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FIGURE 18.28: Three-level partitioning of the naturally mapped 32-CROSE signal
com‘{eﬂaﬁon.
shown in Figure 18.27, has free distance dﬂge = 5 and average number of nearest
neiﬁhbors Ay, = 6. 716w and achieves a real coding gain of 3.6 dB at a BER

of 107 compared with uncoded 16-QAM (n = 4.0) and 64-QAM (3 = 6.0},
respectively, without bandwidth expansion. {The fractional value of Agy,, 18 due to
the nonlinearity of the code and the boundary effects of the constellation.)

An equivalent ecncoder, described in Example 18.12 and skeiched in
Figure 18.23, was designed using a systematic code search. When this encoder
15 used with the naturally mapped 32-CROSS constellation (see Figure 18.28), it
requires only one AND gate and one differentially encoded information bit, and
differential encoding can be embedded within the encoder. (Note, as mentioned in
Section 18.2, that level 3 in the partition tree is an example of a case in which not all
subsets at the same level are isomorphic.)

For two-dimensional signal constellations, since it is impossible to achieve 90°
invariance with linear codes (the best that can be done is 180° invariance), nonlinear
codes are needed for full rotational invariance. This was the crucial insight made by
Wei [28] in the design of the V.32 code.

MULTIDIMENSIONAL TCM

Up to this point in our discussion of TCM we have counsidered only the case in which
the (k + 1) convolutional encoder output biis at each time unit are mapped into one
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signal point drawn from a 2°*!-ary constellation described in one-dimensional (1-D)

or two-dimensional (ZD) Euclidean space. In this section we consider the more
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general case of designing TCM systems for use with multidimensional (multi-D)
signal sets, pioneered by Wei [29].

Although it is possible to construct multi-D signal sets directly in multidimen-
sional Euclidean space, we consider here only the more practical case of constructing
L-dimensional or 2L-dimensional signal sets as the L-fold Cartesian product of a
1-D or 2-D signal set. First, let § = {sg, 51, - -+ , syy—1} be a 1-D o1 2-D signal set with
M = 2! signal points. Then, the L-fold Cartesian product

SL=85x8§x---x§ (Ltimes) {18.66)

represents the L-dimensional or 2L-dimensional signal set consisting of all possible
combinations of L signal points drawn from S, and the multi-D signal set S* contains
a total of 2/% signal points. Transmitting a signal from the multi-D signal set S*
is then equivalent to transmitting L signals from the constituent 1-D or 2-D signal
set S, and the multi-D signal Y; transmitted at time unit [ is represented as the
L-tuple Y; = (v, yi2. -+ . yi), where y;;. 1 < i < L, represents a signal from the
constituent signal set 5. For example, 3 x 8-PSK denotes the six-dimensional (6-D)
signal set consisting of all 8 = 512 possible combinations of three 8-PSK signals,
and the 3-tuple Y; = (i1, yr2, yi3) represents the 3 x 8-PSK signal transmitted at
time unit /.

In a TCM system design using a multi-D signal set, the (k + 1) convolutional
encoder output bits at each time unit are mapped into a signal point drawn from
the multi-D 2/%-ary signal constellation S%, so that k + 1 = 7 L. Because each time
unit now corresponds to the transmission of L signals from the elementary signal
set 8, each branch of the trellis representing the encoder/modulator is labeled with
L signals from S. In decoding, the soft Euclidean metrics for each of the L signal
labels on a branch are added to form the branch metrics.

Multi-D TCM systems have several advantages compared with 1-D and 2-D
TCM systems:

Fractional values of spectral efficiency can be realized.

1

o

Full rotational invariance can be achieved with linear codes.

Additional power savings can be realized using a technique called shaping.
The signal sets have a smaller peak-to-average power ratio.

. Higher-speed decoding can be achieved.

o

o o N

The first two advantages are explained in detail later in this section, and
advantages 3 and 4 are illusirated in an example discussing the V.34 high-speed
modem standard at the end of the section. The higher decoding speed stems from
the fact that the metric calculations on a treilis branch are normaily done with
quantized lookup tables. Thus, for multi-D TCM with L signals on each branch,
as opposed to 1-D or 2-D TCM with only one signal per branch, performing the
branch metric calculations in parallel results in a decoding speed advantage equal
to a factor of L.

To better explain the bhasics of multi-D TCM design, we now introduce

an example.



Seciion 185 pMultidimensional TCM 1017

EXAMPLE 18.15

in this exampie we consider an 8~5Lcue = 2/3, linear convolutional encoder
along with 3 uncode i avate B = k/(k+1) = 5/6 encoder

with k = 2, mapped C} 2 x &PSK signal set. The multi-D
TCM system encod nit time. Because two 8-PSK signals

are {ransmitied per unit Umat iency is

e (i8.67)
We begin by comsidering the partit of Signp‘ﬂ set S —
§ x5, where §_der B Eecadse this
signal set has 8Z = 64 5

i
k+1 = 6 levels, and the

1

fevel p in the tree. The be ‘ PSK s&gna set
e -~ /
is llustrated in Figore 18.29, U v§0> X u(o) Q7 (1\ X (O)\ﬁ
0
02 U({)vl % Ugl) ;0) U v(x vl }0) % vu)v;m)’ 2 (2 m,UiO)
o @ (), 2. ) (O _ 102 (@, <0>
X vy vy uy U v1 v X d O (Ul vy v1 v7 v7 v )16f61
to 4-D subsets in the 2 x 8-PSK signal set. (The subscripts 1 and 2 on the label bits
refer to the ﬁ t and second signal, respectively, in the 4-D signal set.) For example,

02O x0U1x i represents the 4-D subset ¢(0) x Q(0) U O(1) x @(1), which
contains all pairs of points from the 2-I» subset Q(0) and all pairs of points from
the 2-D subset (1), and 0% (00 x 00) = q serﬂs the 4-D subse O0(00) x Q00)
containing all pairs of points from the 2-D subset g(00) (see F mgme 18 12).

The MSSDs Al% at each level p in the partitioning tiee are also indicated
in Figure 18.29. Note that the distances A< increase as we proceed down the
partitioning tree, a pmpvny characteristic of any good signal set partitioning. To
see how the values of A2 5 are determine L we wpresem each 4-D signal point
¥ = (y1.y2) as a pair of integer kmeis of the &-PSK signal set; for example,
Y = (0, 0) represents the 4-D signal point corresponding to two uses of the 8-PSK
signal labeled 0. At partition level p = 0 we see that there are signal pairs such
as ¥ = (0,0) and Y = (0, 1) for which d%:( /Y = 04 0.586 = 0.586, so that
A% = (.586. At partition level p = 1 we see that there are signal pairs such as
Y = (0,0) and Y’ = (1, 7)., both belonging to subset 020 x0 U 1x1),for which
d2(Y. Y') = 0.586 + 0.586 = 1.172, so that A? = 1.172. At partition level p = 2 we
see that there ave signal pairs such as ¥V = (0 0) and Y’ = (0, 2) both belonging to
subset 02 (0 x 0), for which a’E(ﬁi, Yy = 0+2.0 = 2.0, 50 that AZ = 2.0. At partition
level p = 3 we see that there are signal pairs such as ¥ = (0, 0) and V' = (2, 6), both
belonging to subset 0% (00 x 00 U 10 x 10), for which d2 (Y, Y') = 2.0 + 2.0 = 4.0,
so that A% = 4.0, and so on.

From the set-partitioning encoder diagram shown in Figure 18.14 we see that
at each time unit, the three output biis of a rate R = 2/3 encoder select one of the
subsets at partition level p = 3, and then the three uncoded bits select one of the 4-D
signal points. Thus, these 6 bits determine the two 8-PSK signals to be transmitted in
a given time unit. The mapping from these 6 bits to a particular pair of 8-PSK signals

—a@ (S ]
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§ = 8-PSK
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FIGURE 18.29: Partitioning tree for 2 x §-PSK.
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depends on the way the subsets in the partitioning tree are formed. For example.
the subset 02(0 x 1 U 1 x 0) at partition level p = 1 is generated as the coset of

02O x0U1x1) b} dﬂqvaswnai pair gy (o € 52, g ¢ 02(0 <0 U 1x D).
MMF@ a coser generator, to each member of the subset Q 0 x x 1). Choosing
the coset gener /J or as gg = (0. 1) and using integer nmaﬁom 'Jfor i[he signal points

within each subset (see Figure 18.29), we can represent the coset generation as
7 — -
0P Ox1TUIx0)=0"0x0U1x" 1)+ go
— 2 4] Q (1 &
s Q ( x U1 x 1) -+ (O 1) (H’lud o) lluaog;

08 At partition level p = 2, we form the subsets
o 0) as cosets of the subset Q2 (0 x 0) by choosing
raior gj (g1 e 02O x0U1x D.g ¢ 0% (0 x G)). For the
the subsets ai level 2 as

PPAxD=00x0)+g =020 x0) +(1.1) (mod8) (18.692)
PO x 1) =0 (0x0) +g =00 x0)+(0, 1) (mod8) (18.69b)

0PI x0) = 0% (0 x0)+g +8 = 0% (Ox0)+(1.2) (mod8). (18.69¢)

Sirnilarly, at partition level p = 3, we choose a cosel generator g (g € 0% (0 x 0)
@ & 02 (00 x 00 U 10 x 10)) to generate the subsets, For the choice g = (0, 2}, the
subsets at level 3 are formed as

0P (00 x 10 U 10x 00) = 07 (00 x 00 U 10 x 10) + &

= Q200 x 00 U 10 x 10) + (0.2) (mod 8)  (18.70a)
0701 x 01 U 11 x 11) = 0% (00 x 00 U 10 x 10) + g,

= 0¥ (00 x 00 U 10 x 10) -+ (1, 1) (mod8)  (18.70b)
0% (01 x 11 U 11 x 01) = % (00 x 00

= 0% (00 x 60

0x10) +2 + g
10 % 10) + (1.3) (mod 8)  {18.70c)
0% (00 x 00 U 10 x 10) + g
07 (00 x 00 U 10 x 10) + (0. 1) (mod 8)  (18.70d)

U
U
U
U
02 (00 x 01 U 10 x 11) U
U
0% (00 x 00 U 10 x 10) + & + g
U
U
U
U
U

I

I

fl

0200 x 11 U 10 x 01

= 000 x 00 U 10 x 10) + (0. 3) (mod 8)  (18.70¢)
0% (01 % 10 U 11 x 00) = 0% (00 x 00 U 10 x 10) + g + go

= 02 (00 x 00 U 10 x 10) + (1.2) (mod 8)  (18.701)
0 (01 % 00 U 11 x 10) = @ (00 x 00 U 10 x 10) + & + g1 + g

= 0% (00 x 00 U 10 x 10) + (1, 4) (mod ). (18.70g)

e/

The subsets ai the remaining three levels of the partition tree can be formed in
a similar fashion. For the choices of coset generators g3 = (2,2), g4« = (0. 4), and
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gs = (4, 4), the mapping from the binary code vector v = (v v® vy @y Oy 1o
the 8-ary signal vector Y = (y;, y2) can be given as {cllows:

Y=0ny= p_ vPg, (mods)
0=<p=<§

=v9@, 4) + 190,49 +v¥2.2) +v?(0,2)
+0D, 1) + 90, 1) (mod 8), (18.71)

where v®, v@®, and v® represent the three uncoded bits, and v@ . v and v©@
represent the three encoder output bits. For example, the code vector v =(111010)
generates the signal vector Y = (4,9 + (0,4 + (2,2) + (1, 1) = (7, 3). If the coset
generators are given in binary form as 3-bit column vectors

00 0 0 00
g=|00] g=|00] g=| 01
| 0 1 | |11 ] 1 00
, (18.72)
0 0] 0 1] 11
=11 g=10 0 gs=1 0 0
L 0 0 | | 0 0 | | 0 0 |
then the mapping from the binary code vector v to the binary signal vector
T N
Y=(y1.y20 = [(){Z)y?)yio» , (yéz)yél)yéo’) 1s given as

