear relationship between SE distance and Hamming
distance when natural mapping is used. Thus, traditional code design techniques will
not give the best codes for use with naturally mapped QPSK.

Continuing with the naturally mapped case, let us now consider two different
(2.1, 2) code designs:

Code1:Gy(D)=[ 1+ D> 14D+ D? | (18.14a)
Code2:Go(D)=[ 1+D* D ]. (18.14b)

Code 1 is the optimum free distance (2,1,2) code with dy rree = 5, whereas
code 2 is suboptimum and has dy ... = 3. The encoder diagrams for these two
codes are shown in Figure 18.4(a), and their error trellises with binary labels are
shown in Figure 18.4(b). Now, replacing the binary labels with the MEWEs of
naturally mapped QPSK from Table 18.3(b), we obtain the modified error trellises
of Figure 18.4(c). Examining the modified error trellises for the minimum-weight
error events, we see that d/%,ee = 6for code 1, resulting in a coding gainof y = 1.76dB

compared with uncoded BPSK, whereas code 2 achieves d2 , = 10 and y = 3.98 dB.

free
Thus code 2, clearly inferior to code 1 for binary modulation or for Gray-mapped
QPSK, is the better choice for naturally mapped QPSK.

The following comments apply to Example 18.2:

o The linear relationship between Hamming distance and Euclidean distance
in Gray-mapped QPSK is unique among nonbinary signal sets. In all other
cases, no such linear relationship exists, and the best TCM schemes must be
determined by jointly designing the code and the signal set mapping.
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The nonlinearity of most TCM systems arises from the mapping function f(-),
which does not preserve a linear relationship between Hamming distance and
Euclidean distance.

Both signal mappings in Example 18.2 are regular; that is, each error vector e
has a unique SE distance associated with it, and the AEWESs are equal to the
MEWE:s for all e. For regular mappings, the Euclidean weight enumerating
function A (X) of the code is independent of the transmitted sequence. Thus,
A(X) and dj%_ee can be computed in the same way as for linear convolutional
codes with binary signal sets, that is, by assuming that the code sequence
corresponding te the all-zero information sequence is transmitted.

The critical step in the design of code 2 for naturally mapped QPSK was to
assign the error vector e = (10) with maximum Euclidean weight to the two
branches in the trellis that diverge from and remerge with the all-zero state Sy.
This assignment guarantees the best possible Euclidean distance in the first
and last branches of an error event and is one of the key rules of good TCM
system design.

Each of the coding gains quoted in this example came at the expense of
bandwidth expansion, since the coded systems have a spectral efficiency of
n = 1 bit/symbol = 1/2 bit/dimension, and the spectral efficiency of uncoded
BPSK is n = 1 bit/dimension. Most of the comparisons with uncoded systems
in the remainder of this chapter will involve TCM schemes that do not require
bandwidth expansion; that is, they are bandwidth efficient.

The design of good rate R = 1/2 codes for use with naturally mapped
QPSK will be considered again in Section 18.4, when we take up the issue of
rotationally invariant code designs.

The QPSK signal set is equivalent to two independent uses of BPSK, denoted
by 2 x BPSK. This can be considered a simple form of multidimensional
signaling, a subject that will be covered in Section 18.5.

EXAMPLE 18.3 Rate R = 1/2 Trellis-Coded 4-AM

In this example we consider the same two rate R = 1/2 convolutional codes as in
Example 18.2, but this time with the encoder output vector v = (v v®) mapped
into the one-dimensional 4-AM signal set. Both Gray mapping and natural mapping
of the 4-AM signal set are illustrated in Figure 18.5, where the signal amplitudes are
assigned in such a way that the average signal energy E; = 1. Using the signal point
labeled v = (00) as a reference, we see that there are three distinct SE distances
between the 4-AM signal points:

a® = [(=1/v5) = (=3/V5)P =[2/V5P =038, (18.15a)
b =[(1/¥5) — (=3/V5) = [4/v/5F =32, (18.15b)
2 = [B/V3) —(=3/VDH =[6/V5P =72 (18.15¢)

Clearly, the MSE distance between signal points in this case is A2 = 0.8,

min
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(b) MNatural mapping

FIGURE 18.5: Gray and natural mapping of the 4-AM signal set.

uclidean distance structure for Gray- and
pped 4-AM.

i

(a) G ] (F@% Natural mapping
e AZ(X) 8200 2(X) 82(X)
00 X x0 ;{0 X
01 %}{OS + %X”/Q XOS XO’S }{048
10 XO,S ;{0‘8 )(32 X3'2
11 X3'2 ZBAZ %XQS + %Xf/.Z XO'S

In Table 18.4 we list, for both Gray and natural mapping of 4-AM, the four
possible error vectors e and the four coa'"respondmo AEWEs A\z(}( ) and MEWESs
52()(} In Problem 18.6 it is shown that A,\ o) = A\ﬂ 1O in both cases, and thus
the mappings are uniform. We note that in each case, however, there is exactly one
error vecior e for which A2(A) is not a monomial, and thus the mappings are not

regular.
If we now replace the binary labels on the error trellises showa in Fioure 18.4(b)
with the MEWESs of Gray- and naturally mapped 4-AM from Table 18.4, we obtain

the modified error trellises of Figures 13.4(d) and 18.4(e), Iespeciwely Examining
the modified error trellises for the ummmnm weight error events, we see that for
Gray-mapped 4-AM (rmme 18.4(d)) d ﬁee = 7.2 for code 1, resulting in a coding

gain of y = 10logy(d? ﬁee Jd2. ) =2.55dB compared with uncoded 2-AM with unit

min
energy signals and dmm = 4, whereas code 2 achieves only dﬂge = 2.4, resulting
in a coding loss of y = —2.22dB. Thus, code 1 is clearly the better choice for
Gray-mapped 4-AM. For 4-AM with natural mapping (Figure 18.4(e)), the situation
is exactly reversed, and the best choice is code 2, which results in a coding gain of

y = 2.55 dB compared with uncoded Z-AM.
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The {following observations relate to Example 18.3:

e Inboth cases, the mappings are nonregular; that is, for some error vectors e, the
MEWE does not equal the AEWE. This implies that the weight enumerating
function A(X) of the TCM system changes depending on the transmitted
sequence; however, since A%O(X) = Ai_l(X) for all e in both cases, the
mappings arc uniform, and the MFSE distance dﬁ .. can be computed by

replacing the labels e in the binary error trellis with their corresponding

MEWEs 8£(X ) and using the transfer function method.

o By definition, all reguiar mappings must be uniform, but the reverse is not
true.

e As in Example 18.2, the critical step in designing the best codes for both
mappings was to assign the error vector with maximum Euclidean weight to
the branches in the trellis that diverge from and remerge with the state Sp.

o In Example 18.3, unlike in Example 18.2, coding gain is achieved without
bandwidth expansion, since the coded signal set, 4-AM, has the same dimen-
sionality as the uncoded signal set, 2-AM. This explains the somewhat smaller
coding gain, 2.55 dB versus 3.98 dB, achieved in Example 18.3 compared with
Example 18.2.

EXAMPLE 18.4 Rate R = 2/3 Trellis-Coded 8-PSK

Now, consider arate R = 2/3 convolutional code with 8-PSK modulation in which we
denote the three encoder output bits by the vector v = (v®vy©®) In Figure 18.6
these three bits are shown mapped mto the 8-PSK signal set according to the natural
mapping rule. Each signal is again assumed to have unit energy. but in this case the
MSE distance between signal points, computed in (18.10a}, is A,zm” = (0.586. Thus.
compared with the QPSK signal set with the same average energy, the MSE distance
of 8-PSK is reduced from 2.0 to 0.586.

In Table 18.5 we list the cight possible error vectors e and the eight corre-

sponding AEWE:s, AE.O(X), Ai‘l (X). and Aﬁ(X), and MEWEs, 830()(), 52.1(){), and

¢

TABLE 18.5: Euclidean distance structure for naturally mapped 8-PSK.

e AZ LX) A (X) ALX) S oK) | 82 0 | 82
000 xY xU x4 x0 x! xY
001 xU.580 x {1586 xU.586 ¥ 0.586 X().SH(\ 30580
010 x? x- x? x? x? x?
011 %X()‘S‘% + %X}'JH %X().SS(N + %X3'414 %X().SSG + %X}J'I-l x1.586 x U586 | 50.586
100 xt Xt x4 x4 x4 x4
(01 x4 x4 x4l x4 X}.«Hd x344
1o x? be be be Ve x?
111 %XU.SS\% + %Xiéi«i %X(),Fu% + %XB' Hid %XU.SNO + %Xfi.-&l-s x U580 xU80 1 x0.580
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in this case we see
8.8 it is shown that Gray mapping o
-PSK mapping shown in Figure 18.2(a

vectors [hci result in different |
He erior vectors e = (011) and e
the other six error vectors COrTespoi d toonly a
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I ossﬂbie ode designs for naturally mapped 8 ,
using the error trellis labeled with l‘ﬁvH‘W 5.

166

> = 2/3 convolutional code whose parity-check mairiz in
is given by
+D+1 (DPHDHDP4+D+D 1. (18.16)

’D

This is the v free distance (3,2, 1) code with constraint length v = 2 and
du free = 3. The encoder diagram is shown in Figure 18.7{a). the 2V = 4-state binary
ervor trellis is given in Figure 18.7(b). and the modified error trellis labeled with the
turally mapped 8-PSK is shown in Figure 18.7(c).

From Figure 18.7{(c) we see that the nonzero path associated with the sequence
of states 5352535 Tesul n an MEFSE distance of d]:’ = 1.758. Because this TCM
scheme bhas a speciral efficiency of n = 2 mts/symbol the appropriate UmodPﬂ
system with which to compare is QPSK with an average signal energy £, = 1. For
this signal set, ‘Y;an 2.0, and thus paturall vy mapped TCM suffers a coding loss m‘
= 101ogo(df,, /d},,) = 1010g,(1.758/2) = ~0.56 dB in this case!

MNow, we ask the guestion, Is it possible to achieve a positive ‘odlim.or

withotit bandwidth expansion with 4-state, rate R = 2/3 coded, naturally
8-PSK7 Because the naturally mapped 8-P5K signal set is nonregular, we may {
' r TCM scheme by considering suboptimuim rate R = 2/3 codes. In ad dmm we
@ﬂsﬁder arate R = 1/2 code with one uncoded information bit as equivalent to
2/% code: that is, both have a spectral efficiency of n = 2 bits/symbol when
with 38-PSK modulation. To illustrate this latter approach, we considez
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vi2(D)

u?(D)

u(D)

(c) Modified error trellis

FIGURE 18.7: Encoder diagram and error trellises for rate R = 2/3 coded 8-PSK.

the same two (2,1, 2) codes as in Example 18.2, although this time we include an
uncoded information bit and use the systematic feedback form of the encoders.
Thus, the two rate R = 1/2 generator matrices are given by

Codel:Gi(D)=[1 (D*+D+1/D*+1 ], (18.17a)
Code2: Gy(Dy=[1 D/D*+1 ]. (18.17b)
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(a) Encoder diagram

(b) Error trellis
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(c) Modified error trellis

FIGURE 18.8: Encoder diagram and error (rellises for rate R = 1/2 coded 8-PSK
(code 1).

