des, low-density parity-check (LDPC) codes form another class
(@»z channel copacity)—approaching codes. LDPC codes were
Gallager [1, 2] in the early 1960s. Untfortunately, Gallagei’s
remarkable discovery was mostly ignored by coding ;Pseaﬂ‘l’“ms for almost 20 years,
1981, in which he provided a new interpretation of LDPC
cal point of view. Tanner's work was also ignored by coding
4 years, until the laie 1990s when some coding researchers
investigate codes on graphs and iterative decoding. Their research resulted
inscovery of Gallager’'s LDPC codes and further generalizations. Long
les with itevative decoding based on belief propagation have been shown
o achwe Y€ an erTor periormance oniy a framon of a decibel away from the
Shannon limit [4, 5, 9, 10, 12-14, 18-20]. This discovery makes the LDPC codes

trong competitors with turbo codes for error conirol in many communication
and digital storage sysiems where high reliability is required. LDPC codes have
some advantages over furbo codes: (1) they do not require a long interleaver to
achieve good error performance; {2) they have better block error performance;
(3) their esvor floor occurs at a much lower BER; and (4) their decoding is not
irellis based.

Although Gallager proposed LDPC codes for error conirol, he did not provide
a specific method for constructing good LDPC codes algebraically and systemat-
ically, as the BCH, RS, and finite geometry codes are constructed; however, he
did propose a general meihod for consiructing a class of pseudorandom LDPC
codes. Good LDPC codes that have been found are largely computer generated,
especially long codes, and their encoding is very complex owing to the lack of
structure. Kon, Lin, and Fossorier [15-20] introduced the first algebraic and sys-
tematic construction of LDPC codes based on finite geomeiries. The large classes
of finite-geometry LIDPC codes have relatively good minimum distances, and
their Tanner graphs do aot contain short cycles. These codes can be decoded
It various ways ranging from low io high decoding complexity and from rea-
sonably good error performance to very good eiror perforinance. Furthermore,
these codes are either cyclic or guasi-cyclic. Consequently, their encoding is sim-
ple and can be implemented with linear shifi registers. Some long finite-geometry
LDPC codes have error performance only a few tenths of a decibel away from the
Shannon liriz.

This chapier presents LDPC codes and their construction based on var-
ious methods. Alno included are various methods for decoding these codes,
ranging from low to high decoding complexities and reasonable to large cod-
ing gains.
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INTRODUCTION TO LDPC CODES

ab UK i L Ll

by cither a generator matrix G or a parity-check matrix H. If it is specified by
a parity-check matrix H, the code C is simply the null space of H. An n-tuple
v = (vg, U1, -+ , Up—1) Over GF(2) is a codeword if and only if viI? = 0. This simply
says that the code bits of a codeword in C must satisfy a set of parity-check equations
specified by the rows of E. LDPC codes are specified in terms of their parity-check

matrices.

As described in Chapter 3, a linear block code € of length n is unigusely specified

DermviTioN 17.8  An LDPC code is defined as the nuil space of a parity-check
matrix H that has the following structural properties: (1) each row consists
of p 1’s; (2) each column consists of y 1’s; (3) the number of 1’s in common
between any two columns, denoted by 1, is no greater than 1; thatis, 2 = 0 or
1; and (4) both p and y are small compared with the length of the code and
the number of rows in H [1, 2].

Properties (1) and (2) simply say that the parity-check matrix H has constant
row and column weights p and y, respectively. Property (3) implies that no two rows
of H have more than one 1 in common. Because both p and y are small compared
with the code length and the number of rows in the matrix, H therefore has a small
density of 1’s. For this reason, H is said to be a low-density parity-check marrix, and
the code specified by H is hence called an LDPC code. We define the density r of
the parity-check matrix H as the ratio of the total number of 1’s in H to the total
number of entries in H. Then, we readily see that

r=p/n=y/J,

where J is the number of rows in Hl. The low density of EH simply implies that H is
a sparse matrix. The LDPC code given by Definition 17.1 is called a (y, p)-regular
LDPC code. If all the columns or all the rows of the parity check matrix H do not
have the same weight, an LDPC code is then said to be irregular. In this chapter
we are mainly concerned with regular LDPC codes; irregular codes are considered
in Section 17.15. Note that the rows of H are not necessarily linearly independent
over GF(2). In this case, to determine the dimension of the code, it is necessary to
determine the rank of H.

EXAMPLE 17.1

Consider the matrix H given in Figure 17.1. Each column and each row of this matrix
consist of four 1’s, respectively. It can be checked easily that no two columns {or
two rows) have more than one 1 in common. The density of this matrix 1s 0.267.
Therefore, it is a low-density matrix. The null space of this matrix gives a (15, 7)
LDPC code with a minimum distance of 5. It will be shown in a later section that
this code is cyclic and is a BCH code.

Let k be a positive integer greater than 1. For a given choice of p and y,
Gallager gave the following construction of a class of linear codes specified by their
parity-check matrices. Form a ky x kp matrix H that consists of y k x kp submatrices,
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00000001 101000 1]
100000001101000
0100000001 10100
001000000011010
000100000001 101
1000100000001 10
6100010000000°11
H=[101000100000001
110100010000000
01101000100000°0
0011010001000°00
000110100010000
000011010001000
00000110100010°¢0
0000001 10100010

FIGURE 17.1: The parity-check matrix of a (15,7) LDPC code.
Hy, Hp, -+, H,. Each row of a submatrix has p 1's, and each column of a submatrix
contains a single 1. Therefore, each submatrix has a total of kp 1's. For 1 <i <k,
the ith row of Hy contains all its p 1’s in columns (i — 1)p - 1 to ip. The other
submatrices are merely column permutations of Il . Then,

M= . (17.1)
H,

From this construction of H, it is clear that (1) no two rows in a submatriz of H have
any l-component in common; and (2} no two columns of a submairix of I have
more that one 1 in common. Because the total number of ones in H is kpoy and the
total number of entries in H is k2py, the density of H is 1/k. If k is chosen much
greater than 1, H has a very small density and is a sparse mairiz. Now, whether H
possesses the third property of the parity-check matrix of an LDPC code defined
in Definition 17.1 (that is, no two columns of H have more than one 1 in common}
depends on the choice of the y — 1 column permutations of the submatrix k.
Therefore, the null space of H gives a linear block code of length n = kp, but the
code is not necessarily an LDPC code with & = 0 or 1. Random permutations of
columns of H; to form the other submatrices result in a class of linear block codes
that contains a subclass of LDPC codes defined by Definition 17.1.

Gallager did not provide a method for choosing column permutations of the
submatrix Hy to form the other submatrices, By, s, - - - , 1, such that the overall
matrix H gives an LDPC code with good minimum distance and the structural
properties required in Definition 17.1. Computer searches are needed fo find good
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LDPC codes, especially for long codes. Recently, such long LDPC codes have been
constructed that achieve an error performance only a few tenths (or a hundredth)
of a decibel away from the Shannon limit [4, 9-14, 21, 22].

EXAMPLE 17.2

Letk =5, p =4, and y = 3. Using Gallager’s construction, we can form a 15 x 20
matrix H as shown in Figure 17.2, which consists of three 5 x 20 submatrices, Hy, Hp,
and H;. Each row of H consists of four consecutive 1’s, and no two rows have any
1-component in common. Submatrices H, and Hs are obtained by two different
permutations of columns of H; such that no two columns (or two rows) of H have
more than one 1 in common. The density of H is r = 0.20. Consequently, the null
space of H gives an LDPC code. It is a (20, 7) linear code with a minimum distance
of 6 (see Problem 17.11).

Consider an LDPC code C of length n specified by a J x n parity-check matrix

H. Lethy, Iy, - -,y denote the rows of H where
hj=(hj0. b1, hjn1),
forl < j < J.Letv = (vg,v1, - .v,_1) be a codeword in C. Then, the inner
product
n—1
sj=v-hj =Y vhj; =0 (17.2)
1=0

gives a parity-check sum (or parity-check equation). There are a total of J such
parity-check sums specified by the J rows of H. A code bit v is said to be checked by

1 1 1 1 0 0 0 0 0 00 0000 0 0 0 0 0]
60 6 60 1 1 1 1 0 0 0 0 O0CO0C O OO0 O 0O
60 0 0 0 0 ¢ o0 1 1 1 1 0 6 0 0 0 0 0 O
66 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 00
oo 0 0 06 0 0 0 0 06 0 0 0 0 0 0 1 1 11
10 0 ¢ 1 0 0 0 1 0 0 0 1 0 ¢ 0 0 0 0 O
61 0 0 0 1 6 6 o0 1 0 0 0 0 0 0 1 0 0 O
H=}0 0 1 0 0 0 1 0 0 0 0 ¢ 0 1 0 0 0 1 0 O
60 0 1 0 0 0O 0O O O0C 1 6 0 0 1 6 0 0 1t O
606 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 01
i 6 ¢ ¢ ¢ ¢t 0 0 ¢ 0 ¢ ¢ ¢ 0 0 ¢ 0 1 0 O
61 0 0 0 0 1 0 0 0 1 0 0O 0O 0O 1 0 0 0 O
66 1 0 0 0 0o 1 0 0 0 0 1 0 0 0 0 0 1 0
o6 0 1 0 0 0 0 1 06 0 0 0 1 0 0 1 0 00
6 606 0 01 0 0 0 o0 1t 0 0 0 0 1 0 0 0 01

FIGURE 17.2: The parity-check matrix of a Gallager LDPC code.
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the sumv-h; (orby therowh;)ifh;; = 1.For0 </ < n.let 4 {h‘”,m(“ nh)(,l)}
denote the sei of rows in H that check on the code bit ;. For 1 < j <y, let

4 .

= (/ i0n i /1, cee /”71) (17.3)

Then, #¥ = pl) = ... = Z(]) It follows from the third structural properts

inen, l/ = i72[ = = ?]/. O from the third structu property

of the parity-check matiix of an LDPC code that any code bit other than vy is
checked by at most one row in A;. Therefore, the y rows in 4; are orthogonal on
the code bit vy (see Section 8.1 for the definition of orthogonality). Let §; denote
the set of parity-check sums formed by the rows in A;. Then, the code bit v; is
contained in every parity-check sum in §), and each of the other n — 1 code bits is
contained in at most one parity-check sum in §;. The parity-check sums in §; are
said to be orthogonal on the code bit v;. For every code bit of a regular LDPC
code C, there are y parity-check suins that are orthogonal on it. Consequently, C
can be decoded with one-step majority-logic decoding, as discussed in Chapter 8.
Any error pattern with |y /2] or fewer errors can be corrected. Consequently, the
minimum distance dy,;, of the code 1s at least y + 1; thatis, dy,;; = y + 1. Iy i1s too
small, one-step majority-logic deceding of an LDPC code will give very poor error
performaice. Gallager proposed two algorithms for decoding LDPC codes [1, 2],
one hard-decision and one sofi-decision, that give much better error performance
than the simple one-step majority-logic decoding.

17.2 TANNER GRAPHS FOR LINEAR BLOCK CODES

A graph G consists of a set of vertices, denoted by V = {v1, v2. - - - }, and a set of edges,
denoted by £ = {eg, e2, - - - }, such that each edge ¢, is identified with an unordered
pair (v;.v;) of vertices. Such a graph G is denoted by G = (V. £). The vertices v;
and v, associated with edge ¢; are called the end vertices of ¢;. A graph 1s mosi
comunonly represented by a diagram in which the vertices are represented as points
and cach edge as a line joining its end vertices. With this graphical representation,
the two end vertices of an edge are said to be connected by the edge, and the edge
is said to be incident with (o1 on) its end vertices. The number of edges that are
incident on a vertex v; is called the degree, denoted by d(v;), of vertex v;. Figure 17.3
shows a graph consisting of six vertices and 10 edges. Edge b connects vertices vy

Uy Us
(&3 f ;

Vs

FIGURE 17.3: A graph with six vertices and 10 edges.
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and vy. Edges b, ¢, and d are incident on vertex vo, and hence the degree of vertex
vy 1s 3. Two edges that are incident on a common vertex are said to be adjacent or
connected. Two vertices are said to be adjacent if they are connected by an edge.
For exaiple, in Figure 17.3, edges a and h are adjacent and are connecied ai veriex
vy. Vertices vz and vs are adjacent. A graph with a finite number of vertices as well
as a finite number of edges is called a finite graph. There are many good books on
graph theory, but reference [35] provides a good introduction to this subject.

A path in a graph is defined as a finite alternating sequence of vertices and
edges, beginning and ending with vertices, such that each edge is incident with the
vertices preceding and following it, and no vertex appears more than once. The
number of edges on a path is called the length of the path. In Figure 17.3, for
instance, vy, b, va. ¢, vg, 1, vs, g, v3 1s a path of length 4. It is possible for a path to
begin and end at the same vertex. Such a closed path is called a cycle. No vertex on a
cycle (except the initial and the final vertex) appears more than once. For example,
the closed path v|. b. vz, ¢, v4. a, vy in Figure 17.3 is a cycle of length 3. The closed
path vy, f. vs, g, v3. j. vs. i, vy 1s a cycle of length 4. An edge for which the initial and
terminal vertices are the same forms a cycle of length 1 and is called a self-loop. A
graph without cycles is said to be acyclic and is called a tree. Figure 17.4 shows an
acyclic graph. The length of the shortest cycle in a graph is called the girth of the
graph. The girth of the graph in Figure 17.3 is 3.

A graph G is said to be connected if there is at least one path between every pair
of vertices in §. Both graphs shown in Figures 17.3 and 17.4 are connected graphs.
A graph G = (V. &) is called a bipartite graph if its vertex set V can be partitioned
into two disjoint subsets V| and V5 such that every edge in £ joins a vertex in V| with
a vertex in V5, and no two vertices in either V) or V> are connected. It is obvious
that a bipartite graph has no self-loop. Figure 17.5 shows a bipartite graph, with
V| = {vy, vz, 13} and Vy = {vy, vs, vg, v7, v3}. If a bipartite graph G = (V, £) contains
cycles, then all the cycles have even lengths. To see that this is true, suppose we trace
a cycle in G from a vertex v; in V). The first edge of this cycle must connect vertex
v; to a vertex v; in V. The second edge of the cycle must connect v; to a vertex vy
in V1. The third edge of the cycle connects v; to a vertex v; in V,. Then, the fourth
edge of the cycle connects v; to a vertex in V. This tracing process continues until
the last edge of the cycle terminates at the starting vertex v;. Leaving a vertex in V;
and returning to a vertex in V requires two edges each time. Therefore, the length
of the cycle must be a multiple of 2, an even number.

The vertices of a graph are also commonly called nodes. In the following
discussion, vertex and node are used interchangeably.

(<)

FIGURE 17.4: An acyclic graph.
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o vy

=D Vs

Vs o D Vg
/ 0 U7

D Uy

FIGURE 17.5: A bipartite graph.

Linear codes can be represented by graphs in various ways [39]. The most well
¥ presentation of codes is the trellis vepresentation, discussed in
Ch )f, 9 for anear block codes and in Chapter 12 for convoluiional codes. Treliis
@pregenmtior ol acode “nakes it ajossmle to devise tr elhs based decodmo aﬁoomh s
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as we showed in C mmeu" ]", and JZ' Anoﬁex uselul Uraphlr‘al EQDI'PSPMMTUON of
imeai‘ block codes i me i epn es eniawom m a linear block code by a Tanner gmp/z [ ]

pemx/ check st ﬂmf[ checx on them.

For a imem block code of length n specified by a parity-check matriz H with
J rows, b, ho -, Iy, we construct a graph Gy that consists of two sets of \/GIU(‘CQ,
V) and V. The mO‘t set Vi comsists of n vertices that represent the n code bits ¢
the code ”Fh e veriices, denoted by vy, vy, - - -, v, 1, ave called the code-bii veriices
(or variabie nodes). The second set V) consisis of J vertices that represent the J
parity-check sums (or equations), s1. s, -+, sy. given by (17.2) that the code bits

musi satisfy. These vertices are called the check-simn vertices (or check nodes). A
code-bit verfex vy is connected to a check-sum vertex s; by an edge, denoted by
(v;. ;). if and only if the code bit v; is contained in (or checked by) the parity-check
sum 5;. Mo two code-bit vertices are connected, and no two check-sum vertices are
connected. It is clear that Ur is a bipartite graph. This graph was first proposed by
Tanner [3] to study the structure of LDPC codes for iterative decoding and hence
is called a Tanner graph. The degree of a code-bit vertex v; 1s simply equal to the
number of the parity-check sums that contain vy, and the degree of a check-sum
veriex s; is simply equal to the number of code bits that are checked by s;.

For aregular LDPC code, the degrees of all the code-bit vertices in the Tanner
graph of the code are the same and equal to y (the column weight of the parity-check
matrix); and the degrees of all the check-sum vertices are the same and equal to
o (the row weight of the parity-check matrix). Such a Tanner graph is said o be
regular. Furthermore, it follows from Definition 17.1 that no two code bits of an
LDPC code arve checked by two different pariiy-check sums. This implies that the
Tanner graph Gr of an LDPC code does not contain cycles of length 4. To decede
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FIGURE 17.6: The Tanner graph of a (7, 3) linear block code.

an LDPC code (or any linear block code) with iterative decoding based on belief
propagation (IDBP) [23, 26], it is important that the Tanner graph of the code does
not contain cycles of short lengths, such as lengths 4 and 6—especially cycles of
length 4. Short cycles limit the decoding performance and prevent the decoding to
converge to ML [10, 25, 28, 36-39].

EXAMPLE 17.3

Consider a (7, 3) linear block code which is the null space of the following
parity-check matrix.

f1 1 01 0 0 07
0110100
0011010
H=|0001101
1000110
0100011

| 101000 1|

It is easy to check that this code is an LDPC code. Its Tanner graph is shown in
Figure 17.6. The graph does not contain cycles of length 4, but it does contain cycles
of length 6; one such cycle is marked by heavy lines. Therefore, the girth of this
Tanner graph is 6.

17.3 A GEOMETRIC CONSTRUCTION OF LDPC CODES

LDPC codes can be constructed algebraically based on the points and lines of finite
geometries, such as Euclidean and projective geometries over finite fields, presented
in Chapter 8. In this section, we present geometric construction of two types of
LDPC codes based on a finite geometry. These two types of LDPC codes are closely
related, and their Tanner graphs are dual to each other.

Let @ be a finite geometry with n points and J lines that has the following

fundamental structural properties: (1) every line consists of p points; (2) every point
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lies on y lines (i.e., every point is intersected by y lines); (3) two points are connected
by one and only one line; and (4) two lines aie either disjoint (i.e., they have no
point in commeoen) or they intersect at one and only one point. We denote the points
and lines in Q with {py, p2. - . pn) and {£1. £o. -+, L7}, vespeciively. Let

v = (v, v2. - . Uy)

be an n-tuple over GF{2) whose components correspond to the n points of geom fu

57

J
Q, where the ith component v; corresponds to the ith point p; of ). Let £ be a line
in Q. We define a vector based on the points on £ as follows:

Ve = (v, 02, L v

[ 1 ifp; isapointon L,
Vi = .
’ 0 otherwise.

This vector v, is simply the incidence vector of line £ defined in Chapter 8, which
displays the poinis on L. It 1s clear that the weight of this incidence vecior is p.

We form a J x n matrix ‘.ﬂb whaose rows are the mcidence vectors of the v
lines of the finite geometry ) and whose columns correspond io the n points of
Q. It follows from the fundamental structural properiies of the finite geometry Q
and the definition of the incidence vector of a line in @ that matrix H' has the
following properties: (1) each row has p 1s; (2) each column has y 1s ( this number
is simply the number of lines in Q that intersect ai the point thai corr Hspoms 0 the
colummn); (3) no two rows have more than one 1 in common (this follows from the
fundamenial property of geometry QO that two lines are either disjoint or intersect
at one and only one point in Q); and (4) no two columns have more than one 1 in
common; that is, A = 0 or 1 (this follows from property 3). The density of this matriz
Hg) isr=p/n=y/J. Ipandy are small compared with » and /. then the density

(

b . .
r of H%)’ is small, and hence IHI,QI) is a low-density (or sparse) mairix

The null space of Hg}’ gives an LDPC code of length n. This code is called the

type-1 geonietry-() LDPC code, denoted by C S ' which has a minimum distance of
at least y + 1. The Tanner graph of this code is a regular bipartite graph with n code
bit vertices and J check-sum vertices. Each code bit vertex has degree y, and each
check-sum vertex has degree p. The graph contains no cycles of length 4. 1t does
contain cycles of length 6 (the proof of this is left as a problem).

To construct the second iype of LDPC code, we need to form vectors corre-
sponding to the points of the finite geometry Q. Let

v= (v, V. - .VU))
be a J-tuple over GF(2) whose components correspond to the J lines of Q, where
the ith component v; corresponds to the ith line £; of Q. Let p be a point in Q. We

define a J-tuple based on the lines in Q) that ntersect at p as follows:

vp = (v1, V2. V)),
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where

|1 ifthe ithline £; of 0 contains the point p,
v 0 otherwise.

This vector v simply displays the lines that intersect at p, and hence it is called the
intersecting (or incidence) vector of point p.

We form an n x J matrix Hg) whose rows are the intersecting vectors of the n
points in the finite-geometry  and whose columns correspond to the J lines of Q.
It follows from the definition of the incidence vector of a line in § that the columns
of Hg) are simply the incidence vectors of the J lines in Q. Furthermore, it follows

from the definition of the intersecting vector of a point in €} that the columns of H(“
are simply the intersecting vectors of the » points in Q. Consequently, H Vs 51mply

the transpose of Hf@ and vice versa; that is,

H(2) [H(D]
o _ [H{(z)] (17.4)
Q T Q-
Matrix Hg) has the following properties: (1) each row has weight v; (2) each column
has weight p; (3) no two columns have more than one 1 in common; and (4) no
two rows have more than one 1 in common. The density of Hg is the same as the

density of Hg). The ranks of Hg) and ng) are the same.
The null space of Hg) gives an LDPC code of length J with a minimum

distance of at least p + 1. This LDPC code is called the fype-II geometry-Q LDPC
code, denoted by C(z) Co D and C(z) are called companion codes. Because Hg) and

Hé}) have the same rank, Cg) and C 8 ) have the same number of parity check bits. It
follows from (17.4) and structural properties of Hg) and Hg) that the Tanner graphs

of Cg ) and CS) are dual graphs; that is, the code-bit vertices of one graph become
the check-sum vertices of the other graph, and the check-sum vertices of one graph
become the code-bit vertices of the other graph.

There are two families of well-known finite geometries, Euclidean and pro-
jective geometries over finite fields, which were presented in Chapter 8. Based on
these two families of finite geometries, four classes of finite-geometry LDPC codes
can be constructed:

1. type-1 Euclidean geometry (EG)-LDPC codes.
2. type-11 EG-LDPC codes,

3. type-1 projective geometry (PG)-LDPC codes,
4. type-11 PG-LDPC codes.

17.4 EG-LDPC CODES

Consider the m-dimensional Euclidean geometry over GF(2*), EG(m, 2°), whose
structure was described in Chapter 8. This geometry consists of 2™° points, and
each point is represented by an m-tuple over GF(2%). The point represented by the
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all-zero m-tuple. @ = (0, 0. - - - . 0}, is called the origin. There are

B 2(}11—1),\‘(2;715' . 1)

J
-1

(17.5)
lines in EG(m, 2%), and each line consists of 2° points. Each point in EG(mn, 2%) is
intersected by

oms __q

y el
lines. Two lines in EG(m, 2°) are either disjoint or they intersect at one and only
point. Each line in EG(m, 2°) has 207~1% — 1 lines parallel to it. From (17.5) we
can readily see that there are (2™ — 1)/(2' — 1) bundles of parallel lines, and each
parallel bundle consists of 20"~ 1% parallel lines.

To construct a type-1 EG-LDPC code based on EG(m, 27), we form the
parity-check matrix H(El(); whose rows are the incidence vectors of all the lines in
EG(mn, 2°) and whose columns correspond to all the points in EG(m, 29). Therefore,
H(EI)C consists of

i 2(71171)‘\'(21;15‘ _ 1)

2 -1

rows and n = 2" columns. Because each line in EG(m, 2*) consists of 2° points,
each row of H(EDG has weight p = 2°. Since each point in EG(n, 2°) is intersected
by (2" —1)/(2% — 1) lines, each column of H(Elg; has weight y = (2™ — 1)/(2° — D).
The density r of H(El)G is

0 2°

"= ; = 2”7.8‘

=27, (17.7)
Form > 2Zands > 2,r < 1/4 and Hgg is a low-density parity-check matriz. The
null space of Hgg hence gives an LDPC code of length n = 2", which is called an
m-dimensional type-I (0, s)th-order EG-LDPC code, denoted by ng; (im.0,s). The

minimum distance of this code is lower bounded as follows:
oms _ 1
dpin =y +1= 2—‘:T + 1. (17.8)

Because (2% — 1)/(2° — 1) orthogonal check-sums can be formed {or each code bit,
this code is capable of correcting 1y, = [[(2"° —1)/2(2' — 1) ] or fewer random errors
with one-step majority-logic decoding, as discussed in Chapter 8.

To construct an m-dimensional type-11 EG-LDPC code, we take the transpose
of H%é} which gives the parity-check matrix

a2 (L
), = (L)

Matrix Hgg consists of J = 27 rows and n = 2% ~D5@Q2"m — 1)/(2% — 1) columns.

Each row of Hgg has weight p = (2" — 1)/(2* — 1), and each column of H(Ezé

has weight y = 2°. The null space of H?G gives an LDPC code of length n =
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20m=Dsams _ 1y/(2¥ — 1) with a minimum distance of at least 2* + 1. This code is
referred to as an m-dimensional type-1I {0, s)th-order EG-LDPC code, denoted by
Cgé (m,0,s).