Y= (3’1, yZ) = E U(p)gp (1873)
O<p=<5
1 17 0 1] F0 0]
= 0 0 |ev®l 0 0| 1 1 |a
__0 0_ _0 O_ _O ()_
0 0] 0 0] F0 0
@10 1 jev®] 0 0 [ev®] 0 0 |,
00 ] 11 01 ]

and for v = (111010), we sce that Y = [(111)7, (011)T], the binary equivalent of
Y = (7, 3). The mapping function represented by (18.73) is shown in Figure 18.30.
Next we must choose the 8-state, rate R = 2/3 encoder to maximize the
overall MESE distance df%,e .- From (18.18) we see that d]%,e , is the minimum of
5?, .» the minimum distance between trellis paths, and ’5;%11'117 the minimum distance

between parallel transitions. The value of 832 ., can be determined directly from the

partitioning tree as the MSSD at partition level p = 3, so that §2. = A% = 4.0.

min

Thus, the encoder must be chosen to make 8]%,66 as large as possible. The best 8-state,

rate R = 2/3 encoder has parity-check polynomials (in octal form) h® = (0 4),
b = (06), and b@ = (11), and 57, = 2.929, so that 47 = min{2.929,4.0} =

2.929. To determine the asymptotic coding gain y in this case, we must compare

-
i
]

‘1‘
[
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FIGURE 18.30: A 2 x 8-PSK signal set mapper.

with an uncoded system with the same spectral efficiency as the coded system,
that is, n = 2.5 bits/symbol. For this purpose we consider the 2 x 8-PSK subset
0% (0 x 0 U 1 x 1) consisting of 32 signal points, which has n = 2.5 bits/symbol and
@, =1.172. Thus, y = 10logyo(@2, /d2, ) = 1010g;(2.929/1.172) = 3.98 dB. The
overall encoder block diagram for this 4-D TCM system is shown in Figure 18.31.
Note that the encoder delays in this case are for a 27 -second time interval, that is,
the time required to transmit two 8-PSK signals.

The following remarks apply to Example 18.15.

o Unlike 2-D signal sets, multi-D signal sets are capable of achieving fractional
spectral efficiencies.

o The particular choices for coset generators determine the mapping from
encoder output bits to signal points, but they do not affect the partitioning
itself.

o The overall MFSE distance d%m) can be increased in two ways, either by using

more encoder states, thereby increasing ijm,ﬁ and/or by encoding more bits,

that is, using a larger k, thereby increasing 5;2}“‘” (see Problem 18.28).
We now generalize the preceding example into a design procedure for multi-D
TCM. The major steps in the design procedure are as follows:
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(D) V(D)
u(D) vi(D)
u(3)(D) Vm(D)
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FIGURE 18.31: Encoder block diagram for 8-state, rate R = 2/3 trellis-coded
2 x 8-PSK.

1. Partition the multi-D signal space S such that the MSSD Af, is maximized at
each partition level p =1,2, -+ k.

2. Select a rate 12/(/2 +1), 1< k< k, convolutional encoder to maximize 8%,66,
the minimum distance between trellis paths, and minimize Ay, the number

of nearest-neighbor codewords, for some given number of states.

The partitioning of the multi-D signal set ST uses the multilevel coding
technique first introduced by Imai and Hirakawa [30] and developed further in [31].
We begin by representing each of the 2/ signal points in the constituent 2-D signal
set § by a binary vectory = (y/ U, ... y@® yO) where y\/) determines the subset
selected at level j 4 1 in the complete binary partitioning tree for S, and by letting
the MSSDs in the partitioning tree be represented by 83 < 8% <. < 8% = 00. (At
level I in the complete tree, there is only one signal point in each subset, so 512 = 00.)
Then, we can represent the 2/Z multi-D signal points Y in S as an [ x L binary
matrix

Y =(y1, y2. -~ .¥1)
-1 I—-1 -1
’7 y{ ) yé A yz ) ‘!

: : : 18.74)
1 1) (1) ’ (

whoow g

y;O) yéO) PR .\/720)

\ T
where each column y; = ( WD Y 1 2 < Loof Vs the binary

represeniation of one of the 2/ signal poinis in S. (Aliernaiively, we can represent
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Y ia integer form as the ot (1. v2. -, vp) by expressing each bi
4 . )
o= 5 PR .
s the integer v, = 20<j<i-1 Y 27, 1 <i<L) .
Fach row of V is a binary L-tuple and can be regarded as a codeword in the
(L L, 1) binary block code Cy. (An (n, k., ) binary block code has block length
7, dimension &, and minimum Hamming distance 4.} Then, we can represent the
mum-D signal set $* as the I-level block code

7y column y;

»

Ao = CoxCox-oxCy,

where Ag represenis the set of all 277 possible comb f [ codewords drawn
from Cy, and Y represents a p articular memmber of the set. The first code in the chain
of I codes that constitute Ag (co ‘1‘esp0ndm0 to the botiom vow of V) determines
the L bits that select the L ﬁevel—l subsets in the I partitioning irees for $. whereas

the last code in the chain (correspen dmv to the top row of ¥) determines the L bits

that select the L signal points at leve
To partition Ag we begi

Ve
v forming a sequence of linear subcodes of Cy,

that

CrcCp - -y cCy, {18.76)
and the dimension of subcode €; is given by
Hm(Cy=0L—i 0<i<L. (1877}

(Mote that the (L,0.00) code € contains only the allzero codeword.) If 4;
represents the minimum dﬂsiancc of subcode C;, then

dy<dy <. <d;_ | <dg, (18.78)
where dy = 1, and d; = oo. We will see shortly that to maximize the MSSDs A*’
at each partition level p in the mult-ID partitioning tree, we should choose eam

subcode C; to maximize its minimum Hamming distance d;.

To divide the multilevel code Ag (multi-ID signal set %) into subsets, each
containing a single poini, requires a binary partition tree with 7L evpis Thus, we
use the code sequence Co, Cy. -+ . C; to form a seguence of muliilevel subcodes of
Ay, denoted by Ag(0), A (D). -+, Ay (0), such that

LIL

Ay ch i C-- C 1\1(0) C AO(O), (1879)
and the dimension of multilevel subcode A;(0) is given by
dim[A(O]=TL ~i, 0<i<IL. (18.80)

where Ag(0) = Ag and A;7 (0) contains I copies of ihe all-zevo codeword. Gur goal
in designing this { L-level partition tree is to maximize the M55Ds /"\/7 at cach level.

Before proceeding with the design of a multi-D partitioning tree, we note that
the SE distance between two multi-D signal points ¥ and V' is sim ;y the sum of

the SE distances between the corresponding 2-D signal points; that §

Xy

ALY Yy = di (v y)). (18.81)

I<i=<L
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For the entire multi-D signal set $*, the MSE distance is given by A% = 6(2), the
MSE distance of the consiituent 2-D signai set S. This foliows from the taci that
two distinct multi-D signals, each represented by a vector of L signal points, may
differ in only one component, in which case (18.81) contains only one nonzero term.
Because the MSE distance in the constituent 2-D signal set is 8(%, we obtain A% = 88.
In terms of the multilevel code representation Ag(0), we note that two distinct
multilevel codewords, each represented by a set of I binary codewords of length L
from the code Cy, may differ in only one codeword. If the two multilevel codewords
differ only in the jth codeword, then the MSE distance is dO(S?. Minimizing over
all j, 0 < j <1 —1, we can represent the minimum distance between two multi-D
signal points as

A3 = min (dosF, dos?. -+ . dod}._, ) = 63, (18.82)

since dy = 1, and 83 < 512 <. < 8%4.

Now, to partition Ag(0), of size 2/, into two subsets of size ,namely, the
subcode A1(0) and its coset A((1), we must replace one of the codes C of size 27 in
the I-level code Co x Cg * - - - * Cg with the code C; of size 2L 1. Further, we should
do this in such a way that the MSSD A% at level 1 in the multi-D partitioning iree is
maximized. If the code Cy is inserted at the jth level, the multilevel subcode A1(0)
isgiven by Cox - % Cox €1 %« Cy x -+ - x Cp, and an argument similar to that used to
obtain (18.82) gives

21L—1

A} = min (dodd, -+ . dod?_; 162, dod?, .+ L dos? ) (18.83)

that is, if two multilevel codewords in A1(0) differ only in the jth codeword, then
the MSSD is d18]2. Assuming that dy > dy = 1, and 8% > 85, we see from (18.83) that
A% = 83, unless C; is inserted at level j = 0, in which case A% = min(d, 82, 8%) > 83.
In other words, Cy must partition the initial level of the multilevel code Ag(0),
corresponding to the initial level of partitioning of the constituent 2-D signal sets,
to maximize A%. The two subsets at level 1 of the partition tree are now given by the
subcode A1(0) = C{ x Cy * - - - x Cy and its coset

A1(D) = A1(0) + go, (18.84)

where the coset generator gg is a multilevel codeword not belonging to the subcode
A1(0); that is, gy € Ag(0), gy ¢ A1(0). Here we note that (18.84) corresponds to
(18.68) in Example 18.15, with the subcode A;(0) corresponding to the subset
0%(0 x 0U1 x 1) and the coset Aq(1) corresponding to the coset 0%(0 x1U1 x0).
(The particular choice of gy does not affect the formation of the coset A1(1).)
Further, since the lowest-order bit v in the binary code vector v selects the first
branch in the pariition iree, we can represent the two subsets at level 1 as

Ay = A1) + v Pgg. (18.85)

Next, to partition the subcode A1(0) and its coset A1(1) each of size 2/2~1, into four
subsets of size 21472, namely, the subcode A»(0) and its cosets A(1), Ax(2), and
AL LN wrrp smmzrod wmmamloan [ ANESURS IS VL5 IS IR IR By
lkz\.}}, wWEC 1TI1uUSt 1&41}1 19 l.ll BLEC ILIUNLLEC VUL SUULULIC
A1 (0) = C % Cg x - - - x Cp with the code C;,{ of size 2b—i-1, Again, we shouid do

PRUUIY LN IR BN ST LA, ¥ S
Oii€ O1 ua€ COGES «j 01 SiZE 4

—~
L
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this in such a wa ay ihat the MSSD A at level 2 in the multi-D partitioning tree is
In th

is case, two choices m the subcode A, (D) are possible:

maximized. In

(8) £y =CyxCox--oxCy, (18.86a)

sk Cgue €y Cyox- ook Co (18.86b)

two choices for the subcode A, (0) on /_\% we staie a
Ds /_\ at partition level p.

[32] Assuine that the multilevel subcode Ag(0) at paitition

given oy Ao(@\ = CCP * Cpl H oo ox @DI | and that the associ-
TMINg dlSLaHCSQ of each mmpomeq’f code are given by
espectively. Then, the MSSD A;) at partition level p is

=4

2 e 2 5 <2 2 719 QTN
, = 1min r‘ka’po(SOQ dp, 87 vde 5[71>g . (18.87}
The following comments apply to Theorem 18.1:

o The proof of (18.87) is based on a generalization of the argument used to
obtain (18.82) and (18.83).

o In general, (18.87) gives a lower bound on A%, although the bound holds with
eqﬂai ity for most signal sets of interest.

o It can be shown (ses Problem 18.29) that the partition level p equals the sum
of the redundancies of the [ linear block codes that define the subcode A ,{(0);
that is,

p= Z P (18.88)
0<j=i-1

o From (13.87) we see that to maximize the MSSDs A”IZ) at each partition level
p, each subcode C; should be chosen to maximize its minimum Hamming
distance 4;.