The encoder diagrams for these two codes are shown in Figures 18.8(a) and 18.9(a),
their binary error trellises are given in Figures 18.8(b) and 18.9(b), and the modified
error trellises labeled with MEWESs for naturally mapped 8-PSK are shown in
Figures 18.8(c) and 18.9(¢c). respectively. The uncoded information bit is handled by
adding a parallel transition to each branch in the binary trellis of the rate R = 1/2
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u®(D) Vvi3(D)y

um(D) V“)(D)

V(D)

(b) Error trellis

X‘().Sh’ﬁ

(c) Modified ervor trellis

FIGURE 18.9: Encoder diagram and error trellises for rate R = 1/2 coded 8-PSK
(o \
\dee 2/.

code. Thus, there are two branches connecting each pair of states in the binary error
trellis, one for each of the two possible values of the uncoded bit. We follow the
convention that the first bit listed on each branch of the binary error trellis is the
uncoded bit. In the modified error trellis, we show only one branch connecting each

Lol 18 Lwa IDCERLLCES YT AT RLT 1AL S N

pair of states; that is, it has the same structure as the trellis for the rate R = 1/2 code,
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but its label is the minimum-weight label of the two MEWESs for the corresponding
parallel branches in the binary ervor treilis. For example, in Figure 18.8(b), the two
parallel branches connecting state Sy to itself in the binary error irellis are labeled
’GOO) and (100). Thus, in Figure 18.8(c). the two comspond‘m MEWEs are X9 and

Iy

4 and the single branch connecting state 5 to itself is labeled X9,

For 411/ TCM scheme with pmaﬂr:; iransitions, the calculation
distanice d2 involves two ferms: (1) the MESE distance 82 , between

free

paths 1013%@1 than one branch and (2) the MSE f“hstame 5; .y between distinet trellis
pmhs one branch in length. Because 52%) is the free distance between irellis paths

ssociated with the coded bits, it can be computed from the ervor irellis labeled with
fhe MEWEs. Because 81 e 00 the other hand. is the minimum dlaial between
parallel transitions associated with the uncoded bits, it must be computed separately.
Then, the overall MFSE distance is given by

2 o2 PPN
free” Omi‘;i}~ \io.ig}

{(AMPLE 1

(Continu

The paml lel transition distance 8;””, ts independent of the code and depends only
on the mapping used. From Figures 18.8(b) and 18.9(b) it is clear that the paraliel
brmch tabels always differ by the error vector (100). Thus, from Table 18.5 we

conclude that 53”11 = 4.0. Now, we can see from Figures 18.8(c) and 18.9(c) that

57/66 = 3{0.586) = 1.758 for code 1, and 5; o = 2(2.0) 4- 0.586 = 4.586 for code 2.
Thus,
me = mm{éﬁw 2 ) =min{1.758,4.0} = 1.758.  (code 1) (18.19a)
and
Ay = Min{87,,. 87, = min(4.586, 4.0} = 4.0, (code 2) (18.19b)

and the asymptotic coding losses (gains) compared with uncoded QPSK are y =
—(.56 dB for code 1 and y = +3.01 dB for code 2. Thus, for the three different
codes considered in this example, the best performance, and the only coding gain,
is achieved by the suboptimum (in terms of dy r...) rate R = 1/2 code with one
uncoded bit. This simple 4-state code achieves a 3.01-dB coding gain compared with
uncoded OPSK without bandwidth expansion. (Problem 18.9 illustrates that other
mapping rules for 8-PSK result in less coding gain than natural mapping.)

The following remarks relate to Example 18.4:

o All mappings for the 8-PSK signal set are nonregular. Thus, the weight
enumerating function A(X) depends on the tfransmitted code sequence for all
38-PSK—based TCM systems; however, if the mapping is uniform, the average
weight enumerating function A, (X) can be computed by labeling the branches
of the error trellis with the AEWESs and using the transfer function method.
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e Virtually all signal sets and mappings used in practical TCM systems are
nonreguiar, although symmetries usually exist that allow a uniform mapping.

@

The MEWESs can be used to compute the MFSE distance d 2, .o Of TCM systems
with uniform mappings, as shown in Examples 18.2, 18.3, and 18.4; however,
to determine the average weight enumerating function A,,(X), the AEWEs
must be used, as will be illustrated in Section 18.3.

o The critical advantage of naturally mapped 8-PSK over other uniform map-
pings for 8-PSK is that the error vector for all parallel transitions, e = (100),
is assigned to the largest possible EW, A%(e) = 4.0, by the natural mapping
rule (see Problem 18.9). In other words, for 8-PSK, the MSE distance between
signal points on parallel transition paths is maximized by natural mapping, thus
minimizing the probability of a one-branch (parallel transition) error event.

e An exhaustive search of all possible 8-PSK TCM schemes with n = 2
bits/symbol and 4 states indicates that the best scheme is code 2 in Exam-
ple 18.4, that is, the suboptimum rate R = 1/2 code with one uncoded bit,
combined with natural mapping. This illustrates that, unlike code designs for
binary modulation, the best TCM designs often include uncoded information
bits resulting in parallel transitions in the trellis. (If uncoded bits are employed
in the design of codes for binary modulation, the minimum free Hamming dis-
tance can never exceed the minimum Hamming distance between the parallel
transition branches, which equals 1.)

e All the encoders in Example 18.4 were given in systematic feedback form.
Equivalent nonsystematic feedforward encoders exist that give slightly differ-
ent BER performance because of the different (encoder) mapping between
information bits and code bits. Systematic feedback encoders are usually pre-
ferred in TCM system design because they represent a convenient canonical
form for representing minimal rate R = k/(k + 1) encoders in terms of a single
parity-check equation. This canonical representation simplifies the search for
the best encoders.

o Larger coding gains can be achieved by employing more powerful codes, that
is, longer constraint lengths. Tables of the best TCM code designs for a number
of important signal constellations are given in Section 18.2.

The rate R = k/(k + 1) code lemma guarantees that if the mapping is uniform,
any error sequence e(D) in the binary error trellis with a given Euclidean weight
A?[e(D)] corresponds to a pair of signal sequences y(D) and y'(D) in the trellis
separated by a free squared Euclidean distance of A?{e(D)]. In this case, the MFSE
distance d]%,e . of a TCM system can be computed using the method of Euclidean
weights; however, if the mapping is not uniform, the rate R = &k/{k + 1) code lemma
does not hold, and the method of Euclidean weights will, in general, give only a
lower bound on the actual d%,,ee. This point is illustrated in the following example.

EXAMPLE 18.5 Nonuniform Mappings

Consider the two nonuniform mappings of 8-PSK shown in Figures 18.2(b) and
(¢), along with their AEWEs and MEWE:s listed in Tables 18.2(b) and (c). If these
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0
g e 18.10(a), we can compute the EW of e(D) as follows:
27 V1 %
A{e(D)] = 0.586 4+ 0.586 + 0.586 + 0.586 = 2.344. 18.20
!

For the rate B = k/(k + 1) code lemma ﬁ;@ ﬁe satisfied, there must exist a pair
-branch irellis paw , (D) and ¥'(D), star g and stopping in the same state,

h (D) and whose corresponding signal sequences y{(D)
; t4 apari. From Figure 18. Z(D) and Table 18. Z(b\ Wwe see
it the @eon‘sd path fah must start with the D ‘anches vo = (101) and vj = (011),
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(a) Mapping of Figure 18.2(b)

CA ;\(0.58(7 /57\
23T == T = ) f
) ANV et O

(b) Mapping of Figure 18.2(¢)

FIGURE 18.10: Modified error trellises for two nonuniform mappings.
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d2 f (vo), fopl= d%[yo. ¥l = 0.586. (The branches assigned to vg and v;, can also
be reversed without changing the result.) Thus, from Figure 18.9(b), the path pair
must start either from state S, or from state S3. Similarly, the next three pairs of
branch labels must be v; = (001) and v} = (010), v, = (111) and v, = (000), and
v3 = (101) and v; = (011) (or the reverse of these labels) to satisfy the distance
conditions; but a close examination of Figure 18.9(b) reveals that no pair of paths
with these labels and starting either from state S, or from state S3 exists in the trellis.
Thus, it is impossible to find a pair of paths v(D) and v/(D), starting and stopping
in the same state, that differ by the error path e(D) and whose corresponding signal
sequences y(D) and y'(D) are distance 2.344 apart; hence, the rate R = k/(k + 1)
code lemma is not satisfied.

Next, consider the nonuniform mapping of Figure 18.2(c) and Table 18.2(c),
in which there is an isometry between the subsets Q (0) and Q (1). Let e(D) =
e +e1D + e, D? + e3D% + e4 D* = (110) + (101) D + (100) D? + (101) D3 + (110) D*
be a path through the binary error trellis of Figure 18.9(b) that starts and ends in
state Sp. From the modified error trellis of Figure 18.10(b) we can compute the EW
of e(D) as follows:

A?[e(D)] = 2.0 4 0.586 + 2.0+ 0.586 + 2.0 = 7.172. (18.21)

For the rate R = k/(k + 1) code lemma to be satisfied, there must exist a pair
of 5-branch treliis paths, v(D) and v'(D), starting and stopping in the same state,
that differ by the error path e(D) and whose corresponding signal sequences
y(D) and y'(D) are distance 7.172 apart. From Figure 18.2(c) and Table 18.2(c) we
see that the desired path pair must start either with the branch pair vo = (000)
and v, = (110) or with the branch pair vo = (100) and vy = (010), since
these are the only pairs of binary labels such that eg = vop ® v, = (110), and
d2[ f (vo), fvp] = di[yo.yy] = 2.0. From Figure 18.9(b) we see that the path
pair must start either from state Sy or from state Sy in both cases. As in the
previous case considered, the next four pairs of branch labels are similarly con-
strained to satisfy the distance conditions. It is easily seen that there is only
one possible branch pair corresponding to the error vector ey = e3 = (101), but
there are two possible branch pairs corresponding to the error vectors e; = (100)
and e; = (110). Again, a close examination of Figure 18.9(b) reveals that no
pair of paths with these labels and starting either from state Sy or from state
St exists in the trellis. Thus, it is impossible to find a pair of paths v(D)
and v'(D), starting and stopping in the same state, that differ by the error
path e(D) and whose corresponding signal sequences y(D) and y' (D) are dis-
tance 7.172 apart; hence, the rate R = k/(k + 1) code lemma is again not
satisfied.

Example 18.5 leads to the following observations:

o When the mapping is nonuniform, there are still many error sequences for
which the rate R = k/(k + 1) code lemma is satisfied; however, Example 18.5
illustrates that this is not true for all error sequences.

e Example 18.5 shows that an isometry between the subsets @ (0) and Q (1) is
necessary, but not sufficient, to guarantee that the rate R = k/(k + 1) code
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lemma is satisfied. See Problem 18.10 for an example illustrating this fact that
uses a different signal constellation.

o Because the rate R = k/(k + 1) code lemma is not satisfied for nonuniform
mappings, the method of Euclidean weights provides only a lower bound on
er .. i1 this case. This is also true of the method {0 be presented in Section 18.3
for determining the AWEF A, (X) of a TCM system from the AEWEs.

o Using a nonuniform mapping does not necessarily imply an inferior TCM
system, just one that is more difficult to analyze. In this case, a supertrellis of
(232 = 227 states must be used to determine the set of distances between all
possible path pairs; however, uniform mappings result in the best designs for
most practical TCM sysieras (see Problem 18.11).

£

A more stringent uniformity condition, called geometric uniformity, was intro-
duced by Forney [23]. When this condition is satisfied, the computation of
weight enumerating functions is simplified, but many practical TCM systems
are not geometrically uniform.

O

amples 18.2, 18.3, and 18.4 illustrate two basic rules of good TCM system design:

. Rule 1. Signal set mapping should be designed so that the MSE distance between

parallel transition branches is maximized.

Rule 2: The convolutional code should be designed so that the branches in the

modified error trellis leaving and entering the same state have the largest
possible MSE distance.

A general block diagram of a TCM system is shown in Figure 18.11. At each
ky (k=1 @

time unit /, a total of k information bits, w; = (u, Uy e Uy ), enter the

u;k) = .
o
T4 =]
u;/\ + 1) .
& vm — g -
T . o ! Signal mapper Y,
uf® > Convolutional
! <} o
o encoder o
(e [} i
b = rate k/(k + 1)
! S
I

FIGURE 18.11: General TCM encoder diagram and signal mapper.