EXAMPLE 17.4

Let m = 2 and s = 4. The two-dimensional Euclidean geometry EG(2, 2*) consists
of 256 points and 272 lines. Therefore, Hgg is a 272 x 256 mairix with the
following parameters: p = 16,y = 17, A = 0 or 1, and density r = 0.0624. The
null space of H(Elg gives the two-dimensional type-I (0, 4)th-order EG-LDPC code

Cg(); (2,0, 4) of length 256 with a minimum distance of exactly 18. The dimension

of this code is 175 (or the rank of H(El(); is 81). Hence, it is a (256, 175) LDPC
code. The two-dimensional type-II (0, 4)th-order EG-LDPC code CI(EZ();(Z 0,4)
is the null space of H(Ezg; = [H%%]T, which is a 256 x 272 matrix with parameters
p=17.v =161 =0orl, and density r = 0.0624. The length of this codeisn = 272,
and its minimum distance is exactly 17. ngl (2, 0. 4) has the same number of parity
bits as the type-I code CS& (2,0,4), which is 81. Therefore, Cgé is a (272, 191)
LDPC code.

In constructing the type-I and type-Il EG-LDPC codes based on EG(m. 2%),
we can remove the origin point of the geometry and all the lines passing through
the origin. In this case, the type-1 EG-LDPC code can be put in cyclic form and the
type-II EG-LDPC code can be put in quasi-cyclic form. This simplifies the encoding
circuit.

Let GF(2") be the extension field of GF(2%). Each element of GF(2"")
can be represented as an m-tuple over GF(2'). As pointed out in Chapter 8,
GF(2") forms the m-dimensional Euclidean geometry EG(m, 2*) over GF(2).
The elements of GF(2"") give the 2" points of EG(m.2"), and the zero element
0 of GF(2™") 1s the origin of EG(m,2%). Let o be a primitive element of GF(2"*).

Then, o = 1, @.a?, - .-, &*" 72 are all the 2% — 1 nonorigin points of EG(m, 2*).
Let

v ={vg. V1, L U _2)
be a (2" — 1)-tuple over GF(2) whose components correspond to the 2" — 1 non-
origin points of EG(m. 2*), where v; corresponds to the point o/ withQ <i < 2" -1,

Let £ be a line in EG(m, 2*) that does not pass through the origin. Based on £, we
form a (2™ — 1)-tuple over GF(2) as follows:

Vo = (7)0‘ Vi, 0, Uzm\,z)
whose ith component

o — 1 ifaisapointon L.
e ﬁ 0 otherwise.
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The vecior v 1s the incidence vector of the line L. It follows from (17.5) and (17.6)
that there are

i (7(:77— 1)(2171\ _ ) i
O = v ‘\1 ]L/)

(i, 2*) that do not pass through the ovigin.

{1 Qé be a matrix whose rows are the incidence vectors of ali the Jp lines in
_u(m 2%} that do not pass through the origin and whose columns correspond to the
i = 2" — 1 nonorigin points of EG(m, 2*). This matrix has the following properties:
U) cach row has weight o = 2%, (2) each column hasweighty = Q" —1)/(2° -1)—1;
(3) no two colmmns have more than one 1 in common; thatis, A = 0 or I; and (4) no

g . T ! noo.
two rows have miove than one 1 in common. The density of Tﬂ% G

2¢
= (17.10)
Smy 1 \l/.lU}
Again, fotm > Zand s > 2, r 15 relatively small compared with 1. Therefore, H—;I(Eé .
is a low-density matriz.
Let ¢V (., 0. 5) be the null space of IH . Then, ¢l m, 0. s)isan LDPC
EG. EG ¢
code of length n = 2™ — 1 with a minimum dlst?uce of at least
gms _ 1
+l=—=—"-. i7.11
14 > 1 ( )
it turns out that this LDPC code is the (0, s)th-order EG code defined by Def-

mmon 3.3 and hence is cyclic. We call this code an m-dimensional type-I cyclic

{0, s)th-order EG- LJJP‘-” code. Because it 1s cyclic, it is completely specified by its
generator polynorial g E G.<- (X). Let o be a primitive element of GF{2"). Let i be
a nonnegative integer less than 2 — 1. For a nonnegative integer [, let 1) be the
i‘C‘TﬂﬂindPT resulting from dividing 2'h by 2 — 1. Then, it follows from Theorem 8.3
th

+

t gl (X) has o’ as a root if and only if

0 < max Wos (W) < m — 1H(2¥ — 1), (17.12)

O<f<s

where Was (111} is the 2°-weight of i defined by (8.28).
Let ko be the smallest integer that does not satisfy the condition of (17.12). 1
can be shown [472] that

hy = (25— (2 =12 (2~ 1>2(m—3).\‘ + 2(/11*2)»‘ + 2(//1—l)x

17.13)
— ) (m—1)y 7 (m—2)s+1 1. ( )

Therefore gEC (X) has the following sequence of consecuiive powers of a:
5 _ A
oo, ol (17.14)

as roots [42]. Ti follows from the BCH bound [43-45] (see Section 7.2) that the
rmmmum distance of the m-dimensional type-1 cyclic (0, s)th-order EG-LDPC code

{ EG (1. 0. 5) is lower bounded as follows:

d(E‘C)‘( > 5 (m—1s + om=2s+1 1 (17.15)
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This BCH bound is tighter than the bound given by (17.11). The only case for which
these two bounds on minimum distance are equal is m = 2. In this case, both bounds
are 2° + 1. In fact, in Section 8.5, we proved that for m = 2 the minimum distance of
the (0,s)th-order EG code is exactly 2° + 1.

The number of parity-check symbols of C(E(); .(m, 0, 5) is equal to the degree
of its generator polynomial gggc(X ). A combinatorial expression for this number
has been derived in [46].

A special subclass of type-1 cyclic EG-LDPC codes is the class of two-
dimensional type-I cyclic (0, s)th-order EG-LDPC codes. 1t follows from (8.33) that
the number of parity-check bits for the two-dimensional type-I cyclic (0, s)th-order

EG-LDPC code C(E% +(2,0,5) of length n = 2% _ 1 constructed based on the lines
of EG(2,2%) is

n—k=3—-1. (17.16)

Therefore, CS&CQ, 0, s) has the following parameters:

Length n=2%_1,

Number of parity bits n —k =3" -1,

Dimension ko=02% 3 (17.17)
Minimum distance dnin = 2 +1.

Density ro= 27\ I

For this special case, the geometry EG(2, 2°*) contains 2% — 1 lines that do not pass
through the origin. Therefore, the parity-check matrix HEE)C . of the C 1(91();‘(-(27 0, s)

codeisa 2% —1) x 2% — 1) square matrix. H%é . can be constructed easily by
taking the incidence vector v of a line £ in EG(2, 2°) that does not pass through the
origin and then cyclically shifting this incidence vector v 2% — 2 times. This results
in 2% — 1 incidence vectors for the 2%° — 1 distinct lines in EG(2, 2°) that do not pass
through the origin. The incidence vector v, and its 2% — 2 cyclic shifts form the rows
of Hgg . Therefore, Hgg is a square circulant matrix. Both the row weight p and
the column weight y are equal to 2°; that is, p = y = 2°. A list of two-dimensional
type-I cyclic (0, s)th-order EG-LDPC codes is given in Table 17.1.

TABLE 17.1: Two-dimensional iype-1 cyclic (0, s)th-order
EG-LDPC codes

S n k dmin L 4 F

2 15 7 5 4 4 0.267

3 63 37 9 8 8 0.127

4 255 175 17 16 16 0.0627

5 1023 781 33 32 32 0.0313

6 4095 3367 65 64 64 0.01563
7 16383 14197 129 128 128 0.007813
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EXAMPLE 17.5

Letm =2 and s = 2. Consider the Galois field GF(22%?) generated by the primitive
polynomial p(X) =1+ X + X 4 which is given in Jable 2 Regard this field as the
iwo-dimensional Buclidean geometry EG(2, 2%) over Gﬁ(z Let o be a primitive
element of GF(2*?) and B = o°. Then {0, 1, 8, 82} form the subfield GF(2?%).
Every line in bG(Z 2%y consists of four points. The set of four points {ol* + na)
with n € GF(Q2%) is {a7 o8, 019 o1}, which forms a line in LG( _72} This Eine
does not pass through the origin of EG(Z, 2* The Incidence ve OK of this lin

(excluding the origin poini) is (000@@0011010@@1). This vector and 1is 14 ¢ ychc
shifts form the pariiy-check mmairis Hﬂ( ) . shown in Figure 17.1. The null space
of this matriz is the two-dimensional m)e— cyclic (0,2)th-order EG-LDPC code

(1> -(2.0.2) of length 15, which is the (15, 7) LDPC code given in Example 17.1

'md ks the first code listed in Table 17.1. 1t follows from (17.12) that the generator
polynomial g(l) (X) of this cyclic LWPC code has «,a?, o ot of a® a°, and

o'? as all its roots. The roots a. o?, ot and of are conjugates, and they have the
- . G

same minimal polynomial, ®1(X) =1+ X + + X*. The roots o>, oz67 le, and o” are
— v 2 53 ) v4 The

f"omucaleo and their minimal polynomial is ®3(X¥) = 1+ X -+ X~ + X° 4+ X*. Then,

gt () = 01 (X)®3(X) = 1+ X* + X6+ 7 + x%. This code is actually the (15, 7
double-error-correcting BCH code considered in Examples 6.1 and 8.1.

The companion code of the m-dimensional type-1 cyclic (0, s)th-order EG-
LDPC code C (E% . is the null space of the parity-check matrix

1
Higy 4 = (g 1T (17.18)
This LDPC code has length

S(m—1ys _ 1yoms — 1

and a minimum distance d,,;, of at least 2° + 1. It is not cyclic but can be put in quasi-
cyclic form. We call this code an m-dimensional type-II quasi-cyclic (0. s)th-order
EG-LDPC code, denoted by Cg5 , (m. 0,5). To put Ci  (n,0.) in quasi-cyclic
form, we partition the Jy incidence vectors of lines in EG{m, 2°) not passing through
the origin into
2(711—1)3‘ -1

K= ——o 17.20)

> 75 1 ( /
cyclic classes. Each of these K cyclic classes contains 27" — 1 incidence vectors, which
are obtained by cyclically shifting any incidence vector in the class 2" — 1 times. For
each cyclic class of incidence veciors, we choose a representative, and the rest of the
incidence vectors are generated by cyclically shifiing this representative. Now, we
form a (2 —1) x X matrix Hy whose K columns are the K representative incidence
vectors of the K cyclic classes. For 1 <i < 2" —2 let H; be a (2" — 1) x K matrix
whose columns are the ith downward cyclic shifts of the columns of Hy . We form
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the matrix H(EZ)GVW. as follows:
HSy e = [Ho Hy B -+ Hom o). (17.21)

Then, the null space of ng; ge gives the type-1I EG-LDPC code Cgé P m, 0,s)in

quasi-cyclic form. Every K cyclic shifts of a codeword in Cé% qc(m, 0,s) is also a

codeworc\l‘
H%’G gc €an also be putin circulant form, which consists of K (2™ —1) x 2™ —1)
circulants as follows:

HES o = [G1 Gy -+ Gl (17.22)

where G; is formed by downward cyclically shifting any member in the ith cyclic
class of incidence vectors. Circulant form and quasi-cyclic form are considered to be
equivalent; one is obtained from the other by a column permutation [44].

EXAMPLE 17.6

Let m = s = 3. The three-dimensional type-I cyclic (0, 3)th-order EG-LDPC code
CS&L,(& 0, 3) constructed based on EG(3, 2%) is a (511, 139) LDPC code with a
minimum distance of at least 79 (using the bound given by (17.15)). Its parity-check

matrix HG) is a 4599 x 511 matrix with p = 8,y = 72, and density r = 0.01565.
Then, Hy, . = [H} 17 is a 511 x 4599 matrix with p = 72,y = 8, and density
r = 0.01565. The null space of H{z,, . gives the companion code €%, .(3,0,3) of
the (511, 139) type-1 EG-LDPC code. It is a (4599, 4227) LDPC code. Both codes
have 372 parity-check bits. The (4599, 4227) code has a minimum distance of at least
nine. In quasi-cyclic form, every nine cyclic shifts of a codeword result in another

codeword. In circulant form, H(Ezz; ge consists of nine 511 x 511 circulants in a row.

Recall that for m = 2, H%)G Lisa (2% —1) x 2% — 1) square matrix. Because
)

the rows of H(El'G‘(, are cyclic shifts of a single incidence vector of a line in EG(2,
2%) not passing through the origin, the set of columns of ng}.c (reading top-down)
is identical to the set of rows (reading from right to left) of HS)GC Therefore,
H(E‘f‘)‘g‘qC = [Hg)G‘C]T has the same set of rows as Hgéc (in reverse order reading
from right to left). Consequently, Cg();'ﬂc and C EF%( are equivalent.

17.5 PG-LDPC CODES
sed in Chapter 8.

The structure of a projective geometry over 2 finite field was discus ]
Some structural properties of points and lines of this geometry are briefly reviewed
here for the purpose of constructing the PG-LDPC codes.

Leta be a primitive element of the Galois field GF(20" 1), which is considered
as an extension field of GF(2°). Let

2(}11+1)5 1

= — 17.2
n > T (17.23)
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Then, the n elements
@, @ @, @ h

defined in Section 8.8 form an m-dimensional projective geometry over GF(2%),
k ] g

PG(m, 2°). The clements @Y, (@b, @), -+ (@) are the points of PG(m,2%). A

line in PG(m, 2°) consists of 2° + 1 points. There are

(L4204 271427 4 4 200D f
J= T (17.24)
lines in PG(im, 2°). Every point (o) in PG{(m. 2') is intersected by
gms _ 1
= 17.25
Y= T (17.25)

lines. Two lines in PGn. 2°) ave either disjoint or intersect at one and only one
point.
Let
V= (g, v Yy ))
be an n-tuple over GF(2) whose components correspond to the points (@), (@), - - .
(@"~Yy of PG(m,2"), where v; corresponds to ihe point (¢'). Let £ be a line in
PG(m, 27). The incidence vector of £ is an n-tuple

Ve = (U, v1, - Upot)
whose ith component

1 if £ contains the point (e,

V= .
"7 1 0 otherwise.

The weight of v, 18 2% + 1.
- R e . .
We form a matrix HP)G whose rows are the incidence vectors of the lines in

PG(m, 2*) and whose columns correspond to the points of PG(m, 2°). Then, H;,“G has

_ (2(1;‘171)3‘ e 25 1)(2171.&' b 28 1)
B 25+ 1

J

(17.26)

rows and n = (207D —1)/(2° — 1) colurns. It follows from the structural properties
of lines and points of PG(n, 2*) developed in Section 8.8 that matrix H(T}g has the
following properties: (1) every row has weight p = 2° + 1; (2) every column has
weight y = (2™ —1)/(2* = 1); (3) no two columns have more than one 1 in common;
that is, A = 0 or 1; and (4) no two rows have more than one 1 in common. The
density of H;})G is

o 2=+

T T T amans 1 (17.27)

For m > 2, r is relatively small. For large m, r is approximately 2= =1 which is
very small. Therefore, HS)G is a very sparse matrix.



868 Chapter 17 Low-Density Parity-Check Codes

The null space of HE.})G gives an LDPC code of length n = 20D —1) /(25 —1)
with a minimum distance of at least y +1 = (2™ — 1)/(2% — 1) + 1. This LDPC
code is called an m-dimensional type-1 (0, s)th-order PG-LDPC code, denoted
by Che(m,0,5). It follows from Definition 8.5 that C%(m,0,s) is simply the
(1, s)th-order PG code. It is therefore cyclic.
Let 7 be a nonnegative integer less than 20"+1% — 1 For a nonnegative integer
I, let i be the remainder resulting from dividing 2/4 by 2"+ — 1. Let gl (X) be
the generator polynomial of the code C}% (m, 0, s). Let « be a primitive element of
GF(20" D). Then, it follows from Theorem 8.5 that gii).(X) has o as a root if and
only if 4 is divisible by 2° — 1, and
0 < max W, (WD) = j2' = 1), (17.28)

O<l<s
with0 < j <m —1.Let& = a? 1. The order of £ is then n = 2 +Ds —1)/(25 — 1),
From the foregoing characterization of the roots of g(P%(X ), it can be shown [42]

that ggg (X) has the following consecutive powers of &:

2 ns __ 28 _
Y

as roots. It follows from the BCH bound that the minimum distance of the
m-dimensional PG-LDPC code C l(plc); (m, 0, s) 1s lower bounded as follows:

oms _ 1
nin = ﬁ

which is the same as the bound y + 1. We also can obtain this bound from (8.50) by
setting 0 = 1.

We can enumerate the number of parity-check symbols of the m-dimensional
type-I (0.s)th-order PG-LDPC code Cfp% (m, 0, s) by determining the roots of its
generator polynomial. A combinatorial expression can be found in [46].

A special subclass of the class of type-I PG-LDPC code is the class of
two-dimensional type-I PG-LDPC codes constructed based on the family of the
two-dimensional projective geometries PG(2,2%) for various s. It follows from
(8.51) that the number of parity-check symbols of the two-dimensional type-I (0,
s)th-order PG-LDPC code C4,(2,0, ) is

d, +1, (17.29)

n—k=3+4+1. (17.30)

C ;”G (2,9, 5) has the following parametess:

Length n=2% 4241,
Number of parity bits n —k =3 + 1,
Dimension k=2% 42" 3%,
Minimum distance dpin = 2% + 2,
s
Density r= i
225 +25 41

It 1s a difference-set code [47], presented in Section 8.3. The parity-check matrix
H(;)G of this code is a (2% + 2° 4+ 1) x (22" + 2 4 1) square matrix, which can
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]
&
G

¥,

TABLE 17.2: Two-dimensional type-I PG-LDPC

ccdes

§ 7 k min P Y r

2 21 11 6 5 5 0.2381
3 73 45 10 9 9  0.1233
4 273 191 18 17 17  0.0623
5 1057 813 34 33 33 0.0312
6 4161 3431 66 65 65  0.0156
716513 14326 130 129 129 0.0078

be obtained by taking the incidence vector of a line in PG(2.2°) and its 2% + 2°

cyclic shifis as rows. Some two-dimensional type-1 PG-LDPC codes ave listed in
Table 17.2.

Let m = s = 2. The two-dimensional type-1 (0.2)th-order PG-LDPC code con-
structed based on PG(2,2%) is the (21, 11) code given in Table 17.2. Tt is the (1,
2)th-order PG code given in Example 8.24, whose generator polynomial ggg(/‘( ) is
14224+ %04+ %7+ %10 Let o be a primitive element of GF(2**?). From Example 8.23
we find that

{e), (e!h), @), @) (@)

"

isaline L1

3]

=

G(2. 2)0 The incidence vector v, of this line is

v, =(0100006000001001100001).

This incidence vector and its 20 cyclic shifis form the parity-check matrix of the (21,
11} LDFC code.

Note that the columns of the parity-check matriz H}% of the type-I (0, s)th-

order PG-LDPC code C ;1(); (.0, s) are simply the intersecting vectors of the points
of PG(m. 2%). Let

ML = [HaL]T. (17.31)

Then, the nuli space of Hf,}g gives an m-dimensional type-II (0, syth-order PG-LDPC
code, denoted by Cg‘)G (m., 0, 5). H(PZ)G has J = (20"+Ds _ 1) /(2 — 1) rows and
(Z(’”AI)‘Y G 2D 4 28 4 1)

- 17.32
n 73 n 1 ( 3 )

columns. The row and column weights of Hgg are o = (2™ - 1)/ — 1) and
y = 2% +1, respeciively. Therefore, Cg(); (m, 0, s) has length » and minimum distance

dypin = 2° + 2. (17.33)
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The number of parity-check symbols of C @) (m 0, s) is the same as that of the type-I

1 2
code C;)G\un 0, o/ Form = 2, C;g;\a u, A}lscql.u‘/dleﬂt {0 LPG\L 0. b) ‘bPGU/I’l U s)

is, in general, not cyclic, but it can be put in guasi-cyclic form in the same manner a
for the type-1II EG-LDPC code.

EXAMPLE 17.8

Let m = 3 and s = 2. The three-dimensional projective geometry PG(3, 22) consists
of 85 points and 357 lines. To construct the three- dimensional type-1 PG-LDPC code
Cp o (3.0,2), we form the parity-check matrix H  Whose rows are the incidence
Vect01s of the 357 lines in PG(3, 2?) and whose columns correspond to the 85 points in
PG(3, 2%). The matrix HSDDG is a 357 x 85 matrix and can be put in the following form:

K7 847 17 7 Ty7

M o
Hpg = Hp J

where 117 is the 17 x 17 identity matrix, and each H; is an 85 x 85 circulant matrix.
The circulant matrices Hy, Hp, Hjs, and Hy have the following incidence vectors of
lines (in polynomial form) as their first rows, respectively:

By (X) =14+ X2 + X% 4 x70 4 x®
ho(X) = X'+ X% 4+ x°8 4 x81 4 x84,
hy(X) = X° + XM+ x4 x78 4 x¥,
hg(X) = X164 X33 1 x50 4 x67 4 x84,

The matrix H%g has row weight p = 5 and column weight y = 21. The null space of

HS). gives an (85, 24) three-dimensional type-I PG-LDPC code €4 (3, 0,2). The

compamon code C(z)

(3, 0. 2) of this code is the null space of the parity-check matrix
H}?‘G = [H(l) ]7. The matrix H;g; has row weight p = 21 and column weight y = 5.

(2) (3. 0,2) has the same number of pauty -check bits as C(‘U (3,0,2). Hence, it is a
(357 296) PG-LDPC code and has a minimum distance of at ]east 6.

EXAMPLE 17.9

Letm =4,ands = 2. The parlty -check matrix H;G of the four-dimensional type-1 (0,
2)th-order PG-LDPC code C (4 0,2)1sa 5797 x 341 matrix with row weight p = 5
and column weight y = 85. c“’ (4,0,2) is a (341, 45) LDPC code with a minimum
distance of at least 86. Its companion code C;G(4 0, 2) is the null space of H(}:G =
[H(l) 17, which is a 341 x 5797 matrix. The length of Cj @) (4.0,2) is 5797. Because
C(Z) (4,0, 2) has the same number of parity-check symbols as Cfplé; 4,0,2), which is
296, C(Dzé (4.0,2)is a (5797,5501) LDPC code with a minimum distance of at least 6.
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17.6 DECODING OF LbPC CODES

An LDPC code can be decoded in various ways, namely: majority-logic (MLG)
decoding, bit-flipping (BF) decoding, weighted BF decoding, a posieriori proba-
bility (APP) decoding, and iterative decoding based on belief propagaticn (IDBP)
{commonly known as sum-product algorithm (SPAY). The first itwo types are hard-
decision decoding, the last two are soft-decision decoding, and the third one is in
between. MLG decoding (discussed in Chapter 8) is the simplest one in decoding
complexity. BF decoding requires a litile more decoding complexity but gives better
error performance than the MLG decoding. APP decoding and the SPA decoding
provide much beiter error performance but require much larger decoding com-
plexity than the MLG and BF decodings. The weighted BF offers a good trade-off
between error performance and decoding complexity. SPA decoding gives the best
error performance among the five types of decoding of LDPC codes and yet is
practically implementable. APP decoding also provides the best error performance;
however, it is computationally iniraciable and hence will not be discussed. A sim-
plified version of APP was presenied in Chapter 10, which reguires less decoding
complexity at the expense of some performance degradatios.

Suppose an LDPC code C is used for error conirol over an AWGN chan-
nel with zero mean and one-sided PSD Ny. Assume BPSK signaling with unit

energy. A codeword v = (vp, v1. -+, vy—1) is mapped into a bipolar sequence
¥ = (xg, X1, -+ . X, ) before its transmission, where x; = Qv; — 1) = +1forv; = 1,
and xy = —1 for yy = O with 0 </ <n—1.Let y = (yo, ¥1."-, ¥a—1) be the

soft-decision received sequence at the cutput of the receiver maiched filter. For
0<i!<n-—1,v =+x1-+u.where s is a Gaussian random variable with zero mean
and variance Ng/2. Let z = (29, 21, -+ , zn—1) be the binary hard-decision received
sequence obtained from y as {ollows:

1 forw >0,
=30, forv <O.

Let H be the parity-check matrix of an LDPC code C with J rows and n
columns. Let hy, Iy, --- , hy, denote the rows of H, where

by =0l hi D
for 1 < j < J.Then,

S=(s1.8,--,s5;) =z -H (17.34)
gives the syndrome of the received sequence z, where the jth syndrome component
s, 15 given by the check-sum

Sj = Z- l]ﬁj = Z Z,/]’lj_/. (1735)

The received vector z is a codeword if and only if s = 0. If s 5% 0, errors in z are
detected. A nonzero syndrome component s; indicates a parity failure. The total
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number of parity failures is equal to the number of nonzero syndrome components
ins. Let

e=(eg, €1, - ,e4_1)
(17.36)
= (v, V1, - -, Vp1) +(20- 20, - 5 1)
Then, e is the error pattern in z. This error pattern e and the syndrome s satisfy the
condition
s=(s1,5, .5 =e H, (17.37)

where

n-1
sp=e-hj=) ehj (17.38)
1=0

forl<j</J.

Majority-Logic Decoding
MLG decoding was discussed in detail in Chapter 8. Now, we apply one-step MLG
decoding to LDPC codes.

It follows from the structural properties of the parity-check matrix H of a
regular LDPC code that for every bit position /, there is a set

(OIERO)] 3]
Ar={h by, B (17.39)
of y rows in H that are orthogonal on this bit position; that is, the /th component of

each row in 4; is 1, and no two rows in A; have a common 1 in any other position.
We form the following set of syndrome equations based on the rows in A;:

Si=1{s"=e by :hl s forl<j=<y) (17.40)
where
n—1
/ ! i
sV =e n =3 enl. (17.41)
=0

S; gives a set of y check-sums orthogonal on the error digit ¢;. As presented in
Section 8.1, they can be used for estimating the error digit ¢; based on the one-step
MLG decoding rule. Correct decoding of ¢; for 0 </ < n is guaranteed if there are
v /2] or fewer eirors in the error paitern e.