We can now use (18.87) to determine A% for the two choices for the subcode
Ao(0) given in (18.86). For choice (a) we see that AZ = min(dgé(%. 5%). For choice
(b), assummg Cy is inserted at level j, we obtain A} = mm(dlég,az,dlé%) =
min(d; 67 Oﬂ 82‘1 = A unless €y is inserted at level j = 1, in which case A% =
mm(al%? 5[18% 523) = mm(dl(ﬁg, 8%) > /_\%. Thus, for choice (b} it is always best
to insert €y at level j = 1, that is, to choose Ay (0) = C; % Cy = Co x -+ % Co,
to maximize A%. Whether choice (a) or choice (b) gives the largest value of A%
depends on the particular values of di, d». 83, 87, and 62. Choice (a) implies that
the first two partiticns in the multi-D signal set involve partitions at level 1 of
the constituent 1-D or 2-D signal set, whereas choice (b) implies that the second
partition in the mulii-D signal set involves a partition at level 2 of the constituent
signal set.
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Once the subcode A,(0) has been chosen, the four subsets at level 2 of the

partition chain are given by the subcode A3(0) and its cosets
Ay (2) = A2 (0) + g1, (18.89a)
Ax(1) = A2(0) + go, (18.89b)
£2(3) = £2(0) + g1 + go, (18.89¢)

where the coset generator g is a multilevel codeword belonging to the subcode
A1(0) but not belonging to the subcode A,(0); that is, gg € A1(0), go & A2(0).
Here, as before, we note the analogy between the general level-2 coset generation
of (18.89) and the specific, for 2 x 8-PSK, level-2 coset generation of (18.69} in
Example 18.15. (Again, the particular choice of g; does not affect the formation
of the cosets of A;(0).) Further, since the two lowest-order bits vV and v in
the binary code vector v select the first two branches in the partition tree, we can
represent the four subsets at level 2 as

A 2o vy = A 0) + v Vg + 0Oy (18.90)

The higher levels are partitioned in a similar manner. First, (18.87) is used to
determine the multi-D subcode A,(0) that maximizes A27 at partition level p,
depending on the minimum Hamming distances d;, 0 <i < L, of the subcodes C;
and the MSSDs 8%, 0 < j <1 —1, of the constituent 2-D signal set §. Then, a new
coset generator gl',Al is chosen to generate the 27 subsets at level p as follows:

Ap@P Dyl 20Dy @y = A L0) + P g, v W+ 0@,
(18.91)

where (v®~D ... p® Oy representing the p lowest-order bits in the binary
vector v, select the first p branches in the partition tree. The process ends at
partition level /L, where the mulii-D subcode A;p (0) = Cp «Cp x - - - x €y, contains
the single multi-D codeword consisting of I copies of the all-zero codeword. The
211 = 2k+1 qubsets at level IL contain only one multi-D signal each, which can be
expressed as

AL (21L71v(1L71)_'_.”_{_21)(1)_{_”(0))

=A@ + o Vg g + 00, (18.92)

where the encoder output vector v = (v/E=1 ... D Oy — () o 4,0
selects the path through the partition tree. Finally, since the selected subset at level
IL contains the multi-D signal Y to be transmitted, and noting that A, (0) is the
(multilevel) all-zero codeword, we can write

Y=y .y = » g, (18.93)
O<p<iL-1
(If the coset generafors g, = (g1, 82,

€2, 8p). 0 < p < TL — 1. where g;; =
(4D O ’

8pi 2 &pi~ &pi ). 1 <i < L, are expressed in integer form, ihat s, g, =
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(8p1.8p2. . 8pL): &pi = L0<J<1 lgn )27, then (18.93) using modulo-2! addition
gives ¥ = (v1.v2, -+, yr) in integer form.} Again, we see thai (18.93), and its
integer form noted previously, represents the general form for generating multi-D
signals Y, corresponding to (18.71) and (18.73) in Example 18.15.

The following example illusirates the general procedure.

EXAMPLE 18.16 2 x 3-PSK Set Partitioning

For the 2 x 8-PSK
85 = 0.586 < §% =
ng C € € Cg as follows:

o Cyisthe (2,2, 1) code that consisis of the codewords (00), (01), (10), and (11).

f the constituent 8-PSK signal set are
choose the sequence of linear codes

o Cyisthe (2,1, 2) code that consists of the codewords (00) and (11).
o €y is the (2, 0, co) code that consists mig/ of the codeword (00).

The choices of multilevel subcodes that result in the best A% at each partition level
p, along with the coset generators (in integer Eo n) and the values of A?) calculated
using (18.87), are listed in Table 18.10. Note that in this case A?) is maximized at
each partition level p if the first two levels of the multi-D partition involve partitions
at level 1 of the constituent 8-PSK signal set, the next two levels of the multi-D

partition involve partitions at level 2 of the 8-PSK signal set, and the last two levels
of the multi-D partition involve partitions at level 3 of the 8-PSK signal set.

The mapping from the coset generators to the multi-D binary signal vector

W= (y1. y2)

() 2
¥y ¥y
=] (18.94)
© O
RS B

TABLE 18.10: The 2 x 8-PSK signal set partition.

Partition level Sulbcode MISSI» Coset generator

P A,(®) a2 2

0 Cox Co * (Co min(4, 2, 0.586) = 0.586 0, 1)
1 Co»Cy x Cl min(4, 2, 1.172) = 1.172 (1,1
2 Cyp = f”o % (,2 min(4, 2, co) = 2.0 (0,2)
3 Co * (Cl % Cy min(4, 4, co) = 4.0 (2,2)
4 Co * ég * Cy min{4, co, co) = 4.0 0,4)
5 (él % Co % Cy min(g, co, co) = 8.0 (4,4)
6 éz xCy x Gy min{co, 0o, 00) = 0 —

Adapted from [33].
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or Y = (y1, y) in integer form, corresponding to a particular binary encoder output
vector v = (WO v@ @@ My was illustrated in the previous example.

For larger multi-D signal constellations, there may be several sequences of L
subcodes of €y that can be used to partition the multilevel code Ag, none of which
maximizes A?) at every partition level. Which partition is best in a particular case
will depend on the rate R = k / (IE + 1) of the convolutional encoder that determines

the partition level and thus 5%1171' An example for the 3 x 8-PSK multi-D signal set
illustrates this point.

EXAMPLE 18.17 3 x 8-PSK Set Partitioning

As for the 2 x 8-PSK signal set, for 3 x 8-PSK we again have 63 = 0.586 < §2 =
20 < 8% = 4.0. In this case we consider two options for the sequence of linear codes,
€3 C €5 CCIcChorCsCChc Chc Co,defined as follows:

o €y is the (3, 3, 1) code consisting of all eight binary 3-tuples.

e Cf is the (3,2,2) code consisting of the codewords (000), (011), (101). and
(110).

@

Ul’ is the (3,2,1) code consisting of the codewords (0006), (011), (111), and
(100).

o f is the (3,1, 2) code consisting of the codewords (000) and (011).
® C’2’ is the (3, 1, 3) code consisting of the codewords (000) and (111).

e €3 is the (3, 0, 00) code consisting only of the codeword (000).

We see that code sequence C3 C CJ C €] C €y achieves a better minimum distance
at the first partition level but that the sequence C3 C €C[2’ - C’l’ C Cqy achieves a better
distance at the second level. Either of these sequences alone, or combinations of the
two sequences, can be used to partition the 3 x 8-PSK signal set. Three partitions
of 3 x 8-PSK, corresponding to three distinct combinations of the foregoing two
code sequences, along with the corresponding coset generators (in integer form)
and values of Af, calculated using (18.87), are listed in Table 18.11. Partition I uses
only the code sequence C3 C C5 C €] C Cy for partitioning, whereas partitions 11
and III use combinations of the two code sequences. Note that partition 1 is best at
partition level p = 1, II and TiT are best at p = 2, I and 1T are best at p = 4, and
III is best at p = 6. Thus, for example, if the code rate is R = 3/4, either partition
I or partition II should be selected, whereas partition 11 is the best choice for a
code rate of R = 5/6. (It should be noted that although different code sequences
can be used to partition different levels of a constituent signal set, it is not allowablc
to “jump back and forth” between two code sequences in partitioning a given level
of the constituent signal set; that is, only a proper subcode sequence can be used
to partition a given level.) Finally, using the coset generators from Table 18.11
in (18.93), we can determine the signal set mappings corresponding to the three
partitions of 3 x 8-PSK (see Problem 18.30).




Subcode

) Ay (B) &p
0 Cp + Co x Cp | min(4. 2. 0.586) = 0.586 {(1.L1)
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ﬁ
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min(4, 2. 0.586) = (.586

€

min(4, 2, 0.586) = 0.586
min(4, 2. 1.757) = 1.757
min(4,. 2. co0y = 2.0
min{4. 4, co) =4.0
min(éd. 4. co) = 4.0
mn(4d, co.o0) = 4.0
min(8. oo, co) = 8.0
min(8. co, co) = 8.0

min{co, 0o, 60) = 00

(0.0.1)
(0.1.1)
(1.1.1)
(222)
(22.0)
(0.2.2)
(4.4.4)
(4.4.0)

(0,4.4)

(contined overleaf’)
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TABLE 18.11: (continued)

Partition TiK
Partition level Subcode MSSD Coset generator

p Ap©®) A2 gp

0 Co + Co * Cp | min(4,2,0.586) = 0.586 (0,0,1)
1 Co % Co * 5% min(4, 2, 0.586) = 0.586 (0,1,1)
2 Co * Co * 5% min(4, 2, 1.757) = 1.757 (1,1,1)
3 Co * Cp * é} min4, 2, co) = 2.0 (0,0,2)
4 Co * 5% % C3 min(4,2, 00) = 2.0 (0,2,2)
5 Co * 55 * C3 min(4, 6, c0) = 4.0 (4,4,4)
6 eé} s fi:i * Cs min(8, 6, 00) = 6.0 (2.2,2)
7 ClxCixC3 | min(8, oo, 00) = 8.0 (4.4.0)
8 5; «C3xC3 | min(8. 00, c0) = 8.0 (0,4,4)
9 ég % C3 % C3 min{ce, 0o, c0) = 00 —

Adapted from [33].

We now consider the partitioning of the 4 x 8-PSK signal set.

EXAMPLE 18.18 4 x 8-PSK Set Partitioning

For the 4 x 8-PSK signal set we still have 85 = 0.586 < 67 = 2.0 < 62 = 4.0. In
this case only one sequence of linear codes results in a good partition. We choose
Cs CcCyCcCy CCq CCyas follows:

@

Cy is the (4, 4, 1) code consisting of all 16 binary 4-tuples.

@

C; is the (4, 3, 2) code consisting of the 8 binary 4-tuples of even weight.

e C; is the (4,2, 2) code consisting of the codewords (0000), (1010), (0101), and
(1111).

e C3is the (4, 1, 4) code consisting of the codewords (0000) and (1111).
o Cyisthe (4,0, 00) code consisting only of the codeword (0000).

The choices of multilevel subcodes that result in the best Afj at each partition level
p, along with the coset generators (in integer form) and the values of Af) calculated
using {18.87), are listed in Table 18.12. Using the coset generators from Table 18.12

in (18.93), we can determine the signal set mapping corresponding to the partition
of 4 x 8-PSK.
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TABLE 18.12: The 4 x 8-PEK signal set partition.
Partition level Subeade MSSID Coset generator r

z Ay (D) _\j) 8p

0 Co = Co + Cp | min{4, 2, 0.586) = 0.586 (0.0,0,1)

1 Cp = Cg = Cﬂ min(4, 2, 1.172) = 1.172 (0,0,1.1)

1

2 To#ToxCy | mingd,2,1.172) = 1.172 (0,1.0,1)

3 (é (0,6,0.2}

4 (1,1,1,1)

5 Co Ty Cy mind4, 4, o0y = 4.9 (0,0,2,2}

!
6 CoxCyxCy | mingd, 4, 00) = 4.0 (0.2.02)
!

7 Cox Ty % Cy min(4, 8, co) = 4.0 (0.0,6,4)
1

8 Cl # e e Cy min(g, 8, o) = 8.0

g o f‘é_; x Cy min(8, co, co) = 8.0 (0,0,4,4)

10 22 x Cyx Oy min{8, co. co) = 8.0 (0,4.04)
J

11 Cyx CyxCy | min(16. co. c0) = 16.0 (44.4.4)
1

12 CyxCyxCy min(co, co, o) = oo —

Adapted from [33],

v
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For example, a summary of the L x
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a partitioning of the multi-D signal space §

The following remarks relate to Examples 18.16, 18.17, and 18.18:

17 iltusirates iha’g in some cases, there is not a single choice for
& of binary codes that partitions a multilevel code that maximizes
level D
£ L %8 PSK partitions developed in these three examples appears
Jior L = ) 3, and 4.
sets of code sequences used to partition multi-D 8-PSIC
be used to partition mulii-D 16-PSK. and QAM signal sets.