980 Chapter 18 Trellis-Coded Modulation

system. Of these, a total of k < k bits, namely, u,(") u[(k Do (1) , enter a rate

Al 4 A1

R = K/\K + 1 b_)/bt@ludu(: feedback convolutional encoder, plOCluClug ine ouiput

bits v(k) l(/‘ ..., [(1) U;O) where vl( Vs the parity bit, and v,(k), ;k 1), S I<1)

are mformation bits. These & + 1 bits enter the signal mapper along with the & — k

uncoded information bits ufk) = vl(k) l(k - (k Do (kH) = vlkH) Finally,

the k + 1 bit vector v; = (v(“, (k= 1), e (1) (0>) is mapped mto one of the
= 21 possible points in the 51gna1 set S H k = k, then there are no uncoded

1nf0rmat10n bits and no parallel transitions in the trellis diagram.
In the next section we will study a technique called mapping by set partitioning

[1] in which the k+1 coded bits v(k) (k b ... vlm @ are used to select a subset of
(b =D D)

’ l » 3

size 26 from the signal set S, and then the k —k uncoded bits v,
are used to choose a particular signal point from within the selected subset. Thus,
a path through the trellis indicates the particular sequence of selected subsets, and
the 2% parallel transitions associated with each trellis branch indicate the choice
of signal points within the corresponding subset. This mapping technique allows us
to design TCM systems that satisfy the two basic design rules noted.

18.2 TCM CODE CONSTRUCTION

There are three basic steps in designing a TCM system:

1. Signal set selection
2. Labeling of the signal set
3. Code selection

A signal setis chosen primarily to satisfy system constraints on spectral efficiency and
modulator design. For example, if a spectral efficiency of n = k bits/symbol is desired,
a signal set with 28*1 points must be selected. Similarly, if, because of nonlinearities
in the transmission path (e.g., a traveling wave tube amplifier), a constant-amplitude
signaling scheme is required, then a PSK signal set must be chosen. If amplitude
modulation can be accommodated, then a rectangular or QAM signal set will give
better performance. Several typical signal sets were shown in Figure 18.1. As an
example, consider a linear transmission path and a spectral cfficiency requirement
of n = 4 bits/symbol, the specifications for the CCITT V.32 modem standard that
can achieve data rates up to 14.4 Kbps over voice-grade telephone lines. In this case,
the 32-CROSS signal set was chosen for implementation.

The next step in the design process is to assign binary labels, representing
encoder output blocks, to the signal points in such a way that the MFSE distance
d/% - Of the overall TCM system is maximized. These labels are assigned by using
a technique called mapping by set partitioning [1]. This technique successively
partitions the signal set into smaller subsets of equal size, thereby generating a tree
structure in which each signal point corresponds to a unique path through the tree.
If binary partitioning is used, that is, at every level in the partitioning tree each
subset from the previous level is divided into two subsets of equal size, the tree has
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k -+ 1 ievels. Thus, each path through the tree can be represented by a (k + 1)-bit
label, which can then be assigned to the corresponding signal point. To maximize

2
d]w” the pﬁmuomno must be done in such a way that the two Lasm rules for good

TCM system gw discussed in Section 18.1 are satisfied. This requires that the
minimum squared subser disionce (MSSD) A~ that is, the MSE distance between
i the same subset, be maximized ai each leve] p of the partidon

signal points v
tree. The approach is illustrated with two examples.

‘ 5;)) ‘@

™

x/ovmdm the binary partitioning tree for the 8-PSK signal set § shiown in Figure 18.12.
vel O of the par @Uomug tree contains the full 8-PSK signal set 5. Assuming unit
ewergy signals, ;I MSSD at level 0 was (‘Oiﬂpﬂ, ted in (18. 10&) and is dencied by
Lﬁ = (.586. (A 5 s the same as the prewm Iy ¢ “,ﬁn@d A7 . the MSE distance
oetween signal points. The notation A() indicates that this term corresponds to the
MSSD at level 0 in the set-partitioning tree.) Label bit v'% then divides the set §
into two subseis, ¢ (V) = 0 (0) and Q (1). each containing four si gi 1 points such
that the MSSD of both subsets at level 1 is given by 4 2 = 2.0. It is important to
poini out here two properties of this partition:

L. There is no partition of 8-PSK inio two equal-size subsets that achieves a larger
MSSD,

2. Subset O (0) is isomorphic to subset O (1) in the sense that @ (1) can be
o‘btade from @ (0) by rotating the points in @ (0) by 45°.

S =8.PSK

RSN

\
> ¢ Aj=0586

o Qe RN s}
\ A / \ 5
Hi 6 di o Aj=20
o, o o, o
Rk o~
v = Of,f 1 0 1
o(0) .~ 0(10) o1 L oD
~e- O PN ~o
(8] Q o Q o] e} a
/ \ / \ / \ / R
& // o ¢ ® ¢ @ P As=4.0
\ \0 / o / ;o
;o 3 U O o7
v =0 ] 0 1 0 1 0 A1
/7y o /TN Ty
/e\ -0~ PLEES ~en P P PN
O [} O [¢] a O Q O © o] Q G e} o] e}
/ \ / NS N/ A / NS N N/ A .
O 2 SN A S X R SN S 2 S X S S e
... P o, o v o v 0 o o D L v Lo o g
o - o Rl o~ fohe o~ o
Q(000)  ©(100)  O(010)  Q(110) g0 101y 2011y Q1)

FIGURE 18.12: Partitioning of 8-PSK.
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These two properties of 8PSK partitioning, namely, maximizing the MSSD
and maintaining an iscmetry among all subsets at the same level, are characteristic
of most practical signal set partitionings. The isometry property implies that the
MSSDs are the same for all subsets at a given level.

Continuing with the example, we see that label bit v’ now divides each
of the subsets Q (0) and Q (1) at level 1 into two subsets, containing two signal
points each, such that A% = 4.0 for each subset at level 2. We see again at
level 2 that the subset distance has been increased and that the four subsets
are isomorphic and thus have the same MSSD. The four subsets are denoted as
0 (vDv @) = 0 (00), ¢ (10), ¢ (01), and Q (11), representing the four possible
values of the binary label (vDv @), Finally, label bit v® divides each of the subsets
at level 2 into two subsets containing one signal point each at level 3. This is the
lowest level in the partitioning tree, and the MSSD A% at this level is infinite,
since there is only one signal point in each subset. The eight subsets at level 3,
0 (vPvDy©®) = 9 (000, Q (100), Q (010), @ (110), Q (001), @ (101), O (111), and
Q (011) are represented by a unique binary label (v® vy that corresponds to
a path through the partitioning tree. This binary label then defines the mapping
between a 3-bit encoder output block and a corresponding signal point in the 8-PSK
signal set.

As noted in Section 18.1, a TCM system using 8-PSK can employ either a
rate R = 2/3 code or a rate R = 1/2 code with one uncoded bit. To best describe
the code design procedure, we consider the case of a 4-state, rate R = 1/2 code
with one uncoded bit in the remainder of this example. In this case only the first
two levels of the partitioning tree are used, and each of the four subsets at level
2, that is, the subsets @ (00), 0 (10), Q (01), and @ (11), contains two signal points
separated by the distance A3 = 4.0. First, the two coded bits (v v©®) are used to
select a subset, and the uncoded bit v@ is then used to select the signal point to
be transmitted. This means that each branch in the code trellis, which represents
a parallel transition, is assigned one of the level-2 subsets Q (00), Q (10), Q (01),
or O (11) with subset distance A2 = 4.0. Note that, since A% was maximized by
the partitioning procedure, this guarantees that the MSE distance 5;%11‘11 between
parallel transition branches is maximized, thus satisfying rule 1 for good TCM
code design.

Now, we consider the assignment of the level-2 subsets @ (00), O (10), O (01),
and Q (11) to the branches of the code trellis. Note that the trellis is completely
defined by the set of branches leaving each state. In this example there are a total of
2K = 2 branches leaving each of the 2" = 4 states. Because there are only four level-2
subsets from which to choose, exactly half of these subsets must be assigned to each
set of two branches leaving a state. From Figure 18.12 we can see that the distance
between diverging branches is maximized if the two branches leaving each state are
assigned subsets belonging to the same level-1 subset, @ (0) or @ (1). In other words,
the level-2 subsets @ (00) and Q (10) (belonging to @ (0)) should be paired, and the
level-2 subsets Q (01) and Q (11) (belonging to Q (1)) should be paired. To ensure
that the distance between remerging branches will also be maximized, the same
level-2 subset pair (either {Q (00), @ (10)} or {Q (01), O (11)} should be used to
label the diverging branches of both states in each trellis ““butterfly,” and the level-2
subset pair should be assigned in such a way that the two remerging branches of
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boﬁ[h Sua[es in the butterfly are labeled by the same pair (see Figure 18.13). Finally,
to ensure that all signal points are used equally ofien, subset 0 (0) {pair

{ ”m} £ (10)}) shouid be assigned to half the states {one auuerﬂy)ﬂ and subset
o ( pau {Q 0D, Q (1D} to the other half {the other butterfly). Because each of
Lhc evel-1¢g E:s ets (Q (0 urﬁ { (1)) contains 2k =4 signal points, and their MSSD

1 =2.01s g e for a subset of four poinis, this guarantees that ihe

MSE distan es l eaving and entering the same state is maximized,
thus saus’nqu ;ule CM system design. The {inal labeling of branches
for this example 16 hown in Figure 18.13, where the trellis represents a 4-state, rate

R = 1/1,&, feedior waid Mcode

The following remarks relate io Example 18.6:

o The assignment of signal points from only one level-1 subset (@ (0) or Q (1)) to

afll the b ram‘hes leaving and entering each state implies that the code bit v(®,
ich determines the subset chosen at level 1, must be the same for each set
of branches leaving or entering a particular state. This places some restrictions
on the codes that vield good TCM designs.

a7l
W

o In general, half of the 2"~% butterflies in the code irellis are assigned to subset
0 (0) and the other half to subset @ (1). This ensures that all signal points are
used with equal probability.

o 1t SQEW possible, in the manuer described here, to ensure that the diverging
and remerg ﬂg branch distance equals A2, thus guaranteeing that Bf o = 7&2

except i the special case v = k. In this case, the trellis is fully connected
and contains only a single butierfly, thus implying that either the diverging or

24 trellis section of any (n. k. v) encoder can be decomposed into a set of o=k

fully connected
subtrellises containing 7/‘ states each. These subtrellises. called burrerflies. connect a subset of 2/‘ states
at one time to a (in general. different) subset of 2 2k states at the next time. For example, in Figure 18.13.

the pair (7/ = 2} of states Sy and $» connect to the state pair Sy and §;. forming one of the 2" =k — 2
butterflies. and the other butterfly is formed by the state pair §| and 53 connecting to the state pair 5
and S3.
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remerging distance must equal only A%. Hence, 2-state trellises (v = 1) with
rate R = 1/2 codes (k = 1) do not yield good TCM desigas.

If a rate R = 2/3 code is used in the preceding example, then k = k = v,
and the trellis is fully connected. This implies that 52,,6 . 18 at most equal to
A% + A% = 2.586, no matter which code is selected. Thus, for 4-state 8-PSK
TCM schemes with n = 2 bits/symbol, rate R = 2/3 codes are suboptimal

compared with rate R = 1/2 codes with one uncoded bit.

In the partitioning of 8-PSK, the two subsets at level 1 are equivalent to
QPSK signal sets, and the four subsets at ievel 2 are equivaleni to BPSK signal
sets. This isometry between subsets at the same level of the partition tree is
characteristic of all PSK signal set partitionings.

For the 8-PSK partition shown in Figure 18.12, mapping by set partitioning
results in the natural mapping rule discussed in Section 18.1. If the order of the
subsets at any level in the partitioning tree is changed, the resuiting mapping
is isomorphic to natural mapping.

Mapping by set partitioning always results in the distance relation A% < Azl <
o< A,Z which, along with the proper assignment of subsets to trellis branches,
guarantees that the two rules of good TCM system design are satisfied.

The separate tasks assigned to coded and uncoded bits by set partitioning,
namely, the selection of subset labels for the trellis branches and the selection
of a signal point from a subset, respectively, imply that the general TCM
encoder and mapper in Figure 18.11 can be redrawn as shown mn Figure 18.14.