All four classes of finite-geometry LDPC codes are one-step MLG decodable.

Bit-Flipping Decoding Algorithm
Bit-flipping (BF) decoding of LDPC codes was devised by Gallager in the early 1960s

[1,2]. When detectable errors accur during transmission there will be parity-check

1 o3 803344003 100 3 S 58 Lo § i SO prai

failures in the syndrome s = (51, 52, - - - , 57), and some of the syndrome bits will be
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equal to 1. BF decoding is based on the change of the number of parity failures in
{z-h;:1<j < J}when abit in the received sequence zis changed (or flipped).

First, the decoder computies all the parity~-check sums based on (17.34) and
(17.35) and then changes any bit in the received sequence z that is contained in
more than some fixed number § of failed parity-check equations (i.e., nonzero
syndrome bits). Using the modified received sequence 7/, the decoder recompuies
the parity-check sums, and the process is repeated uniil all the parity-check sums are
equal to zero (i.e., no parity failure). At this poini, the modified received sequence
is a codeword in C. This decoding is an iterative decoding algorithm. The parameier
8, called the threshold, is a design parameier that should be chosen to optimize the
error performance while minimizing the number of computations of parity-check
sums. The value of § depends on the code parameters p, v, dyin(C), and SNR.

If decoding fails for a given value of 8, then the value of § should be reduced
tc allow further decoding iterations. For error patterns whose number of errors
is less than or equal to the error-correcting capability of the code, the decoding
will be completed in one or a few iterations. Otherwise, more decoding iterations

are nceded. Therefore, the number of decoding iterations is a random variable
and is a function of the channel SNR. A limit may be set on the number of
iterations. When this limit is reached the decoding process is terminated to avoid
excessive computations. Owing io the nature of low-density parity checks, BF
decoding algorithm correcis many error patierns whose number of errors exceeds
the error-correcting capability of the code.

A very simple BF decoding algorithm is given here:

Step 1. Compute the parity-check sums (syndrome bits) based on (17.34) and
(17.35). If all the parity-check sums are zero, stop the decoding.

Step 2. Find the number of failed parity-check equations for each bit, denoted
by fi,i=0,1,...n—1

Step 3. Identify the set S of bits for which f; is the largest.

Step 4. Flip the bits in set 5.

Step 5. Repeat steps 1 to 4 until all the parity-check sums are zero (for this
case, we stop the iteration in step 1) or a preset maximum number of
iterations is reached.

In step 5, if the preset maximum number of iterations is reached and not all the
parity-check sums are zero, we may simply declare a decoding failure or decode the
unmodified received sequence z with MLG decoding to obtain a decoded sequence,
which may not be a codeword in C. The latter case is simply a hybrid BF/MLG
decoding.

This simple BF decoding algorithm can be improved by using adaptive
thresholds, §'s. Of course, this improvement is achieved at the expense of more
computations.

Weighted Majority-Logic Decoding and Bit-Flipping Decoding

The simple hard-decision one-step MLG decoding and BF decoding can be improved
to achieve better performance by including some kind of reliability information
(or measure) of the received symbols in their decoding decisions, as described
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in Section 10.9.2. Of course, such performance improvement requires additional
decoding complexity.

Consider the soft-decision received sequence y = (yo, ¥1,' -, Ya—1) at the
output of the receiver matched filter. For an AWGN channel, a simple measure of
the reliability of a received symbol y; 1s its magnitude, |y;|: the larger the magnitude
||, the larger the reliability of the hard-decision digit z;. This reliability measure
has been used in many reliability-based algorithms for decoding linear block codes,
as presented in Chapter 10.

The weighted MLG decoding presented in Section 10.9.2 can be used for
decoding LDPC codes. Consider an LDPC code specified by a parity-check matrix

H with J rows, by, by, - Jhy. ForO<l<n—1land1l < j < J, we define
A0 A - C_ o
b;.llmin = {minf|y;[}: 0 <i <n -1, hj;= 1} (17.42)
and
A K0) 0
E = Z 2s3 = D1yl (17.43)
X'I-HGS/

E; is simply a weighted check-sum that is orthogonal on the code bit position /. Let
e = (eq, €1, - , en—1) be the error pattern to be estimated. Then, we can modity the
one-step MLG decoding based on the weighted check-sum E£; as {ollows:

o = g 1, for E; > 0, (17.44)

0., forE <0

for 0 <! < n — 1. The preceding decoding algorithm is called weighted MLG
decoding [48].

The decision rule given by (17.44) can be used in BF decoding. In this case the
decoding is carried out as follows:

Step 1. Compute the parity-check sums (syndrome bits) based on (17.34) and
(17.35). If all the parity-check sums are zero, stop the decoding.

Step 2. Compute E; based on (17.43), forO </ <n — 1.

Step 3. Find the bit position { for which E; is the largest.

Step 4. Flip the bit z;.

Step S. Repeat steps 1 through 4. This process of bit flipping continues until
all the parity-check sums are zero or a preset maximum number of
iterations is reached.

This modified BF algorithm is called a weighted BF decoding algorithm [17-20].
In step 5, if the preset maximum numbers of iteration is reached and not all the
parity-check sums are zero, we may decode the unmodified received sequence z with
the weighted MLG decoding based on weighted check-sums computed based on
(17.43) and the decision function given by (17.44). This hybrid weighted BE/MLG
decoding will result in a decoded sequence.

The foregoing weighted decoding algorithms require some real-number com-
putations.
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The Sum-Product Algorithm

The sum-product algorithm (SPA) is an iterative decoding algorithm based on belief
propagation (IDBP) [10, 12-20, 23, 25-30] that is extremely efficient for decoding
LDPC codes. Like the MAF decoding algorithm and its variations presented in
Chapters 12 and 14, it is 2 symbol-by-symbol soft-in, soft-out decoding algorithm. It
processes the received symbols iteratively to improve the reliability of each decoded
code symbol based on the parity-check sums computed from the hard decisions
of the received symbols and the sparse parity-check matrix H of an LDPC code.
The reliability of a decoded symbol can be measured by its marginal posteriori
probability, its log-likelihood ratio (LLR), or the value of its corresponding received
symbol. The computed reliability measures of code symbols at the end of each
decoding iteration are used as input for the next iteration. The decoding iteration
process continiles until a certain stopping condition {(or criterion) is satisfied.
Then, based on the computed reliability measures of code symbols, hard decisions
are made,

. we consider an LDPC code C of length n specified by a parity-check
mairix H with J rows, Iy, Iy, -+, lhy, where

h/ = (h_/}O~ /?‘/\1* T h_/ﬂnfl)~
For1 < j < J. we define the following index set for h;:
Bhy) ={lth;;=10=1<n), (17.45)

which is called the support of h;.
The implementation of SPA decoding is based on the computation of the
marginal a posteriori probabilities,

Fuly)

tor O <1 < n, where y is the sofi-decision received sequence. Then, the LLR for
each code bit is given by

o Pl =11y

I = .
W) =18 50— o

(17.46)

Let p,o = P(v; = 0) and p/l = P(v; = 1) be the prior probabilities of v; = 0 and
y; = 1, respectively.

For 0 =1 <n.1 < j < J,and each h; € A, let qj‘]m be the conditional
probability that the transmiited code bit v has value x, given the check-sums
computed based on the check vectors in Aj\k; at the ith decoding iteration. For
0</<nlzj<J andh; e A.leto];” be the conditional probability that ihe
check-sum s; is satisfled (i.e., 5; = 0), given v; = x (0 or 1) and the other code bits
in B(h;) have a separable disiribution {q}:’_’,’m 1 € B(lj)\I}; that is,

= 50 PGy =0l =x.{vre Bap\h - T 4 (1747)
{viireBth\} reBh N/

o
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The computed values of a;“](") are then used to update the values of ¢;; (D) a5
follows: '
Q;,’[(i+h (z+1) ,\ H O”\ (1)’ (17.48)
b eAN\h;
where aﬁf;rl) is chosen such that
1 NG
q(/)lu+ ) _I_qﬂ(wrl) ~1

%0+ are then used to update the values of o D Based

x,(0) x. (i) .

The computed values of ¢

on (17.47). The updating between 45}
the decoding process.
At the ith iteration step. the pseudo-posteriori probabilities are given by

and a ; 1s carried out 1terat1vely during

PO =xlyy=apf T o7, (17.49)
hj;eA

where o is chosen such that PO (v = 0ly) + PP (v = 1]y) = 1. Based on these
probabilities, we can form the following vector as the decoded candidate:

Z(i) _ (Z(()I) Z;I), . Zl(zlil)

with

) (i) —
() :{ 1, for POy =1]y) > 0.5 (17.50)

z .
! 0. otherwise.

Then, compute z) - H”. If z0) . H” = 0, stop the decoding iteration process, and
output z¥) as the decoded codeword.
The SPA decoding in terms of probability consists of the following steps:

Initialization: Set i = 0 and the maximum number of iterations to .. For

every pair (j,)ysuch that h;; = 1withl < j < Jand 0 <[ < n, set

0,(0 1,.(0)
q;. /( ) = pl andq = p[l.

Stepl. ForO</[«<n,1<j </ andeachh; € 4;, compute the probabilities,
O ) and ol 0 . Go to step 2.

Step 2. ]For 0=<i < , 1< j=<J, and eachh; € A;, compute the values of
q/”l( "D and q G+ and the values of P(’“’(v; =0]y) and PUtD(y; =
1}y). Form z('“) and testzU 1 .HT. 1fzV+D .17 = 0 or the maximum
iteration number /4, is reached, go to step 3. Otherwise, seti =i +1
and go to step 1.

Step 3. Output zV*1 as the decoded codeword and stop the decoding process.

ENe Y

A detail exposition of SPA decoding of LDPC codes can be found in [10].
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To perform SPA decoding, real-number addition, subtraction, multiplication,
and division, and exponeniial an operations are needed. In imple-
mentation the last four iypes of opcmtw more complex than addition and
subtraction. For this reason we simply ignore

t number of additions and subtrac-
tions in analyzing the o»ﬁpma*muﬂ Cu?lfnb}ﬁmm\’ From (17.46) through (17.49), we
find that the number of multiplications needed in cach iieration of the decoding is
of the order O (2Jp +4ny), and the number of logarithin operations needed is of the
order O(n). We see that the computational complﬁexity of SPA decoding is mainly a
linear function of the number of 1-entrics in the parity-check matrix H of the LDPC
code to be decoded.

A different version of SPA decoding i
at each decoding iteration. The mpro
iteration is used for irnproving the exirinsic i
the code symbols ai the next decoding iteration.
until a modified hard-decision receive
parify-check suimns egual (o zero.

Consider a Code—bﬁ position-/. Let h be a row in the sei A; that is orthogonal
on bit position-/. Then, the extrinsic information provided to the transmiited code
bit v; by other code bits J,lecked by In (or the check-sum z - In) is {1, 2, 30, 49]

based. on updating exirinsic information
rinsi n’fmmauoq at one decoding
n and the reliability values of
m decoding iterations continue

d sequence is obtained that makes all the

i+ T :[ tanh (Tw
\ Vo /
>u !
o) = log reb (), 7 (17.51)
T {] wank ((T"”‘ )
r€BN Vo

The total exirinsic information provided i code bii vy by the rows in A; is then

T
g =y &l

_\
[\

1+ | { tnh|—y
| reg(i)\i NO
7 . (17.52)
H J{ tann ((%‘/[>
re B\
We define a J x n matyix
iy’ = O / ~
W=1{E; ]1\:1 . (17.53)
where
[ e =&y, forie B())
= . ’ 17.
Ejr= %L 0, otherwise. (17.54)
The matrix ¥ is called the extrirnsic marriz. We define another J x n matrix
¥ =[v.22 (17.55)
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where

4
v =i N forfeBm (17.56)

0, otherwise.

This matrix is called the channel information matrix. In the decoding. each decoding
iteration updates (or improves) the extrinsic values ¢;(h;), ¢;, and E;; for0 <! <n
and1 < j < J.These values computed during the i th decoding iteration are denoted
by sl')(h D, (”, and E<' For0 <! <nandl < j < J. the extrinsic value E(Z is
used to modify the channel information Y;; by setting

i+1) i
28 =y, + B (17.57)

We form the channel value matrix at the end of the ith iteration as follows:

O<l<
AL VA (e (17.58)
where
AYES TR b (17.59)

Fori = 0,29 = Y. The entries of Z{ are used to compute the extrinsic values for
the (i + 1)th decoding iteration. For 0 </ < n, s,(’) is used to modify the received

vector y = (yo. ¥1, -+ . ¥a—1). Let

fO (,.éo[,,im_u‘ ,<70>1)
4 4 4
= (FOY0~ FO.VL R Ng%z-l) -
Let
= g

be the modified received vector at the ith decoding iteration. Then, the modified
received vector at the next iteration is

pA+h (I”((Jiﬂ), rfwl)~ e r,(zijll))
where
I(HI) (1)+ [
and r(O) = ()y/ for0 <! < n.
Let
=(z (()I)’Zl)‘ T ,(1,)1)

be the hard-decision vector obtained from ') = (ré” . rf'% e 1) with

A A (17.60)
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This hard-decision vector can be tested whether it is a codeword by computing the
syndrome z') - 7. If Zi(i) -HT =8, 2 is a codeword and decoding iteration can
be stopped. Gtherwise, iteration continues until either the preceding condition is
satisfied or a preset maximum number of iterations is reached.

SPA decoding in terms of extrinsic information is carried out as

Initiclization: Set i = 0, the maximum number of iterations 1o Iy, 20 = v
d70 — v

A I

Step L. For0 </ <n,1<j</ andeachh; ¢ A, compuie

. I (0)
I+ ﬂ ! tanh(Z; /2
- B\ o
&) () = log ——— — (17.61)
i tanh(Z i
1-— ﬂJ‘_ tanh(Z -[/2\h
re BN
M _ S g o
Eio= 2, & (), (17.62)
Iy € Ap\lr;
W) _ ) o
= Ef e . (17.63)

and form the exirinsic matrix EY). Go to step 2.

Stem Z. EOI //<1+1) = Y +] EO pi+D - (O +g A(0) Cand Z(i'H), where g() —
(80 ,51 ,e”'ll). Jlesm““HH[T. itz S JHT = Dor the maximum
iteration number {,,, is reached, stop the decoding iteration and go
to step 3. Otherwise seti := i 4 1 and go to step 1.

Step 3. Output 2V as the decoded codeword.

The computational complexiiy and decoding delay (o1 decoding time)} of the
SPA increase as the number of decoding iterations increases. Long decoding delays
are not desirable in high-speed communication and data storage systems. I an
LDPC code has a large MLG error-correcting capability, such as a long finite-
geometry LDPC code, it is possible to devise a hybrid SPA decoding scheme with
MLG decoding to shorten the decoding iteration process and hence the decoding
delay with only a small degradation in error performance, as follows. Based on the
MLG error-correcting capability of the LDPC code to be decoded and the channel
statistics, we choose an appropriate maximum number of decoding iterations fpax.
At the end of the 1,,th iteration, if not all the computed parity-check sums are
zevo, we switch to MLG decoding to decode the hard-decision received sequence
obtained at the 7,,,.th iteration. If the number of residue errors left uncorrected in
the hard-decision received sequence is within the MLG error-correcting capability
of the code, the errors will be corrected. This is often the case for long LDPC codes
with large majority-logic error-correcting capabilities, such as fintte-geometry LDPC
codes. Based on many experimental results, we have observed that SPA decoding
of long finite-geometry LDPC codes converges very {ast. After a few iterations, say
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five, the number of residue errors left uncorrected is small, and the MLG decoding
will correct these residue errors. In fact, MLG decoding can be implemented at the
end of each decoding iteration. At the end of each decoding iteration, we check the
hard-decision received sequence. If the number of unreliable positions based on a
certain threshold is within the MLG error-correcting capability, we switch to MLG
decoding to terminate the decoding iteration process: otherwise, we continue to the
next decoding iteration until the 7, th iteration is finished. This combination of SPA
decoding and MLG decoding is called tweo-stage hybrid SPA/MLG decoding [17].

oG aiie IViz AT QULOGE 8T GELO ey

Performance of Finite-Geometry LDPC Codes

To demonstrate the error performance of finite-geometry LDPC codes, we select
several EG- and PG-LDPC codes of various lengths and decode them with various
decoding algorithms.

EXAMPLE 17.10

Let m = 2 and s = 5. The two-dimensional type-1 (0, 5)th-order cyclic EG-LDPC
code is a (1023, 781) code (the fourth code in Table 17.1). This code has a minimum
distance of 33 and rate R = 0.763. Its error performance with various decoding
algorithms is shown in Figure 17.7. We see that ML.G decoding provides the least
coding gain over the uncoded BPSK but requires the least decoding complexity.

10" I i ] E

F — - BPSK uncoded 1

r -e= PG-LDPC SPA bit ]

—= PG-LDPC SPA block 1

10-'L —— EG-LDPC BF bit 4

- —a- EG-LDPC weighted BF bit| 7

r -=- EG-LDPC MLG bit 3

- -+~ EG-LDPC SPA bit 4

e " g |~ EG-LDPC SPA block 1
E 107k \_|=== Shannon limit -
— B S .
o i S 1
2 107k S~. 1
L] : 3
% i \\\:
° L ~
g 1074 -
m - E
107 E

i \ | |

0 6 7 8

Ly/Nq (dB)

FIGURE 17.7: Bit- and block-error probabilities of the (1023, 781) two-dimensional
type-1 cyclic EG-LDPC code and the (1057, 813) two-dimensional type-I cyclic
PG-LDPC code based on various decoding algorithms.
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Ween error peumm& 11C¢
he wewhleﬂ decodl

code is a (1057.8 ﬁ‘a code mm a minimum distance of 34 and a rate of 0./07 (U’ie
>0 i Table 17.2). Ii is equivalent to the (1023, 781) type-1 (0, 5)th-
PC code. Its error performance with SPA rie(’oomg is alsc included in
e see that the two codes have almost identical ervor performance.

S = §. The two-dimensional typ@ -I (0. 6)th-order cyclic EG-LDPC
code is a (-,(}>-5“ 336 code with a minimum distance of 65 and rate R = 0.83 (the
ab 17. 1) its parity-check matri “J(?QG has row weight p = 64,

nd density r = 0.01263. This is also the (0, 6)th-order EG
.21. Its ervor performance with various decodings 1s shown
in TI?MI'P 17 8. OdP with SPA decoding achieves an error performance 1.40 dB
from the Shannon limitat a BER of 107> Again, the weighted BF decoding algorithm
provides a good trade-oll between error performance and decoding Complexuy The
equivalent two-dimensional type-I (0, 6)ib-order PG- LWPC code is a (4161, 3431)
code with a minirum distance of 66 and a rate of 0.825. Iis error performance is

almost Mmﬁ C’ﬂ 1o that of the (4095, 33 67‘% EG-L DC Pode as showw in Figure 17.8

5 = 3. The three-dimensional iype-1 (0, 3)th-order cyclic EG-LDPC code
(3.0.3) consiructed based on EG(3.2%) is a (511. 139) code with dpin = 79

(
EGvc N

and rate 8 = 0.272 given in Example 17.6. It is a low-rate code. Tis pariiy-check
matrix H—L(,,% . is 8 4599 x 511 matrix with p = 8,y = 72, and density » = 0.01365.
The transpose of Jh[(p)p .

r(2) (h 47

HEG g = Mg ]
is a 511 x 4599 matiiz with p = 72,y = &, and » = 0.01565. The null space of

HI(E'C e gives a three-dimensional type-11 (0, 3}th-order quasi-cyclic EG-LDPC code

C%,)J ge (3.0.3) thatis a k».S%‘, 4227) code with a minimum distance of at least 9 and
rate R = 0.92. It is a high-rate code. The bit- and block-error performances of both
codes with SPA decoding are shown in Figure 17.9. We see that the (4599, 4227)
type-1I EG-LDPC code performs very well. At a BER = 107, the performance of
this code is only 1 dB from the Shannon limit.
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10" g , -
-~ BPSE unccded i
-~ PG-LDPC SPA bit ]
== PG-LDPC SPA block )
= EG-LDPC SPA bit
107! - EG-LDPC SPA block |
-«= EG-LDPC BF bit E
== EG-LDPCMLGbit | 1
2z === EG-LDPC weighted BF bit
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FIGURE 17.8: Bit- and block-error probabilities of the (4095, 3367) two-dimensional
type-1 EG-LDPC code and the (4161, 3431) two-dimensional type-I PG-LDPC code
based on various decoding algorithms.

10" = 7 ] | | T
E —-Uncoded BPSK E
B =s=(511,139) LDPC bit
10°' L -2 (511,139) LDPC block
s =& (4599, 4227) LDPC bit 7
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» 1077 -~ E
= E ~ 7
| o ]
2 el ~ |
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FIGURE 17.9: Error performances for the (511, 139) type-1 EG-LDPC code and the
(4599, 4227) type-11 EG-LDPC code with SPA decoding.
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Some good Gallager LDPC codes have been found with computer searches
[10-13]. For lengths up to 1023 and 1057, ihese codes do not perform as well as
their corresponding finite-geometry codes. Furthermore, they have relatively small
y.say 3 to 6, and hence ihey are not suitable for MLG or BF decoding.

EXAMPLE 17 ’ﬂ)

Let m = 2 and s = 4. The two-dimensional type

,D\ts
D

10,4
(273, 191) code (the third code given in Table 17.2) wifh o= y =17, rate R = 0.699,
density r = 0.0623, and 2 minimys tance of at least 18. Its ervor performance
with SPA decoding is shown in Figure 17.10. Also i chuded in the figure are the

SPA errvor performances of the two-d isional type-I (0, 4)th-order cyclic (255,
175) EG-LDPC code and two cum'w,‘,vezngeuef{afm' 273, 191y LDPC codes with
y =3 and y = 4, respectively. We see that the tw dﬁmensmnal PG-LDPC code
outperforms the two computer-generaied icantly.

For longer lengths, computer-generaied Gallager LIDPC codes should perform
better [han fi n ite-geometry codes with SPA decoding, bui their encoding may be

Very complex owing to the lack of struciure, such as cychc or quasi-cyclic. Another
disadvantage of computer-generaied ¢ GM% ager LDPC codes is that it is very hard to
determine their minimum distances

10" = I I E
- — = Uncoded BPSK K
i ~e= PG-LDPC ]

. EG-LDPC
107 == Gallager code y = 3| 3
L == Gallager code y = 4| ]

-2

2 10F J
= - e ]
= i R ]
S j0-t L ~. N
S 107k —
s o
) I ~
F 0 -
0L }
107() - .
E \ ! E
0 S 7 8

E, /Ny (dB)

FIGURE 17.10: Bit-error probabilities of the (255 ]7 » type-1 EG-LDPC code, (273,
191) type-I PG-LDPC code, and two computer-searched (273, 191) Gallager codes
with SPA decoding.



884 Chapter 17 Low-Derisity Parity-Check Codes

I i I I f i I ]
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FIGURE 17.11: Convergence of SPA decoding for the (4095, 3367) type-1 EG-LDPC
code.

Simulation results show that the SPA decoding process of the EG- and PG-
LDPC codes converges relatively fast. The difference in performance between 10
iterations and 100 iterations is very small. As an example, consider the (4095, 3367)
two-dimensional type-1 EG-LDPC code given in Example 17.11. The convergence
of SPA decoding of this code is shown in Figure 17.11. We see that at BER = 1074,
the performance gap between 5 iterations and 100 iterations is less than 0.1 dB. We
also note that the performance gap between 2 iterations and 100 iterations is about
0.5 dB. In practice, if decoding speed {or delay) is critical, 5 iterations may be good
enough, or two-stage hybrid SPA/MLG decoding may be used with the maximum
number of iterations set to 2 or 3.