16-PSK and L x 16-QAM partitions
d {b), respectively, for L = 2, 3, and 4, where
= (.586 < 57 20 < (SZ = 4.0 for the constituent 16-PSK.
;=10< 52 =20<6=40< 82 8.0 for the constituent
i In boﬂh cases the mapping from coset generators (o
nteger form using (18.93) requires addition modnlo-16.

L such that the MSSD A?, is

mazimized at each partition level p, a number of coded informationbitsk, 1 <k <k,

must be chosen to give the desired MSSD ﬁlz

., Then, a rate R = k/Gk + 1)



TABLE 18.13: Summary of L x 8-PSK partitions, L = 2, 3, 4.

Partition L=2 L =330 L = 3d0) L = 3D L=4
level MSSD Generator | MSSD Generator | MSSD  Generator | MSSD  Generator | MSSD  Generator

p APZ 8p A‘PZ &p A,pz Ep APZ gp A‘pz gp

0 0.586 (0,1) 0.586 (1,1,1) 0.586 (0,0,1) 0.586 (0,0,1) 0.586 {0,0.0,1)
1 1.172 (1,1) 1172 (1,1,0) 0.586 (0,1,1) 0.586 0,1,1) 1.172 (0,0,1,1
2 2.0 (0.2) 1.172 (0,1,1) 1.757 (1.1,1) 1.757 (1,1,1) 1.172 (0,1,0,1)
3 4.0 (2.2) 2.0 (2,2,2) 2.0 (2,2,2) 2.0 (0,0,2) 2.0 (0,0.0,2)
4 4.0 (0.4) 4.0 (2,2,0) 4.0 (2,2,0) 2.0 (0,2,2) 2.343 (1,1,1,1)
5 8.0 (4.4) 4.0 (0,2,2) 4.0 (0,2,2) 4.0 (4.4.4) 4.0 (0,0.2,2)
6 — — 4.0 (4,44) 4.0 (4,4.4) 6.0 (2,2,2) 4.0 (0,2,0,2)
7 — — 8.0 (4,4,0) 8.0 (4,4,0) 8.0 (4.4,0) 4.0 (0,0,0,4)
8 — — 8.0 (0,4.4) 8.0 (0,4.4) 8.0 (0,4.4) 8.0 (2,2.2,2)
9 8.0 (0,0,4,4)

10 — — — — — — — — 8.0 (0,4,04)

11 — — —_ — — — — — 16.0 (4,444

Ty T T 1 3 5 0 3 6 2 3 6 2 65 4 8 11

Acapted from [33].
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TABLE 18.14: Summary of L x 16-PSK and L x 16-QAM pariitions, L =2, 3, 4.

(a) L x 16-PSK

Partition L=2 L =3 L = 33D L = 31 L =4
level MSSD  Generator | MSSD Generator | MSSD Generator | MSSD  Generator | MISSD  Generator
p A% gp A% Ly &i Ep A% Ep Ai gp
0 0.152 (0,13 0.152 (11,1 0.152 (0,0,1) 0.152 (0,0,1} 0152  (0,00,1)
1 0.304 {(L.H 0.304 (1,1.0) 0.152 (0,1,1) 0.152 (0.1,1) 0304  (0,0,1.1)
2 0.586 (0.2) 0.304 (0,1.1) 0.457 (1,1,1) 0.457 {1,1,1) 0.304  (0,1.0,1)
3 1.172 (2,2) 0.586 (2.2.2} 0.586 (2,2,2) 0.586 (03,0,2) 0.586  (0,0.02)
4 2.0 (0,4) 1.172 (2,20 1.172 (2,2,0) 0.586 (6,2,2) 0.609 (L1110
5 4.0 {4.4) 1.172 {6,2.2) 1.172 (0,2.2) 1.757 (2,2,2) 1172 (0,0,2.2)
6 4.0 {0,8) 2.0 (4,443 2.0 (4,44} 2.0 (4,4,4) 1172 (0,2.0,2)
7 g0 (8.8) 4.0 (4.4.0) 4.0 (4,4.0) 4.0 (4,4,0) 2.0 (0,0,0.4)
8 — — 4.0 (0,4.4) 1.0 (0,4,4) 4.0 04 ZW 2343 (2,22.2)
9 — — 4.0 (8,8,8) 4.0 (8.8,8) 4.0 (" 8 4.0 (0,0,4,4)
10 — — 8.0 (0 8.0 3.0 (8.8,0) 8.0 (8,8, U) 4.0 (0,4,0,4)
11 — — 8.0 (0.8.8) 3.0 (0,8.8) . (0.8,8) 4.0 (0.0,0,8)
i2 — — — — — — — — 8.0 (44,4,4)
13 — — —— — —_ — — — 8.0 (0,0,8,8)
14 — — — -— — — — — 8.0 (0.8,0.8)
15 — — — — — — — — 16.0 (8,8,8,8)
g W Mo A3 1 3 5 7 0 3 6 9 2 3 6 9 2 5 6 9 4 8 12 15

(continued overleaf)
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where v and v represent the
encoder outpui biis. In this case
and the MSSDs are A2 = 1172, A = 2.0, AL = 4.0, 4]
A2 = oo (see Table 15.10).

 The best codes for mulii-D 8-PSK, 16-PSK. and QAM signal sets with L = 2. 3,
and 4 ave listed in Tables 18.15(a)~(c). For the QAM signal sets the codes are based
on the 4-D., 6-D, and 8-D integer lattices Z'. Z°, and zf’, e ‘i‘vcch'\/c?v The codes
were found by computer search {33, 34]. Each table gives the following information

3 ” (2 ”
2 uncoded bits and v@ . v and v'Y represent the 2
the spectral efficiency is 5y = 4-/1. = 2.0 bits/symbol,
= 4.0, A\‘ = 8.0, and
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ﬂ’m--«h‘"ﬁll 43~ o
CoOBLCAaions,

TABLE 18.15: Optimum codes for multi-D 8-PSK, 16-PSK. and OAM signal
a
(a) Codes for 8-PSK

TRELLIS-CODED 2 x 8-PSK
5 = 2.5 bits/symbol, g =0, d?

min

= 1172, Apin = 4 (2x8-PSK)

[ T2l e® | 6@ | a0 | 5@ | mvarience G | Ay, | B | Adper | v @B)
111 — — 1 3 90° 1.757 8 2.0 4 1.76
201 — | — 2. s 90° 20 4 299 | » 232
312 — 04 06 11 45° 2.929 16 — — 3.9
412 — | 16| 12 23 45° 3515 | 56 — — 4.77
st2f — | 1] 06| 4 45° 3515 | 16 — — 4.77
62| — | 004|030 | 113 45° 4.0 6 | 4101 | 80 5.33

2 — 044 | 016 | 107 90° 4.0 6 4.101 48 533

| 7|3 110 | 044 | 016 | 317 90° 4.0 2 4101 25 533

TRELLIS-CODED 2 x 8-PSK

y = 2.0 bits/symbol, g =1, d%. =2.0. A =2 (1xQPSK)

nin

) ' kL n® | @ | w® ) w® | gvasiance | @, | Agy | By | Adyey | 7 @B
I T R 13 452 13172 1 80 | 40 6 2.00
21| — | = 2] s 450 | 40 60 | 5am2 | % 3.01
sl2l — | 4| 2] n 180° | 40 20 | 512 | 16 3.01
403 o4 14| o2} 2 90° | sA72| 80 | — 413
s3] 241 14 06| 43 9° | 60 60 | — — 477
6|3 | 012|050 | 004 | 125 90° | 6343 | 55 | — — 5.01
i 7 03| 10| o4 | o6 | 317 o0° | 7515 | 250 | — — 575

TRELLIS-CODED 3 x 8-PSK
5 = 2.67 bits/symbol, ¢ =0. d?

min

= 1172, Apn = 12 (3x8-PSK. I)

v kR R® e | Gevariance | @7 | gy | GFe | Adye | v (4B | Signal set
th1) — | — 1) 3 45 1172 4 | — | — | 000 1
201 — 1 — | 2| 5 45° 1757 16 | — | — 176 il
312 — | o4 02] 11 45° 120 6 2343 16 | 232 I
403 14| o4 oz| = 90° 12343 | 12 | — | — | 301 I

31 10 04| 02 21 180° 2343 8 | — | — | 301 1
S{3] 3 14 02| 53 90° 2929 48 | — | — | 398 I
6131050 | 022|006 | 103 90° 372 12 | — | — | 433 I
70306 112 | 004 | 225 9" 3515 8 | — | — | 477 i

3| 100 | 050 | 022 | 255 180°  |3515| 76 | — | — | 477 1
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= 8 (3x&-PSK. IE)

i v (@B} | Signal set
It 1 3 90° 2.0 6 | 2.343 i6 0.56 it
212 3 1 7 90° 2.586 6 — — 1.68 i
302 36 | 02| it 90° 3.515 16 3.01 11

2 Al 0z 1l 180° 3.757 24 — — 330 i

3 41 06| 21 45° 3.157 12 — — 3.30 3t

2 40 02 27 90° 4.0 15 4343 24 3.57 il

3 61 06 41 45° 4.6 7 — — 3.57 113

3 16 | 060 | 105 45° 4.0 3 4.686 8 3.57 1

L*—'l 41002 | 101 180° 4.0 2 — — 3.57 1
TRELLIS-CODED 3 x 8-PSK
200 bitslsybol. ¢ =2, d2. =20, Ay =2{L x QPSK)

K ﬂ'um—(ﬁa‘“" it® | Tnvard a,’w Addpyos B2pi | Adpey | 7 (0B | Signal set

1 1 3 180° 3.75 24.0 — — 2.74 ii

! 2 5 180° 4.6 150 5757 144 3.01 i

2 02| 11 45° 4.0 7.0 — — 3.01 HI

2 04| 27 45° 4.0 3.0 15757 32 3.01 il

3 02 ] 41 180° 5757 175 -~ -— 4.59 i

3 05 | 53 360° 57571 17.0 - — 4.59 I

3 014 | 103 180° 6.0 110 — - 4.77 i

4 006 | 103 180° 6.0 40 — — 4.77 1T

TRELLIS-CODED 4 x &-PSK
5bits/symbol, ¢ =0, d2, =1.172, Ay = 24 (4x8-PSK)

& w2 [ n@ | n® | Imvariance {fiw A,d/.w m.faﬂ Adiese | ¥ (dB)
11 — 1 3 45° 1.172 8 1.757 G4 0.00
202 2 1 5 45° 1.757 43 — — 1.76
312 04 02 1L 45° 2.0 8 2343 64 2.32
443 04 02 21 45° 2.343 40 — — 3.01
513 14 02 41 45¢ 2,343 8 2.929 288 3.01
6|4 052 | 014 | 101 450 2.929 136 3.98

TRELLIS-CODED 4 x 8-PS5K
n=250bitslsymbol. ¢ =1, d2. = 1172 Ay, =4 (2x8-PSK)
o | 7 WY | a® | Ivasance | 4 1 Agg,, | e | Adue | 7 (dB)
171 1 3 45° 2.0 8 2.343 64 2.32
202 i 5 45° 2.343 4 — — 3.01
312 02 11 45° 2.343 8 3.172 32 3.0t
4 43 02 21 45° 3.172 16 — — 433
513 02 41 45° 3.515 64 — — 477
6| 3 042 103 45° 4.0 28 4.686 1088 5.33