Signal mapper

Select signal
from subset

o6 oo

- . V,(rk) —— Y
e Convolutional °
° encoder o Select
° hd (n subset
- Vi
— rate k/(k + 1) o
Vi

FIGURE 18.14: Set-partitioning TCM encoder diagram and signal mapper.
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If k = k, then there are no parallel transitions, and the subset labels on the
trellis become signal point labels.

EXAMPLE 18.7 Partitioning of 16-QAM

As asecond example of set partitioning, we consider the 16-QAM signal set, denoted
by S, shown in Figure 18.15. Leiting A% represeni the MSSD at level 0, we see that
the average signal energy is given by the expression

E, = (1/16) {4[(80/27 + (20/2 | + 8] B20/2 + (20/2?
+ 4] (380/27 + 30/27 |
= (1/16) [283 + 2083 + 1843 | = 583/2. (18.22)

Thus, A% = 2/5if the average energy £, = 1. Atlevell of the partitioning tree,
we obtain the subsets O (0) and @ (1), each isomorphic to an 8-AM/PM constellation,
and it is easy to see that A% = 2&%. Continuing down the partitioning tree, we obtain
four subsets at level 2, each isomorphic to 4-QAM. with A% = ZA%; eight subsets at
level 3, each isomorphic to 2-AM, with L\% = ZA%; and, finally, the 16 signal points
at level 4, each labeled according to the set-partitioning mapping rule.

The following observations relate to Example 18.7:
p

o The 16-QAM signal set can be considered a mulitidimensional version of
4-AM, thatis, 2 x 4-AM.

o Inthe 16-QAM case. the MSSD doubles at each level of the partitioning tree;
that is, L\,.z = ZA?_lq i =1,2.--- k. This is characieristic of most partitionings
of rectangular-type signal constellations used in praciice.

o 16-QAM is a (translated) subset of the two-dimensional integer lattice Z2, and
the subsets at cach level of the partitioning are isomorphic.

o It is not always possible to partition signal sets based on a lattice in such a way
that all subsets at a given partition level are isomorphic. In this case, although
the subsets are no longer distance invariant, they all still have the same MSSD
AI.Z. An example of this situation: is shown in Section 18.4 for the 32-CROSS
consiellation.

o TCM systems based on 16-QAM modulation can employ code rates R of 3/4
or 2/3 with one uncoded bit, or 1/2 with two uncoded bats.

We now consider the last siep in the design process, that of code selection.
Assume that the code is generated by a raie R = k/(k + 1) systematic feedback
convolutional encoder with parity-check matrix

H(D) = [h(’?w)/hmwm YD) /RO (D) 1] . (18.23)
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FIGURE 18.16: Two systematic feedback convolutional encoder realizations.

labels in the set-partitioning tree will agree in the trailing g(e) positions.
This implies that they follow the same path through the tree for the first
q(e) levels, and thus A%(e) > Aém. Because this condition holds for all v,
2(e) — mi 2 2
A“(e) = miny Aj(e) > Aq(e). Q.E.D.
Using the set-partitioning lemma, we can now write

] P
2 . 2 {
min (1827}

s > Ao
T = a(D) D) 4 D)
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following comments apply to the set-partitioning lemma.

L £
T the o - 2
For the case e = §, we take A“(e) = o= =0.
Inequality (18.26) is sausﬁ >d with Pquahw for most . For example, the only

,,Acepuon for
are AZ2(1001

5 A(101) > Aoﬁ and the only ex cepuom for 16-QAM
]1@1) > AL and AZ(1111) > A,

. . - oo
iwmuim value of 5ﬁ.peﬂ

r ¢ for which

[ vect

the MI'SE distance
not require compu-
bls can be especially
esigned based on a lattice

Sets of optimum TCM code designs based on the foregoing search procedure

e
are listed in Tables 18.6(a)-(d). The codes were found by computer search [4]. Each

table gives the followir

0

O

information:

P N

e MSEDs A7, 1 =01, [k

The encodesr constraint length v.

The number of coded information bits k.

The parity-check coefficients /) = [/’zf,")q hf;’_)y o ’11” /1(’ ] F=0.1,- .k,
A

int octal form.

The MFSE disiance d2 free . An asterisk (%) indicates that d/:{ occurs only along
> 82 In Tables 18.6(a) and (b), the ratio

o s 52
parallel transitions: that is, 67, i

the MISSD at level 0, assuming the average energy £, = 1, is
given, (m hese cases, L\a varies with the signal constellation cousidered, but
ihe rafio ¢ /“ /AO is constant.)

o0

The asymptotic coding gain in decibels compared with an uncoded modulation
system with the same spectral efficiency. The notation denotes the two signal

constellations being compared; for example, vacr/160am denoies the coding
gain of a coded 32-CROSS constellation compared with uncoded 16-QAM.
The number of information bits k transmitted per coded symbol. which equals
the speciral efficiency » in bits/symbol, is also given. In Tables 18.6(a) and
(b), coding gains are given for several different spectral efficiencies based on
constellaiions chosen from the same lattice. The notation yc,y denotes the
coding gain of a coded lattice of infinite size compared with the uncoded lattice.

The rage number of nearest neighbors Ag, . In Tables 18.6(a) and (b),
A(//.’W is given only for the infinite spectral efficiency case, that is, k — co.
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TABLE 18.6: List of optimum TCM codes.

o~y ~ . P ; 1
(a) Codes for one-dimensionai AM based on 7Z*

2 Pl = A2 2 2
(A2.0=i <2 = A} 44l 16A]

Y4-AM/2-AM Y§-~AM/4—-AM ycju Adfyee
vk O g A k=1 k=2 tk— 00y | th— oo}
2 1 2 S 9.0 2.55 331 3.52 4
2 1 2 5 9.0 2.55 3.31 3.52 4
3 1 04 13 10.0 3.01 3.77 3.97 4
4 1 04 23 110 342 4.18 4.39 8
5 L 10 45 130 4.15 491 5.11 12
6 1 024 103 14.0 4.47 523 5.44 3
7 1 126 235 16.0 5.05 5.81 6.02 66
8 1 362 515 16.0" — 5.81 6.02 2
1 362 515 17.0 5.30 — —
(b) Codes for two-dimensional AM/PM based on 7>
[A2.0 </ =3} = A5.287.40% 347
Y16~ QAM/8—PSK | Y32—-CR/16—QAM | Y64—QAM/32-CR | YC/U /\z(/,u,
TARIREE RN T dfzm/Aﬁ k=3 k=4 k=5 th = o0} | tk — 00)
201 — 2| 5] 407 436 3.0l 2.80 3.01 4
3l2| o4 02f 11| 50 533 3.98 377 3.98 16
412| 16| 04| 23| 60 6.12 4.77 4.56 477 56
si2| 10| 06| 41| 60 6.12 477 4.56 4.77 16
6121 064| 016] 01| 70 6.79 5.44 5.23 5.44 56
702) 042| 014| 203 80 7.37 6.02 5.81 6.02 344
82| 304] 056| 400 80 7.37 6.02 5.81 6.02 44
9|2|0510}0346 | 1001 | 8.0° 7.37 6.02 5.81 6.02 4
(¢) Codes for 8-PSK
{A7.0 i <2} = dsin?(/8). 2.4
~ . R V8- PSK/4—PSK
v k ni2 w'h Rt dﬁw /A7 k=2 e
2 1 — 2 5 4.000* 3.01 1
3 2 04 02 1 4.586 3.60 2
4 2 16 04 23 51072 4.13 ~2.3
5 2 34 16 45 5758 4.59 4
6 2 066 030 103 6.343 5.01 ~5.3
7 2 122 054 277 6.586 5.7 ~0.5
8 2 130 072 435 7515 5.5 =15
(d) Codes for 16-PSK
87,02 = 3] = 4sin’ /160, dsin? /80, 2. 4
S ] 0 5 7 YVi6—PSK/8—PSK
i 2 (h (] 2 -
v k h'>) h h dﬁw /8% k=3 A,[ﬁw
2 ! — 2 5 1.324 3.54 4
3 1 — 04 13 1476 4.01 4
4 1 — 04 23 1.628 4.44 8
5 1 — 10 45 1.910 5.13 8
6 l — 024 103 2.000° 533 2
7 1 — 024 203 2.000* 533 2
8 2 374 176 427 2.085 551 ~8.0

Adapted from [4].
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The codes listed for one-dimensional AM are based on the one-dimensional
integer lattice Z!, and the codes lisied for iwo-dimensional AM/PM are based on
the two-dimensional integer lattice Z?, where these lattices are infinite extensions
of the one- and two-dimensional signal constellations shown in Figures 18.1(a)
and 18.1(b). In these cases the same codes yield the same maximum d]%Aee/A%
independent of the size of the signal consieilaiion chosen from the lattice, although
the minimum number of nearesi neighbors can vary owing to the effect of the
signal constellation boundaries. In Tables 18.6(a) and (b), to negate the effect of
constellation boundaries, we list only the average muliiplicities Ay, assuming a
signal constellation of infinite size. Because set partitioning of an infinite lattice
results in a regular mapping, the values of Ag,  in Tables 18.6(a) and (b) are
all integers. In Table 18.6(a), we see that for codes based on Z!, the asymptotic
coding gain y increases with the spectral efficiency k; that is, the largest coding
gains are achicved in the limit as & — co. Also, two optimum 256-state codes are
listed. The first code, whose a"}% .. Occurs along parallel transitions, is optimum when
the number of information bits k£ > 2: that is, when the trellis contains parallel
transitions. The second code, which achieves a larger d/;z-,_ee, is optimum only when
k = 1, that is, when the trellis does not contain parallel transitions. In Table 18.6(b)
we note the relatively large asymptotic coding gains of coded 16-QAM compared
with uncoded 8-PSK. This difference is due 1o the restriction that PSK signals must
all have the same energy. The coding gains of 16-OAM compared with uncoded
rectangular constellations are not as large, as shown in Problem 18.15. In contrast
with the lattice-based codes, in Tables 18.6(c) and {d) we see that different codes are
optimum for 8-PSK and 16-PSK consiellations, and that the nonregular mapping
can result in noninteger values of the average multiplicities Ay,

When a trellis contains parallel transitions, care must be taken in computing
the value of Ay, .. since each parallel branch may contribuie to a minimum-distance
path. For example, in Table 18.6(a), Ay, = 4 for the 4-state coded integer lattice

the 4-state code in Table 18.6(a}, we note that the error trellis for the coded lattice
7' is formed by replacing each branch with an (infinite) set of parallel transiiions.
In this case the trellis branches labeled e = (00) will now contain the set of paraliel
transitions representing all error vectors e = (---e®e@00), the trellis branches
labeled e = (10) will now contain the set of parallel {ransitions representing all
error vectors e = (---¢®¢?10), and so on. The MSE distance 9A3 is achieved by
a path that diverges from state Sy along the branch labeled e = (10) to state S (a
squared distance of 4A(2) ), continues to state S along the branch labeled e = (01)
(a squared distance of A%), and remeryges with state Sy along the branch labeled
e = (10) (a squared distance of 4/_\%). MNow, note that for a given parallel transition
on the branch labeled e = (00) leaving state S, say e = (---e@e®000), there are
two parallel transitions, e = (---e@e®110) and e = (--- @3 010). with squared
distance «’mg on the diverging branch labeled e = (10). The same situation holds
when the minimum-weight path remerges with state Sy along the branch labeled
e = (10). For the middle branch on the minimum-weight path, there is only one
parallel transition. e = (---e®¢001), with squared distance A3 along the branch
labeled e = (01). Because there are four possible combinations of minimum-weight
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paths, in this case, Ay, = 4. Another example of computing Ay, for a trellis
with parallel transitions is given in Problem 18.16. Finally, we recall that when Ay,
of the coded system exceeds A,,;, of the uncoded system, the real coding gain at
practical BERs of around 10> is somewhat reduced compared with the asymptotic
coding gain y.