With SPA decoding, the error performance of an LDPC code depends on sev-
eral important parameters: (1) the girth of its Tanner graph (or cycle distribution);
(2) its minimum distance; (3) the column and row weights of its parity-check matrix;
and (4) its error coefficient (i.e, the number of minimum-weight codewords). The
girth should be large enough so that there are no short cycles, especially cycles of
length 4, 1n its Tanner graph. Short cycles prevent SPA decoding from converging to
MLD or near-MLD performance; however, girth should not be too large. An LDPC
code whose Tanner graph has a large girth tends to have a relatively poor minimum
distance [38]. The error floor in the error performance of an LDPC code is tied to the
minimum distance of the code. Large minimum distance either removes the error
floor or pushes it down to a much lower error probability. An LDPC code with a small
minimum distance decoded with the SP A usually displays an error floor at a relatively
high error rate and has a poor block-error performance, just like mosi of the turbo



Section 17.7 Code Construction by Column and Row Splitting

(o

codes. ¥ nsider the (273, 191) ¢ omnuter -generaied code with y =
W]”nOSP ! is shown i Figure 17.10. lis error performance curve dis-
playsaner aon fioor :/m BER = 5x 1079, In computation of the extrinsic value or LLE
of a code bit at each iteration of SPA decoding, large column and row weight
‘ ber of orthogonal mecm -sums, with each che i

er code bits) result in a farge coniribution © f;uf(‘;uk
rber of other code bits. This resulisin a % etter exirinsic {
or performance, and faster decoding conver

the error peyfor mance cf the code in the range of small &

o
[
[

B ROWW SPLT

A Cﬂmtevc‘eom'ﬂt*y LDPC code C of length n can

column of ife y 1/ rrec k matrix M into multiple COE umns. This results in a new
parity-check mairixz with smaller densiiy aud hence a new JL,JT WPC code. If columns

ood extended finite-geometry LDPC codps can be obiained.

are phu Jl")p‘;‘ 7 g0
E f»me -geonietry LDPC codes orm amazingly

we@i with SPA r‘@cod,np, achieving an error perfos ew tenths of a
decibel away from the Shannon limit.
Let gy, @ . -1 denote the columns of the parity-check matrix Bl First,

we consider pﬂ tting each column of H into the same number of columus. All the

w columns have the same length as the original column. The weight (or 1's) of
he original column is disiributed among the new r‘olumns A vegular coluran weight
distribution can be done as follows. Let ¢ be a positive integer such that 7 < ¢ < yp.
Dividing p by ¢, we have

ne
th

Y =q X Ve + b,

where 0 < b < g. We split each column g of Il into ¢ colummns g 1. g2 - gy
such that the first b columans, g 1, g.2. -, Zip, have weigm Verr -+ 1, and the next

% — b columns, g p41.Zipg2. - - Big. have weight 1, The distribution of ¥ “ones
of @ info % 1.8 2. -+ . By is carried out in a rotating manner. In the first rotation,
the first 1 of g; is put in g ¢, the second 1 of g is put in g 2. and 50 on. In the second
rotation, the (¢ + Dth 1 of g isputing ;. the (¢ +2)th 1 of g is put in g 2 and so on.
This rotating distribution of me 1’s of g; continues until aH me 1’s of g; have been
distributed into the ¢ new columns.
The colomn splitting results in a new parity-check matrix I, with gn columns
that has the following structural properiies: (1) each row has weight po; (2) each
column has either weight y, or weight e + 1: (3) any two columns have at most
one 1 in common. If the density of Il is r, the density of H,, is then r/g. Therefore,
the column splitting results in a new parity-check matrix with smaller density. The
null space of [ue\, gives an exiended finite-geometry LDPC code C,y. We call C
the gth extension of C. If y is not divisible by ¢, then ¢

_4

the columns of H., have

two different weights, y. and y.q + L. Therefore, a code bit of the extended code

Coxe 18 either checked by yey check-sums or by y,y + 1 check-sums. In this case, the
extended finite-geometry LDPC code O,y is an irregular LDPC code.
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EXAMPLE 17.14

Consider the (4095, 3367) two-dimensional type-I (0, 6)th-order cyclic EG-L.DPC
code discussed in Example 17.11. Suppose we split each column of the parity-check
matrix of this code into 16 columns with rotating column weight distribution. This
column splitting results in a new low-density parity-check matrix of 65520 columns
with row weight p = 64, column weight ., = 4, and density » = 0.00098. The
null space of this matrix gives a (65520, 61425) extended two-dimensional type-I
EG-LDPC code with rate 0.9375. This code decoded with SPA achieves an error per-
formance that is only 0.42 dB away from the Shannon limit at BER = 107>, as shown
in Figure 17.12. We see that it has a sharp waterfall error performance. This is the first
algebraically constructed linear block code that performs close to the Shannen limit.

A base finite-geometry LDPC code C can be extended into codes of many
different lengths. All these extended codes have different rates and different
performances.

EXAMPLE 17.15

For m = 2 and s = 7, the two-dimensional type-1 (0, 7)th-order cyclic EG-LDPC
code is a (16383, 14197) code with minimum distance dy,;; = 129 whose parity-check
matrix has row weight p = 128, column weight y = 128, and density r = 0.007813

100? \ I E
E —=-BPSK uncoded| 3
: — Bit 1
L === Block ]
SNM'\Q |
N T,
o i \m\ :
z 0l \ﬁ\ iE
i) F . j
R o 7
] L it
& o
5 10L h E
: 10 i | N E
£ f N
| NG
= 1077 N
o g \
N
107 i
E Shannen limit
10° [ | ‘ ! ‘ : \ (
0 1 2 3 4 5 6 7 8 ?

Eu/N, (dB)

FIGURE 17.12: Bit- and block-error probabilities of the (65520, 61425) extended
type-I EG-LD¥PC code with SPA decoding.
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FIGURE 17.13: Ex erforma n es of the (16383, 141@7) two-dimensional type-1 EG-

1LDPC code and ﬂr 57/.756 07873) extended EG-LDPC code with SPA decoding.

{the sizth code given in Table 17.1). Suppose we split each column of the parity-
ched{ matrix of this code into 32 columns. We obtain an exiended EG-LDPC code
of length 524,256 and rate approximately 31/32. The density of the parity-check
matriy of this extended mdﬁ is r = 0.000244. It is a very sparse matriz. The bit-
and block-error performances of this extended LDPC code with SFA decoding are
shown in Figure 17.13. At BEP 10 4 he perf@fmmac of the extended LDPC
code is onlj r ORI

Fé

EXAMIPLE 17. HG

Let m = s = 3. Consider the three-dimensional type-I (G, 3)th-order cyclic EG-
LD PC ode discussed in Example 17.12, which 15 a (511, 139) code. lis parity matrix
is a 4599 x 511 mairix with o = 8,y = 72, and deusity r = 0.01565. Suppose
we extend this code by splitting each column of its parity-check matrix H into 24
columns. Then, the extended code Coy is a (12264, 7665) LDPC code with rate
R = 0.625. The exiension results in a high-rate code. The density of the parity-check
matrix Hey of this extended code is roy = 0.600652, and the column weight of Hi,y, is
Vexr = 3. The bit-error performances of this extended LDPC code and its base code
with SPA decoding arve shown in Figure 17.14. The performance of the exiended
code is 1 dB from [hP Shaﬂmcm ]wlnh at BER = 1074,
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FIGURE 17.14: Error performances of the (511, 139) three-dimensional type-1 (0,
3)th-order cyclic EG-LDPC code and the (12264, 7665) extended EG-LDPC code.

Column splitting of the parity-check matrix of a cyclic or quasi-cyclic finite-
geometry LDPC code may result in an extended code that is neither cyclic nor
quasi-cyclic; however, if we arrange the rows of the parity-check matrix into
circulant submatrices and then split each column into a fixed number of new
columns with column weight distributed in a rotating and circular manner, the
resultant extended code can be put in quasi-cyclic form. To see this, we consider
the m-dimensional type-I cyclic (0, s)th-order EG-LDPC code constructed based
on the lines and points of the m-dimensional Euclidean geometry EG(m, 2%). The

parity-check matrix Hgg . of this code consists of Jy rows and n columns, where Jp

is given by (17.9), and n = 2" — 1. The rows of ng;c can be grouped into Kn x n
circulant submatrices, Hy, Hy, - - -, Hg, where K = Jy/n = (m=bs _ /2 -1
given by (17.20). Each circulant submatrix H; is obtained by cyclically shifting the
incidence vector of a line (not passing through the origin) n times. Therefore, Hgg(
can be put in the following form [17]:

[ H; ]
o | ™ (17.64)
EG.c — : . :

Hy
Now, we split each column of Hgg . into g columns in a manner similar to that

described earlier in this section; however, the 1-components in a column of Hgg .



Section 17.7 Code Construction by Column and Row Splitting 889

must be labeled in a specific ¢ der {171 For 0 < j < n, let g(j') be the jth

column of the ith circulant submat
I (@ (Ky .
ofg, .g . -.g ,withone

the jth »oi umn g; of Hy, . as foliows. We label the first 1-component of the jth

;. Then, ithe jth column g; of H(D . consists

er. We label the 1- COmponents of

column g/ on or below the main diagonal iine of circulant Hy and inside Hj as the

first 1-component of the jth column g,
Je) . o
of g(/ " on or below the main diagonal

second 1-component of g;. We conti
(K)

Iabel the first 1-component
ant Hh and inside Hy as the
abeling process until we label the first
l-component of g. ' on or below the main diagonal line of circulant Hg and inside
Hg as the Kth E—COmponem of column g; i en., we come back to circulant Hy and
start the second round of the labeling process. We label the second 1-component of
@(:l) below the main diagonal line of Hy and zje Hy as the (K +1)th I-component of

e this

L—}Q,U)

g;. We label the second 1-component ol g ih below the main diagonal line of circulant
H, and inside H as the (X +2)th 1- f‘omp@uen ¢ of g;. We continue the second round
of the labeling process untii we reach the Kih c.uw;iam g again. Then, we loop
back to circulant Hjj and continue the labeling process. During the labeling process,
whenever we Jreach the bottoin of a circulant matrix H;, we wrap around to the top of
the same column g'/ ; ) of . This fabeling process continues until all the 1-components
of g; are labeled. Once the labeling of 1-components of g; is completed, we distribute
the 1-components of g; into ¢ new columus in the same rotating manner as described

earlier in this section. ’“lead/ the labeling and weight distribution can be carried out
at the same time. Let ﬂEC oy D€ the new mairix vesuliing from the column splitting.

Then, IH‘%G oy CODSISES Of K 11 x ng submairices ., 1, Her 2, - - Hexy g Forl <i <
K .therows 01 Hleyr . ave cyclic shifts of the first row ¢ bits at a time. As a result, the null
space of Tmm e £1ves an extended finite-geomeiry LDPC code in quasi-cyclic form.

=11 quasa -cyclic (0, s)th-order EG-LDPC
the form given by (17.21) (or

(17.22)). Then, we spm each colwmnn of | VJ mto g colurns with column weight

To ememd the ;71—dm]zmsmw i m

code,

distributed in a rotating manner. We also can mm the transpose of IHIEG . given by
(17.64) as the parity-check matrix and then split each colurnn.

For a PG-LDPC code, the number J of rows of ils parity-check matrix may
not be divisible by the number n of columns of the matrix. In this case, not all
the submatrices of the parity-check matrix H{PG of a type-I PG-LDPC code can be
arranged as 1 X n square circulant matrices. Some of them are nonsquare circulant
matrices, as shown in Example 17.8. The rows of such a nonsquare circulant matrix
are still cyclic shifts of the first row, and the number of rows divides n. We can
remove all the nonsquare circulant submatrices from H(Plg. The result is a new
parity-check matrix

ro

haT
il
I-“PG d =~ [

Hg
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in which every submatrix H; is an n x n square circulant matrix. Y. s still a low-
y q PG.d

1 3 a el s asr thot sofs 1 s+l Aty sermen 1w T )G eaiti e 1771
densﬂy pan‘{y—chc&( matrix that satisfies all the conditions BiVETL 11l w/CHNia0n L/ .4,

The null space of HSIPG 4 18 a cyclic supercode of the PG-LDPC code generated by
Hf.})G Then, we can extend this new code by column spiitting as described earlier, in a
rotating and circular manner, and the resultant extended code will be in quasi-cyclic
form. The null space of the transpose [ng 7 of ng;,d gives a shortened f[ype-H
PG-LDPC code that is quasi-cyclic. Then, we can obtain extended quasi-cyclic

LDPC codes by column splitting of [Hg)G' A

As an example, consider the parity-check matrix ng} of the (85, 24) three-
dimensional type-I PG-LDPC code C4(3,0,2) given in Example 17.8. There is
only one nonsquare circulant submatrix in Hf,})o Removing this nonsquare circulant

submatrix from Hgé, we obtain a new matrix

Hy

(0 H;
Hpga = Hs
Hy

Fach submatrix in Hgé 4 1s an 85 x 85 circulant matrix. The null space of Hg?c 4

gives the same (85, 24) LDPC code with a minimum distance of at least 21. We can
obtain extended codes by splitting the columns of H;})G‘d. The null space of [Hgg A
gives a (340, 279) LDPC code with a minimum distance of at least 6.

We also can obtain LDPC codes by splitting each row of the parity-check
matrix H of a base finite-geometry LDPC code into multiple rows. The resultant
code has the same length as the base code but has a lower code rate. Furthermore,
proper row splitting also preserves the cyclic or quasi-cyclic structure of the code.
Clearly, we can obtain LDPC codes by splitting both columns and rows of the
parity-check matrix of a base finite-geometry LDPC code.

EXAMPLE 17.17

For m = 2 and s = 4, the two-dimensional type-I (0, 4)th-order cyclic EG-LDPC
code is a (255, 175) code (the third code in Table 17.1). Tts parity-check matrix H
has the following parameters: p = 16,y = 16, and density » = 0.0627. Its error
performance with SPA decoding is shown in Figure 17.15. If we split each column of
its parity-check matrix H into five columns and split each row into two rows, we obtain
a parity-check matrix H' whose columns have two different weights, 3 and 4, and
whose rows have the same weight 8. The null space of this new parity-check matrix
is a (1275,765) LDPC code with rate 0.6 and density " = 0.00627. The performance
of this new code with SPA decoding is also shown in Figure 17.15. It is a relatively
short code, but at a BER of 1074, it performs 1.8 dB from the Shannon limit.

EXAMPLE 17.18

Consider the (4095, 3367) two-dimensional type-I cyclic (0, 6)th-order EG-LDPC
code CS&(Z, 0,6) given in Table 17.1. If we split each column and each row of
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the parity-check matrix of this code into 16 columns and 3 rows, respectively, we
obtain a new parity-check matiix with column weight 4 and row weighis 21 and
22. The null space of this new parity-check matrix gives a (65520, 53235) extended
EG-LDPC code. This extended code and its base (4095, 3367) code have about the
same rate. The error performance of the extended code is shown in Figure 17.16,
and it performs 0.7 dB from the Shannon limit at a BER of 107>; however, the
performance of the base code is 1.40 dB from the Shannon limit. This example
shows that by a proper combination of column and row splittings of the parity-check
matrix of a base finite-geometry LDPC code, we can obtain a new LDPC code that
has about the same rate but better error performance.

17.8 BREAKING CYCLES IN TANNER GRAPHS

The examples given in the previous section show that properly splitting each column
of the parity-check matrix H of a finite-geometry LDPC code C into multiple
columns results in an extended LDPC code C,, that performs very close to the
Shannon limit with SPA decoding. A reason for this is that column splitting reduces
the degree of each code-bit vertex in the Tanner graph G of the base code and
hence reduces the number of cycles in the graph. Splitting a column of H into ¢
columns results in splitting a code-bit vertex of the Tanner graph G of the base code
mnto ¢ code-bit vertices in the Tanner graph G,,, of the extended code C.y. Each
code-bit vertex in G,y is connected to a smaller number of check-sum vertices than
in G. Figure 17.17(a) shows that splitting a column in H into two columns results in
splitting a code-bit vertex in the Tanner graph G into two code-bit vertices in the
Tanner graph G, The original code-bit vertex has a degree of 4, but each code-bit
vertex after splitting has a degree of 2. This code-Dit splitting breaks some cycles in
the Tanner graph G of the base code C. Figures 17.18(a) and 17.19 show the breaking

(a) Column splitting

(b) Row splitting

FIGURE 17.17: Graph decomposition by column/row splittings.
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(b} Breaking a cycle of length 4 by row splitting operation.
FIGURE 17.18: Cycle decomposition.
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1 17.1%: Decoraposition of a cycle of length &

of cycles of lengths 4 and 6. Therefore, column splitilng of a base finite-geometry
LDPC code breaks man‘y cycles of its Tanner graph and results in an extended
LIDPC code whose Tanner graph has many fewer cycles. This reduction in cycles in
the Tanner graph improves the performance of the code with SPA decoding, In fact,

cycles can be broken by column splitting of the parity-check matrix for any linear
block code.
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EXAMPLE 17.19

Consider the (7, 4) cyclic Hamming code generated by polynomial g(X) = 1+ X 4 X3,
Its parity-check polynomial is h(X) = 1+ X + X? 4+ X%, and its dual code is generated
by X*h(X 1) = 14+ X2+ X3+ X*. A parity-check matrix for the (7. 4) cyclic Hamming
code can be formed by cyclic shifting the vector (101 11 00) six times, as shown in
Figure 17.20.

The Tanner graph for this code is shown in Figure 17.21. It contains 21 cycles
of length 4, and each code-bit vertex is on 6 of these cycles. If we split each column
of H into two columns, we obtain a new parity-check matrix H,,,, as shown in
Figure 17.22. The null space of He,, gives a (14, 8) code. From [, we can casily
check that o four 1's appear at the four corners of a rectangle in Fl,,,. This implies
that the Tanner graph of the extended code does not have any cycle of length 4.
Figure 17.23 shows the error performance of this extended Hamming code using
SPA decoding, which is almost identical to MLD performance.

As another example, consider the (23, 12) Golay code. A parity-check matrix
H for this code is shown in Figure 17.24. Based on this parity-check matrix, the
Tanner graph for this code has a total of 1748 cycles of length 4, and each code-bit
veriex is on 152 such cycles. The error performance of this code with SPA decoding

10111007
0101110
6010111
H=|1001011
11006101
1110010
10111001/

FIGURE 17.20: A parity-check matrix for the (7. 4) Hamming code generated by
g(X) =14 X+ X

Uy

Si ¥ 53 ; J 57

FIGURE 17.21: Tanner graph for the (7. 4) Hamming code.
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[(10001010100000]
0010060101100
0000010010011
H,,=10100001000100
1001000001001
011010060000610
t00010101000060

- O = O OO

FIGURE 17.22: Parity-check matrix for the (14, 8) eziended Hamming code.
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FIGURE 17.23: Error performance of the (14, 8) extended LDPC code.

with 200 maximum iterations is shown in Figure 17.25. We see that at BER = 107>,
with 200 iterations, the error performance with SPA decoding for this code is 0.6
dB away from MILD, which demonstrates how cycles of length 4 prevent the SPA
decoding algorithm from converging to MLD performance. Suppose we split each
column of the parity-check matrix given in Figure 17.24 into two columns in a
random manner. We find that this column spiitting results in a (46, 24) LDPC code
with a minimum distance of 5 whose Tanner graph contains only 106 cycles of
length 4. The weight distribution of this code is given in Table 17.3. We see that
the extended code has a very small number of codewords of low weights: 5, 6, 7,
and 8. There are 82 codewords of these four low weights, which is fewer than the
253 minimum-weight-7 codewords of the (23, 12) Golay code. We see that column
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[10100100111110000000000 |
01010010011111000000000
00101001001111100000000
00010100100111110000000
00001010010011111000000
00000101001001111100000
00000010100100111110000
00000001010010011111000
00000000101001001111100
00000000010100100111110
00000000001010010011111
H=110000000000101001001111
11000000000010100100111
11100000000001010010011
11110000000000101001001
11111000000000010100100
01111100000000001010010
00111110000000000101001
10011111000000000010100
01001111100000000001010
00100111110000000000101
10010011111000000000010
L01001001111100000000001 |

FIGURE 17.24: A parity-check matrix for the (23, 12) Golay code. »
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FIGURE 17.25: Bit-error performance of the (23, 12) Golay code with SPA decoding.
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TABLE 17.3: Weight distribution of the extended (46, 24} Golay code

Weight Number of codewords | Welght Number of codewerds
0 i 23 1963152
1 g 24 1882241
2 0 25 1656075
3 O 26 1336148
4 0 27 989171
5 1 28 671322
6 5 29 417751
7 18 30 237105
8 58 31 122262
9 28 32 7290

16 1600 33 24069
11 3151 34 9034
i2 9034 35 3151
3 24069 36 1000
14 57390 37 280
5 122262 38 58
16 237105 35 18
17 417751 40 5
18 671322 41 1
19 989121 42 0
20 1336148 43 0
Z1 1656075 44 0
22 1882241 45 0
46 1

see ’{hm for Um gended (46 ?/’) Go lay code, JDA dec odmo w‘ﬂ does a@f[ CONVETge
{6 the MLD periormance owing to the cycles of length 4 in its Tanner graph.

Given a finite-geometry LDPC code specified by a parity-check matrix H,
we can split each column of H in a different manner and into ditferent numbers
of columns. Consequently, many extended finite-geometry LDPC codes can be
obtained by splitting columns of the parity-check matrix H. Of course, if columns of
I are split differenily, the resultant extended code is an irregular LDPC code.

Splitting a row in the IH matrix is equivalent to splitting a check-sum vertex in
the Tanner graph of the code and hence reduces the degree of the vertex, as shown
in Figure 17.17(b). Therefore, row splitting of the parity-check matrix of a base code
can also break many cycles in the Tanner graph of the base code. An example of
cyecle breaking by check-sum veriex splitting is shown in Figure 17.13(b). Clearly.
a combination of column and row splittings will break many cycles in the Tanner
graph of the base code: this may result in a very good LDPC code.
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FIGURE 17.26: Error performance of the (46, 24) extended Golay code based on SPA
decoding with 200 maximum iterations and MLD.

17.9 SHORTENED FINITE-GEOMETRY LDPC CODES

Finite-geometry LDPC codes can be shortened to obtain new LDPC codes, by
deleting properly selected columns from their parity-check matrices. For a type-I
finite-geometry LDPC code, the columns to be deleted correspond to a properly
chosen set of points in the finite-gecmetry base on which the code is constructed.
For a type-II finite-geometry LIDPC code, the columns to be deleted correspond
to a chosen set of lines in the finite geometry. Several shortening techniques are
presented in this section.

Tirst, we consider shortening type-I finite-geometry LDPC codes. We use a
type-1 EG-LDPC code to explain the shortening techniques. The same techniques
can be used to shorten a type-1 PG-LDPC code. Consider the m-dimensional type-1
cyclic (0, s)th-order EG-LDPC code Cg();v(,(m, 0, s) constructed based on the m-

dimensional Euclidean geometry EG(m, 2%). Let H(Elgj be the parity-check matrix

of this code. Then, the rows of Hgg . are the incidence vectors of the lines in
EG(m, 2*) that do not pass through the origin of EG(m, 2'), and the columns of
H(EDG,C correspond to the nonorigin points of EG(m, 2%). For 1 <g¢ < 2°,let Sbe a
set of ¢ parallel (m — 1)-flats in EG(m, 2%) that does not contain the origin (i.e., the
origin of EG(m, 2) is not contained in any of the g parallel (m — 1)-flats). Because
each (m — 1)-flat in EG(m, 2*) contains 2" 1% points, and the ¢ (m — 1)-flats in S
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[%2]

ectior

are disjoint, the total number of points in § is ¢20" D%, Because each (m — 1)-flai
contains 2072 (0 =1s _ 1y /(2% — 1) lines in EG(m, 2°), S contains

Jy = 2lm= s gln=ls 4y 125 — 1) (17.65)
complete lines of EG(m, 5) not passing through the origin. Now, we deleie the
coluinns of M(‘Dc . that correspond (0 the poiais in 5. With this deletion ¢ fcolumﬁsﬂ
the rows in Hj G

. that corr sp o the lines contained in 5 become rows of zeros
. R ng the rows of zeros from the punctured matrix, we

¢ has 27 — r’?(’”"l” i columns and Jy — Jy rows,

i

it the punetu
ubic.m, a new i

swhere Jy

=
oD

T
\

73]

) Every column in this matriz f[;p , still ha

N et ["L:
1N 2
\D [

flpt AE ol 165
— 1) — 1 as that of ihe original mateix [ l(tC .» but its rows
. The weights of the rows cotr Wpomdmg to the lines that are
2%, however, the weighis of those rows corresponding

wrtially contained in § are less thaﬂ 25. Because each row in
1

same weig
hf\ Ve ui

to iDF‘Ji”l

the punctur

'52} s canespon ds to either a mmp e line or a partial line in
wponet in commao, and
n common. Therefore, the
punc’u’u‘ed matrix Wl isani meoul T low- dez{ o]ll/ mairix, and its null space gives an

irregular LDPC code of lengih ng = 2" — g20m=Ds 1 denoted by CJ(E(); (i, 0, s5).
(1)

it is a shortened code of the cyclic EG-LDPC code om0, 5). The minimum
distance of this shoriened LDPC code is siilf at least (2”” D/@E -1,

2=y

‘Lonsvlm the (255,175} two-dimensional type-I cyclic (0, 4)th-order EG-LDPC code

construcied based on the iwo-dimensional Buclidean geometry EG(2. 2*) (the third
cod@ '1 Table 17.1}. This code has rate 1.6363 and a minimum distance of 17. The
parity-check matrix F (Elg . Oof the code is 2 255 x 255 squarte circulant matriz whose
rows are the incidence vectors of the lines in EG(2.2%) that do not pass through
ihe ot The column and row weighis of this paritv-check mairix are both 16. Let

S be a set of two parallel lines in EG(2, 2%) that do not pass through the origin.
Because each line in BEG(2. 2%) consisis of 16 points, § coniains 32 points. Suppose
we deleie those columns in wtth that correspond to the points in 5. This deletion
resulis in a punctured matrix with two rows of zeros that correspond to the ﬁwo lines
in §. Removing these iwo rows of zeros, we obtain a 252 x 223 matrix AEG All
the columns of this new mairixz still have the same weﬂght 16, but its rows have two
¥ Thirteen vows of JJ(L% have weight 16, and all the other rows
have weight M The null space 011 this new matrix giz/es a (223, 145) LDPC code
with a minimum distance of at least 17 and rate 0.650. The puncturing removes 30
information bits and two parity bits, respectively. The error performance of this
shortened EG-LDPC code is shown in Figure 17.27. We see that the shortened code
and the original base code have about the same error performance.

A straightforward gemef*ahzatmn of the foregoing shoriening technique is to
choose a set § of ¢ (m — i)-flats in EG{(m.2%) with 0 < i < m. The (m — i)-flats
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FIGURE 17.27: Bit-error probabilities of the (255, 175) EG-LDPC code and its (223,
145) punctured code.

in § are not necessarily parallel to cach other; some of them may intersect. Then,
the puncturing of the parity check matrix of the m-dimensional type-I EG-LDPC
code is based on the points contained in S. The puncturing still does not change the
column weight but results in many different row weights. The punctured matrix with
the rows of zeros removed generates a shortened EG-LDPC code.