(continued overleaf)
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TABLE 18.15: (continued)
TRELLIS-CODED 4 x 8-PSK
n=225bits/symbol, ¢ =2, d2, =20, Apy, =8 (4 x8-PSK)
v ke e e e O Iavariance | di | Ay, | AR | Aduew | 7 @B)
111 — — — t 3 45° 2.343 8 3172 32 0.69
21241 — — 3 1 S 45° 3172 16 — — 2.00
312 — — 06 02 11 45° 4.0 28 4343 64 3.01
20 — — 02 06 11 90° 4.0 28 4.686 64 3.0t
413 — 04 06 12 21 45° 4.0 12 4.686 32 3.01
S141 10 04 ] 06 22 41 45° 4.0 4 4.686 16 3.01
TRELLIS-CODED 4 x 8-PSK
n = 2.00 bits/symbol, ¢ =3, d2, =20, Ay =2 (1 x OPSK)
o L E I RY e | a2 | &gV | & | Invarience u.flz.;w Adﬁw dgm., Adyory | ¥ @B)
111 — — — 1 3 90° 4.0 28 4.686 64 3.01
212 — — 2 3 5 45° 4.0 12 4.686 32 3.01
3131 — 02 04 03 11 45° 4.0 4 4.686 16 3.01
41 4 10 04 02 03 21 45° 4.686 8 — — 3.70
514 02 10 04 22 41 45° 6.343 16 — — 5.01
614|034 | 044 | 016 | 036 | 107 45° 6.686 6 — — 5.24
41044 | 024 | 014 | Olo | 103 90° 7.029 24 e — 5.46
(b) Codes for 16-PSK
TRELLIS-CODED 2 x 16-PSK
n = 3.5 bits/symbol, ¢ =0, d,%”.” =0.304, A,y =4 (2 x 16-PSK)
v L E L 2 | a® | a® | pmvariance dflm Adpyee 2oy | Adyer | 7 (@B)
1 1 — 1 3 45° 0.457 8 — — 1.76
2 1 — 2 S 45° 0.586 4 0.761 32 2.84
3 2 04 06 11 22.5° 0.761 16 — 3.98
4 2 16 12 23 22.5° 0.913 56 — — 4.77
5 2 10 06 41 22.5° 0.913 16 — — 4.77
6 2 004 030 113 22.5° 1.066 80 — — 5.44
2 044 016 107 45° 1.066 48 — — 5.44
7 2 074 132 217 22.5° 1.172 4 [.218 228 5.85
TRELLIS-CODED 2 x 16-PSK
n = 3.0bitslsymbol. ¢ =1, d2. =0586. Ay =2 (1 x 8-PSK)
v | k| B | w@ | gD | a® | Invariance d/zm Adje 2ot | Adpey | ¥ (@B)
1] 1 — — l 3 22.5° 0.89 8 — — 1.82
2|1 — — 2 S 22.5° 1.172 4 1.476 32 3.01
312 o 04 02 11 90° 1.476 16 e e 4.01
412 — (4 06 23 45° 1.757 8 e — 4.77
512 — 30 16 41 45° 1.781 16 — — 4.83
6| 2 — 044 016 107 45¢ 2.0 4 2.085 48 533
713 110 | 044 | Ote | 317 45° 2.085 25 - — 5.51
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TABLE 18.15: (cani‘:nwed)
TRELLIS-CODED 3 x 16-PSK
n = 3.67bits/symbol. ¢ =0, d2. =0304, Ay, =12 (3 x 16-PSK. 1)

i

<
=1
=

O LR a® | b Tavadiance | 47, | Adg, | Ghe | Adues, | ¥ (4B} | Signal set
1411 — — 1 3 22.5° 0.304 4 — — 0.00 11
2110 — — 2 3 22.57 0.457 14 — — 1.76 Il
312 — 04 02 11 22.5° 0.586 6 0.609 16 2.84 I
413 14 04 02 21 45° 0.609 12 — — 3.01 1
3 10 04 02 21 90° 0.609 8 — — 3.01 I
513 30 14 02 53 45° 0.761 48 — — 3.98 I
63105 | 022 | 006 | 103 45° 0.890 12 — — 4.66 1
71305 ( 112 | 004 | 225 45° 0.913 34 — — 4.77 I
31 100 | 050 | 022 | 255 a0° 0.913 76 — — 477 I

TRELLIS-CODED 3 x 16-PSX
n =333 bits/symbol, ¢ =1, d;, =0457, Ay =8(3 x 16-PSK, 1)

v &[S e | a® | w® | Invariance 1%'& Adpe dfw_w [ Adyove | ¥ (dB) | Signal set
i1 — | — 1 3 45° 0.586 6 0.609 16 1.08 I
202 — 3 1 7 45° 0.738 [ — — 2.08 11
312 — 06 02 11 45° 0913 16 — — 3.01 T
20— 04 02 11 90° 1.043 24 — — 3.58 II
413 10 04 06 21 22.5° 1.043 12 — — 3.58 111
2| — 14 02 27 45° 1.172 12 1.195 24 4.09 I
5131 34 16 06 41 22.5° 1.172 4 — — 4.09 I
613|032 046 | 006 | 103 22.5° 1.218 8 — — 4.26 11
7131014 | 102 | 044 | 203 22.5° 1.376 32 — — 4.77 1
’ 3 OOﬂ 072 | 062 | 223 45° 1476 8 — — 5.09 I

TRELLIS-CODED 3 x 16-PSK
n = 3.00 bits/symbol, ¢ =2, d-”m = 0.586, Amnin =2 (1 x 8-PSK)

v Lk L n® | n? | gD | i | Invariance n /‘,;_,ee A\,,jm dn ot | Adpeye | 7 (AB) | Signal set
111 — | — 1 3 90° 1.043 24 — — 2.50 II
211 — | — 2 5 90° 1.172 12 1.628 144 3.01 11
3.2 — 04 02 11 22.5° 1.172 4 — — 3.01 HI
412 — 12 04 27 22.5° 1.628 32 — — 4.44 I
S12| — 14 02 41 22.5° 1.628 16 — — 4.44 I
20 — 22 14 43 45° 1.757 16 — — 4.77 I
612 | — | 054|020 | 115 22.5° 1.757 8 2.085 48 477 11
31020 | 004 | 012 | 101 45° 2.0 6 2.085 72 533 II
31050 | 030 | 026 | 101 90° 2.0 6 2.085 60 533 11
7131060 | 106 | 050 | 213 45° 2.0 6 2214 56 533 1
3016 | 110 | 052 | 203 90° 2.0 6 2.343 64 533 il

(continued overleaf)
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P!
Q
@)

% % 14 OIS
ED 4 x 16-PSK

n = 3.75 bits/symbol. ¢ =0, d2. =0304, Ayn =24 (4 x 16-PSK)

nun

v | k| B RS e® a® RO Ivariance | | Ay, | Do | Adue | 7 @B)
i1y — | =1 = 1 3 22.5° 0.304 8 10457 64 0
202 — | — 2 1 5 22.5° 0457 | 48 — — 1.76
32 — | — | | o2} 11 22.5° 0.586 8 | 0609 64 2.84
403 — 1 10] 04| 02 21 22.5° 0.609 | 40 — — 3.01
s3] — | 30 14| 02| 41 22.5° 0.609 8 | 0761 | 288 3.01
641030 | 020|052 014|101 22.5° 0.761 | 136 — — 3.98
TRELLIS-CODED 4 x 16-PSK
n = 3.50 bits/symbol, ¢ =1. d?. =0304, A, =4(2 x 16-PSK)

v | k| a9 | n@ | n® | w® | Ipvariance djz'ree Adjm d,z;l,x, Adpey | 7 (dB)
1t — = 1 3 22.5° 0.586 8 | 0609 64 2.84
202 — 2 1 5 22.5° 0.609 | 40 — — 301
32| — 04 | 02| 11 22.5° 0.609 8 | 0.890 32 3.01
413 14| 04! 02 21 22.5° 0890 | 16 — — 45

s 3| 24| 144 021 4 22.5° 0913 | 64 — — 477
6 | 3| 014 024J 042 | 103 22.5° 1172 1 24 | 1218 | 1088 5.85

TRELLIS-CODED 4 x 16-PSK
5 = 3.25 bits/symbol, ¢ =2. d*

min

=0.586, Apyin =8 (4 x 16-PSK)

v | | @RS R n® | O | Ievasiance | d7 | Ady,, | dreq | Adued | ¥ @B
1] — | — ) — 1 3 22.5° 0.609 8 | 0890 | 32 0.17
202| — | — 3 1 5 22.5° 0.890 | 16 — — 1.82
32 — | — | 06| 02] 11 22.5° 1172 | 24 | 1195 | 64 3.01

2| — | — ] o2 06 11 45° 1172 | 24 | 1218 | 64 3.01
4130 — | 04l 06y 12| 2 22.5° 1172 8 | 1218] 32 3.01
5|41 10 04| 06 22| 41 22.5° 1218 | 16 — — 3.18
6| 4| 050|030 | 024 | 016 | 101 22.5° 1499 | 72 — — 4.08

TRELLIS-CODED 4 x 16-PSK
n = 3.00 bits/symbol, ¢ =3, d2. =0.586, A =2 (1 x 8-PSK)

v L& T a® | w2 | mD | u® | [pvariance dﬁw Af’/m d%m Adpers | 7 (dlﬁ??ﬂ
1] — | — 1 3 45° 1172 | 24 | 1218 | 64 3.0l
22| — 2 3 5 22.5° 1172 8§ | 1218 32 3.01
33| 02 ] 04| 03| 11 22.5° 1218 | 16 — — 3.18
413 04] 0] 06 21 22.5° 1781 | 48 — — 4.83
s3] 2] 16] 06| 4 22.5° 1.804 | 24 — — 4.88

3 24| 14| 02| 43 45° 1.827 | 64 — 4.94
6| 3| 050 | 024 | 006 | 103 22.5° 2.0 8 2343 | 64 533




Section 18.5 Multidimensional TOM 9044
TABLE 18.15: {continued)
(¢) Codes for QAM
TRELLIS-CODED Z°
p=J+1/2bits/symbol, g =0, d2. =2, A, =24(Z2)
~ " - T P Py Y
v | 3 A L e T @ | fvariance fw A, free 4 ’.’;Hl Adpee | ¥ (B}
10 i — — — 1 3 180¢° 2 8 3 64 0.00
212 — — i 3 5 90° 3 48 — — 1.76
312 — — 02 06 It 90° 4 &8 — — 3.01
4121 — — i0 06 23 90° 4 4 5 512 3.01
513 — 34 10 06 41 90¢ 4 8 5 288 3.0t
6|4 03 | 020 | 052 | 004 | 101 180 5 136 — — 3.98 |
TRELLIS-CODED Z7/2
n=J bitslsymbol. ¢ =1, d2. =2, Ay =4(2%/2)
v L | a® | w® | a® | &® | Invarianecs {]/):u Ao a2, Aoy | 7 (2B)
] 1 — — i 3 90° 4 88 — — 3.01
2 1 — — 2 5 90° 4 24 6 512 3.01
302 — 04 02 I 90° 4 3 6 320 3.01
403 [ 04 02 21 180° ] 176 e — 477
5103 24 14 06 43 180° 6 48 — — 4.77
6 | 3 024 014 042 103 180° 8 11i2 — — 6.02
703 | 044 034 106 203 180° 8 216 — -— 6.02
TRELLIS-CODED 7°
n=J+2/3bitslsymbol. g =0. d>. =2. Ay =60(2°/2,1)

v &l a® | n® e | D | p® | Invarience dizm Adfrge it | Ay | 7 (AB) | Sigmal set
Wi — 4 — | — 1 3 90° 2 28 3 256 0.00 I
20 — | - — 2 5 90° 2 12 3 [ 0.00 It
312 — | — 021 06 11 90° 2 4 3 32 0.00 41
412 — | — 0z 21 180° 3 48 — — 1.76 11

20 — | — 1o 04 23 360° 3 40 — — 176 i

3 — 2] 04, 02 21 186° 4 316 — e 3.01 i
513 — 240 14 021 41 180° 4 124 -— — 3.01 1
6131 — (024042 | 010 | 105 180° 4 60 5 712 3.01 I
iét 044 1024 {072 | 022 | 103 90° 4 28 | — — 3.01 1

(continued overleaf'
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TABLE 18.15: (continued)