1t is interesting to note that many of the optimum codes listed in Table 18.6
contain one or more uncoded bits. This is because, particularly for short constraint

lengths, the parallel transition distance 8;7 " = A% 1 is already larger than the

free distance 52 ., between trellis paths, and thus using a higher rate code cannot
improve the overall free distance df2 . For longer constraint lengths, however, the
free distance 8;1 .. Detween trellis paths increases, and then more coded bits, that

is, a larger k, must be used to increase the parallel transition distance 62, and

min
consequently the overall free distance d2 freer

18.3 TCM PERFORMANCE ANALYSIS

The average weight enumerating function (AWEF) A, (X) and the average input
output weight enumerating function (AIOWEF) A,,(W, X) of a TCM system can be
computed by labeling the branches of the binary error trellis with their corresponding
AEWESs, augmented by the input weight enumerators when computing A, (W, X),
and then forming the modified state diagram and using the transfer function approach
developed in Chapter 11. Once A,,(X) and A,, (W, X) have been evaluated, the
event-error probability P(E) and the bit-error probability P,(E) can be estimated
using the union bounding techniques developed in Chapter 12. For an unquantized-
output AWGN channel whose inputs are drawn from the TCM signal set, this
process gives the expressions

P(E) = f(d} B, /4No)An(X)| (18.28a)

e Ex/4Ny
and

Py(E) = (1/K) (o, By JANDI Ay (W, X) /3| . (18.28D)

X=e™ /0 W]
where f(x) = ¢* Q(+/2x), and d]%, .. is computed under the assumption of a unit aver-
age energy signal set. The reader should note the similarity between the expressions
in (18.28) and those derived for binary convolutional codes in Chapter 12. In fact,
they are identical except that the WEFs are replaced by average WEFs, and the
Hamming distance, dy fi.. in Chapter 12 is replaced by d free/ 4 Where d]:t is SE
distance, in the precedmo expressions. This reflects the fact that, for unit energy
binary signals, dz oo = 41 jree, as noted in (18.8).

The bounds in (18.28) are valid for any TCM system without parallel transitions,
that is, the case for which each error event represents a path through the trellis at
least two branches in length. In the case of parallel transitions, that is, one-branch
error events, the bounds are modified as follows:

P(E) < f(5;

min

E\/4NO)A£{U(X)‘X

o Es/4N

(85, By [ANg) AL ( X)[ (18.292)

e Fs/4Ny
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]

WD
oY)

and

PI)(’") = (1/k) mmE /ANO)aAav )/aVV’ o= Es /4Ny =1

+ (1)) F (5] Es AN AL, (W5

e BNy oy
(18.29%)

where Al (X) and AL, (W. X) represent the AWEF and AICWEF for the parallel
ransition paths, and A/, (X) and Al (W, X) represent the AWEF and AIOWEF
or the trellis paihs, respectively. (It should be noted that AL, (X) and Al (W, X
are simply the AWEFs of the subsets at the last level, that is, level k + 1, in
he sct-partitioning tree.) The use of WEFs to evaluate the performance of TCM
systems was introduced by Zehavi and Wolf [24], and an algorithm for computing
the AWEF was presented in [25]. We now illustrate the application of the bounds
with two examples.

.
s
£
¢

e

EXAMPLE 18.8 4-State, Rate R = 1/2 Trellis-Coded 4-AM
We consider the 4-state. rate R = 1/2 binary feedforward encoder shown for code 2

in Figure 18.4(a) along with naturally mapped 4-AM. The binary error trellis of this
encoder was shown in Figure 18.4(b), and the AEWESs of naturally mapped 4-AM
were listed in Table 18.4(6). Tn Figure 18.17(a) we show the modified state diagram

labeled with the AEWEs. We now compuie the AWEF using the standard transfer

b \\./1
/
/ 3
N e \ o
S’(yf \@?}, > S \) SN S(,/\
=X a=Wwx-
[T Iy i
b= :XUA +?/13/7.2 h = W(§ H\ 3)(71)
C 7}57”\ c = M/‘;“x
J= %/‘(”N + %X 7.2 \/ux X7.2
e = j\/u,s h e = vll
f=x" f=wx"
g= X2 g =X
{a) Modified state diagram (b) Augmented modified state diagram

FIGURE 18.17: Modified state diagrams for naturally mapped,. 4-state, rate R = 1/2
treflis-coded 4-AM.
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function approach as follows:

~ N

XS. XU.8X3‘2(1 _ XOAS) + X3‘2(0.5X0'8 + 0.5X7’Z)2X3'2
(1 — x08)(1 — x08x0) _ (0.5X08 + 0.5%72)2x0
X72 —0.75x39 + 0.5x 44 4 0255208

T 1208 0.75X16 _ 05580 _ 0255144

=X7? +125x%0 +1.75x%8 + 2.0625x%0 + ... (18.30a)

Aav(X) =

Equation (18.30a) implies that for an arbitrary transmitted sequence y, there is an
average of 1 error path y with MFSE distance d]%,ee = d2(y,y) = 7.2, an average of
1.25 error paths y' with SE distance d%(y, y) = 8.0, an average of 1.75 error paths y’
with SE distance d% (y,y) = 8.8, and so on.

In Figure 18.17(b) we show the modified state diagram augmented by the input
weight enumerators. In this case, following the same procedure as before, we find
that the AIOWEF is given by

Agy(W. X) = WX"? +1.25W2x830 + 175w x88 4 2.0625W* X% + ... . (18.30b)

Here we see that the error paths at a distance of 7.2 from the correct path are
always associated with 1 information bit error, those at a distance of 8.0 are always
associated with 2 information bit errors, those at a distance of 8.8 with 3 information
bit errors, and so on.

Finally, the expressions of (18.30) can be used in (18.28) to evaluate P(E)
and P,(FE) as functions of the channel SNR E,/Ny. The bounds are sketched in
Figure 18.18 along with uncoded BPSK, which has the same spectral efficiency of
n = 1 bit/dimension.

The following observations relate to Example 18.8:

e The codeword multiplicities are averages because TCM systems are nonlinear,
and the number of codewords at a particular distance from the correct sequence
depends on the transmitted path.

e The codeword multiplicities are fractional because the signal constellation is
finite, and the mapping is nonregular. Thus, the multiplicity of 1.25 associated
with incorrect paths at distance 8.0 means that, depending on the correct path,
there may be either 1 or 2 incorrect paths at distance 8.0.

o If the same rate R = 1/2 code was used, along with an infinite number of
uncoded information bits, to code the one-dimensional integer lattice Z, the
average multiplicities would be integers, since a regular signal mapping can
then be achieved with set partitioning, as noted in the previous section. In this
case the average number of nearest neighbors is Ay, = 4, since the parallel
transition subsets in both the first and last branches of the shortest error event
contain exactly two signal points distance 3.2 away from any given reference
point (see Problem 18.15).
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Error Probability

16 _ 06 J J J ]“’ J

2 4 6 8 10 12
EJ/N, (dB)

FIGURE 18.18: Error probability bounds for naturally mapped, 4-state, rate R = 1/2
irellis-coded 4-AM.

o Because of the part iCU!EM structure of the encoder in this example, a determin-
isiic relationship exists between codeword distance fr O”H the correct path and
information weight: ﬂ iis, a@ = 6.4+ 0.8w;, where ; represents the SE dis-
tance from the correct path, and wy represents the corresponding information
weight. For example, all codewords distance 14.4 from the correct path have
information weight 10.

o I'rom the bound on £,(E) plotted in Figure 18.18, we see that the real coding
gain at a BER of 1075 of this TCM system compared with uncoded BPSK
is approximately 2.1 dB. This coding gain is achieved without bandwidth
CXpansion.

EX’\MP,F 3.9 A-5%5 u@, Rafm P = 1/2 Trellis-Coc },(*? -PSIK

Now, consider the 4-state, rate R = 1/2 binary feedback encoder shown for code 2 in
Figure 18.9(a) along with one uncoded information bit and naturally mapped 8-PSK
modulation. The binary error trellis of this encoder was shown in Figure 18.9(b),
where there was a parallel transition connecting each pair of states, and the AEWEs
of naturally mapped 8-PSK modulation were listed in Table 18.5. In Figure 18.19(a)
we show the modified state diagram, in which each branch is labeled with the sum
of the AEWES for the corresponding paraltel transition branch labels in the binary
ireilis. We can now compu‘[e the AWEF for the trellis paths A (X) using the
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SlJ S()
a=2x° a=(W+ WwWHx?
b= xOS6  yidld b= %(W+ W2 (X150 4 x4
¢ = X(),SN(} + X_‘»,JM ¢ = X().586+ WX3.4H
4= x 0586 4 x4 d= %(W + Wz)(Xn.ixﬁ 4 XA
o= YOS Lyl o= Y US80 4yt
f=1+x* f=1+wx*
g=2X2 g=(W+ W)X’
(a) Modified state diagram (b) Augmented modified state diagram

FIGURE 18.19: Modified siate diagrams for naturally mapped, 4-state, rate R = 1/2
trellis-coded 8-PSK.

standard transfer function approach as follows:

ZXZ(XO‘S% + X3.414)2X2(1 . X0.586 _ X3.414) +
ZXZ(XO'586 +X3'414)22X2
[XO.SS() + X3A414]2[X0 + X4]
B 4x4.586 _}_4Xﬁ7414
1 —2x0586 _ 7x3414 _ x4586 _ x7.414

A;lv(X) =

— 4X4.586 + 8X5.172 + 16X5‘758 + 32X6.344 4o (18313)

Equation (18.31a) implies that for an arbitrary transmitted sequence y, there is
an average of 4 error paths y with a MFSE distance between trellis paths of
8]%@ = d%(y.y) = 4.586, an average of 8 error paths y with free SE distance
d% (y,¥) = 5.172, and so on. Because this TCM system includes paralle! transitions,
we must also compute the parallel transition AWEF Af,(X). From the 8-PSK

set-partitioning tree, we see that there are only two signal points in each parallel
transition, and that

AL(X) = x*0. (18.31b)

Equation (18.31b) implies that the MSE distance between parallel transitions is
8,,2”[” = 4.0, and hence the MFSE distance of the TCM system is

A} o = min {8, 82,,] =40, (18.31c)

as noted earlier in Example 18.4.
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In Figure 18.19(b) we show the modified state diagram augmented by the input
weight enumerators. In this case, following the same procedure as above, we find
that the AIOWETF is given by (see Problem 18.17)

Al (W, 2

av

B
S’
I

(v o 72\ 44586 o w2\’ se {17 o o2
(w+w?) x5 4 (WJ. W) +o._,5(WJ. w?)

= (W2 2w 4 W) x4 4 (w2 2wd 125w+ W

\

~

F 15w+ w4 0.25@/8); X2 (18.31d

Here we see that the error paths at a distance of 4.586 {rom the correct path
associated with 2, 3, or 4 information bit errors, those at a disiance of 5.172 ar
associated with between 2 and 8 information bit evvors, and so on. In addition, the
coefficients of the W terms denote the relative likelihood that a certain number of
information bit errors will correspond to error paths of a given weight. For example,
the terms 1.25W4 X172 and 0.25W8 %517 indicate that error paths at a distance of
5.172 from the correct path are five times more likely tc have 4 information bit
errors than 8. Finally, the parallel transition AIOWEF is given by

jas]
[e)

e

)
4]

N

—

2 - o | p PR
AP, Xy = wx0, (18.31e;

)
J

which indicates that all parallel transition error evenis are associated with one
information bit error.

0.001

Error Probability

0.0001

le—05 —

J \ |

8§

EJN, (dB)

le—06

i
£
N

FIGURE 18.20: Error probability bounds for naturally mapped, 4-state, rate B = 1/2
trellis-coded 8-PSK.



898 Chapter 18 Trellis-Coded Modulation

Now, we can use the expressions of (18.31) in (18.29) to evaluate P(F)
and P,(E) as functions of the channel SNR F./Ny. The bounds are sketched in
Figure 18.20 along with uncoded QPSK, which has the same spectral efficiency of
n = 2 bits/symbol.