One approach to shortening the m-dimensional type-II quasi-cyclic EG-LDPC

code constructed based on EG(m, 2%) is to put its parity-check matrix Hgé ge N

circulant form. In this case, Hg&q(, is simply the transpose of Hg();‘c given by (17.64),

(2)
HEG,(]C

=H " = B H. - HE ], (17.66)
where K = 2("~Ds —1)/(2* — 1). Because each submatrix H; is an n x n square
circulant matrix, its transpose H! is still an n x n square circulant matrix, where
n = 2™ — 1. Each column of HiT is the incidence vector of a line in EG(m. 2*) not
passing through the origin and has weight 2°. Because H[T is a sguare circnlani, its
rows and columns have the same weight 2°. For 0 < ¢ < K. suppose we remove
g circulant submatrices from Hg&‘q(, given by (17.66). The result is a punctured

matrix, denoted by Hgé_ ge.8° with n = 2™ — 1 rows and (K — ¢)n columns. The
column and row weights of this new matrix are 2* and (K — ¢)2°, respectively. The
null space of this new matrix gives a regular LDPC code of length (X — ¢)n and
minimum distance of at least 2* + 1. The new LDPC code is still quasi-cyclic.
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For m = s = 3, the type-Il quasi-cyclic EG-LDPC code consirucied based on the
three-dimensional Fuclidean geometry EG(3, 2%) is a (4599, 4227) code with a min-
imum distance of at least 9 and rate 0.92. This code was considered in Example 17.6,
and its error performance with SPA deceding is shown in Figure 17.9. The parity-
check matiiz Hgé{q( of this code is 2 511 x 4599 matrix. In circulant form, this matrix
consisis of nine 511 x 511 circulant submatrices. Suppose we remove from this matrix
1,3, and 6 circulant submatrices, respectively, resulting in a 511 x 4088, a 511 x 3066,
and a 511 x 1533 punctured matriz. The null spaces of these three matrices give a
(4088, 3716), a (3066, 2694), and a (1533, 1161) shortened type-il EG-LDPC code,
respectively, All three codes have a minimum disiance of at leasi 9, and their rates are
0.909,0.878, and 0.757, respectively. The bit-error performances of these three short-
ened type-11 EG-LDPC codes and the original base code are shown in Figure 17.28.

The foregoing techniques for shortening EG-LDPC codes can be applied to
shortening PG-LDPC codes. Shoriening fintte-geometry LDPC codes resulis in a
large class of regular or irregular LDPC codes.

The row-splitting technique described in Section 17.7 can be applied to splitting
the rows of the parity-check mairix of a shortened finite-geometry LDPC code. The
result is an expanded low-density matriz whose null space gives a new LDPC code
with a lower rate.

I T i ! T
_ — - BPSK uncoded
107 = (4088, 3716) code with Shannon limit 3.34 dB [
B = (3066, 2694) code with Shannon limit 2.89 dB |3
- T - (1533.1161) code with Shannon limit 1.68 dB |
o == (4599, 4227) code with Shannon limit 3.52 dB |-
1077 - N -
e, ~ 3
= i T
% 1077 = - ™ I
< g Y
i ~ g E
2 e
3. S
2 0
s F E
A ¥ :
107" E
107" =
R | ! \ | | ]
1 2 3 5 6 7 8

E, /N, (dB)

FIGURE 17.28: Bit-error probabilities of the (4088, 3716), (3066, 2694), and (1533,
1161} shortened EG-LDPC codes and the type-II three-dimensional EG-LDPC
code with SPA decoding.
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CONSTRUCTION OF GALLAGER LDPC CODES

To construct the par ‘lﬂ"‘? checl matrix H afa Falla ser LDPC code as des
- P

CHCUN HIGU LA HLU(GA Y & S =i U CO 3 uvuulnuvu lu

Section 17.1, we first need to construct a k x kp su bmamx H; with column weight

1 and row weight p, and then we need to find y — 1 permutations to permute the
columns of H to form y — 1 other k x kp submatrices M, Hj, - - - , H,. With these
y submatrices we form the parity-check matrix Hg 4 as follows:

H, ]
Hy
Hea = :
T,
The column and row weights of H 4 are v and p, respectively. The density of Hga
is 1/k. For large k, H4 is a sparse matrix. The null space of Hg 4 gives a Gallager
LDPC code. The y — 1 permutations must be chosen in such a way that the code
generated by the parity-check mairix Hg 4 has a good minimum distance and does
not contain cycles of short lengths in its Tanner graph, especially cycles of length 4.
Gallager did not provide any specific way of finding these permutations, and there
is no known method for constructing these permutations to guarantee that no short
cycles exist in the Tanner graph of the code to be constructed. Commonly, computer
searches are used to find good permutations and good Gallager codes.

In this section we present a method for constructing Gallager codes. This
method is based on the parallel structure of lines in a2 Euclidean geometry [51,
52]. Consider the m-dimensional Euclidean geometry EG(m, 2°) over GF(2°). As
described in Sections 8.7 and 17.4, the lines in EG(m, 2°) can be grouped into
(2™m —1)/(2° — 1) parallel bundles, with each parallel bundle consisting of 2(m=1)s
lines that are parallel to each other. The parallel lines in each parallel bundle contain
all the 2 points of the geometry EG(im, 2¢), and each point is on one and only one
of these parallel lines. Let Py, Py, - - - , denote the (2° —1)/(2° — 1) parallel bundles.
For1 <i < (2™ —1)/(2° — 1), we form a 20"~Ds x 25 matrix H; whose columns
correspond to the 2™ points in EG{m, 2°) and whose rows are the incidence vectors
of the lines in the parallel bundle P;. This matrix is called the incidence matrix of
the parallel bundle P;. The weight of each row of H; is 2°. Because the lines in each
parallel bundle are disjoint. the weight of each column of H; is 1. The number of
columns in H; is p = 2° times the number of rows in H;. Therefore, the matrix H; is

in Gallager’s form. For 1 <y < (2™ —1)/(2° — 1), we form the following matrix:
L
Hy
Hec.oa = e (17.67)

L H, |

Then, Heg.ca is a low-density parity-check matrix in Gallager's form as presented
in Section 17.1. All the columns of Hgs ¢4 have the same weight v, and all the
rows of Hgg ga have the same weight 2°. The submatrices Hp, Hs, --- , H, are
actually column permutations of Hj. The null space of Hrs ¢4 gives a regular
Gallager LDPC code. Because the rows of Hzg ¢4 are incidence vectors of y 20m=L)s
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tines in EG(m, 2°), and since two lines are either disjoint or they intersect at one
and only one peint, ne two rows {or two columns) in Hgg g4 have more than
one l-component in common. Consequently, the Gallager code generated by the
parity-check matriz Hgg ¢a contains no cycles of length 4 in iis Tanner graph.
Because there are y rows in Hgg ga orthogonal on each code bit, no y columns
can be added to zevo. Therefore, the minimum distance of the code is at least y + 1.
in fact, the minimum distance of an EG-Gallager LDPC code must be even (see
Problem 17.24). As a result, we have the following lower bounds on the minimum
distance of an EG-Gallager LIDPC code:

for odd v,

Py L
-2,  foreveny.

. (17.68)

The preceding lower bounds may be very loose for some y's, as we will see in
Example 17.22.

For each choice of two positive integers, m and s, the foregoing constiuction
based on the parallel bundles of lines in EG(m, 2°) gives a sequence of Gallager
LDPC codes of length 2" for various y’s. This seguence of codes has various rates
and minimum distances. Small v’s result in high rate codes, and large s result in
codes with lower rates but larger minimuam distances. For y = (27 —1)/(2° — 1), the
Gallager code generated by ihe matrix of (17.67) is the m-dimensional type-1 (0, s)th-
order EG-LDPC code of length 2. For y = 1 and 2, the codes generated have mini-
mum distances of Z and 4, respectively. In code construction, y is chosen greater than
1 to ensure that the resuliant code will have a reasonably large minimum distance.

EXAMPLE 17.22
The two-dimensional Euclidean geometry EG(2, 2°) over GF(27) consists of 72 lines
that can be grouped into nine paraliel bundles. Each parallel bundle consists of eight
parallel lines, and each line consists of right points, For y = 210 9, we can constiuct
eight EG-Gallager codes of length 64 with various rates and minimum distances.
hese codes are given in Table 17.4. The tiue minimura distances of these codes are
determined by computing their weight distributions. Consider the code constructed
by using four parallel bundles. This code is a (64, 41) code with a minimum distance
of 8; however, the lower bound on the minimum distance given by (17.68) is 6.

EXAMPLE 17.23

Letm = 5 = 3. Consider the three-dimensional Buclidean geometry EG(3, 2%) over
GF(2%). This geometry consists of 512 points and 4672 lines. The 4672 lines can be
grouped into 73 parallel bundies, with each parallel bundle consisting of 64 lines
paralle] to each other. For each paraliel bundle, we can construct a 64 x 512 matrix
whose rows are the incidence vectors of the lines in the parallel bundle. Suppose we
take 6 parallel bundles to construct a Gallager code. Then, the parity-check mairix
Hec.ca of the code is a 384 x 512 matrix that consists of six 64 x 512 submatrices
arranged in 2 column, with each submatrix constructed based on a parallel bundle
of lines. The column and row weights of Hrg.ga are 6 and 8, respeciively. The
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TABLE 17.4: EG-Gallager codes of length 64 constructed based on EG(2, 2%)

y Code Lower bound omn True minimuumn Number of minimum-
minimuin distance distance welght codewords
2 (64. 49) 4 4 18816
3 (64, 45) 4 4 112
4 (64, 41) 6 8 5880
5 (64, 40) 6 8 3416
6 (64, 39) 8 8 1680
7 (64, 38) 8 8 560
8 (64, 37) 10 10 12544
9 (64.37) 10 10 12544

null space of this matrix gives an EG-Gallager code of length 512. There are many
possible choices of 6 parallel bundles; each choice results in an EG-Gallager LDPC
code of length 512. Different choices may result in different code dimensions. One
choice gives a (512, 256) EG-Gallager code with rate 0.5. Because y = 6, the lower
bound, y + 2, gives a minimum distance of the code of at least 8; however, the true
minimum distance of the code is proved to be 12. The bit-error performance of this
code with SPA decoding is shown in Figure 17.29 (assuming BPSK signaling). Also
included in the figure are the bit-error performances of three computer-generated
LDPC codes of the same rate and the same (or almost the same) length. All three
codes are constructed based on the rules given in [10] (see Section 17.14). The first
two computer-generated LDPC codes have length 512. The parity-check matrix of
the first computer-generated code has column and row weights of 3 and 6, respec-
tively. The parity-check matrix of the second computer-generated code has column
and row weights of 4 and 8, respectively. The third computer-generated code is a
(504, 252) code whose parity-check matrix has column and row weights of 3 and
6, respectively. This (504, 252) LDPC code is the best-known computer-generated
LDPC code of length 504. From Figure 17.29 we see that the (512, 256) EG-Gallager
LDPFPC code ouiperforms all three computer-generated LDPC codes. Also included
in the figure is the bit-error performance of the well-known NASA standard rate-1/2
64-state convolutional code with Viterbi decoding (listed in Table 12.1). This code
has been widely used in commercial communication systems for error control. We
see that all the LDPC codes outperform the convolutional code.

EXAMPLE 17.24

Lctin = 2and s = 6. The lines in the iwo-dimensional Buclidean geomeiry EG(2,2°)
can be grouped into 65 parallel bundles, each consisting of 64 lines parallel to each
other. Each line in EG(2, 2%) consists of 64 points. Many Gallager LDPC codes
of length 4096 can be constructed based on various choices of parallel bundles.
Figure 17.30 shows the bit-error performances of several Gallager LDPC codes
constructed based on the choices of y = 6, 8, 10, 32, and 65 parallel bundles. The
codes are (4096, 3771), (4096, 3687), (4096, 3643), (4096, 3399) and (4096, 3367)
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codes, respectively. Consider the (4096, 3687) code constructed based on 8 parallel
bundles of lines in EG(2, 2%). This code has rate 0.9 and a minimum distance of at Jeast
10. With SPA decoding, it performs 1.2 dB from the Shannon limit at BER = 1075,

The lines in a projective geometry do not have the simple parallel structure of
the lines in a Euclidean geometry; hence, LDPC codes in Gallager form cannot be
constructed.

MASKED EG-GALLAGER LDPC CODES

The parity-check matrix Hgg ¢a of an EG-Gallager code given by (17.67) can
be masked to form a new parity-check matrix for a new LDPC code [53]. For
masking, we need to decompose the incidence matrix of a parallel bundle of lines
in a Euclidean geometry into a row of permutation matrices. Again, consider the
m-dimensional Euclidean geometry EG(m, 2%). For 0 < u < m, a u-flatin EG(m, 2%)
is simply a p-dimensional subspace of the vector space V of all the m-tuples over
GF(2°) or its coset (Section 8.5). Therefore, a p-flat consists of 2/° points. Two
p-flats are said to be parallel if they correspond to two cosets of a u-dimensional
subspace of V. The 207~#)% 4 flats corresponding to the 20"~H)* cosets of a -
dimensional subspace of V are said to form a parallel bundle of ji-flats. The p-flats
in a parallel bundle contain ali the points of EG(m, 2%}, and each point is on one and
only one of the p-flats in the parallel bundle.

Let P(m,m — 1) be a parallel bundle of (m — 1)-flats in EG(m, 2°). This bundle
consists of 2% parallel (im — 1)-flats, denoted by Fy, F», -+, F.. Each (m — 1)-flat F;
in P(m, m — 1) consists of 2¢"~D* points and

2(177*2).\' (2(171—1)‘9 . 1)/<2s _ 1)
lines. The total number of lines in P(m, m — 1) is
jl — 2(111—L)s (2(m~1)5 _ 1)/(25 _ 1)

The lines in P(m. m — 1) form (2¢"~D% —1)/(2° — 1) parailel bundles in EG(m, 2°).
Because there are
J = 2(/!1——1)3‘ (zm.\' _ 1)/(2A . 1)

lines in EG(m. 2"}, there are
J— J] — 22(_111—]).3'

lines in EG(m, 2*) that are not contained in P(m,m — 1). Let W denote the set of
lines not contained in P(m,m — 1). A line in W contains one and only one point
from each of the 2* parallel (m — 1)-flats in P(m, m — 1), because (1) P(m, m — 1)
coiitains all the poinis of EG(m, 2%), and (2) if a line has two points on an (m - 1)-flat
F; in P(m,m — 1), the line is completely contained in F;. The lines in W connect the
parallel (m —1)-flatsin P(m, m—1) together, hence, we call them connecting lines with
respect to the parallel bundle P(m, m — 1), and they form 27"~1¢ parallel bundles of
lines in EG(m, 2°), called connecting parallel bundles of lines, 01, Q2, -+, Qao-11.

For 1 < i < 2m=1s Jet A; be the 20n~1s x 2" incidence matrix of the
connecting parallel bundle Q;. For 1 < j < 2°, it follows from the structure of
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2m=his points in

(& folump pﬁmu mawd Adenuty mamﬂ I h@if‘l@lff» A consists of 2? pexmumtion
matrices of dimension 20" ~D* denoted by A, (, A2 j2.Forl <y <20m-bs,

we form the following y/J’”‘D‘ x 2™ matrix:
F Al
A;z
Hecoa =
Heg.oa =
Ay

Suppose we order the columns of Hgg g4 in such way that the first 207~ D% columns
correspond to the points of the first (m — 1)-flat Fy in P(m, m — 1), the second 207~ Ds
columns correspond to the points in the second (m — 1)-flat 7 in P, m — 1),

and the last 20"~D9 columns co;rre(’ponﬂ to the points in the lasi (i — 1)-flat 7. in
P{in, m—1). Then, we can put Hge g a into following y x 2* array of 20715 5 201=1s
permutation mairices:

ﬁﬁlyl Ail‘z s A\LZ\
Az Aag Ag s

Hec.ga = (17.69)
Ay Ay oo Ay

which has column and row weights of y and 2°, respectively. For 1 < y < 27, the
null space of Hzpe ga gives an EG-Gallager LDPC code with a minimum distance
of at least y + 1 (or y + 2} and rate of at least (2% — y)/2".

ALY

VIPLE 17.25

Consider the two-dimensional Euclidean geomeiry BEG(2,22) over the field GF(22).
This geometry consists of 16 points and 20 lines. Each line consists of 4 points. and
each parallel bundle of lines consists of 4 parallel lines. The 20 lines of EG(2, 2%)
form five parallel bundles. In Example 8.15 we showed that the Galois field GF(2*)
as an extension field of GF(2%) is a realization of EG(2. 22). Let o be a primitive
eiemem of GF(2%). Then, a® =0, a% = 1, a, &?, .-+, & form the 16 points of

G(2,2%). The following 4 lines:

Ly = {0, ", o, oty Lo = {o% a, o2, 0"},
L3 = {a? a0 ol o'3), Ly =, o of ol?)

form a parallel bundle P(2.1). The other 16 lines in EG(2. 2°) are connecting lines
with respect to the parallel bundle P (2, 1). These 16 connecting lines with respect
to P(2,1) form four connecting parallel bundles, @y, Q2. @3, and Q4. These four
connecting parallel bundles can be constructed using Table 8.5. For 1 < i < 4, the
incidence mairix A; of (; can be decomposed into four 4 x 4 permutation matrices
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as follows:
Ly L Ls La
0 ot o ol o® o o o o2 ol0 g1t 13 o8 of of o2
10 0 0O 1 00 O 0 1 0 0 1 0 0 0O
Ay 01 0 O 010 0 1 0 0 0 0 0 1 0
00 0 1 001 0 0 ¢ 1 o0 0 0 0 1
00 1 ¢ 6 6 ¢ 1 6 6 0 1 0 1 6 ©
10 0 O 010 0 0O 0 1 0 0O 1 0 0
A, 01 0 0 1 00 0 c 0 0 1 6 6 0 1
00 1 0 001 0 1 0 0 0 1 0 0 0O
00 0 1 000 1 0 1 0 0 0 0 1 0
1 0 0 O 0 00 1 1 0 0 0 0 0 0 1
As; 00 1 0 1 00 0 0 0 1 0 0 0 1 O
00 0 1 010 0 0 0 0 1 1 0 0 0
01 0 0 001 0 0 1 0 0 01 0 0
10 0 O 0 01 0 0 0 0 1 0 0 1 ¢
A, 00 0 1 1 0 0 0 1 6 0 0 0 1 0 O
0 0 1 0 010 0 0 1 0 O 0 0 0 1
01 0 0 0 0 0 1 0 0 1 0 1 0 0 0O

Let Z = [z; j] be a y x 2° matrix over GF(2). We define the following product
of Z and HEG,GA:

21111 212842 -0 Z12¢Aq 0
2181 22820 - 2227800

M=7I= A , ‘ , , (17.70)
1A, 1 Zp2By 0 o Zp Ay

where

_ A for =1,
7 A = { O for z; =0, (17.71)
and O is a 2971 x 2075 zero matrix. This product defines a masking operation
for which a set of permutation matrices in Hgg ga given by (17.69) is masked by
the zero-entries of Z. The distribution of the permutation matrices in M is the same
as the distribution of 1-entries in Z. If the column and row weights of Z are « and
B, then M is an («, 8)-regular matrix with column and row weights of « and g,
respectively. If Z has different column weights or different row weights, then M is an
irregular matrix. Z is called the masking matrix, Hgg, 4 the base matrix, and M the
masked matrix. Masking reduces the density of the base matrix and hence reduces
the number of cycles in the Tanner graph of the base matrix. Consequently, the
associated Tanner graph of the masked matrix has a smaller number of cycles than
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the Tanner graph o

Tanner graph of the base mairix
HEeg.ca has no cycl ked matriz M has no cycles of length 4.
The null space of Mi g wew regular LDPC code, called a masked EG-Gallager
LDPC code, whose \L anner graph does not co Mam C/CTLPS of lmgd“ 4 fajj
Masking resulis in a c]a ss of masl
aies and minimum distances. The rate of 3 ma" ed Ef“ 1 DJi C code i cont ”Pl‘ed
b3 the parameters y and 2°, but 1is error ormance is controlled by i:he pattern
if the 1-entries in the masking mairiz. T he ma i ing matrix Z can be constructed by
computer or by hand if 113 size is small. ky and B = ko, it can be construcied
alg bralca ly. A y-tuple v of weight o over GF(2) is said to be primitive if y cyclic
shifts of v result in y different y-tuple aqipw the 8-tuple v = (11010000) is
primitive. Cyclically shifting v eight times gives the following eight different 8-tuples:

{"\

"\ i
T
—~.0

Eﬂ
Fr
m

”11010@0@“
01 161 90 0
001 10100
6001 1 ¢ 1 0
0060061101
16000 110
01000011
(101000 0 1 |

Given a primitive y-tuple v with weight o, we can form a y x y circulant matrix G
with v and its y — 1 cyclic shifts as ihe rows (or columns). Boih the column and row
weights of this circulant are o, Two primitive y-tuples are said tc be distinct if one
cannot be obtained by cyclically shifting the ott 1@1, To consiruct a p x 2¥ masking

matrix 7, we take k distinet primitive y-tuples with weight o, v). v2. - -+, v and form
k circulants, Gy, G, -+, Gy, Then,

ol

Z=[G1Gy - Gyl

gives a ¥ x 2% masking malriz with column and row weighis of o and § = ko,
ie ep ectively. If possible, the & distinet itive y-tuples should be chosen such that
the Tanner graph of Z is free of short cycles.

EX WDTL 17.26

Consider the two-dimensional Fuclidean geometry EG(2,2%) given in Example
17.24. Let P(2, 1) be a parallel bundle of lines. With respect o this paralle] bundle,
there are 64 connecting parallel bundles of lines, 01. Q. -+ . Q4. cach consisting
of 64 parallel lines, and each line consisting of 64 poinis. The incidence matrix A; of
a connecting parallel bundle Q) is a 64 x 4094 matrix that can be decomposed into
sixty-four 64 x 64 permutation matrices,

A =[A 1A Ajel

Let y = 8. We form the following 5172 x 4096 base matrix:

T Ay ] r Ary Ara o Al ]
B As Mg Aoo o Aoy
Hegoan = { =

| Ag | Agr Aga - Age
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which is an 8 x 64 array of 64 x 64 permutation matrices. The column and row
weights of Hp; 4.1 ave 8 and 64, respectively. Suppose we want to mask Hreeo oa
with an 8 x 64 masking matrix Z; with column and row weights of 4 and 32,
respectively. Among the seventy 8-tuples of weight 4. all but 6 are primitive. The 64

primitive 8-tuples can be generated by & distinct primitive S-tuples, vy, vp, -+ -, vg,
and cyclically shifting them. With these 8 distinct primitive 8-tuples, we form eight
8 x 8 circulants, GED. Gm, N @m, with column and row weights of 4. Then,

1 b 1
Z = 1GGY - Gyl

gives an 8 x 64 masking matrix with column and row weights of 4 and 32. Masking
HEeg.ga1 with Zy, we obtain a 512 x 4096 masked matrix

My =71 ®@Hgg.6an

with column and row weights of 4 and 32, respectively. The null space of M, gives a
(4096, 3585) LDPC code with rate 0.875 and a minimuin distance of at least 6. The
error performance of this code with SPA decoding is shown in Figure 17.31. At a
BER of 107, the code performs 1.2 dB from the Shannon limit.

Te construct a lower-rate code, we need to choose a larger y. Suppose we
choose y = 16. For the same geometry EG(2. 26}. the base matrix Hgg ga2 given
by (17.69) is a 16 x 64 array of 64 x 64 permutation matrices. For masking, we need
to construct a 16 x 64 masking matrix Z,. Suppose we choose the column and row

lo(i . .
£ [ | E
== Uncoded BPSK | 1
| -s- BER(4096, 3585)| |
1077 & 0= FER(4096, 3585) |
: == BER(4006, 3073)|
s e FER (4096, 3073)
1077k == Shannon limit _ |
2 g N ]
£ 107 el
e .o
o9 S
g 107 ~
5 3
e ]
&
2 IO B =
) E
2
10 i} ‘i
107 -
! K i
o L [ | ! ! I |
0 1 2 3 4 5 6 7 8
E/Ny (dB)

FIGURE 17.31: The error performances of the iwo masked Gallager-LDPC codes
given in Example 17.26.
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Ty =] Gsm o @2)

16> trix with coluran and row weights of 4 and 16, lC._spP(’P ively.
Hee gz with Zs, we obiain a 1024 x 4096 ma&\ed
vith column and row weights of 4 and 16, respective

a {4096, 3073) LDPC code with rate 0.75 and a m N
& eTTOT perfoﬁ,m nice of this code with SPA decoding is also

. T

Vi a BER of 1070, it performs 1.35 dB from the Shannon

Cl*f@’?c 16% A4

et p be a Dosi"jw‘ mnteger such that y < p < 2°. If we take the first p colun

RIS
utation matrices of the matrix Heg ga given by (17.69), we obiain the
,(nuA)) % j/(,w 1w matris
A A - Ay,
B Apy Aay - Ag, -
Hegcalp) = (17.72)
i A—]/.] A)/.2 Tt A)/.p J
3
10 — I E
—= Uncoded BPSK] 4
w'lk, BER =
- B FER :
otk . - Shannon limii | N
o0 - R
2 107
S 10k =
?E 0-° \ >
o007k ]! -
107 | E
: | 1
g " | ! l | I ] J
1 2 3 4 s 6 7 8 9
Ey/N, (dB)
FIGURE 17.22: performance of the (10240, 8961) masked Gallager-LDPC

code construcied based on EG(Z\ 27)B
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For masking construction, we can use Hgg g4 (p) as the base matrix. This shortening
gives more flexibility for construciing codes wiih varicus lengibs and raies. For
example, suppose we choose EG(2, 27) for code construction using masking. If we
choose y = 10 and p = 80, the base matrix Hgg ¢4 (80) is then a 10 x 80 array of
128 x 128 permutation matrices. Masking this matrix with a 10 x 80 matrix Z with
column and row weights of 4 and 32, respectively, we obtain a 1280 x 10240 masked
matrix M. The masking matrix Z consists of eight circulants that are constructed
by using eight distinct primitive 10-tuples over GF(2) and cyclically shifting each of
them 10 times. The null space of M gives a (10240, 8961) LDPC code with rate 0.875
whose error performance is shown in Figure 17.32. At a BER of 1079, it performs
only 0.9 dB from the Shannon limit.