TRELLIS-CODED Z5/2

n=J+1/3bits/symbol, g =1, d2, =2, Ay =12 (Z°/4,10)
vk [ |03 | h? | hD® | kO | myariance A}y | Adp, | Brext | Adess | ¥ (@B) | Signal set
W1y — | - | — 1 3 90° 2 4 4 64 0.00 I
1\ — | — | — 1 3 360° 3 56 — — 1.76 I
201 — 3 — | — 2 5 360° 3 32 5 288 1.76 I
21 — | — 3 1 5 180° 4 348 — — 3.01 I
312 — | — 021 06| 11 180° 4 60 6 6400 3.01 I
3| — 06| 041 03 11 90° 4 28 — — 3.01 11T
413 | — 14| 04 12 23 90° 4 12 5 160 3.01 I
S04 10 12| 22 04| 41 90° 5 96 — — 3.98 111
614|044 | 006 | 022 | 010 | 111 90° 6 1012 — — 4.77 i
41030 [ 046 | 014 | 042 | 101 180° 6 856 — — 4.77 111
TRELLIS-CODED Z°/4
n=Jbitslsymbol, g =2, d?. =2, Apy, =4(Z2/2)
v &k B nY | h@ D | p©® | mvariance Qe | Ay | Dresy | Adpesy | ¥ (AB) | Sigmal set
il — | — | — 1 3 180° 4 60 6 1024 3.01 I
212 — | — 3 2 5 90° 4 12 5 128 3.01 11
31340 — 04 03| 02 11 90° 5 64 — — 3.98 111
413 — 04 06 12| 21 90° 6 176 — — 4.77 11
S13] — 30| 14 16| 41 90° 6 32 7 288 4.77 1Y
41 20 100 04 02 41 180° 7 240 — — 544 11
64024 | 010|004 | 042 | 101 180° 8 700 — 6.02 11
41044 | 024 | 014 | 002 | 103 360° 8 316 — — 6.02 1
TRELLIS-CODED 78
n=J+3/4bits/symbol, g =0, d. =2, Ay =112(28/2)
vk [ 8P a® [ D | WO | mvariance oo | Adpee | Brot | Adpery | 7 (@B)
1 1 — — 1 3 90° 2 48 3 512 0.00
2| 2 — 2 1 5 90° 2 16 3 384 0.00
3 3 04 02 01 11 90° 3 224 — — 1.76
4 13 10 04 02 21 90° 4 1264 — — 3.01
513 24 14 02 41 90° 4 496 — — 3.01
6| 3 050 032 004 103 90° 4 240 5 5120 3.01
TRELLIS-CODED 78,2
n=J+1/2bits/lsymbol, g =1, d2. =2, Ap, =24 (Z*/2)
v L E RS | 0® [ m@ | 5D | h® | myarance Qe | Adpee | Diext | Adyers | ¥ (@B)
1)1 — — — 1 3 90° 2 16 4 1024 0.00
212 — — 2 1 5 90° 4 1264 — — 3.01
312 — — 04 02 11 90° 4 496 — — 3.01
412 — — 12 04 23 90° 4 240 6 20480 3.01
513 — 14 34 06 41 90° 4 112 6 11264 3.01
3 — 04 14 22 43 18¢° 4 11 6 102490 2.01
6|41 014 1 006 | 056 | 022 | 103 90° 4 48 6 3584 301
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TABLE 18.15: (continited)
TRELLIS-CODED Z8/4

n=J+1/4bitsfsymbol, ¢ =2, d2. =2, Ay, =16 (25/8)

p LR | w3 | w2 | p® | a® | fnveriance a’ém A e d%cz Adyo | ¥ (@B)
111 — — — 1 3 o90° 4 496 — — 3.01
211 — — — 2 5 90° 4 240 6 4096 3.01
302 — — 06 02 11 90° 4 112 6 4096 3.01

2 — 02 06 il 180° 4 112 6 2048 3.01
413 — 10 14 06 21 90° 4 48 G 512 3.01
5 4 10 04 06 22 41 90° B 16 6 512 3.01

TRELLIS-CODED Z8/8
n=Jbitsfsymbol, g =3. d2, =2 Ay =4(2%/2)

vy [ k| a9 | w9 | a® | o | 09 | Invacdence 1’.’7’;“ Al dgeﬂ A | ¥ (4B}
111 — —_— 1 3 180° 4 112 8 16384 3.01
202 — — 2 3 5 90° 4 48 8 16384 3.01
303 — 04 02 03 11 90° 4 16 8 11264 3.01
41 4 10 04 02 03 21 90° 8 6896 — — 0.02
514 20 10 02 06 41 90° 8 3056 — — 6.02
6| 4| 042 | 020 | OIC | 006 | 101 90° 8 1264 — — 6.02

Adapted from {33. 34].

o

The spectral efficiency # in bits/symbol. For the QAM signal seis, » is given
as an infeger J plus some fzacuon where the constiivent 2-12 signal set 5 has
274! signal points; thatis, J = 1 — 1.

The valoe of ¢ that determines the muliilevel subcode at which pariitioning

RO At 2 PR i
The MSE distance d, and number of nearest neighbors Ay, of the uncoded
signai set with the same speciral efficiency chosen for comparison.

The number of coded bits k, parity-check polynomials h® . D RO i
octal form, minimum rotaticnal invariance, MIFSE distance df;,ge, the average
number of nearest neighbors Ay, . and the asymptotic coding gain y for the
best code of each constraint length v.

Whe (J" _oceurs along parallel transitions, the next largest SE distance d2,,,
and the avefage number of next-nearest neighbors Ay, are also given.

in

he 7. = 3 cases, the partition that results in the best code is also given.

Sometimes more than one code is listed for a given constraint length to indicate
the best code for different degrees of rotational invariance. In these cases, the
code with the worst rotational invariance always has a larger {ree distance or
a smaller average number of nearest or next-nearest neighbors.
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The following comments apply to Table 18.15:

&

£€,4
o iuv Ui iCo Wi Qa ulLLw&vllt

spectral efﬁciency For example, for 4 x 8-PSK, t e values of ¢ = 0,1,2,
and 3 result in spectral efficiencies n = 2.75,2.5, 2. 5 and 2.0 blts/symbol,
respectively.

For a given multi-I? signal constellation, each value of g results in a di

In general, different values of ¢ result in different optimum codes for a given
multi-D signal constellation.

The uncoded signal sets that are chosen for comparison are uncoded subsets
of a multi-D or 2-D signal set with the same spectral efficiency. For the QAM
signal sets, these are uncoded subsets of an integer lattice. For example, Z*/2
denotes the best binary partitioning of the integer lattice Z*. In the 6-D case,
the partition (I, I, or III from Example 18.17) that determines the uncoded
subset is indicated.

Unlike the case with 2-D signal sets, multi-D signal sets are capable of
achieving full rotational invariance with linear PCEs, as first noted by Wei
{35]. In fact, many of the best codes listed in Table 18.15 have full rotational
invariance.

Tables of optimum codes for multi-D QPSK signal sets are also given in [33].
Again, many of the best codes achieve full rotational invariance with linear
PCEs.

Tables of optimum geometrically uniform codes for L x M-PSK signal sets are
given in [36].

An estimate of the real coding gain at a BER of 10> for the codes in
Tables 18.6-18.9 and Table 18.15 can be obtained by adding the adjustment
factor —0.21og,(Agy,,/Amin) dB to the asymptotic coding gain y given in
the table. For example, from Table 18.15(a). we see that the estimated real
coding gain of the 8-staie, 2 x 8-PSK code of Example 18.15 with spectral
efficiency n = 2.5 bits/symbol is given by y,z; ~ y — 0.210g,(Ag,../Amin) =
3.98 — 0.40 = 3.58 dB.

As noted previously, multi-D signal sets are capable of achieving full rotational

1y, 131

invariance with linear PCEs. We now illustrate this fact with an example.

EXAMPLE 18.19 Rotational Invariance for Multi-D TCM

Consider the 8-state, rate R = 2/3,2 x 8-PSK TCM system with spectral efficiency
n = 2.5 bits/symbol of Example 18.15. The parity-check matrix is given by

H(D) = | D*/(D*+1) (D?+ D)/(D* + 1) 1], (18.97)

and the binary parity-check equation can be written as

V()T (D) = v (D) [ D*/(D* @ D] @ v (D) [(D* @ D)/(D* @ 1) | v (D)

— §(D) (18.98a)
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pr Aoy (D2 o DYV (D) @ (D e v O (D) = (D). (18.98b)
For the naturally mapped constituent 8-PSK signal set shown in Figure 18.6, a
45° phase rotation of a signal point y resulis in the rotated signal point y, =
v o+ 1 (mod 8), or in binary notation (see also Problem 18.25),

WO =0 g1, (18.992)
o =0 g @ (18.99b)
vl@ =0 @@ oo, (18.99¢)
To determine the effect of a 45° phase uonawoﬂ of the ; X 8 PSK signal vector
Y = (y1, y2) on the binary code vector v = (v v® @@y yOy we express the

mapping function of (18.71) as

Vo= (v, v2) = (40P + 200 1 0@ D) + @™ + 20 + 00, 1) (mod 8).

(18.100}

Mow. after a 45° phase rotation, the integer representations of the rotated signal
points are given by

vip =y +1 (mod?8), i=1,2. (18.101)

and we can write (18.100) as
Vo= (v, 000 = 4o+ 208 oM,
+ (@ 202 OO, D+ (1. 1) (mod 8)
= (409 4+ 20 400 L 1A, D 4 @@ + 20D 40Oy, 1) (mod 8).
(18.102)

By comparing (18.100) and (18.102), we see that bits v, v and vV are affected
by the multi-D 2 x 8-PSK 45° phase rotation in the same way as bits v®, D, and
(0 are affected Wth the constitueni 8-PSK signal set is rotated by 45°, whereas
bits v, v@, and v @ are not affected at all. Thus, we can write

o0 = B =y @ o = @
(18.103)
W =00 g1 3P =@ @u® P =y gD @),

To check for rotational invariance of the hnear P(CJL, of (18.98a), we use (18.103) t0
form the roiated encoder output sequences v (D) = v (D), v'\P(D) = vV(Dy @
(D), and v,(.z)(D) = v2 (D). Substituting these rotated sequences into (18.98b),
we obtain

V(D (D) = D*P (D) @ (D* © Dyv (D) @ (D @ v (D)
= DDy (PP o D)V 1) @ (D e v (D) (18.104)
= (D’ @ DYI(D) = U(D);
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that is, the rotated sequences satisfy the PCE. Thus, this 2 x 8-PSK TCM system
with a linear PCE is invariant to 45° phase rotations. Because only v, v®, and v
are affected by the phase rotation, these are the only bits that must be differentially
encoded. (In this example, only vV is an encoder input bit, whereas v and v are
uncoded input bits.)

We now conclude our discussion of rotational invariance for multi-D TCM with a
few remarks.

(]

i)

In general, for full (360/M)° rotational invariance of M-PSK signal sets,
I = log, M bits are affected by the phase rotation and must be differentially
encoded. (For QAM signal sets, full 90° rotational invariance requires that 2
bits be differentially encoded.) In the case ¢ = 0, that is, when partitioning
begins with the entire multi-D signal set, the levels in the partition chain corre-
sponding to the I affected bits are denoted by g, 71, - - -, m;—1. These affected
bits are listed in Tables 18.13 and 18.14 summarizing multi-D partitions. (Note
that the bits to be differentially encoded depend only on the signal set and the
partition, and not on the particular code.)

In the case ¢ > 0, that is, when partitioning begins with a subset of the entire
multi-D signal set, the I affected bits correspond to levels my — ¢, 1 — ¢,

., my—1 — q in the partition chain. (If 7; — ¢ is less than zero for some
Jj, full rotational invariance cannot be achieved. See {33] for more details
on determining the bits to be differentially encoded when full rotational
invariance is not possible.)

If v, the parity bit, is one of the bits affected by a phase rotation, it must be
fed back to the differential encoder from the encoder output, since it is not an
encoder input bit. The reader is again referred to [33] for details.