The following remarks apply to Example 18.9:

o The WEFs for each possible parallel transition, that is, for each subset at level
2 of the partition tree, are identical, because the four BPSK subsets at level 2
are isomorphic. In general, however, this may not be the case, and AP(X) is
computed by taking the average of the WEFs of each subset at level k+1in
the set-partitioning tree.

o The MESE distance path is a parallel transition. This implies that at high
SNRs, AL, (X) and AL, (W, X) are the dominant terms in the error probability
bounds, thus allowing approximate bounds on P(F) and P,(E) to be obtained
very simply.

o The possible codeword weights represented in (18.31a) and (18.31b) are

separated by the value Alznm = 0.586, the MSE distance between signal points.

This is characteristic of any TCM system; that is, codeword weights increase

by multiples of Afnm.

o I'rom the bound on P, (E) plotted in Figure 18.20, we see that the real coding
gain at a BER of 107> of this TCM system compared with uncoded QPSK
is approximately 2.6 dB. This coding gain is achieved without bandwidth

expansion.

As a final comment before leaving this section, we note that whereas the
asymptotic coding gain of a TCM system can be obtained by computing d]%,ee, as
shown in Section 18.1, the real coding gain at a particular BER must be obtained
either from computer simulations or estimated from bounds such as the ones
presented in this section.

18.4 ROTATIONALLY INVARIANT TCM

The typical signal set used in a coded modulation system has several phase symme-
tries; that is, phase rotations by certain angles replicate the signal set. For example,
8-PSK has eight phase symmetries, spaced 45° apart, and any QAM constellation
has four phase symmetries spaced by 90°. In general, when a receiver locks onto a
particular phase, a trial-and-error procedure must be initiated to determine whether
it is in the correct phase. If a particular system is prone to frequent loss of car-
rier synchronization, reacquiring sync can be a time-consuming exercise. Thus, it
is desirable in many applications that a coded modulation system be invariant to
phase rotations. In other words, if the receiver locks onto the wrong phase, the
system should still be able to operate properly. Hence, in case of temporary loss of
synchronization, the receiver must lock onto only one of the possible symmetries
and need not initiate a procedure to reacquire the correct phase.

The basic requirement for a coded maodunlation system to be invariant to
a particular phase rotation is that when the symbols of each code sequence are
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A Rotationally nvariant TCM 999

eplaced by the corresponding symbols in the rotated signal set, it is still 2 valid code
sequence. In other words, in the absence of noise, the decoder wonld still decode
a proper code sequence, albeit an incorrect code sequence; however, differential
encoding of the information sequence and differential decoding of the decoder
output sequence can be employed to ensure that the correct sequence is decoded.
Thus, a rotationally invariant code combined with differential mcodipg/decodhﬁ
can be used to provide reliable communication even when the receiver is locked
onto the wrong phase, although a2 small penalty in BER performance is incurred
because isolated single-bit errors at the decoder output are doubled by differential
decoding. (Note that if a code is not rotationally invariant, rotated code sequences
are, in general, not code sequences, and this property may be used to detect an
out-of-phase lock condition.)

To illustrate the idea of rotatios 'mﬂy invariant codes, we start with the simple
case of a binary code with BPSK modulation in which the encoder output bits are
represented as 0 — ~1 and 1 — 4 1 The only phase symmetry of the signal set
is caused by a 180° rotation. which has the effect of mve‘::mg the sign of every
modulation symbol: that is, -1 — #1 and -1 — —1. Thus, every codeword is
replaced by its complement. For any linear code, the complpmem of a codeword
1s a codeword if and only if the all-one seguence is a codeword. Thus, the simple
condition for 180° rotational invariance for any linear binary code with BPSK
modulation is that the all-one sequence is a codeword.

We now consider the case of OPSK modulation and 90° phase symmetries,
beginning with an example.

o

EXAMPLE 18.170 Rate F = 1/2 Coded

Consider a rate B = 1/2 convolutional code with generator matrix
G(D) = [MOMM h‘“(@)] (18.322)
and parity-check matrix

H(D) = ﬁ;ﬁ“(@) 0% D). (18.32b)

whose two encoder output bits ave Gray mapped inio QPSK, as shown in
Figure 18.3(a). In this case the parity-check equation (PCE) is given by

V(DYHT (D) = v V(D)D) & v O (D’ (D)y = 0(D). (18.33)

where V(D) = [v(“(D)N 70 (D) represents a codeword. Now, note that after a 90°
rotation of the signal set, the rotated code sequences become

v(D)y=v"(D) and vOD) =+V(D)a® LD), (18.34)

where 1(D) represenis the all-one sequence. Using the rotated code sequences in
(18.33) we cbtain

Vo (DYH (D) = v'U(D)yh (D) & v (D)@ (D)
; (18.35)
=0 DDy & [vV(D) 0 1(D) | nO (D),
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which must equal §(D) for all ¥V,.(D) = [vﬁl) (D), v,(.o) (D)] for the code to be invariant
io 90° rotations. From (18.33) we see that for any information sequence wu(D),
V(D) = [vD(D), vO(D)] = [w(Dh® (D), w(DYLV(D)] is a valid code sequence.
Substituting this V(D) into (18.35) we have

V,(DYH! (D) = u(D) {[W(D)]Q ® [W(m]z} e hODUD).  (18.36)

Examining (18.36) closely we see that the first term equals u(D) times a nonzero
binary polynomial of degree at most 2v, where v is the constraint length. Considering
1(D) to extend infinitely in both directions, we see that we can write the second teiin
as hO(D)YL(D) = h@ (1)(D), which equals either 8(D) or 1(D) depending on whether
the Hamming weight of h® (D) is even or odd, respectively. For example, code 1 in
Example 182 has k' (D) = 1 + D? and bV (D) = 1 + D + D?, and (18.36) becomes

V,(DYH (D) = D*u(D) ® 6(D) = D*u(D). (18.37)

Clearly, (18.37) is not equal to §(D) for any nonzero w(D), and thus the coded
modulation system is not invariant to 90° rotations.

In the case of a 180° phase rotation, we can see directly from Figure 18.3(a)
that both rotated code sequences are complements of their respective correct code
sequences. This situation is exactly analogous to the BPSK case, and thus rate
R = 1/2 convolutional codes with Gray-mapped QPSK are invariant to 180° phase
rotations if and only if the all-one sequence 1(D) is a codeword.

Now, consider the same example with natural mapping. In this case the 90°
rotated code sequences become

yU(D) =vV (D)@ v D) and vW(D)=v"D) o 1(D). (18.38)

Again, substituting in (18.33) and using V(D) = [u(D)hO(D), w(D)hV (D)), we
obtain

2 )
V. (DYHT (D) = u(D) {[h(”(D)] } & h'Y(D)L(D). (18.39)

which for code 1 in Example 18.2 becomes

2
vV, (D)H' (D) = (1 +D+ D2> w(D) @ 0(D) = (1 + Dy D4) w(D).  (18.40)

As in the case of Gray-mapped QPSK, we see that for naturally mapped QPSK
(18.40) does not equal §(D) for any nonzero w(D), and thus the coded modulation
system is not invariant to 90° rotations.

Fora 1800 phase rotatinn o coa fe

- (D <
rolaiiocn, we see iy e 18.32(b) that s (n = \J(])/n\ @

O Fig‘dlu 1O\ 0 uiat v, o/ (L)
1(D) and vf.m(D) = v\ (D): that is, v,(.”(D’) is the complement of the correct
sequence, and v,(.o)(D) equals the correct sequence. In this case, V.(DYHT (D) =
v (DR (D) @ v (DO (D) = WY(D)L(D). Thus rate R = 1/2 convolutional
codes with naturally mapped QPSK are invariant to 180° phase rotations if and only
if k'Y (D) has even weight.
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The folicwing remarks relate to Ezample 18.10:

=]

o Rotational invariance is a properiy of the code, not the encoder, so the resulis
of Ezample 18.10 also hold f ¥ ’1 e equivalent systematic feedback encoder
with F(D) = [n“’(ﬂ )/11 (D ]

ri at time 0, then terms of the form I 1<O)(u)_V(F)
< v) preamble before reaching their steady-siate
wou.lc affect rotational invariance only in the first
makes sense (o ignore this fransient condiiion by
r“s nfinitely in both directions (see Problem 18.19).

would ha

miw of 'f(b

2

i be generalized to show ihat any rate R = k/(k 4+ 1)

con: fohu'@'m [ coa a linear binary PCE V(D)YH (D) = v¥) (DY (DY @
-@W“)(D)M”{D @& v (D)Y@ (D) = 0(D) that maps into a two-dimensional

1,

et with 90° phase symmetries can at best be invariant to 180° phase

(6]

i1 be seen nexf, binary rate R = k/(k+1) convolutional codes can achieve
90° rotational invariance only by making use of a nonlinear PC

vow nonlinear PCEs can achieve a greater degree of rotational invari-
an ‘m,eaj PCEs, we consider the special case of a raie R = 1/2 convolutional
paturally mapped QPSK modulation. As noted in Exampie 18.10, linear
Hs are not capable of achieving 90° rotational invariance in this case. Before
ronlinear PCE, we write the two encoded sequences in integer {orm as

w0
o
\"D
*3

(D) = v 0Dy + 2vV(D). (18.41)

(D) are elements in the ring of integers Zy. (Throughout
section, we will use the symbol + to denote addition in a ring
wegem and d!«e 5 ﬁ nbol @ to denote addltmn modulo-2, i.e., bgrmzry adﬁmOﬁ)

v,.(D) =v(D)+ (D) (mod4). (18.42)

Similarly, we can write the two parity-check polynomials in integer form as

v<
]

h(D) = hY(D) + 200 (D). (18.43)
Now, consider the PCE given by
[(h(D)v(D) (mod H]' = &(D), (18.44)

where the notat on [ez (E)] means that from the binary representation of every
clement oy = 2oy, e ,U € Zyq i (D) the most significant bit oz]m is chosen; that is,
[e(DH] = a; : (T e p tion represented as [a(D)]! in (18.44) causes this PCE to
be both binary and nounlinear.} For the PCE represented by (18.44) to be invariant
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to 90° rotations, it must still be satisfied when v, (D) is substituted for v(D), which
requires that

h(D)v(D) = h(D)v,(D) = (D) [v(D) +1(D)] (mod 4)
= h(D)v(D) + h(D)L(D) (mod 4) (18.45)
=h(D)v(D) + h(1)(D) (mod 4).

Because h(1)(D) is a constant sequence with k(1) € Z4, (18.45) is satisfied if and
only if

h(1) (mod4) =hV(1) 4+ 2h® (1) (mod 4) = 0. (18.46)
Note, for example, that if h™ (D) has two delay terms, h¥ (D) must have an odd

number of delay terms to satisfy (18.46) (see Problem 18.20).
We can rewrite the PCE of (18.44) as

[h(D)¥(D) (mod 4)]' = [hm(D)v(O)(D) + 200 D)y (D)

+ 200 (D)v* (D) + 46 (D)W (D) (mod 4>]1
- {h(l)(D)v(O)(D) ) [h(”(D)V(D(D)

n h<°>(D)w<0‘>(D)} (mod 4)}1
— O(D), (18.47)

where we have simplified (18.47) by noting that the term 4h© (D)v)(D)(mod 4) =
0(D). Following the restrictions of Figure 18.16(b) for good TCM code design leads
us to search for codes with parity-check polynomiais

KOy =0 0" 4 B D2+ hVD (18.48a)

and
WDy =p" + 1 D 4 nP D 0D 11 (18.48b)

that satisfy (18.46). thus guaranteeing 90° rotational invariance. We must then
substitute these polynomials into (18.47) to specify the binary nonlinear PCE.

We now consider an example in which we choose hD (D) to have only two
delay terms and proceed to derive a general binary nonlinear PCE that guarantees
90° rotational invariance for rate R = 1/2 codes with naturally mapped QPSK.