Masking is a very powerful techniques for constructing both regular and
irregular LDPC codes.

CONSTRUCTION OF QUASI-CYCLIC CODES BY CIRCULANT DECOMPOSITION

Consider a g x ¢ circulant G over GF(2) with column and row weights §. Because
column and row weights of a circulant are the same, for simplicity, we say that G
has weight 8. For 1 <t < §, let wi. wy, .-+, w, be a set of positive integers such
that 1 < wy, wp, -, wy <6, and wy + wy 4+ --- + w;, = 8. Then, we can decompose
G into ¢ ¢ x g circulants with weights wy, wa, -« , w;, respectively. Let g; be the
first column of G. We split g into # columns of the same length ¢, denoted by ggn,

2 .
gi‘); SR g(l”. such that the first wy 1-components of g are put in g(ih, the next wo

l-components of g; are put in g(f) .-+, and the last w, 1-components of g; are put in
gg” . For each new column gi'), we form a g x ¢ circulant G; by cyclically shifting gg')
downward ¢ times. This results in # ¢ x ¢ circulants, Gy, G, - - - , G,, with weights
wy. wy, -+, wy, respectively. These circulants are called the descendants of G. Such
a decomposition of G is called column decomposition of G. Column decomposition
of G resulfs in a ¢ x r¢g matrix,

H=[Gi1G; - G, (17.73)

which is a row of r ¢ X ¢ circulants. If w; = wy = -+ = w; = w, then H is a regular
matrix with constant column weight w and constant row weight rw. If t = § and
wy; = wy = --- = w(8) = 1, then each descendant circulant G; of & is a permutation
mairix, and H is a row of § permutation matrices. The parameter ¢ is called the
column splitting factor. Figure 17.33 shows a column decomposition of an 8 x 8
circulant of weight 3 into two descendants with weights 2 and 1, respectively.
Similarly, we can decompose G into descendants by splitting its first row into
multiple rows and cyclically shifting each new row to the right ¢ times. Let 1 <c¢ <
maxf{w; 11 <i <l Forl <i <r letw i, w;n -, w . be aset of nonnegative
integerssuch that0 < w; j, wi2. - ,wie < wj,and w; \+w;2+---+w; . = w;. Each
descendant G; in H of (17.73) can be decomposed into ¢ descendant circulants with
weights w; 1, wi 2, -+ . Wi, respectively. This is done by splitting the first row g; | of

G; into ¢ rows of the same length ¢, denoted by g, g%, - . g}, where g} contains

the first w; ) 1-components of g; |, ngﬁ contains the second w;» 1-components of

g 1. -, and gfcf contains the last w; . 1-components of g; ;. Cyclically shifting each
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(100001 10] [10000010] [00000100]
01000011 01000061 000600010
10100001 10100000 00000001
116010600 101010000 10000000
01101000 00101000 61000000
00110100 00010100 00100000
00011010 00061010 00010000
LOOOOIIO]A 00000101 [00001000]
FIGURE 17.3 column decomposition of a circulant of weight 2.
[, T‘,(]\') Lo PU - T e P €3] ;j(z) (
new row g to the right ¢ times, we obtain ¢ circulants Gi LG Gy that are
descendants of ;. This de @mposmon is referted to as row decomposition. Row
decomposition of G; resulis in the following cq x g maﬁ‘m:
(1)
@iq
D; = i , (17.743
/(‘«((')
& |
which is a column of ¢ g x ¢ circulanis. We call I; the row decomposiiion of G; and
¢ the row splitting factor. In row splitting, we allow w;r = 0. If w;p = 0, G;k) is a

q x g zevo maltrix, regarded as a circufant.
If each circulant G; in H of (17.73) is replaced by its row decomposition D,
we obtain the following ¢ x t array of circulants:

G(l) Gél) (G;l)
] G@) G ... G?
D= DDy D | = A (17.75)
G(C') Gk(l) G;(C')
- 71 ~2 t

.

which is a cq % tg mairix. If each G;M has weight 1, then ID is an array of permutation
matrices. The null space of I gives a code of length n = rg that can be put in
quasi-cyclic form (see Section 5.12).

I G is a sparse matrix, D is also a sparse matrix with smaller density than
G. If no two rows (or two columns) in G have more than one l-component in
comimon, then no two rows (or two columns) in D have more than one 1-component
in common. In this case, the null space of ID gives a quasi-cyclic LDPC code whose
Tanner graph is free of cycles of length 4. If all the circulants in ID have the same
weight, then the code is a regular quasi-cyclic LDPC code.

As shown in Section 8.5 and Sections 17.4,17.5, and 17.7, sparse circulanis can
be constructed from the incidence vectors of lines in either a BEuclidean geometry or
a projective geometry. Furthermore, no two rows {or two columns) either from the
same or from two different circulants have more than one 1-component in commoa.
Consequenily, quasi-cyclic LDPC codes can be constructed by decomposing one or
a group of these geometry circulants {54, 55].
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The incidence vectors of all the lines in EG(m, 2°) not passing through the
origin can be partitioned into

K = (Z(m—l)s _ 1)/(2v -1

cyclic classes, @1, Q2, -+, Q. Each cyclic class Q; consists of 2™ — 1 incidence
vectors and can be obtained by cyclically shifting any vector in the class 2™ — 1
times. Hence, for each cyclic class Q;, we can form a (2™ — 1) x (2™ — 1) circulant
G, using any vector in Q; as the first row and then cyclically shifting it 2”° — 2 times.
The weight of G; is 2°. Consequently, we obtain a class of K circulants,

G ={Gy, Gy, -, Gk} (17.76)

In code construction, we can take a subset of k circulants with 1 < k < K, say
G1, Ga, - - -, Gg, from G and arrange them in a row,

H=[GiG; - Gyl.

We choose column and row splitting factors r and ¢, respectively, and decompose
cach circulant G; in H into a ¢ x ¢ array I; of descendants. Replacing each G; in H
by its array decomposition IJ;, we obtain a ¢ x ks array I of descendant circulants.
Disac(@2™ —1) x kr (2™ —1) matrix. The null space of D gives a quasi-cyclic LDPC
code € whose Tanner graph does not contain cycles of length 4 and hence the girth
of its Tanner graph is at least 6. If I has constant column and constant row weights,
then C is a regular LDPC code.

EXAMPLE 17.27

Consider the three-dimensional Euclidean geometry EG(3, 2%) over GF(23). This
geomelry consists of 511 nonorigin points and 4599 lines not passing through the
origin. The incidence vectors of the lines not passing through the origin form nine
cyclic classes. From these cyclic classes we can form a class of nine 511 x 511
circulants of weight 8,

g:{leGZv'“ ’G9}~

Suppose we take eight circulants from G and arrange them in a row to form the
matrix

H =[G G2 G3 G4 G5 Gg G7 Gsl.

We choose column and row splitting factors + = 2 and ¢ = 4, respectively, and
decompose each circulant G; into a 4 x 2 array IJ; of eight 511 x 511 permutation
matrices. Replacing each circulant G; in H by its array decomposition ID;, we obtain
a 4 x 16 array i of 511 x 511 permutation matrices. [} is a 2044 x 8176 matrix
with column weight 4 and row weight 16. The null space of I gives an (8176, 6135)
quasi-cyclic LDPC code with rate 0.75 and a minimum distance of at least 6. Its
error performance with SPA decoding is depicted in Figure 17.34. It has a beautiful
waterfall error performance all the way down to a BER of 10~ without error floor.
Ata BER of 10719 it performs 1.4 dB from the Shannon limit.
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FIGURE 17.34: Error performance of the (8176, 6135} guasi-cyclic code given in
Example 17.27.

Quasi-cyclic LDPC codes can also be constructed based oun the incidence
vectors of the lines in a projective geowmetry {17, 52, 55, 56]. Consider the m-
dimensional projective geometiy PG{m, Z%). There are two cases 10 be considered,

even and odd m. For even m., the ivvidrﬂnce vector of each line in PG(m.2%) is
primnitive, and the incidence vectors of ali ihe lines can be partitioned into

P

Ky o= (2" — 1)/(22*‘ -1

cyclic classes. Each class consists of (2" +DY — 1)/(2° — 1) incidence vectors that can
be blamed by cyclically shifting any vector in the class. For dl > 3, there are
VAL i)/(27‘ — 1) lines in PG(m. 2°) whose incidence vectors are ﬂot primitive,
and the incidence vectors of all the othez fines are primitive. The primitive incidence
vectors can be partitioned into

—_0S (7 (m—1)s 1)/{72\ _

cyclic classes. Therefore, quasi-cyclic LDPC codes can be constructed based on the
cyclic classes of incidence vectors of lines in a projective geometry.

EXAMPLE 1 7 28

Consider the three-dimensional projective geometry PG(3, 2%) over GF(2%). This
geometry consists of 585 points and 4745 lines. Each line consisis of 9 points. There
are 65 lines whose incidence veciors are not primitive, and the incidence vectors
of the other 4680 lines are primitive. The 4680 primiiive incidence vectors can be



partitioned into eight cyclic classes, with each class consisting of 585 vectors. Based on
these eight cyclic classes of incidence vectors, we can form eight 585 x 585 circulants,
G, Gy, -+, Gg. Each circulant G; has weight 9. Suppose we want to construct a
quasi-cyclic LDPC code of length 9360 with rate 0.875. First, we decompose each
circulant G; by column decomposition into three descendant circulants, G; (. G, 2.
and G; 3, with weights 4, 4, and 1, respectively. Removing the descendant with
weight 1, we obtain the 585 x 1170 matrix

D =616

£y

£
N

which consists of two 511 x 511 descendant circulants of G;. We decompose each
circulant of I); by row decomposition into two descendants, each having weight 2.
The result is the following 2 x 2 array of 511 x 511 circulants:

a1ty (1)
o= G od |
; .
Gl G
which is a 1170 x 1170 matrix with both column and row weight 4. We then form the
following 1170 x 9360 matrix:
D = [D] D7 D3 D} D§ Dy D7 Dg],

which has column and row weights 4 and 32, respectively. The null space of I gives
a (9360, 8192) quasi-cyclic LDPC code with rate 0.875. The error performance of
this code is shown in Figure 17.35. At a BER of 107, it performs 0.95 dB from the
Shannon limit.

{0y T ] E
== Uncoded BPSK| ]

==~ BER i

10-! - FER 1
== Shannon limit | §

10 E

F_.
<

H
<

Bit/block-error probability
=

10-¢L i | | | | | |
0 1 2 3 4 5 6 7 8 9

E,/N, (dB)

FIGURE 17.35: Error performance of the (9360, 8192) quasi-cyclic code given in
Fxampie 17.28.
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where cach submatrix H; is formed based on a parallel bundle P; of lines in
EG(m, p*). The column and row weighis of Hipg g4 are y and p®, respectively, The
null space over GF(2) of this binary matrix gives a Gallager LDPC code of length
n = p"™ and minimum distance of at least y + 1 for odd y and y + 2 for even y.
Clearly, for p = 2, we obtain the class of EG-Gallager LDPC codes given in the

previous sections.

EXAMPLE 17.29

Letm = 2,5 = 1, and p = 43. The two-dimensional Euclidean geometry EG(2,
43) consists of 1849 points and 1892 lines. The 1892 lines can be grouped into 44
parallel bundles, each consisting of 43 lines parallel to each other. Each line consists
of 43 points. Taking 4 and 6 parallel bundies, we can construct two EG-Gallager
LDPC codes that are (1849, 1680) and (1849, 1596) codes with rates 0.9086 and
0.8632, respectively. With y = 4 and 6, the lower bound y + 2 on the minimum
distance of an EG-Gallager code gives their minimum distances as at least 6 and
8. respectively. The bit-error performances of these two EG-Gallager LDPC codes
with SPA decoding are shown in Figure 17.36 (assuming BPSK signaling). Ata BER
of 107, the (1849, 1680) code achieves a 5.7-dB coding gain over the uncoded BPSK
system and is 1.5 dB from the Shannon limit for rate 0.9086, and the (1849, 1596)
code achieves a 6-dB coding gain over the uncoded BPSK system and is 2.1 dB from
the Shannon limit for rate 0.8632.

EXAMPLE 17.30

Suppose it is desired to construct a rate-1/2 LDPC code with length around 6400
based on geometry decomposition and masking. To satisfy the length constraint, we
must choose m, s, and p such that p™* ~ 6400. There are many possible choices
of m, s, and p for which p™ =~ 6400. One such choice is m = 2, s = 4, and
p = 3. With this choice, the geometry for decomposition is the three-dimensional
Euclidean geometry EG(2, 3*). This geometry consists of 6561 points and 6642 lines,
and each line consists of 81 points. The 6642 lines can be grouped into 82 parallel
bundles, with each parallel bundle consisting of 81 parallel lines. We decompose this
geometry based on a parallel bundle P(2. 1) of lines. Then, there are 81 connecting
parallel bundles of lines, Q1. Q2. --- ., Og, with respect to P(2, 1). The incidence
matrix &; of a connecting parallel bundle Q; is an 81 x 6561 matrix consisting of
eighty-one 81 x 81 permutation matrices. To achieve the desired rate 1/2 and length
equal or close to 6400, we set p = 80 and y = 40. With this choice of p and y,
we construct a base matrix Hgg ¢ 4(80) based on (17.72). Hgg.ca is a 3240 x 6480
matrix with column and row weights 40 and 80, respectively. It 1s a 40 x 80 array of
81 x 81 permutation matrices. Next, we need to construct a 40 x 80 masking matrix
Z. Suppose we choose the column and row weights of Z to be 3 and 6, respectively.
To construct Z, we choose two distinct primitive 40-tuples over GF(2). Cyclically
shifting these two distinct primitive 40-tuples, we form two 40 x 40 circulants G
and Go. Then, Z = [G(G;]. Because the weight of each circulant is 3, it is easy to
construct Gy and G, such that the Tanner graph of 7 is free of cycles of length 4.

Masking the base matrix Hpg ¢4 (80) with Z, we obtain a 3240 x 6480 masked matrix
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FIGURE 17.37: Bit- and block-error probabilities of a (6480, 3240) LDPC code.
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M = Z @ Hgg.64(80) with column and row weights 3 and 6, respectively. The null
space of M gives a (3, 6) regular (6480, 2240) LDPC code wiih rate 1/2. The error
performance of this code decoded with the SPA is shown in Figure 17.37. It has both
good bit- and block-error performances. At a BER of 1079, it performs 1.5 dB from

the Shannon limit.

Construction based on finite geometries over GF(p*) results in a very large
class of finite-geometry LDPC codes containing all the finite-geometry LDPC codes
constructed in the previous sections of this chapter as subclasses.

RANDOM LDPC CODES

In addition to being formed by the geometric construction presented in the previous
sections, LDPC codes also can be constructed by computer search in a pseudorandom
manner based on a set of guidelines satisfying the conditions given in Definition 17.1.
This construction results in an ensemble of random codes that have been proved to
contain good LDPC codes [10].

Suppose it is desired to construct an LDPC code of length » with rate k/n.
To construct a parity-check matrix for this desired code, we need to choose an
appropriate celumn weight y and an appropriate number J of rows. It is clear that
J must be at least equal to n — k, the number of parity-check symbols of the desired
code. In computer construction, J is usually chosen to be equal to n — k. For H to
have constant row weight p, the condition

yxn=px -k (17.81)

must hold. Otherwise, H cannot have constant row weight. In this case, we simply try
to keep all the row weights close to p. If n is divisible by n — k, it follows from (17.81)
that p 1s a multiple of y; that is, p = yn/(n — k). For this case, we can construct a
regular low-density parity-check matrix with column weight y and row weight p. If
n is not divisible by n — k, we divide ¥ x n by n — k and obtain

yxn=pn-—~k)+b, (17.82)

where p and b are the quotient and remainder, respectively, with 0 < b < n — k. The
expression of (17.82) can be rearranged as follows:

yxn={n—k—>bp-+blp+1). (17.83)

which suggests that we can construct a low-density parity-check matrix H with two
row weights, p and p + 1, respectively. For convenience, H is constructed in such
a way that its top » rows have weight p + 1, and its bottom #n — k — b rows have
weight p.

The construction of H is carried out step by step. At each step, one column
is added to a partially formed matrix. Each added column must satisfy certain
constraints. For 1 < i < n, at the ith step, a binary (n — k)-tuple of weight y is chosen
as a candidate column h; and is added to the partial parity-check matrix

Hi—l = [hlv h27 T hi—l] (1784)
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obtained at Lh (z - i)ﬁv stey
:f\E[ = i l

-check matrix .
the following
constrainis

1. Choose k; at random from the remaining bmcd/ {(n — ky-tuples that are not

being used in H; | and that were nol rejecied sarlier.

2. Check whether h; has more than one 1-component in convmon with any column
inH;_;. if not, go to step 3; otherwise. reject by and go back to step 1 to choose
anocther candidate column.

3. Addh; to H;_1 to form a tempo pariial parity-check mairix H;. Check the
row weights of Hl;. If all the tok rows of r'l have weights | s than or equal to
o+ 1, and all the botiomin —k — b1 ave weights less than or equal
to p, then permanently md y to H;_ ] 1,,- and go 1o siep 1 to continue
the construction process. if any of the top b rows of 1 has weight exceeding
o+ 1,01 any of the bot’{om n—k P Hi; has weight exce edmg 0, reject

Iy and go to step 1 to choose another candiaate column.

The step-by-step consiruction pi‘OPeSS cntinues until a parity-check matrix
H with n columns is formed. If b = 0, H is a regular matiix with row and column
weights o and y, respectively. If b £ 0, then I has two row weights, p + 1 and p.
For a given n, &, and y, it is possible that all the (n — k)-tuples are either used or
rejected before M is formed. To reduce this possibility, we need to choose 1, k, and
y such that the total number of binary (n — k)-tuples, ( /‘) is much larger than the
code length n, or we can relax the row weight conm‘alms in step 3 to allow multiple
row weights. This also reduces the probability that a chosen candidate colurmn that
satisfies the constraint in step 2 will be rejected in step 3. Of course, we can restart
the construction process by choosing another sequence of candidate columns.

if the row rank of Hl is exacﬂy n — k, the nuil space of H gives an (n, k) LDPC
code with rate exactly k/n. If the rank of I is less than » — k&, then the null space
gives an (n. kY LDPC code with &’ > k and rcate &'/n > k/n. We can readily show
that the rate R of the construcied code is lower bounded as follows:

R>1-—-~
o
The constraint at step 2 of column selection ensures that the Tanner graph of the
code does not contain any cycle of lengih 4. Therefore, the girth of the Tanner
graph is at least 6. The foregoing construction is efficient only for small y, usually 3
or 4. For large y, to check the constraints at sieps 2 and 3 can be computationally
expensive. Because at step 1 of the consiruction a column is chosen at random from
the remaining available binary (n — k)-tuples, the code constructed is not unique.
The construction gives an ensemble of random LDPC codes. With this construction
it is very hard to determine the minimum distance of the code constructed. For small
v, 3 or 4, the lower bound, v + 1, on the minimum distance can be very poor.

Suppose we want to construct a (504, 252) LDPC code with rate 1/2. We choose
y = 3. Because n = 504, and n — k = 252, n/(n — k) = 2, so we choose row weight
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p =2 x 3 = 6. The number of binary 252-tuples with weight 3 is

{252\ = 2635500
\3) T

which is much larger than the code length n = 252. Following the construction
procedure, we obtain a regular 252 x 504 parity-check matrix H with celumn and
row weights 3 and 6, respectively. The density of H is 6/504 = 0.012. Its row rank is
252, and hence its null space gives a (504, 252) LDPC code with rate 1/2. Because y
is 3, the minimum distance of the code is at least 4. The true minimum distance of
this code may be greater than 4. The bit-error performance of this code with SPA
decoding is shown in Figure 17.29. We see that this code performs very close to the
rate-1/2 (512, 256) EG-Gallager code given in Example 17.23.

Randoin construction results in a large ensemble of LDPC codes that contains
finite-geometry LDPC codes as a subclass. Clearly, there must exist random LDPC
codes that outperform finite-geometry LDPC codes in error performance, especially
long random codes. Computer-generated random LDPC codes, in general, do
not have the structural properties of the finite-geometry LDPC codes, such as
cyclic or guasi-cyclic structure. Consequently, encoding of a random LDPC code
in hardware is much more complex than encoding a finite-geometry LDPC code;
that is, its encoding cannot be implemented with linear shift regisiers. Because
computer-generated LDPC codes. in general. have relatively small column weight,
the number of check-sums orthogonal on a code bit that can be formed is small.
As a result, these codes perform poorly with one-step majority-logic decoding
or bit-flipping decoding. Furthermore, computer-generated random LDPC codes
with SPA decoding do not converge as fast as finite-geometry LDPC codes do.
For finite-geometry LDPC codes with SPA decoding, usually 5 iterations give a
performance only a fraction of a decibel from their performance with 100 iterations,
as demonstrated in Figure 17.11 for the (4095, 3367) cyclic EG-LDPC code. With
all these disadvantages. long random LDPC codes do perform very close to the
Shannon limit. For example, very long random LDPC codes (107 bits long) have
been constructed and shown to perform only a few thousandths of a decibel from
the Shannon limit [14].

IRREGULAR LDPC CODES

An irregular LDPC code is defined by a parity-check matrix H with multiple
column weights and multiple row weights. In terms of its Tanner graph, the variable
nodes (code-bit vertices) have multiple degrees. and the check nodes (check-sum
vertices) have multiple degrees. It has been shown that long random irregular codes
perform arbitrarily close to the Shannon limit |8, 12-14]. Irregular LDPC codes are
most commonly designed and constructed based on their Tanner graphs. One such
approach is to design these codes in terms of the degree distributions of the variable
and check nodes of their Tanner graphs [12, 13].

Consider the Tanner graph G of an irregular LDPC code with parity-check

m iv H] {ac 3 H o8 A tha cobiimng of B and tha chasl-
malrix H. The variable nedes in G correspond to the columns of H, and the check

nodes of G correspond to the rows of H. The degree of a node in § is defined as
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than nz(1 — Ry), then we convert the excess degree-2 variable nodes to variable

D P R
noucy UL L

P o

next-higher degice, say, degiee 3 if it exists. The resuli is a modified
variable-node degree distribution p*(X). In a Tanner graph, the sum of check-node
degrees (equal to the total number of edges of the graph) is equal to the sum of
variable-node degrees. If we modify the variable-node degree distribution y(X), we
must change the check-node degree distribution p(X) accordingly to make the sum
of check-node degrees the same as the sum of variable-node degrees in the new
variabie-node degree distribution.

The next step in code construction is to construct a Tanner graph by connecting
the variable nodes and check nodes with edges under the constraints given by the
degree distributions. Because the selection of edges in the graph construction is not
unique, edges are selected randomly. During the edge selection process, effort must
be made to avoid having cycles among the degree-2 variable nodes and cycles of
length 4 in the code graph. As a result, computer search is needed. Once a code graph
is constructed, we form the corresponding parity-check matrix H. Then, the column
and row weight distributions of H are the same as the variable- and check-node
degree distributions. The null space of H gives an irregular code of the desired
length and rate. The described construction gives a random irregular LDPC code.

The masking technique presented in Section 17.11 can be used to simplify
the construction of irregular LDPC codes based on the degree distributions of
variable and check nodes of their Tanner graphs. For masking, the array Hrg ¢4(p)
of permutation matrices given by (17.72) is used as the base matrix. Suppose the
degree distributions y (X) and p(X) have been designed for a given code rate Ry and
length ng. Suppose geometry EG(m, p*) is used for constructing the base matrix.
We choose parameters y and p such that pp™ 1% is equal or close to the desired
code length n4, and (p — y)/y is equal or close to the desired rate R;. We construct
a y x p masking matrix Z = [z; ;] with column and row weight distributions ¢(X)
and d(X), respectively, identical to the degree distributions y(X) and p(X) of the
variable and check nodes, respectively, where d, < y and d. < p.

In constructing the masking matrix Z, we put columns with weight 2 in
the parity-check positions and make them cycle free among them. The cycle-free
condition can easily be achieved by using a set of weight-2 columns obtained by
downward shifting two consecutive 1’s from the top of Z until the second 1 reaches
the bottom of Z as shown:

1 0 0 0 0
11 0 0 0
01 1 0 0
7| 0 0 1 1 0 | other columns | (17.87)
6 66 6 ... 1
1 0000 - 1 |

Masking the base matrix Hgg g4 (0) given by (17.72) with Z, we obtain the
masked matrix
M=Z®HEec.calp)
wiih column and row weighi disiribuiions ¢(X) and d(X), respeciively. Consequenily,
the associated Tanner graph of M has variable- and check-node degree distributions



L

Saction 17.15 lrregular LDPC Codes 925

y(X) and p(X), as designed.
code with the iswned d sree

gives an irregular LDPC
se the size of Z is, in general,

very sraaﬂ cormpa it is much easier to consiruct

to meet the degr iwrthermore, since the associated

Tanner g anh of th Ld/ fz ee of cycles of length 4, we
cycle

es. The masking construction
and search effort of large random edge
ruct code graph, as is needed in

do not have to worr
significantly reduces
selection (or assignment) in th
computer generation of an irre

We now use two e
codes using the masking te

iction of irregular LDPC

1 length ny = 4000 and rate 0.82 is to
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iions for rate 0.82:

Suppose an irtegulay LDPC
be constructed. Using the deus;
optiraal variable- and check-node degree dis

¥ (X) = 0.4052X +0.39274" + 0.1466%° + 0.0555% .
p(X) = 0.3109%' + 0.6891 1.