The possibility of achieving full rotational invariance with linear PCEs and
multi-D signal sets depends on the multi-D mapping functions of (18.93) and
(18.95). (As shown in Section 18.4, the simple mapping function used for 2-D
signal sets does not allow full rotational invariance to be achieved with linear
PCEs.) For a given multi-D signal set, partition, and linear PCE, the degree
of rotational invariance can be determined by checking whether the rotated
encoder output sequences satisfy the PCE (see Problem 18.32). In general, it
is possible to achieve full rotational invariance with linear encoders of rates
R =1/2,2/3, and 3/4 and multi-D signal sets, but higher encoder rates still
require nonlinear encoders similar to those employed in Section 18.4.

CO U qiioLit 2LatiQnl LV 2L

invariance of the code; however, they must still be differentially encoded.

Uncoded bits affected by a phase rotation do not influence the rotational

More general classes of both 2-D and multi-D TCM systems can be obtained
by defining the code alphabet over a ring or a group rather than using
conventional finite-field algebra. These more general formulations often make
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it easier io obtain rotationally imvariant sysiems and may lead to codes
vith better distance properties, ode searches, performance analysis, and
ementation are more difficult. Some approaches to constructing

based o1 omnp designs are summarized in [37, 38],

rm codes over groups r’ or L x M-PSK

/ use an example io show how the
' TCM.

rformance analysis technigues of

N
can be applied to m

r Mult-D TCM

Consider the 4-state, rate £ = 1/2 binary feedback encoder used in Example 18.9.
The encodes d“agva ahd binary ervor trellis (with one uncoded information bit) of
this encoder are shown in Figures 18.9(2) and 18.9(b), respectively. In this example,
we use the same encoder a OMg with three uncoded information bits to partition
the 37-p0amg -1 subset Q OBx0UlIxD (Conem@}dmo to subcode A1(0)) of

he 7 x 8-PSK. 64-point, 4-D sjgml >t (see Figure 18.29). The first two levels of

Damnowww are shown in Figure %Z.
In this casg g =1, the spectral efficiency n = 2.0 biis/symbol, the MSSDs are
2=1172. 02 =2 0 and A3 = 4.0, there are eight parallel transitions on each
bmnch of the hma ror trellis, and the mapping function (see (18.95a)) from the
00 02 D4 06
131517 11
26202224
, 31333537 Al
QU0 X 0UL X 1) 44464022 di= LT
57515355
62 64 66 60
757717173
W= T T
ﬁ// \\.x
T T
00020406 11131517
262022 24 L. 37313333 A= 20
Q0 X 0) 44464042 G(1x1) 55575153 ST
62 64 66 60 73757771
“ ~,
=g 1 0,/ \\1
‘/ ™~ 4 ™,
¥ > N
00 04 02 06 1115 1317
2622 20 24 3733 3135 Al 40
44 40 4642 5551 5753 T

62 66 64 60 7377 7571

/

\
O (00 % 00 U 10 X 10} @X00 X 10 U 10 x 00y 0*(01 X 01 U 11 X 11} 0301 X 11U 11 X 01)

FIGURE 18.22: Partitioning of the 32-poini, 4-1 signal set 020 x0U1x1l).

C
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binary code vector v = (v v vy 1o the binary signal vector Y is given by

Y =y y2) =g @ v Vg @rvPg e vlg @ v

11 0 1 0 0

=@ 0 0 |av®l 00?1 1 {a
0 0 | | 0 0 | 0 0
[0 0] 0 0]

V10 1 e @) 0 o (18.105)
0 0 | 11

(If the coset generators g; are expressed in integer form, then (18.95b) using
modulo-8 addition gives Y = (y1, y2) in integer form.) This TCM system is listed
in Table 18.15(a), where it is seen that d]%_a, = 4.0, Agy,, =0, d?,., = 5.172, and
Adpey = 32.

Before we can calculate the AWEFs for the trellis paths Al (X) and the parallel
transitions AL, (X). we must first determine the AEWESs of the 32 possible binary
error vectors e = (e e® @ eMe®) We do this by using the AEWESs for naturally
mapped 8-PSK listed in Table 18.5. First, we use a binary error vector e in (18.105)
to compute the 4-D error signal E = (e|, ;). Next, we use ¢ and e, to determine
the AEWESs of each component of E from Table 18.5. We then multiply these
two AEWESs together to form the AEWE corresponding to the error vector e. For
example, the error vector e = (01011) results in the errorsignal E = [©0o1)T, (111)T],
or E = (1, 7) ininteger form. From Table 18.5 we see that the corresponding AEWEs
are given by A%OOH(X) = x93 and A(ZIU)(X) = 0.5%9°8 1 0.5x3414 Thus, the
AEWE for the error vector e = (01011) is given by

2 2 2
Ato1n) (XD = Agory (X)Afy 5, (X)
= (X0990)(0.5x0°80 4 0.5x3414) (18.106)
—05xt17? + 0‘5}(4‘0;

that is, for branches in the binary error trellis labeled with the error vector
e = (01011), half the branches have squared Euclidean weight 1.172. and the other
half have weight 4.0. The complete list of AEWESs corresponding to the 32 possible
error vectors in this example is given in Table 18.16.

The modified state diagram, similar to the modified state diagram of
Figure 18.19(a) for Example 18.9, i1s shown in Figure 18.33, where in this case
each branch is labeled with the sum of the eight AEWESs corresponding to the eight
parallel transitions on that branch. For example, the branch labeled ¢ represents the
self-loop around the state S3, caused by the input bit 0 and resulting in the output bits
01, for the rate R = 1/2 encoder. Thus, the eight possible parallel transition error
vectors corresponding to this branch are e = (00001), (00101), (61001), (01101),
(10001), (10101), (11001), and (11101), and from Table 18.16 the branch label is
given by

¢ = Xl.172 +2X4.() < 4(0.25Xl'172 + O.SXZL’O 4 0.25X6.828) + X6.828
=2x"172 4 ax*0 4 o x68%8, (18.107a)
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2-point, 4-D signal set 0X(0 x 0U 1 x 1)

000 370 10009 38

00001 X7 10001 X6828

06010 19010 x6

80011 10011 Lydy 1y6828
00160 10100 X

000! 10101 | JxU172 g dxd oy 116828
00116 10110 e

00111 10111 IxLIT2 oy Ly

01 11000 o oxt

01601 11001 X

01010 11010 X6

01011 11011 %fﬁ + %}{6.828
01100 11100 X3

01101 11101 %XLI”/Z + %/{4 + %};{6.828
01110 11110 X6

01111 11111 3x4 o L x0828

S5 /,
P
A
by N d
L,
/’\
77 N A
I N

a=4X"+ 4"
b =2X """y dx 4 2x 08N
e =2xX 0 ax ity o8
2 X vl I/,_|_ g/—l 72{(1.&38
=X 7,_,'_ —}/J4+ 2[‘;(082\\'
/:/ +6 + X% =14+6x +x°
g=

state diagram for Example 18.20.
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We determine the remaining branch labels in a similar way, yielding
b= 2x 172 4 4x40 4 5 x6828
d=2x1172 | 4340 4 x6828
(18.107b)
e = 2x1172 4 4340 | 96828
F=x046x40 4 x80 =1 4 6x%0 4 x80
g =4x>" +4x°0,

In this case, we note from (18.107) that ¢« = g, and b = ¢ = d = e. Now, we can
compute the AWEF for the trellis paths as follows:

aeg(l —c)+abdg a‘h
(1—)A ~efy—bdf 1—b1+f)

where the simplified expression follows from the foregoing identities. Carrying
through the algebra associated with (18.108), we obtain the following result:

Al (X) = (18.108)

32X5.172 + 64X8.0 + 64X9.172 + 32X10.828 + 128X12A0
+32X13‘172 4 64X14.828 e 64X16.0 S 32X18.828

1 4xt172 _gx40 _1ox5172 _ 436828 _ 54580
%9172 _ 12 x10.828 _ 4x12.0 _ 9 x14.828

A;IU(X) =

=32x7172 1 128x53% 4 64x80 4 576x%172 4 ... (18.109)

Thus, for a given path through the trellis, there are an average of 32 error paths with
a free SE distance of 5.172, an average of 128 error paths with a distance of 6.344,
and so on.

The AWEF for the parallel iransitions is given by the set of intrasubset
distances within the subsets at the final partition level p = k + 1 = 2. From the
subset Q7 (00 x 00 U 10 x 10) in Figure 18.32 we see that

AP (X)) = 6x40 4 X80, (18.110)
(Note that A%, (X) is just the set of distances corresponding to the parallel transitions
in the self-loop around the all-zero state Sy. This set of distances is represented by
the branch label f in the modified state diagram (with the weight-0 term, which
corresponds to comparing a branch to itself, removed), since the branch label f
gives the AEWE for the self-loop around the state Sp.) Equation (18.110) implies
that there are six parallel transition crror events with a distance of 4.0 and one wiih
a distance of 8.0.

Summarizing, we see from (18.109) and (18.110) that the minimum distance
between parallel transitions is §2 = 4.0, the minimum distance between trellis

min

paths is (S%m, = 5.172, the overall MFSE distance is

o~
p—
0
e
p—
p—
f—

Jree

I ) 2 1 _
djpe = MIN %5_/”1‘66“ 8nzin} - 4'0’
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the number of nearest neighbors is Ay, = 6, and the number of next-nearest

neighbors is A(gm,_” = 32 {d2,,, = 5.172), as noted in Table 18.15(a). Fi 7, we can
+ 35 3 2w ;

ise Ule nmspdmg e;lbrCaSlOﬂo ior A[,v(_/ ) E_Ju AZ,U(A aluaie the

1,

e now conclude our discussion of performance analysis for mulid-D TCM with a

few comments.

v irellis with §
e the same labels in M, ﬂodlﬁed state diagram; thatis, ¢ = g, b6 = d, and

¢ = ¢ in Example 18.20
o The paraliel iransition AWEF can be found from the AEWE of the self-loop
round the all-zero state Sp by dmp ing the weight-0 term, since this gives the
set of distances in the subsets at the ﬁmﬂ level of partitioning.

o

Foliowing the procedure of Example 18.9, we can use a modified state diagram
awmemeﬂ by the input weighi enumerators to determine the AIOWIEFs
AM (W. ) and AL, (W, X) (see Problem 18.33). We can then use these in
{18.29b} to evaluate the standard transfer function bound on bit-error proba-
bi liy P[)(L

o The foregoing method of performance analysis applies to muli-D TCM
systems with linear encoders. Nonlinear encoders, similar to these employed
in Section 13.4, also can be used to produce rotationally invariant multi-D
TCM systems, but the same analysis method does not apply.

in applications requiring large values of spectral efficiency, such as high-
speed modemns, large multi-D signal constellations are typically used. For ezample,
consider the 192-point 2-D generalized CROSS conste Mano:n shown in Figure 18.34.
A 4-D version of this signal set, combined with a power-saving technique called
shaping, can be used to achieve a spectral efficiency of # = 7.0 bits/symbol. The
4-1) signal set contains a total of 1922 = 36864 signal points, enough to support a
spectral efficiency of slightly more than 7.0 bits/symbol (since log, 36864 = 15.17,
allowing for 1 parity bit and slightly more than 14 information bits spread over
two symbols); however, if only a subset of 21° = 32768 signal points are actually
ased, the spectral efficiency is exactly 7.0 bits/symbol. This can be accomplished
by ideniifying two categories of signal points, called inner points and outer poinis,
in the constituent 2-D signal set, as illustrated in Figure 18.34. In this case, the set
of inner points comprises the 128 lowest-energy signal points, and the set of outer
points comprises the 64 highest-energy signal points. If all possible combinations of
points from the two constituent constellations are allowed, except that a pair of outer
points is not a valid multi-D signal point, 64° = 4096 signal points are excluded,
leaving exactly 21° = 32768 signal points. By eliminating all combinations of two
outer points, we are excluding the mulii-D signal points with the highest energies.
thus achieving a power savings of about 0.3 dB compared with using the full signal
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FIGURE 18.34: A 192-point generalized CROSS constellation.

set (see Problem 18.35). This power-saving approach to multi-D constelation design
is called shaping. Ultimately, for very large signal dimensionalities and very large
constituent 2-D signal sets, an approximately spherical constellation (known to be
optimal in high-dimensional signal spaces) is approached, and a shaping gain of as
much as 1.53 dB can be achieved.