EXAMPLE 18.11 Rotationally Invariant Rate R = 1/2 Codes for Naturally
Mapped QPSK

Consider the choice
WDy = Db + D, (18.49)
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/hew v > b >a > 0. Note that in this case, since h'P (1) = 2 (mod 4), h (Q)(’D) must
ve an odd number of nonzero terms to satisfy (18.46). Mow, substituting (18.49)
intg {18.47) we obtain the PCE

-
!

%(.DMD%W(ORD\, 4—2[(3”4 POy (D) +h@ (o 0’(&;] (m@cM«);i — O(D).

(18.50)

To exnprass (18.50) using binary {mod-2) arithmetic, we note that we can write the
rnod-4 sum of any two binary sequences m (D) and n(D) a

(D) - a(D) (mod 4) = m(D) @ a(D) + Zm( D) » m( D). {18.51}

where m(D) o m() represents the logical AND of the sequences m(D) and n(D).
Using (18.51) repeatedly in (18.50) and recalling that 4m(D) (mod 4) = 0(D) for

—’—1

any binary sequence m(D), we obtain the binary PCE
DY@ oy (D) + 2 [D/’w“”@) o v Dy @ (D" @ DYV (DY
i

ﬂ’ﬂ(o)(D)V(O)LD}} %1
= D" 0Dy o DV (DY@ (D" @& DYV V(D) @ i (D) (DY = 0(D), (1852)

where (18.52) has been simplified by using the fact that the term (D? @ D)y O(D)
%ias no effect on the most significant bits of the sequence in braces. Equation {18.52)
represents a binary nonlinear PCE that guarantees 90° 1om110 1wl invariance for
rate R = 1/2 codes with h' (D) defined by (18.49) and any h® (D) with an odd
number of nonzero terms, where the nonlinearity is represenied by Ehe logical
AND operation. (In Problem 18.21 it is shown that the preceding nonlinear PCE i
satisfied when the rotated binary sequences given in {18. %o) for natural mapp ng
substituted into {18.52), and k(D) is assumed to have an odd number of ﬂoL,u,ze
ierms.)

The addition of the nonlinear term D"v(O(D) o DUv (D) makes (18.52)
different from a linear PCE for a vate R = 1/2 code. Given this difference, it is not
“lear if (18.52) will, in general, result in an encoder realization with only 2V states.
Considering the specific example

ﬂ)

H(D) = [(D2 + DY/ +D+1) 1] : (18.53)

we show in Figure 18.21(a) an 8-state encoder realization in which the nonlinear
term D2y O (D) o DvO (D) can be obtained directly from the feedback shift register
that forms v (D): that is, no additional states are needed in this case, (The
separate 2-state differential encoder for the information sequence is also shown in
Figure 18.21(a).) This nonlinear encoder results in a 90° rotationally invariant code,
since 9 (D) = D3 + D + 1 has an odd number of delay terms, and thus the rotated
code sequences satisfy (18.52) (see Problem 18.22).
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u(D) —D@ r i - v(D)
I
(@)

u(D) @ v“)(D)
1
r ‘—¥><+é—> W + vO(D)
(b)

FIGURE 18.21: Realization of a rotationally invariant, 8-state, rate R = 1/2 QPSK
encoder (a) with separate differential encoding and (b) with embedded differential
encoding.

The following comments apply to Example 18.11:

o The nonlinear PCE represented by (18.52) can always be realized using
v = max[v, 2(b — a)] delay elements [26]. In this example, v/ = v = 3 (see
Problem 18.23 for an example that includes the case v < 2(b — a)).

o More classes of rotationally invariant codes can be found by dropping the
condition of (18.49) and merely requiring that (18.46) be satisfied; however,
in this more general case, it is not as casy to determine the conditions under
which additional states are not required in the encoder realization.

o Natural mapping is assumed and (18.44) is used as the PCE because these
choices result in simple conditions on the parity-check polynomiais to guar-
antee rotational invariance and because if h'") (D) is chosen as in (18.49), the
PCE contains only one nonlinear term. Additional classes of 90° rotationally
invariant codes can be found if other mappings are assumed or different
PCEs are used, but the code specification and realization is, in general, more
complex.

Fora given v, alarge family of 90° rotationally invariant raie R = 1/Z nonlinear
codes for naturally mapped QPSK are defined by (18.52). A computer search can be
used to select the parameters a and b and the coefficients of h® (D) that satisfy the

conditions of (18.46) and (18.49). maximize dfz-m. and minimize Ag,,. (The search
technique cannot use the method of Euclidean weights to find d]%,ee in this case,

since the code is nonlinear: that is, all pairs of trellis paths must be compared.) A
list of the best 90° rotationally invariant rate R = 1/2 nonlinear codes {or naturally
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bﬂi/sy mbol d;ml =4, Ay = 1 (BPSK)

0° Imvariar 360° Invaria y |
v | k| hY . Ag .. A, | (@B
311 06 3] 10 0.5 12 2 12 1 3.98
411 06 23 12 0.5 12 1 14 2 4.77
511 20 451 14 1.0 16 2 16 i 5.44
61| 050 105 16 1.875 | 26 11 — — 6.02
711 116 217 | 16 0.25 20 2 20 i 6.02
81 220 427 i8 0312 | 24 11 24 2 6.53
91110120 1017 20 0.75 24 2 24 1 6.99

Adapted from [26].

mapped QFSK found for constraint lengihs up ic v =9 is pemﬁmd in Table 18
The parity-check coefficients b)) = i W, hf;’_ln e “ny). ]70' } ,j = 0.1, are given

j Qo Tj &
o

inoctalform, asin Ta b
rotationally invariani r
with the asymptotic m@
invariance are the optimumn

mapping. The value of di—w

The mFC of d/:f L 2nd AZ/, for the best 180° and 360°
/2 inear codes are also listed {or comparison, along
n y of the best nmﬂmeaz code. (The codes for 360°
e distance codes found in Table 12.1 used with Gray

wen in Table 18,6 1s iwice as large as the value of dy.,

XJ

L4, = U9

given in Table 12.1 because the 1 K signals have been normalized to unit energy.
The missing entry for v = 6 means that the best 360° invariant code is identical
to the best 180° invariant r‘ume) The value ©

fy 1 computed with reference o an
uncoded sysiem (BPSK. i efficiency i = 1 bit/symbol that has
MSE distance ri;m = 4 and number of nearest neighbors Ay, = 1. Mote that, in
general, %‘M best nonlinear ¢ i
codes, so thers is some penalty (o be paid in asymptotic coding gain to achieve full
rotational invariance. On the other hand, the values of Ay, ave larger {or the linear
codes, which lessens the suboptimality of the nonlinear codes at moderate BERSs.
(The values of Ay, are, in general, fractional in the non]inear case, since not all

) .
codes have smaller values of df,_m, than the best linear

codewords have a nearest neighbor at distance dfzr .-} For example, the best 8-state,
99° invariant nonlinear code (the code in Example 18.11) has y = 3.98 dB, which is
0.79 4B less than the best 8-state, 180 invariant linear code: however, the nonlinear
code has only one-fourih the number of nearest neighbors of the linear code. In
Figure 18.22 we ploi the simulated BER performance of these two codes. Note that
the suboptimality of the nonlinear code is only about 0.3 dB at a BER of 1075.
Using the nonlinear 90° roiationally invariant codes described in this section
guaraniees that rotated code sequences are still valid paths through the trellis. For the
coding system to operate properly (i.e., with only a smallloss in decoded BER), even
if the receiver has losi synchronization and locked onto the wrong phase, differential
encoding and decoding must be employed. Thus, the input sequence w(D) must pass
through the one time unit delay circuit 1/(D + 1) (shown in Figure 18.21(a)) prior
to convolutional encoding, and the decoded sequence @(D) must be processed by
the inverse circuit (D + 1) after decoding. For some rotaticnally invariant codes, it is
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tr | T | T ]

Linear, 180° S—
Nonlinear, 90° =====

01 .

0.01 -

0.001

Pu(E)

o

0.0001 —

le—05 |-

EJ/N,(dB)

FIGURE 18.22: Performance curves for two 8-state, rate R = 1/2 QPSK codes.

possible to embed the differential encoding within the convolutional encoder, thus
eliminating the need for separate differential encoding and decoding circuits. For
the 90° rotationally invariant code of Example 18.11, an encoder realization that
includes embedded differential encoding is shown in Figure 18.21(b).

Any QAM signal constellation has exactly the same four rotational symietries
as the QPSK signal set. Thus, the same approach used for rate R = 1/2 coded QPSK
can be used to construct 90° rotationally invariant codes for rate R = k/(k + 1)
coded 2¢Flary QAM constellations, as long as the two least significant label bits
are assigned using natural mapping. In this case only the first information sequence
viD(D) and the parity sequence v(%(D) are affected by a rotation, so the check
polynomials &* (D), --- ., h® (D) corresponding to the other coded information
sequences v'2' (D). -, v (D) can be chosen to maximize d/z-“,(, and minimize A,
without regard to the invariance constraints. Using the same conditions as in
Example 18.11, we can write a general binary nonlinear PCE for rate R = k/(k + 1)
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coded UAM v ormation biis as

th « /\ coded inf

P e - o rP D (D) @ (2" © DY (D) k(D) (D)
= p"v D) o DY (. (18.54)

Again, following the restrictions of Figure 18.16(b) for good TCM code design, we
Dy, .-+ WM (D) be denoted by

let the check polynomials h
WDy = ot ) ph e Dt DY (18.55)
!

where v > b; > ¢; > 0for 2 < j < k. Further, letting

Bl=max (bp.-o- by, b)Y, a' =max{a;, - a.a). (18.56)
we can realize the soﬂmeew PCE represented by (18.54) using v/ = max(v. b
—a+b —ahd ; 61

nally Invariant Rate R Eza,m] Codes for Naturally
h Two Coded Bits (k = 2)

@

onsider the following parity-check matrix for a rate R = 2/3 convolutional code:

DY =[D/D +D+1) (D*+ D)y +D+1) 1]

o~
Lt
jee]
[

7)

=
I
—
:;3
]
j=h
I
[\
I
o
o]
I
s
[%2]
o
S
i
\
2
ml
-

io pi ovi
16-QAM
shown in

8 state eqcoder wahzauoﬁ of arate R = 3//'
ealization (without differential encoding) is

CM sysiera. T h mrod ¥
igure 18.23.

(D) S S SEEN———— )
MDY e S =~ v D)
n'(D) > (D)
v o, N /
ﬁT o AF 2 ~ S
F\ :‘E —— ) o >»G\()w<,ﬁ-~> !'ﬁ«wj s v (D)
bemrre=! | A Y]
L. 1

o

FIGURE 18.25: E
amodern

ealization of a rotationally invariant, 8-state. rate R = 3/4 16-QAM
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TABLE 18.8: Rotationally invariant rate R = k/(k + 1) QAM codes.

0 = k bits/symbol, a2, =2, Apin = 4(Z%)

80° Invariance | 180° Imvariance | 36G° Invariance | p
I 2 1 ) 2 2 2

v k| h® w® WO a2 a4 Adpe | 4 e Ady,, | (dB)
3127 02) 06 13 5 16 5 16 — — 3.98
412 04 12| 23| 5 8 6 56 — — 3.98
5020 02] 14| 45| 6 16 6 8 — — 477
612020014 1103| 7 80 7 44 7 40 5.44
7121100060205 7 16 8 204 8 172 5.44
| 812110012101417| 8 60 8 28 — — 6.02
Adapted from [26].