The maximum variable- and check-node degrees are 8 and 20, respectively. Suppose
we choose the two-dimensi “1a}; E uehueap geometry EG(2,2%) over GF(2°) for
constructing ihe base maitrix H ca(p) given by (17.72). Using this geometry, we
can partition the incidencs matrix of a pmaﬂpﬂ bundle of fines into sixty-four 64 x 64
permuiation matrices. To achieve a code length close o the desired code length

4000, we choose p = 63, which is larger than the maximum check-node degree 20.

To achieve a raie close io the destred code raie 0.82, we choose y = 12, which is
greater than the maximum variable-node degree 8. For the choice of y = 12 and
o = 63, the rate of the code is at least (o —y)/p = (6’4 —12)/64 = 0.81, which is close
to the desired rate 0.82. The lengih of the code is 63 x 64 = 4032, which is close to
the desired code length. It follows from (17.72) ’d at the base matrix Heg ga(63)is a
768 x 4032 mairix, which is a 12 x 63 array of 64 x 64 permulation matrices. For the
desired code, the number of pariiy-check bits is 4000 x (1 —0.82) = 720; however, the
number of degree-2 variable nodes compuied using the first coefficient y, = 0.4052
of y(X) is nyg x yp = 4000 x 0.4052 = 1620, which is larger than 720, the number
of parity-check bits of the desired code. Therefore, we modify the variable-node
degree distribution p(X) by converting 903 variable nodes of degree 2 to degree 3.
The degree vedistribution resulis in a new variable-node degree distribution,

PH(X) = 0.1798X +0.6181%% + 0.1466X° + 0.0555% .

There is a small change in the coefficieni of each degree in the check-node degree
distribution p(X). Next, we need to construct a 12 x 63 masking matrix Z with
column and row weight distributions identical to the modified degree distributions
»*(X) and p*(X). Table 17.5 gives the desired column and row weight distributions
of the masking matrix Z. By computer search, we find the desired masking matrix Z.

Maskmo the 768 x 4032 base matiix Hgg ¢4 (63) with Z, we obtain the masked
matrix M = Z® Hgg. 6.4 (63). The nuli space of M gives a (4032, 3264) irregular code
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TABLE 17.5: Desired column and row weight distributions of the

masking matrix Z for Exampie 17.32.

Column weight distribution Row weight distribution
Column weight | No. of columns | Row weight | No. of rows
2 11 19 4
3 39 20 8
7 9
8 4
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FIGURE 17.38: Error performances of the three (4032, 3264) irregular LDPC codes

given in Examples 17.32 and 17.33.

Cy with rate 0.81. The error performance of this code with SPA decoding is shown
in Figure 17.38. At a BER of 107>, the code performs only 1 dB from the Shannon
limit; however, it has an error floor starting around a BER of 1079, Figure 17.38
also includes the error performance of a (4032, 3264) irregular code Cy constructed
based on the original asymptotically optimal degree distributions without degree
redistribution. We see that C| performs much better than C,. The error floor of C;

occurs above a BER of 107°.
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shown in Figure 17.38. We see that C

+1 has much better error floor performance
:w‘.han cod fCI and f’v, given in Example 17.32. Actually, there is ne en‘m‘ floor down
i0a BER of 5 x 1077 however, there is a small performance degradation {less than
0.15 dB) above a Bbta of 1077,

Examples 17»32 and 17.32 show that pushnm the error ficor down by increasing
¢ degrees of variable nodes of the code graph, the error performance of the code
moves away {rom Ehe Shannon limit io the “-Jva‘ie -fall region.

TABLE 17.6: Column and row weight distributions of the masking

matrix for Example 17.33
Colmmn weight distribution Row welght distribnition

Column weight | MNo. of colummns | Row weight | Mo, of ro

3 25 23 4
4 25 24 8
8 9

8] 4
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EXAMPLE 17.34

The following optimal degree distributions of variable and check nodes of a Tanner
graph are designed for a rate-1/2 irregular LDPC code of infinite length [12]:

y(X) = 0.47707681X + 0.28057X% + 0.034996X> + 0.096329X*
+ 0.009088X° + 0.0013744x % + 0.100557x 4,
p(X) = 0.982081x7 + 0.0179186 X5,

Suppose we want to construct a rate-1/2 irregular LDPC code with length
around 10000 using masking based on these degree distributions. To construct
such a code, there are many geometries that can be used for constructing the
base matrix for masking. We choose the two-dimensional Euclidean geometry
EG(2.27) for constructing the base matrix Hgg ca(p) given by (17.72). Using
this geometry, we can partition the incidence matrix of a parallel bundle of
lines into one hundred twenty-eight 128 x 128 permuiation matrices. Suppose
we choose y =40 and p = 80, which are greater than the maximum variable-
and check-node degrees, 15 and 9, respectively. With the choice of y = 40 and
o = 80, 80 x 128 = 10240, which is close to the desired code length 10000,
and (p —y)/y = (80— 40)/80 = 0.5, which is the same as the desired rate 1/2.
It follows from (17.72) that the base matrix Hgg ¢4(80) is a 40 x 80 array of
128 x 128 permutation matrices. For masking. we need to construct a 40 x 80
masking matrix Z with desired column and row weight distributions given in
Table 17.7. This is done by computer search. Masking Hrs ¢4(80) with Z, we
obtain a 5120 x 10240 masked matrix M = Z ® Hgrc. ¢4(80). The null space of
M gives a (10240, 5102) irregular LDPC code C with rate 1/2. The error per-
formance of this code is shown in Figure 17.39. At a BER of 1079, it performs
1 dB from the Shannon limit.

TABLE 17.7: Column and row weight distributions of the masking
matrix for Example 17.34.

Column weight distribution Row weight distribution
Column weight | No. of columns | Row weight | No. of rows

2 38 8 39
3 22 9 1
4 3
5 8
7 1

15 8




Section 17.16 Grapn-Theoretic LDPC Codes 929

Y
10 = ¥ ()

| | | T 3
= =Uncoded BPSK]
~o-FER C

e~ BER C

== Shannon fimit

ol

o
e
=

i

S
o
S
L,

e

el

e B

T
o
o

| i
, |

Bii/block-error probability
=)
L
T

16 — \ -

1077 - ‘\

0L \ \ L \ \
-1 0 i 2 3 4

Ey/N, (dB)

(%4
[=x3

FIGURE 17.39: Error performances of the two (10240, 5120) irregular LDPC codes
given iin Example 17.34.

GRAPH-THEORETIC LDPC C(

Finite geom@ﬁt"f s form a branch of combinatorial mathematics. Besides finite
geometﬁes there are Ouhev sranches in combinatorial mathematics that can be used
for constructing U f es. These branches include graph theory, combinaioric

designs, and difference sets [3& 41, 57, 58]. In Section 83 we showed that codes
construcied based on perfect difference seis are one-step MLG decodable, and we

also showed in Section 17 5 that the codes constructed based on a special class of
perfect difference sets are LDPC codes whose Tanner graphs do not contain cycles
of length 4. Construction of LDPC codes based on random bipartite (or Tanner}

graphs was briefly d 1s<:ussed in the previous section of this chapier. Construction
based on random graphs results in an ensemble of LDPC codes. In this section we
present another graph-theoretic approach to the construction of LDPC codes [59].
The construction is based on selecting a set of paths of the same length in a given
graph that satisfies certain consirainis.

Let § = (V. £) be a connected graph with vertex set V = {vq, v2,--- , v,} and
edge set £ = {e1. ez, - .er}. We require that G not contain self-loops, and two
vertices in § are connected by at most one edge (i.e., no multiple edges between two
vertices). Some basic structural properties of a graph were discussed in Section 17.2.
Two paths in G are said to be disjoint if they do not have any vertex in common. Two
paths are said to be singularly crossing each other if they have one and only one
vertex in common; that is, they intersect (or cross each other) at one and only
one vertex. For 1 < y < g4, let P be a set of paths of length y — 1 in G, that safisfies
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the following constraint:
Any two paths in P are either disjoint or singularly crossing each other.

This constraint is called the disjoint-crossing (DC) constraint. Let n = |P| denote the
number of paths in P and ¢, denote be the number of vertices in G that are covered
by (or on) the paths in P. For simplicity, we call the vertices in G that are covered
by the paths in P the vertices in (or of) P. We form a ¢, x n matrix H = [A; ;]
whose rows correspond to the ¢, vertices in P and whose columns correspond to
the n paths in 7, where h; ; = 1 if and only if the ith vertex v; of P is on the jth
path in P; otherwise, /; ; = 0. This matrix is called the incidence matrix of P. The
columns of this matrix are called the incidence vectors of the paths in P with respect
to the vertices in P; the jth column simply displays the vertices on the jth path of P.
Because the length of each path in P is y — 1, there are y vertices on each pathin P.
Therefore, each column of H has weight y. The weight of the ith row of H is equal
to the number of paths in P that intersect at the ith vertex v; of P. It follows from
the DC constraint that no two columns (or two rows) of H can have more than one
1-component in common. If y is much smaller than the number ¢, of vertices in P,
H is a sparse matrix. Then, the null space C over GF(2) of H gives an LDPC code
of length » whose Tanner graph does not contain cycles of length 4. The minimum
distance of C is at least ¥ 4 1. If the rows of H have the same weight p (i.e., each
vertex of P is intersected by p paths in P), then C is a (y, p)-regular LDPC code.

The path set P can be constructed by using a trellis 7 of y — 1 sections with y
levels of nodes, labeled 0, 1, - -+, ¥ — 1. Each level of 7 consists of ¢ nodes that are
simply the ¢ vertices of G. For 0 < k < y — 1, a node v; at the kth level of 7 and a
node v; at the (k 4 1)th level of 7" are connected by a branch if and only if (v;, v;)
is an edge in G. This (y — 1)-section trellis 7 is called the path trellis of G of length
y — 1. A path of length y — 1 in G is a path in 7 starting from an initial node at the
Oth level of 7 and ending at a terminal node at the (y — 1)th level of 7 such that all
the nodes on the path are different. Figures 17.40(a) and 17.40(b) show a complete
graph (i.e., every two vertices are connected by an edge) with seven vertices and its
path trellis of length 2, respectively.

To find a set P of paths of length y — 1 in G that satisfies the DC constraint, an
extend-select-eliminate (ESE) algorithm {59] can be devised to parse the path trellis
T of G. Suppose we have parsed the trellis 7 up to the kth level of 7 with the ESE
algorithm, with0 <k <y — 1. For1 <i < ¢, let N;; denote the number of survivor
paths of length k terminating at the ith node of the kth level of 7 (i.e., the paths
that satisfies the DC constraint). Let P; ; denote this set of survivor paths. Now, we
extend all the paths in P; ; to the (k + 1)th level of T through the branches diverging
from node i. At node i of the (k + 1)th level of 7, we select a set P; ;1 of paths of
length k + 1 that satisfies the DC constraint and eliminate all the other paths that
terminate at node i. The result is a survivor path set P; ;1 at node i of level k + 1
of 7. This ESE process continues until the (y — 1)th level of 7 is reached. Then,
the union of the survivor sets, Py ,_1, Py, 1,---, P, ,_1, gives the path set 7. For
1 <i<gqgand0 <k <y, all the survivor paths in P, start from different initial
nodes at the Oth level of 7 and intersect only at node i of the kth level of 7. Two
survivor paths terminating at two different nodes at the kth level of 7 are either
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disjoint or cross each other only once at a node of an earlier level of 7. Selection of
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of paths of length 2 satisfying the DC constraint found by the ESE algorithm.

surviver paths {erminating at o ] ith level of 7 affects the selection of
survivor paths terminating at the other nodes of the same level of 7. To maintain
all the sets of survivor paths at each level of 7 at about the same size, we create
a priority list of the nodes at each level. The node with the smallest number of
selection at level k + 1 of 7, whereas the one with the largest number of survivor
paths terminating at it at level £ of 7 has the lowest priority for the survivor path
selection at level k +1 of 7.
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We see that the paths in 7 cover all seven vertices of the graph. The incidence
matrix for this set of paths 1s

11106000

1061 100

0101 010
M=|10000 1 1 (17.88)

0061100 1

00 1 01 1 0

001 0010 1

which has constant vow and column weighis. The null space of H gives a (3, 3)-
regular (7, 3) LDPC code with a minimum distance of 4 whose Tanner graph does
not contain cycles of length 4, but it does contain cycles of length 6. One such cycle
is depicted by the heavy lines shown in Figure 17.41.
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FIGURE 17.41: The Tanner graph of the (3, 3)-regular LDPC code generated by the
parity-check matrix given by (17.88).

The graph-theoretic construction of LDPC codes given here is very general
and can be applied to any connected graph G. Because the sclection of survivor
paths at a node of each level of the path trellis 7 of G is not unique, the path set
P obtained at the end of the ESE processing is not unique, and hence the code
constructed is not unique.

EXAMPLE 17.36

Suppose we start with a complete graph G with 400 vertices. We choose y = 6. The
path trellis 7 of G is a 5-section trellis with six levels of nodes, with each level of 7
consisting of 400 nodes. Each path of length 5in G is a path in 7. Applying the ESE
algorithm to process 7, we obtain a set P of 2738 paths of length 5 that satisfies the
DC constraint. The paths in P cover all 400 vertices of the graph. The incidence
matrix H of P is a 400 x 2738 matrix with column weight 6. The null space of H gives
a (2738, 2339) LDPC code with rate 0.8543 and a minimum distance of at leasi 7.
The bit- and block-error performances of this code with SPA decoding are shown in
Figure 17.42. At a BER of 1079, the code performs only 1.7 dB from the Shannon
limit. Note that the number of parity bits of the code is one less than the number of
vertices of the code construction graph.

For a connected graph G = (V, £) with a large number of vertices, especially
a complete graph, processing the path trellis of G of length y — 1 to construct a set
of paths of length y — 1 in G to satisty the DC constraint with the ESE algorithm
may become very complex. To overcome this complexity problem, we can take a
divide-and-conquer approach [59]. Consider a complete graph G with ¢ vertices.
Suppose we want to construct a set P of paths of length y — 1 in G that satisfies the
DC constraint. We first divide G into y blocks, G;, G1, -+ - . G, of equal (or nearly
equal) number of vertices. Each block §; is a complete subgraph of G, and any two
blocks are connected by edges. For each block G; we construct a set 77; of paths ot
length ¥ — 1 in G; that satisfies the DC constraint using the ESE algorithm. Clearly,
P1,P1, -+, P, are disjoint, and two paths from two different sets, P; and P;, do
not have any vertex in common. Next, we form a trellis 7¢ with y levels of vertices,
labeled 0,1, .-,y — 1. For 0 < i < y, the ith level of 7¢ consists of ¢;; nodes
that correspond to the g; 1 vertices in block G; (. For 0 <i < y — 1, the nodes
at the ith level of 7¢ are connected to the nodes at the (i + 1)th level of 7¢ by
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Consider the compipi’e graph G with 582 vertices. Let y = 6. We divide ¢ into
six blocks; each block is a complete graph with S Mfze- Usmo tne divide-and-

conquer ESE algorithm to process the path rwlho f length 5 for each block and the
connecting trellis for the blocks. we obtain a set P Of 10429 paths of length 5 that
satisfies the DC constraint and covers all 582 vertices of the graph. We fotm the
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incidence matrix H for P, which is a 582 x 10429 matrix. The null space of H gives
a (10429, 9852) LDPC code with rate 0.945 and a minimum distance of at least 7
whose Tanner graph does not contain cycles of length 4. The bit- and block-error
performances with SPA decoding are shown in Figure 17.43. At a BER of 10, the
code performs 1.05 dB from the Shannon limit.

We also can construct a path set P of length y — 1 in a connected graph G that
satisfies the DC constraint by choosing one path at a time through the (y —1)-section
path trellis 7 of G. We begin by choosing any path in 7 as the first path in P. We
delete all the branches on this path from 7. Then, we trace the modified path trellis
and choose the second path that either has no common vertex with the first path in
P or intersects with the first path in P at one and only one vertex (DC constraint).
Again, we delete the branches on the second path from the modified path trellis
and obtain a new modified path trellis. Then, we trace this new path trellis and
choose the third path that satisfies the DC constraint with the two paths in P. We
delete the branches on the third path from the path trellis and then start a new path
selection. We continue this process of path selection and removal of branches on
a selected path from the path trellis. Each time we select a path it must satisfy the
DC constraint with the paths already in P. When a node in the path trellis has no
incoming or outgeing branches, it is removed {rom the path trellis together with
all the branches still attached to it. We continue this process until no path in the
path trellis can be chosen without violating the DC constraint, or the path trellis

)

107 ! | | ]
[ 582 vertices, L = 5.(10429, 9852)| 1
107 - 6 subgraphs of 97 vertices each _
S ——  SPA bit 3
F T =——z—  SPA block E
o ==== Uncoded BPSK 1
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FIGURE 17.43: Error performance of the (10429, 9852) LDPC code constructed based
on the complete graph of 582 vertices using the divide-and-conquer ESE algorithm.
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1, where A]Zj ;=1 ME and 0@33/ if the ¢ Lh object xj isint
ise. T ms matrix H is called the incidence wmatriz of the
tsof M are y and o, respectively. Based on the
, (WO m\« 7s of H have ,xacﬂy A I-components in common. If
meets ah the conditions of a regular parity-check matiriz of an LDPC
code given: by Definition 17.1. Then, the null space of lHl gives a {y. p)-regular LDPC

code of length n whose Tanner graph is free of cycles of length 4.

o

Let X = n obiects. The {ollowing blocks:
4. %6} x4, x5, 307}

x3”‘i7p

form a BIBD for the set X. Every block cons lSi’S of y = 3 objects, each ubject
appears in p = 3 biorlfs and every two Obj s appear ‘Eoc, ether in exactly A = 1
block. 1is incidence mairix H is
10 0 0 1 0 17
1100606190
6116 06 01
H=|1 901106 060
6101100
6 6 1 01 1 0
060 1 0 1 1 |

The null space of H g' (7 5) LDPC code with a minimum ch stance of 4.
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Combinatoric design is a very old and rich subject in combinatorial mathe-
matics. Qver the years, many BIBDs have been consiructed with various methods.
Extensive coverage can be found in [41, 58]. There are many classes of BIBDs with
A = 1, which can be used for constructing LDPC codes whose Tanner graphs do not
contain cycles of length 4 {64, 65]. Construction of these classes of designs requires
much combinatorial mathematics and finite-group theory background and will not
be covered here; however, we do present one special class of BIBDs with parameter

= 1 constructed by Bose [63].

Let ¢ be a positive integer such that 20r + 1 = p™, where p is a prime; that is,
20t + 1 is a power of a prime. Suppose the field GF(p™) has a primitive element «
that satisfies the condition a* — 1 = «¢, where ¢ is a positive odd integer iess than
p". Then, there exists a BIBD for a set X of ¢ = 20r + 1 objects with n = 1 (207 + 1)
blocks, each block consists of y = 5 objects, each object appears in p = 5¢ blocks,
and every two objects appear together in exactly & = 1 block. Let the elements of
GF(p™),0,0° =1,a.0?, -, a?" % represent the 207 +1 = p" objects of the set X.
Then, the BIBD for X is completely specified by the following 1 base blocks:

B = {a2i. o{2i+4’, a2i+8’, a2i+12t‘ 0[21'4-161}‘ (17.89)

where 0 < i < r. All the n = (207 + 1) blocks of the BIBD are obtained by adding
each element of GF(p™) in turn to each of the ¢ base blocks. The incidence matrix H
of this BIBD is a (20r + 1) x (207 4 1) matrix with column and row weights 5 and 51,
respectively. The density of H is 5/(20t + 1), which is very small for r > 2. Because
A =1, it follows from Definition 17.1 that the null space of H gives an LDPC code
of length n = 1(20r + 1) whose Tanner graph is free of cycles of length 4. In fact, H
can be put in circulant form. For 0 <i < ¢, let v; be the incidence vector of the base
block B; which is a p"”'-tuple with 1’s at locations 2i, 2i 4+ 4r, 2i + 8¢, 2i + 12¢, and
2i +16r. Let G; be a (20r + 1) x (20r + 1) square circulant matrix obtain by shifting
v; downward cyclically 207 + 1 times (including the zero shift). All the columns {or
rows) of G; are different and are the incidence vectors of 20r + 1 different blocks.
Then, H can be put into the following circulant form:

H=[GyG - Gi_1]. (17.90)

With H in circulant form, the null space of Hi gives a quasi-cyclic BIBD-LDPC code
oflengthn = 1 (20r+1).For 1 < k < t, we canchoose k circulants, Gg, Gy, -+, Gy _1,
to form the following matrix:

H) =[Go G1 -+ Gy_i] (17.91)

with column and row weights 5 and 5k, respectively. Then, the null space of H(k)
gives a quasi-cyclic LDPC code of length n = k(20 + 1).

Suppose we decompose each circulant G; in (&) into five (207 1+ 1) % 20 +- 1)

OS50 calll Ly 1L Yo (Lus

circulant permutation matrices by row decomposition as presented in Section 15.12,

G,
Di=| Gy |. (17.92)

| ¢ |
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for i = 0 to 20. Based on these 21 base blocks, we can form the incidence matrix H
for the BIBD in the following circulant forms:

H = [Go, Gy. -+ , Gy,

where G; is a 421 x 421 circulant. Suppose we choose k = 20 and decompose each
G, into five circulant permutation matrices by row decomposition. We obtain a
5 x 20 array I of 421 x 421 circulant permutation matrices, which is a 2105 x 8420
matrix with column and row weights 5 and 20, respectively. The null space of I
gives a (8420, 6319) quasi-cyclic BIBD-LDPC code with rate 0.7504 and a minimum

At a BER of 10_6, it performs 1.4 dB from the Shannon limit.

CONSTRUCTION OF LDPC CODES BASED ON SHORTENED RS CODES WITH
TWO INFORMATION SYMBOLS

In ecarlier sections of this chapter we used several branches of combinatorial
mathematics as tools for constructing LDPC codes. In this section we present an
algebraic method for constructing LDPC codes based on shortened RS codes with
two information symbols [66]. This method gives a class of LDPC codes in Gallager’s
original torm.

Let o be a primitive element of the Galois field GF(g) where ¢ = p’ is a power
of a prime. Let p be a positive integer such that 2 < p < g. Then, the generator
polynomial of the cyclic (¢ — 1,9 — o+ 1, p — 1) RS code C over GF(g) of length
g — 1, dimension g — p + 1, and minimum distance p — 1 is given by (7.2),

g(X) = (X —a)(X —a?)-- (X — a7
=g+aX+oX fo X7

where g; € GF(g). The generator polynomial g(X) is a minimum-weight code
polynomial in C, and hence all its p — 1 coefficients are nonzero.

Suppose we shorten C by deleting the first ¢ — p — 1 information symbols from
each codeword of C. Then, we obtain a (p, 2, p — 1) shortened RS code C), with only
two information symbols. A generator matrix of this shortened code is given by

g & & - 1 0
Gy = ¢ .
b { 0 g & g - 1]

All the linear combinations of the two rows of G, over GF(g) give all the ¢?
codewords of Cj. The nonzero codewords of Cj, have two different weights, p — 1
and p. Because the minimum distance of Cp, 18 p — 1, iwo codewords in Cj have at
most one location with the same code symbol; that is, they agree at most at one
location. Let v be a nonzero codeword in C, with weight p. Then, the set

C,()” = {cv:c e GF(g)}

of ¢ codewords in C, forms a one-dimensional subcode of Cn with minimum
distance p. Two codewords in C ,(7 ) differ at every location. We partition € into ¢
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has the following structural properties: (1) no two rows in the same matrix H, have
any 1-component in common: and (2) no two rows from two different mairices, H;
and H;, have more than one 1-component in common.

EXAMPLE 17.40

Consider the Galois field GF(2?) constructed based on the primitive polynomial
p(X) = 14+ X + X?. Let « be a primitive element of GF(2?). Then. the four elements
of GF(2*) are 0 = «™, 1 = . @, and &? = 1 + «. The location vectors of these four
field elements are

7o = (1000, z; =(0100), Ze = (001 0), 2, = (0001,

Let p = 3. The cyclic (3, 2, 2) RS code €}, over GF(2?) has generator polynomial
g(X) = X + o and generator matrix

a 1 0
G = [ 0 o 1 }
The code has 16 codewords, and its minimum distance 1s 2. Adding the two rows

of G, we obtain a codeword v = (o, o?, 1) with weight 3. The following set of four
codewords:

[Bv: B e GF2%) = {(0,0,0), (o, 0, 1), (¢ 1. o). (1, e ¢?)}

forms a one-dimensional subcode C(D of Cp with a minimum weight of 3. We
partition €}, with respect to C,, ) and obtain the following four cosets:

CV = ((0,0.0). (@, &%, 1), (&%, 1), (1, &, &)},
CP = {(a.1,0), (0,a.1). (1,0, a). (% &? o)},
¥ = (? a,0),(1,1,1.(0,¢% a). (@ 0,a%,
¥ = (1,620, (@2, 0,1). (@, @, @), (0, 1, &%),

The symbol! location matrices of these four cosets are

1000 1000 1000
D 0010 0001 0100
Hi=2C0=109001 0100 00710/
0100 00610 000 1|
0010 0100 10007
e, _| 1000 0010 0100
2=2C )= 9 100 1000 0010
(0001 0001 00O 1|
0001 0010 10007

& 60100 0100 0100
Hs=ZC=1 9 500 0001 0010
loo10 1000 000 1]
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,F” 0 1 0O 0 0 6 1 1 0 0 07

o l 6 ¢ 0 1 10 06 9§ 6 1 0 ¢ ‘

T 0 0 19 0 ¢ 1 ¢ ¢ 0 1 0
16 060 6 1 0 0 60 0 1
n’/ (h?f\‘ Hv{”l
1 0 00 1 0 0 © 10 0 0

0 0 1 60 6 0 6 1 01 ¢ 0

G 0 0 1 6 1 0 0 6 0 1 6

6 1 0 0 30 1 0 6 0 0 1

- 6 0 1 0 0 1 0 0 1 6 0 0

| 1 0 0 0 001 0 60 1 0 0

101 060 10 0 0 G0 1 0

- ¢ 0 0 1 0 0 0 1 0 06 0 1

g 0 6 1 0 6 1 0 i 6 06 0

601 6 ¢ 6 1 06 ¢ 0 1 6 ©

10 0 0 06 0 1 006 1t 0

0 1 ¢ 16 0 ¢ 0 ¢ 0 1|

The null space Hga(3) gives a regular (12, 4) RS-based Gallager-LDPC code with
rate 1/3 and a minimum distance of 6. The lower bound y -+ 1 on the minmum

1@'\7&71[@& ]/(e pg]

=l Ay A o0 Ag,

o] B B Bayp ) (17.99)
L Ay By o Ay ]

where each submaltriz A, ; is a ¢ x ¢ permutation matrix, Therefore, Hga(y) consisis
ofay x p array of permutation matrices. 1t 1s a (y, p)-regular matrix with column and
row weights y and p, respectively. No iwo rows (or two cotumns) of Hga(y) have
more than one l-component in common, and its density is 1/¢, which is small for
large g. Hence, Hg 4{y) is a sparse matrix that has all the structural properties of the
parity-check mairiz of a regular LDPC code given in Definition 17.1. Furthermore,
it is exactly in Gallages's original form given by (17.1). Therefore. the null space of
Hga(y) gives an LDPC code Cga(y) of Gallager’s type of length n = pg with a
minimum distance of at least y + 1 for odd y and y + 2 for even y. The rate of this
code is at least {p — 1)/ p.