Now, we illustrate how a rate R = 3/4 encoder, combined with 11 uncoded
bits, can be used to select a signal point from this multi-D shaped constellation.
First, consider that all combinations of two inner signal points form a 4-D subset
of 128% = 214 points. This 4-D subset can be partitioned into 2> = 8 subsets of
21 = 2048 points each. For a particular value of the parity bit, say v(®) = 0, the three
coded information bits v, v®, and v® can be used to select one of the 8 subsets,
and then the 11 uncoded bits can be used to select a signal point from the shaped
constellation. Similarly, there are 64 x 128 = 213 mixed combinations of an inner
point followed by an outer point, and the same number of mixed combinations of an
outer point followed by an inner point, for a total of 2* mixed combinations. Thus,

for the other value of the parity bit. say v® = 1, the three coded bits vV, v®, and
v along with the 11 uncoded bits can be

.
i o mavad cional naint feam
coded can be used 1o select a mixed signal point from

the shaped constellation.
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= 2/3.16-state, linear, 4-I,
used in the V.34 high-speed

@ -
18.21

The V.34 high-
along with a multi
point {or larger) 2-D generalizec
information bits
bits} per s‘ymbol to

2/3, 16-state linear encoder
g D‘rf two {or more) uses of a 192-
‘ROSS consteitation and as many as 8 uncoded

mation bits for a total of 10 information
s lar be as n = 10.0 bits/symbol

1-ID signal constellation consistin

1 CR
d

> ies
and data ‘mius as hi 0 1 1 i ng, adaptive equalization,
and precod naﬁmg rates (o as high as
3429 sym ird of 2400 symbols/second.
(In V.34, th r muliiples of the S/mbol rates,

wpping, allows the mapping of a
tancﬂar"ﬁ, also includes two other

codﬁs vihai: o5t of increased nomplem‘y One

isavate B = 3/4 state, linear code that gains 0.2 dB compared with the 16-state
code butisf i ! e other i R o= 4/5‘ 6 -state, nonlinear
code tha @g ins an additiona Bbutisa cnoii‘hm factor of 4 times more compie

In both of these cases more Lua are encoded by the convohmonzﬂ\_ code, 50 fewes
uncoded bits are needed to achieve a particular data rate.

A block diagram of the rate R = j6-state, linear code is shown in
Figure 18.35, along with a sketch of a 2-D (224-point) generalized CROSS con-
1 = e /

steliation used in the V.34 smndam. The rate ® = 2/3 convolutional encoder has
three input information bits: two coded (1" and u' e 'y and one uncoded (). In
addition, bits 1® and 1 are fﬂmc%‘maﬂv encoded, since they are affected by phase

rotations. Full 90° rotational invariance can be achieved with a hinear code in this
case, since the signal constellation is mu"'ldqmr—“nsnoncﬂ The rate R = 2/3 systematic
ieedback linear convolutional encoder has parity-check matrix

H(D) = [(D+1)/(D* + 1) D/ +1) 1) (18.112)

and produces three output bits: v and v'® (information bits) and v'? (a parity
bit). (Mote that the encoder diagram shown in Figure 18.35 is slightly different from
the encoder diagram implied by {18.112). Problem 18.37 illustrates the equivalence
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ER. Usually, an addition to the CER of about 25% owing
gh to ap sroach a 10 -dB mpmg gain. In this example the
of 448 'yie' is a CER = 448/256 = 1.75 compared with an uncoded
th n = &.0 bits/symbol, giving a total of 75% constellation expansion,
12 o coding and 25% d‘ e to shaping. Shaping was included i the standard
wately a simpler way of picking up an additional 0.8 dB than by

D

> it was ultima
ising 2 more compliexr code.
be rate R = 2/3, l16-state, linear 4-D code used m the V.34 standard has

k_f/%,(,(, = 4.0, number of nearesi neighbors Ay, = 12, and achieves

-

a real C@_aing gain (without bandwidth expansion) of 4.2dB at a BER of 107
compared with Umoﬂed 256-QAM (n = 8.0). (MNote that the smaller free distance

1

the 8-sta

ate V.32 code does not translate into less coding gain.

ysiems used 1o compute the coding gain are different.)

i galn was investigated in [40-43], and its applica-
presented in [44]. A more thorough discussion of the

¢ went into ﬂlt deown of the V.34 modem can be found in [45, »6}.

The performance of Ungerboeck’s codes quickly dispelled the belief that power
rsduction at[alnab;» Ey th 2 conespondmﬁ demedse in baﬂfﬁﬁldth mfﬂmencv
as is the case when we lim me
result for modem designers, who had bem it ustmted in their “afiemp\s to go beyoxw
data rates of 9600 bip e ilie International Telecommunications Union’s ITU-]




1056 Chapter 18 Trellis-Coded Modulation

V.29 modem standard was adopted in 1976 little progress was made in increasing

the speed and guality of data transmission over voice-grade telephone lines until the

o AL GRRal L ddL 183310380 11 4 VILOmgi Gl «vnC Ui 12100 Wil e

appearance of the V.32 and V.33 standards in 1986 (see Example 18.14). The V.29
standard used uncoded 16-QAM and a 2400 symbols/second signaling rate to achieve
a spectral efficiency of # = 4.0 bits/symbol and a transmission speed of 9600 bps in
a half-duplex (one-way) mode. Owing to the bandwidth constraints of the channel,
signaling rates higher than 2400 symbols/second were not considered feasible. Thus,
the only avenue to increased data rates was to expand ihe size of the signal
constellation; however, because of the SNR constraints of the channel, this meant
that signals had to be packed closer together, resulting in degraded performance.
Thus, a clear need developed for a scheme that could allow constellation expansion
at the same signaling rate, thus achieving higher data rates, and yet provide a coding
gain to at least recover the noise margin lost by the closer packing of signals. TCM
proved to be just such a scheme and, combined with some sophisticated signal-
processing techniques, has resulted in a series of improvements that have pushed
modem speeds to 56 Kbps.

PROBLEMS

18.% Prove equation (18.8).

18.2 Find, as functions of the parameter d, the AEWESs Aﬁ(X ) and the MEWEs 8§(X )
for the two signal set mappings shown in Figure P-18.2, and determine if they are
uniform. Assume each constellation has unit average energy.

18.3 Determine if an isometry exists between the subsets Q(0) and Q(1) for the two
signal set mappings in Problem 18.2.

18.4 Use Lemma 18.1 to prove that for uniform mappings, A,,(X) can be computed
by labeling the error trellis with the AEWESs and finding the transfer function of
the modified state diagram.

18.5 Construct a counterexample to show that Lemma 18.1 does not necessarily hold
for rate R = k/(k + 2) codes. State a rate R = k/(k + 2) code lemma, similar to
Lemma 18.1, specify the conditions for uniformity, and prove the lemma.
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6 Determine the AEWESs A,Ze( X) and the MEWEs 82(X) for Gray- and naturally

mapped 4-AM and show that they are both uniform mappings.

Consider mapping a rate R = 2/3 convolutional code into 8-AM using natural

mapping.

a. Determine the AEWEs AZ(X) and the MEWEs 82(X) for this mapping.

b, Determine if the mapping is uniform.

e. Find the coding gain (or loss) y for the three 4-state, rate R = 2/3 convolutional
codes of Example 18.4 compared with uncoded QPSK.

d. Can you find a 4-state, rate R = 2/3 convolutional code with a beiter coding
gain when used with naturally mapped 8-AM?

Show that the Gray mapping of the 8-PSK signal set shown in Figure P-18.8 is not

uniform.

Repeat Example 18.4, finding the MFSE distances and asymptotic coding gains

for three rate R = 2/3 trellis-coded 8-PSK systems, if natural mapping is replaced

by the uniform mapping of Figure 182(a). Compare the resulis with natural

mapping.

Repeat Example 18.5 by finding a counterexample to the raie 8 = k/(k 4- 1) code

lemmma for the nonuniform signal set mapping in Problem 18.2(a).

Repeat Example 18.4, finding the MFSE distances and asympiotic coding gains

for three rate R = 2/3 trellis-coded 8-PSK systems, if natural mapping is replaced

by the nonuniform Gray-mapped 8-PSK signal set in Problem 18.8. (In this case,

since the rate R = k/(k + 1) code lemma is not satisfied, the distances between

all possible path pairs must be considered.) Compare the results with natural

mapping.

Show that set partitioning of the infinite two-dimensional integer lattice 77 results

in a regular mapping.

Apply mapping by set partitioning to the 32-CROSS signal constellation and

determine the error vectors e for which (18.26) is not satisfied with equality.

Construct an example in which (18.25) and (18.27) do not give the same result.

Apply mapping by set partitioning to the 8-AM signal constellation and determine

the MSSDs A,.z, i = 0,1,2. Find the asymptotic coding gain y and the average

number of nearest neighbors A, when the 4-state code of Table 18.6(a) is

applied to 8-AM. Repeat for the one-dimensional integer lattice Z!.

Compute, as functions of the parameter d, the asymptotic coding gains of the 16-

QAM codes in Table 18.6(b) compared with the following uncoded constellations:
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18.18

18.19

18.20

18.21

18.22
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(i) the 8-CROSS constellation shown in Figure P-18.16(a) and (i1) the 8-QAM
constellation shown in Figure P-18.16(b). Assume each constellation has unit
average energy.

Calculate AL (W, X) for Example 18.9.

Apply mapping by set partitioning to the 8-QAM signal constellation shown in
Problem 18.16 and determine the MSSDs A?,i = 0,1,2. Find Al (W, X) and
AL, (W, X) for the code of Example 18.9 using this constellation.

Let (D) =1+ D+ D? + D3 + - in Example 18.10 and recalculate (18.37) and
(18.40). Are the conditions for rotational invariance affected?

Derive general conditions on the number of terms in b‘" (D) and hP (D) to satisfy
(18.46).

Show that (18.52) is still satisfied when the rotated binary sequences for naturally
mapped QPSK given in (18.38) are substituted into the equation, and h® (D) has
an odd number of nonzero terms.

Verify that (18.52) is satisfied for the encoder of (18.53) when the rotated binary
sequences for naturally mapped QPSK given in (18.38) are substituted into the
equation.

Find minimal encoder realizations for the 90° rotationally invariant v = 4 and
v = 5 nonlinear rate R = 1/2 codes based on the parity-check matrices

H(D) = [(D*+ D)/(D*+D+1) 1]

and
H(D) = [(D* + D)/(D° + D>+ 1) 1],

respectively. Show that the v = 5 case cannot be realized with 32 states.

Derive general conditions on the number of nonzero terms in h@ (D), kW (D),
and @ (D) to satisfy (18.59).

Show that the 45° rotated binary code sequences for naturally mapped 8-PSK are
given by v (D) = v&(D) ® v(V(D) o vO(D), vV(D) = v?V(D) @ v (D), and
v(D) = v®(D) & (D).

Show that (18.61) is still satisfied when the rotated binary sequences for naturally

mapped 8-PSK given in Problem 1825 are substituted inte the equation, and

.... FENS AN

19 (D) has an odd number of nonzero terms.
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realization showi in ]
18.28 Use the method of
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VEFs in Example
C, and estimate

the wal o
18.34 Repeat Exai

bits/symbol and
A5(c ) withg = 0.

gﬁ_ﬂlpmnw calculate the average
34 and of its shaped 4-D version

(2} trellis-code d 7 \
18.35 Assuming a distance of d bﬂwaen nmziweri
energies of the 192-point signal set in Figure
as functions of 4, and compute the shaping gain
18.36 Assuming a distan > of d between neighboting signal poinis, compute the CERs
(mrpoa;e«l with 2- AN /I) and the PAFs of the 1-D signal sets 2-AM, 4-AM, and
8-AM as functions of 4.
Draw the encoder corresponding to the rate R = 2/3 p'u'i‘tv check matrix of
(18.112), and show that it is c:uwaiem to the encoder in Figure 18.35.
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