Because (18.54) defines a large family of 90° rotationally invariant rate R =
k/(k + 1) nonlinear codes for naturally mapped QAM signal constellations, a
computer search can be used to select the parameters a and b and the coefficients
of KD (D) and h® (D), - - , h® (D) that satisfy the conditions of (18.46) and (18.49),
maximize d%, <> and minimize Agy,,.- Alist of the best 90° rotationally invariant rate
R = k/(k + 1) nonlinear codes for naturally mapped QAM found for constraint
lengths up to v = 8 i1s presented in Table 18.8, where the uncoded reference
system is the (scaled) infinite two-dimensional integer lattice Z> with d2. =2and
Amin = 4. The values of dfzree and Ay, for the best 180° and 360° rotationally
invariant rate R = k/(k + 1) linear codes are also listed for comparison, along
with the asymptotic coding gain y of the best nonlinear code. In all cases the
best nonlinear codes found had only two coded bits, that is, k = 2, and the same
codes resulted in the same maximum d]?,_ee independent of the size of the signal
constellation chosen from the lattice, that is, independent of the number of uncoded
bits and the spectral efficiency 5 = & bits/symbol. Because boundary effects cause
the (in general, fractional) values of Ay, to differ depending on & and the size
of the signal constellation, only the (integer) values of Ay, corresponding to an
infinite-size constellation are listed in the table. Note that the best nonlinear codes
have smaller values of d%m than the best linear codes in only two cases, namely,
v =4 and v = 7, and that in the other cases the only penalty to be paid for
full rotational invariance is a somewhat larger value of Ay, . In fact, the best
8-state 90° invariant nonlinear code (the code in Example 18.12) has exactly the
same parameters as the best 8-state 180° invariant linear code. In Figure 18.24
we plot the simulated BER performance of these two codes with one uncoded
bit and 16-OAM, where we see that the 90° invariant nonlinear code is actually
slightly better than the 180° invariant linear code (owing to the effect of higher-
order terms in the distance spectrum of the two codes). Finally, we note that for
larger values of v, more than k = 2 coded bits will be needed to achieve the

: 2
maximuim dﬁee.
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FIGURE

S

§.24: Performance curves for two 8-state, rate R = 3/4 16-0AM codes.

We now sketch the development of 45° rotationally iavariant rate R = 2/3
codes for naturally mapped 8-PSK modulation by following the same approach used
for the 90° invariant rate R = 1/2 QPSK case. We begin by considering the PCE

[R(D)v(D) (mod 8)]> = 0(D), (18.58)

where (D) = h®(D) + 20D (D) + 4bD (D). w(D) = vO(D) + 2vV (D) + 4v@ (D),
addition is performed in the ring of integers Zg, and the notation [«(D)]* means
that from the binary representation of every element oy = A-oz,m + 20(](1) -+ oz,(o) € Zsg
in ee( D) the most significant bit C{Zm is chosen; that is, [u:z(D)]2 = O{](2>. For the PCE
represented by (18.58) to be invariant to 45° rotations, we require that

k(1) (med8) =h® 1) + 20V 1) + 40P 1) (mod 8) =0, (18.59)
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so that, for example, if h® (D) has two nonzero terms, and h") (D) has one nonzero
term, h® (D) must have an odd number of nonzero terms to satisfy (18.59) (see
Problem 18.24). Now, choosing

h®(D) = D¢ + DY, (18.60a)
h® (D) = D¢, (18.60b)

and
WD) =" +h % b 4 0D 1 h D 41, (18.60c)

where v > ¢ > b > a > 0, and substituting (18.60a) and (18.60b) into (18.58) we
obtain the rate R = 2/3 binary nonlinear PCE

(D" ® Db) v@(Dye D vV (D)@ F(D) WO D)W (D) =0(D),  (18.61a)
where

(D) = DYV (DY o [D”\y(l)(D) & v (D) @ D VO (D) 0 D/’\V(O)(D)]
& D' (D) o [ v (D) © DV (D) 0 D' (D)

® DvO(D) o D'vV (D) o DO (D). (18.61b)

Note that in this case, since h® (1) = 2 (mod 8), and hV'(1) = 1 (mod 8), k¥ (D)
must have an odd number of nonzero terms to satisfy (18.59). Equation (18.61)
represents a binary nonlinear PCE that guarantees 45° rotational invariance for
rate R = 2/3 codes with h® (D) and h'"’(D) defined by (18.60a) and (18.60b),
respectively, and any h@ (D) with an odd number of nonzero terms, where f(D)
represents the nonlinear portion of the PCE. (In Problems 18.25 and 18.26 it is
shown that the preceding nonlinear PCE is satisfied when the 45° rotated binary
code sequences for naturally mapped 8-PSK are substituted into (18.61), and h©® (D)
is assumed to have an odd number of nonzero terms.)

As in the case of the rate R = 1/2 binary nonlinear PCE used to guarantee 90°
rotational invariance for QAM constellations, certain conditions must be satisfied
by the rate R = 2/3 binary nonlinear PCE of {18.61) for the encoder to be realized
with only v delay elements [26]. Let hfo) be the lowest-order nonzero coefficient in
k@ (D), that is,

WOy ="+ +hVD +1, (18.62)

where 1 < ¢ < v — 1. Then, the following four conditions are required to realize
(18.61) with v delay elements:

Ht=>=c—>b, (i)b=2a, ({ii)c=<3a, (@(v)v>2c—a. (18.63)

EXAMPLE 18.13 Rotationally Invariant Rate R = 2/3 Codes for Naturaily
Mapped 8-PSK with Two Coded Bits (k = 2)

Consider the following parity-check matrix for a rate R = 2/3 convolutional code:

HD)=[{(D*+D*/(D*+D+1) D/D*+D+1) 1], (18.64)
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(D) with an odd number of nonzero terms, {18.60) defines

fdmﬂy of 45° rotationally avariand vaie X = 2/3 nonlinear codes for naturally
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FIGURE 18.25: Realization of a rotationally invariant, 16-state, rate R = 2/3 8-PSK
encoder.
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TABLE 18.9: Rotationally invariant rate R == 2/3 8-PSK codes.
i = 2 biis/symbol, d2,, =2, Apin = 2 (QPSK)

45° Invariance | 180° Invariance | 36¢° Invariance | y ﬂ

v | k| h® p® p® dﬁee Ady dﬁw Adp, d}m Ay, | (dB)
311 — | 06| 13140 1.0 4586 2.0 — — 1301
42| 14| 02| 23]4586| 1.0 |5172] 4.0 5172| 225 | 3.60
5020 14| 02| 434586 | 025 |5172] 025 |5757| 20 3.60
612|060 |004|127 (5172 | 0469 |6.343| 3.25 — — 1413
712|014 100212355172 0012 6343 0125 [6586| 0.5 4.13
8121201004 1721157571 0016 [7515) 3375 |7.515) 15 4.59

Adapted from [26].

nonlinear code. For v = 3, the best nonlinear code has £ = 1 and one uncoded
bit, but for all v > 4, the best nonlinear code has k = 2 and no uncoded bits. The
nonlinear codes have smaller values of a’%r .. than the best linear codes, indicating
that a penalty must be paid for full 45° rotational invariance; however, the nonlinear
codes generally have smaller values of Al than the best linear codes. For example.
the best 16-state 45° invariant nonlinear code (the code in Example 18.13) loses
0.52 dB in asymptotic coding gain compared with the best 16-state 180° invariant
linear code. In Figure 18.26 we plot the simulated BER performance of these two
codes with naturally mapped 8-PSK modulation, and we see that the 45° invariant
nonlinear code is only about 0.15 dB worse than the 360° invariant linear code at
a BER of 107> (owing mostly to the fact that the nonlinear code has a factor of 4
fewer nearest neighbors than the linear code).
The following comments apply to Example 18.13:

e A similar approach to that used for 8-PSK, but using modulo-16 arithmetic
over the ring of integers Zj4, can be used to find 22.5° roiationally invariant
codes for naturally mapped 16-PSK. In this case the best codes up to v = 7 use
the rate R = 1/2 invariant PCE with two uncoded bits, but for larger values
of v higher-rate PCEs are better [26]. As noted in Section 18.2, this is because
for short constraint Iengths, the parallel transition distance (8311‘11 = 2 in this
case) is already larger than the free distance 8%,80 between trellis paths, and

thus using a higher-rate PCE cannot improve the overall free distance d}%,,e "

o As in the QPSK case, additional classes of fully rotationally invariant codes
can be found for PSK and QAM constellations if alternative mappings are
assumed. different PCEs are used, or other restrictions are placed on the
parity-check polynomials, but the code specification and realization is, in
general, more complex.

We close this section with an example of the 8-state, rate R = 2/3, nonlinear,
90° invariant code designed by Wei [27, 28] and chosen for the V.32 and V.33 high-
speed modem standards. The V.32 standard uses 2 uncoded bits and a 32-CROSS
signal counstellation for a spectral efficiency of n = 4.0 bits/symbol. In the V.33
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FIGURE 18.26: Performance curves for {wo 16-state, rate 8 = 2/3 8-PSK codes.

standard, 4 uncoded bits and a 128-CROSS constellation are used to achieve i = 6.0
bits/symbol.

[ )

EXAMPLE 18.14 The V
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&

A block diagram of the 8-state, rate & = 2/3, nonlinear, 90° invariant encoder and
the 32-CROSS constellatio ased ;r_ha:—, V.32 standard is shown in Figure 18.27.

{Mote that the 32-CROS55 ronmeﬂa tion is not naturally mapped, since 2 90° rotation
of a signal point does not alter the two least significant label bits in the same way
as naturally mapped CPSK.) The encoder has four input information bits, u'!,
u@ ' and ™. Bits 1@ = 0 and u™ = v® are uncoded and directly enter
Tfhe 3/. C MJ;\S signal mapper (modulator). Bits uD and ¢« are first differentially
encoded and then enter the S-state, rate R = 2/3 systematic feedback nonlinear
convolutional encoder, producing the three output bits v and v® (information
bits) and ¢!¥ (a p My bit). The five encoded bits v/, v™M, 1@ v and v then
enter the modulator and are mapped into one of the 32-CROSS signals according
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FIGURE 18.27: The V.32 TCM system encoder and signal constellation.

to the mapping shown in Figure 18.27. Because one 32-CROSS signal is transmitted
for every four information bits entering the encoder, the spectral efficiency of the
code is n = 4.0 bits/symbol. (The V.33 standard uses the same code along with
four uncoded information bits and a 128-CROSS constellation to achieve a spectral
efficiency of n = 6.0 bits/symbol.) At the receiver, soft-decision Viterbi decoding,
using an 8-state treilis with 4-fold (16-fold in the V.33 case) parallel transitions, 1S
performed based on the noisy received symbols at the demodulator output. After
Viterbi decoding, the decoded output bits u™™ and u® are differentially decoded.
The 8-state, rate R = 2/3 nonlinear encoder used in the V.32 and V.33
standards was designed completely by hand. without benefit of a systematic code
search [27, 28]. Tt is invariant to 90° phase rotations of the 32-CROSS constellation
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FIGURE 18.28: Three-level partitioning of the naturally mapped 32-CROSE signal
com‘{eﬂaﬁon.
shown in Figure 18.27, has free distance dﬂge = 5 and average number of nearest
neiﬁhbors Ay, = 6. 716w and achieves a real coding gain of 3.6 dB at a BER

of 107 compared with uncoded 16-QAM (n = 4.0) and 64-QAM (3 = 6.0},
respectively, without bandwidth expansion. {The fractional value of Agy,, 18 due to
the nonlinearity of the code and the boundary effects of the constellation.)

An equivalent ecncoder, described in Example 18.12 and skeiched in
Figure 18.23, was designed using a systematic code search. When this encoder
15 used with the naturally mapped 32-CROSS constellation (see Figure 18.28), it
requires only one AND gate and one differentially encoded information bit, and
differential encoding can be embedded within the encoder. (Note, as mentioned in
Section 18.2, that level 3 in the partition tree is an example of a case in which not all
subsets at the same level are isomorphic.)

For two-dimensional signal constellations, since it is impossible to achieve 90°
invariance with linear codes (the best that can be done is 180° invariance), nonlinear
codes are needed for full rotational invariance. This was the crucial insight made by
Wei [28] in the design of the V.32 code.

MULTIDIMENSIONAL TCM

Up to this point in our discussion of TCM we have counsidered only the case in which
the (k + 1) convolutional encoder output biis at each time unit are mapped into one