For any choice of ¢ (=p*) and y. we can construct asequence of Gallager-LDPC
codes of various lengihs and rates with o = y. y + 1. --- . ¢ — 1. For any choice of ¢
and p, we can coustruct a sequence of Gallager-LDPC codes of length n = pg with
various rates and minimum distances for y = 1.2, -+ . p. For p = g — 1, Cgaly) is
quasi-cyclic. | B cause the construction is based on the (p. 2, p — 1) shortened RS code
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Cp, over the field GF(q), we call C, and GF(q) the base code and the construction
field, respectively.

EXAMPLE 17.41

Let GF(2°) be the construction field. Suppose we choose p = 32. Then, the base
code is the (32, 2, 31) shortened RS code over GF(2°). The location vector of each
element of GF(2%) is a 64-tuple with a single 1-component. Suppose we choose
y = 6. Then, the RS-based Gallager-LDPC code C;4(6) constructed is a (6, 32)-
regular (2048, 1723) LDPC code with rate 0.84] and a minimum distance of at least
8. Its error performance with SPA decoding is shown in Figure 17.45. At a BER
of 107%, the code performs 1.55 dB from the Shannon limit and achieves a 6-dB
coding gain over the uncoded BPSK. If we choose p = 63, the base code is then the
(63. 2, 62) shortened RS code. We set y = 60. The RS-based Gallager-1L.DPC code
is a (60, 63)-regular (4032, 3307) quasi-cyclic code with rate 0.82 and a minimum
distance of at least 62. The error performance of this code with SPA decoding is
shown in Figure 17.46. At a BER of 107%, it performs 1.65 dB from the Shannon
himit. Owing to its large minimum distance, no error floor is expected. This code
can also be decoded with one-step majority-logic decoding to correct 30 or fewer
random errors. If it is decoded with weighted BF decoding. an effective trade-off
between error performance and decoding complexity can be achieved.

(}
Lo 3 T ]
[ == Uncoded BPSK
0L =a- FER (2048, 1723)|
- =e—= BER (2048, 1723)|3
= Shannon limit ]
1077 -
= E
107 T -
2 .
Q. o
x
¢ b
¥ ) 1
S 107 —
g 3
2
10° -
1077 —
0% L | | I | ! |
0 1 2 3 4 5 6 7 8 9

E,/Ny (dB)

FIGURE 17.45: Error performance of the (2048, 1723) RS-based Gallager (6, 32)-
regular LDPC code with construction field GF(2°) given in Example 17.41.
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EXAMPLE 17.42

Suppose we use GF(28) as the construction field and the (32, 2, 31) shortened RS
code over GF(2%) as the base code. We set y = 6. Then, the RS-based Gailager-
LDPC code is a (8192, 6754) code with rate 0.824 and a minimum distance of at least
8. Its error performance with SPA decoding is shown in Figure 17.47. At a BER of
107, it performs 1.25 dB from the Shannon limit and achieves a 6.7 dB gain over
the uncoded BPSK.

The foregoing algebraic construction of LDPC codes is simple and vet very
powerful. It gives a large class of regular LDPC codes. Codes in this class can be
decoded with the SPA, weighted BF, BF, or one-step majority-logic decodings to pro-
vide a wide range of trade-offs between error performance and decoding complexity.

The matrix given by (17.99) is an array of permutation matrices that is in
exactly the same form as the matrix given by (17.72). Hence, it can be masked to
generate new LDPC codes.

CONCATENATIONS WITH LDPC AND TURBC CODES

In most applications of concatenated coding for error control, RS codes are used as
the outer codes, and they are, in general, decoded with an algebraic decoding algo-
rithm, such as the Berlekamp or Euclidean algorithm presented in Chapter 7. If a

10(1 - ]

== Bit ]
= Block

L]

T

!
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URRRLL

]

1077

wl

T
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10~

IARELN IR AR
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)

1077k —

10*(7
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\Shannon limit

1077 | J | 1 | | !
0.5 1 1.5 2 2.5 3 35 4 4.5

Eh/N() (dB)

FIGURE 17.48: Bit- and block-error performance of a concatenated LDPC-turbo
coding system with a turbo inner code and an extended EG-LDPC outer code.
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Form the transpose H of the parity-check matrix H given in Problem 17.1. Is H”
a low-density parity-check matrix? Determine the rank of H’ and construct the
code given by the nuil space of H’.

Prove that the (n, 1) repetition code is an LDPC code. Construct a low-density
parity-check matrix for this code.

Consider the matrix H whose columns are all the m-tuples of weight 2. Does H
satisfy the conditions of the parity-check matrix of an LDPC code? Determine
the rank of H and its null space.

The following matrix is a low-density parity-check matrix. Determine the LDPC
code given by the null space of this matrix. What is the minimum distance of this
code?

1 1 0 1 0 0 07
001 10100
06 011010
H={00 01101
10001 10
0100011

. 101 0 0 0 1 |

Prove that the maximum-length code of length 27 — 1 presented in Section 8.3 is

an LDPC code.

Construct the Tanner graph of the code given in Problem 17.1. Is the Tanner
graph of this code acychc? Justify your answer.

Construct the Tanner graph of the code given in Problem 17.2. Is the Tanner
graph of this code acyclic? Justify your answer.

Construct the Tanner graph of the code given by the null space of the parity-check
matrix given in Problem 17.5. Does the Tanner graph of this code contains cycles
of length 6? Determine the number of cycles of length 6 in the graph.

Determine the orthogonal check-sums for every code bit of the LDPC code given
by the null space of the parity-check matrix of Problem 17.5.

Prove that the minimum distance of the Gallager-LDPC code given in Exam-
ple 17.2is 6.

Determine the generator polynomial of the two-dimensional type-I (0, 3)th-order
cyclic EG-LDPC code constructed based on the two-dimensional Euclidean
geometry EG(2, 2%).

Determine the parameters of the parity-check matrix of the three-dimensional
type-1 (0,2)th-order cyclic EG-LDPC code ng;'c(& 0, 2). Determine the genera-
tor polynomial of this code. What are the parameters of this code?

Determine the parameters of the companion code of the EG-LDPC code given
in Problem 17.13.

Decode the two-dimensional type-I (0, 3)th-order cyclic EG-LDPC code with
one-step majority-logic decoding and give the bit- and block-error performance
for the AWGN channel with BPSK signaling.

Repeat Problem 17.15 with BF decoding.

Repeat Problem 17.15 with weighted majority-logic decoding.

Repeat Problem 17.15 with weighted BF decoding.

Repeat Problem 17.15 with SPA decoding.

Decode the three-dimensional type-II (0, 2)th-order quasi-cyclic EG-LDPC code
given in Problem 17.14 with SPA decoding, and give the bit- and block-error
performance of the code for the AWGN channel with BPSK signaling.

Consider the parity-check matrix H(El(); . of the three-dimensional type-i (0, 2)th-
order cyclic EG-LDPC code given in Problem 17.13. Split each column of this
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All the coding schemes discussed so far have been designed for use with binary-input
channels; that is, the encoded bits are represented by one-dimensional BPSK signals
according to the mapping 0 — —E; and | — +E,,0or0 - —land 1 — +1 for
unit energy signals. {We note here that even nonbinary codes, such as RS codes, are
usually transmitted using binary signaling by representing each symbol over GF(2™)
as a binary m-tuple.) In this case the spectral efficiency n of the coded system is
equal to the code rate R; thatis, n = R < 1 bit/dimension or 1 bit/transmitted BPSK
symbol, and at most one bit of information is transmitted each time a BPSK symbol
is sent over the channel. Thus, since the bandwidth required to transmit a symbol
without distortion is inversely proportional to the transmission rate, combining
coding with binary modulation always requires bandwidth expansion by a factor of
1/R. In other words, compared with uncoded modulation, the coding gains resulting
from binary modulation are achieved at the expense of requiring a larger channel
bandwidth.

For the first 25 or so years after the publication of Shannon’s paper, research
in coding theory concentrated almost exclusively on designing good codes and
efficient decoding algorithms for binary-input channels. In fact, it was believed
in the early 1970s that coding gain could be achieved only through bandwidth
expansion and that coding could serve no useful purpose at spectial efficiencies > 1
bit/dimension. Thus, in communication applications where bandwidth was limited
and large modulation alphabets were needed to achieve high speciral efficiencies,
such as data transmission over the dial-up telephone network, coding was not
thought to be a viable solution. Indeed, the modulation system design emphasis was
almost exclusively on constructing large signal sets in two-dimensional Euclidean
space that had the highest possible minimum Euclidean distance between signal
points, given certain constraints on average and/or peak signal energy.

In the next two chapters we introduce a combined coding and modulation
technique, called coded modulation. that achieves significant coding gain without
bandwidth expansion. Indeed, coding gain without bandwidth expansion can be
achieved independently of the operating speciral efficiency of the modulation
system. Thus. coded modulation is referred to as a bandwidth-efficient signaling
scheme. In this chapter we discuss twrellis-coded modulation (TCM) [1], a form of
coded modulation based on convolutional codes, and in the next chapter we discuss
block-coded modulation (BCM), based on block codes. Basically, TCM combines
ordinary raie K = k/{(k + 1) bwary convolutional codes with an M-ary signai
constellation (M = 251 > 2) in such a way that coding gain is achieved without
increasing the rate at which symbols are transmitted, that is, without increasing
the required bandwidth, compared with uncoded modulation. For example, a rate
R = 2/3 convolutional code can be combined with 8-PSK modulation by mapping
the three encoder output bits in each T-second time interval into one 8-PSK symbol.
This TCM scheme can then be compared with uncoded QPSK modulation, since
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TCM we assume that the transmitied symbols are drawn from
consiellation in either one- or two-dimensional Euclidean space.
Several i gnal constellations appear in Figure 18.1. Some one-dimensional, or

1p/11m’ ﬂoa’z'rimmw (AM), signal constellations are shown in Figure 18. 1(11\ The
Omplm of these, 2-AM. is equivalent to BPSK. Figure 18.1(b) illustrates several

In our treatment of
an M-ary wncﬂ

'Thwuohom this chapter we denote spectral efficiency in units of bits/symbol, where one signal
(symbol) is iransmitied in each T-second time interval. With this notation, the required bandwidth is
proportional to 1/ 7. and higher spectral efficiencies are thus more bandwidth efficient.
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two-dimensional s
modulation and phase modulanon (AM/PM) Rectanoulal constellatlons w1th M =
(21’)2 = 47 signal points, p = 1,2, - - -, are also referred to as quadrature amplitude
modulation (QAM) signal sets, since they can be generated by separately applying
amplitude modulation to two quadrature carriers (a sine wave and a cosine wave)
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;

using a discrete set of 27 possible amplitudes and then combining the two modulated
signals. All practical one-dimensional AM and two-dimensional AM/PM signal
constellations can be viewed as SUbSGlS ol a lattice, an infinite array of regularly
spaced points translated to its minimum average energy configuraiion. For example,
4-AM is a (iranslate r‘) suhset of the one-dimensional integer lattice Z', whose points
consist of all integers in one dimension, and 16-QAM is a (translated) subset of the
two-dimensional mneger }af{ﬁce 7, whose points consist of all pairs of integers in

two dimensions. Fina Mys some two-dimensional M-ary phase-shift-keying (MPSK)

signal sets are shown in Figure 18.1(c). MPSK signals ail have the same "amrhwcw
and thus thev are a form of phase modulation. The simplest of these, 4-FSK (also

denoted \PS;KA)s is equivalent to 4-QAM.

Because TUM schemes use signal set expansion rather than additional transmii-
ted symbols to accommodate the redundant bits introduced by coding, performance
"“sor\ must be made with uncoded modulation sysiems that use smaller signal
have the same specirai eificiency, that is, the same number of informa-
tion b its per transmitied symbol. Thus, care must be exercised to ensure that the

pli
na

different schemes being compared have the same average ener y per transmitied
symbel. As an illustration, we can compute the ’wemre mgnal ergy of the three
one-dimensional AM signal sets shown in Figure 18.1{a}, where we have assumed
that the minimum Euclidean distance between signal po:imo is dipiy, = 2, as follows:
r 2
(+1) )
E, = Zl‘—ff] =1 (2-AM) (18.1a}
2
2 2
(+1) + (+3)* .
E, = 2(—1—4 =5 (4-AM) (18.1b)
/,..
L2 2 o2 )
(D2 + 3+ D+ D ) )
E, = 2—{ = =21. (8-AM) {18.1¢c)

Thus, in comparing a TCM scheme with one information bit and one redundant bit
that uses 4-AM modulation with an uncoded scheme using 2-AM modulaiion, we
must reduce the energy of each signal point in the coded system by a factor of 5, or
almost 7 dB, to maintain the same average energy per transmitted symbol; that is,
we must scale the amplitude of each signal by the factor 1/4/5. If a TCM scheme with
one information bit and two redundant bits using 8-AM is compared with uncoded
2-AM, the energy in the coded system must be reduced by a factor of 21, or more than
13 dB. This reduced signal energy results in a reduced minimum distance between
signal points that must be overcome by coding for TCM to achieve a positive coding
gain compared with an uncoded system with the same average energy. To minimize
the reduction in signal energy of coded sysiems, practical TCM schemes employ
codes with just one redundant bit, thatis, rate R = k/(k+1) codes. Thus, TCM system
design involves the use of high-rate binary convolutionai codes. In Table 18.1 we list
the average energies of cach signal set shown in Figure 18.1, where the minimum
distance between signal points dy;, = 2, and each consiellation is in its minimum
average energy configuration. The energy requirements of one signal set compared



956 Chapter 18 Trellis-Coded iiodulation

TABLE 18.1: Average energies for the signal sets

in Fioure 181
m rigure 13,14

{2) One-dimensional signal sets
Signal set | £ (dB)
2-AM 1 0.0
4-AM 5 7.0
8-AM 21 13.2
(b) Two-dimensional rectangular signal sets
Signal set | Es (dB)
4-QAM 2 3.0
8-CROSS | 55 7.4
16-QAM 10 10.0
32-CROSS | 20 13.0
64-QAM 42 16.2
(¢) PSK signal sets
Signal set | Ej (dB)
4-PSK 2 3.0
8-PSK 6.8 83
16-PSK 26.3 14.2

with another can be determined by simply taking the difference (in decibels) of the
values listed in Table 18.1. For example, if uncoded 8-PSK is compared with coded
16-PSK with one redundant bit, we say that the constellation expansion factor y, of
the coded system relative to the uncoded system is y,. = 14.2dB — 8.3 dB = 5.9 dB.

Now, consider the transmission of a signal sequence (coded or uncoded)

from an M-ary signal set S = {so.s1. - ,sy—1} over an AWGN channel. Let
y(D) =y + D+ y2D? + ... be the transmitted sequence, where y; € S for all /,
andletr(D) = rg+r D+mnD*+. .. = y(D) +m(D) be the received sequence, where

n(D) = ng+ny D +nyD? + - -+ is the noise sequence, #; 1s an independent Gaussian
noise sample with zero mean and variance Ny/2 per dimension for all [, and
and n; belong to either one- or two-dimensional Euclidean space. depending on
whether S is one- or two-dimensional. We can also represent the transmitted, noise,
and received sequences by the vectors y = (vg, vi.v2,---), o = (ng, 0y, n2,---),
and r = (rg, 1, r2. - - - ), and for two-dimensional signal sets, we denote transmitted,
noise, and received signal points by v = (vir. yj1), mp = (njp, njp), and rp = (L rjp),
respectively. Throughout the chapter we assume that r is unquantized; that is, soft
demodulator outputs are available at the receiver.

To compute the symbol-error probability P; of an uncoded system, we can
consider the transmission of only a single symbol. For example, for the QPSK signal
set shown in Figure 18.1(c), if each signal point has energy E,, that is, its distance
from the origin is E,, we can approximate its symbol error probability on an
AWGN channel with one-sided noise power spectral density Ny with the familiar
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union gpper bound as folio:

A P
5] - 3 s Lﬁs \K\
Py =44 Fg((ﬂ - Jf
1Y Ng /
AW v/
{18.2)
/ A
i i
= Annin 1. 1
L t‘\ \k "”1
AN /
A s
~ T o~ ninl Mo {uncoded)
Z
2 - . . T e
whese 4. = 2E; 16 the minimun squared Zuclidean (MSE) distance between signal
p@m aﬂd A,,,” = 2 18 the number of nearest neighbors in the QFSK consteliation.
o corapuie the exact value for 2, in this case, but the approzumate

,) adows for a direct comparison with the performance
ds o [Podpd system )

For coded transimission, we assume that v is decoded using maximum-likelihcod
soffi—deusmn Viterbi decocmw as presented in ﬂnameﬂ‘ 12. (For two-dimensional
signal constellations, the Viterbi algorithm metric is simply the distance i the two-
dimensional Euclidean space.) In this case, given fhe transmission of a particular
coded sequence v, the general form of 22 maoz upper bound on the eveni-error

1)#‘01’3(!3)1!17}/ F.{y) becomes

(18.3)

WICTe
5 . 2
e (v.¥) = ) de(w.v) = ]
, )
(18.4)

is the gquared Euclidean distance between the coded sequences y and . Mow,
defining d? free 28 the mininum free squared Euclidean (MIFSE) distance bet ween y
and any othex coded se quence j v, and A

can approzimate the bound on P,(3) as

as the number of nearest neighbors, we

([/HL

Py

IA

A dfrer Q
i

(18.5)
14(]/-,_“, €' /, o /7/\/“
2
The expressions for event-error probability given in (18.2) and (185) are
‘P i 5 \
conditioned on the transmission of a particular sequence y, because, in general, TCM

{coded)



systems are nonlinear: however, most known schemes have many of the symmetry
properties of linear codes. Typically, o!ﬁ(,(, is independent of the transmitted seguence.
but Ay, can vary depending on the transmitted sequence. The error analysis of
TCM schemes 18 investigated more thoroughly in Section 18.3.

Because the exponential behavior of (18.2) and (18.5) depends on the MSE
distances of the uncoded and coded systems, respectively, the asymptotic coding
gain y of coded TCM relative to uncoded modulation can be formulated as follows:

2
d/'ree/wded / E"’”/C({

(18.6)

5 .
dnlm/uncmlvd/E””f(’d“d

where Eqodeq and Eypeod04 are the average energies of the coded and uncoded signail
sets, respectively. We can rewrite (18.6) as

2
Evncoded d_,ﬁ'ce/mdu] 1

Y = =Y. Y- (187)

2 ( ¢

Ecodea d-

minfuicoded

where y, 1s the constellation expansion facior, and y, is the distance gain factor.

We proceed by letting d,i, and Ay, represent the minimum distance between
signal points in the uncoded and coded consteliations, respectively, and by assuming
that the minimum distance between points in the coded {expanded) constellation is
reduced, so that the average energies of the coded and uncoded signal sets are equal;
that is, Apn < dpin. and y. = 1. Then, the TCM system must have a free disiance
between coded sequences that is greater than the minimum distance between signal
points in the uncoded system to achieve coding gain. In other words, even though
Apin < din» @ TCM system must achieve dfyee > dipin.

In the design of cedes for binary modulation, the MFSE distance between two
signal sequences y and vy’ is given by (see Problem 18.1)

d}z).(,(, =4E.dy free. (binary modulation) (18.8)

where dy 100 15 the minimum free Hamming distance of the convolutional code.
Thus, for binary modulation. the best sysiem design is achieved by choosing the
code that maximizes dy_sr... We will shortly see that, in general, this is not true for
TCM system design.

In the TCM case, consider a rate R = k/(k + 1) convolutional code with
minimum {ree Hamming distance dy ;0. in which we denote the & + 1 encoder
ouiput bits at any tme unit / by the vecior v; = (v,(/‘}. v/(/"*l'. cee u,m). {Throughout
the remainder of this chapter, when it is not necessary to specifically denote the time
unit / of a vector. the subscript / will be deleted; that is, vectors such as v; will be
denocied simply by v.) Then, assume that the 25! binary vectors v are mapped into
clements s; of an M-ary signal set § using a one-to-one mapping function f(v) — s,
where M = 2f+1,

We see from (18.3) that the performance of a TCM system depends on the
squared Euclidean (SE) distances between signal sequences. Thus, the set of SE
distances between all possible pairs of signal points must be determined. Denoting
the binary labels of two signal points by the vectors v and v/, we define the error



i, It follows that wH(e) = dHf’\
vector equals the Hamming distance !
. For each er rov vector e, there are fu’
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DErFintTION 18.1 A one-to-one mapping function f(v) — s from a rate
R = k/(k + 1) convolutional encoder output vector v = (v, v ... O
to a signal point s; belonging to a 2¢+1-ary signal set S is uniform if and only if
A%,O(X) = Ail(X) for all error vectors e.

EXAMPLE 18.1 Uniform Mapping

Consider the three 8-PSK signal sets shown in Figure 18.2 along with their associated
labels. Using the signal point labeled by v = (000) as a reference and assuming unit
energy signals, we see that there are four distinct Fuclidean distances between
8-PSK signal points:

@ = [1/&]2 n [1 . (1/&)]2 —1/2+ (3/2 - ﬁ) ~0.586, (18.10a)

PP=12+1=2, (18.10b)
2= [1/\/2]Z + [1 + (m/i)f —1/2+ (3/2 + «/E) —3.414, (18.10¢)
d> =2 =4 (18.10d)

We now examine the eight possible SE distances corresponding to the error
vector e = (001) for the labeling of Figure 182(a). We sec that there are a
total of four code vectors v for which A%(@) = {f"»-f (v e)|? = 2: the
vectors v = (000), (001), (110), and (111), and four code vectors v for which
A%(e) = 3.414, that is, the vectors v = (010), (011). (100), and (101). Thus, the
AEWE for the error vector e = (001) is A2(X) = (1/2)X? + (1/2) x> If we
now partition the 8-PSK signal set into two subsets Q (0) and @ (1), depending
on the value of the bit v in the label vector, we see that for the error vector
e = (001), each subset contains exactly two signal points for which AZ(e) = 2,
and two signal points for which Al(e) = 3.414; that is, AZ (X) = AZ (X) =
(%)X2 + (%)X“H. Repeating this calculation for each possible error vector e gives
us the AEWES listed, along with the corresponding MEWESs, in Table 18.2(a) for
each subset Q(0) and Q (1). Because A%_O(X) = Aél(X) for all e, the mapping
is uniform.

o1 o1 010
100" R 0010 100~ . 010 011~ T*~._001
. a. ‘ \ ' v
01l @——d—H000 1106 ©000  100© ©000
110 111 011~ 111 H1 g7 101
101 101 110
(a) (b) (c)

FIGURE 18.2: Three 8-PSK signal sets with different labelings.



E 18.2: The AEWEs and MEWESs corresponding to the three 8-PS

K signal sets in Figure 18.2.

© Aol A 1 (50 85X | 82,0 | 83X
000 x° %0 %0 *0 X9
001 %Xz + %}AEJH %XZ + %XS.—HJ XZ X—Z X2
010 %XO 586 4 ;XZ %( 0.586;1_ % h2 ;{04586 X0.586 XO.SSG
011 %;{0.586 + %}{4 %XO 586 4 %x{% ;{0.586 3¢0.586 X(),SSG
100 %X}H'-Z- + %X-l %X}.-!H . %X‘l ;{3.—”4 X3‘4M XZ.L!H
101 %;{0,586 + 1 YZ %v‘OSSG 4 %;52 ;{0.586 ;{0,586 ;{04586
110 3X? 4 X34 1302 4 Jx3al 3 x? x? x2
111 %XO.SSG 4 %}{34—11—1 %XO 386 - %XE 4id 0.586 _,: 71 3.4 0.586 XO 586 XO.586
% e AZ (X0 AZ () 2000 | 8200 | 84X)
000 X0 x0 70 X0 x°
001 2 + %X&J.H + 154 32 - %}{3.414 4 % X2 - 1 7}‘,3 414 < [\:(2 X2 XZ
010 ~;{(1586 ZXO 5%6 e %;{3 414 v«_zO,SSG XOA586 XO.SS(J
Qi1 (0586 L X2 ¥4 + v-l> (XO 586 - 2 _l._HX3 41 50586 y0.586 5{0.586
100 X3A414 ;: 72 4 % 54 /\{34414 ;{2 XZ
101 %XQSSG s %X2 1%0.586 _; %Xz . XO.586 ;{0.586 ;{0.586
110 %XZ * %X4 1570,586 + ;;;{344 ; X?).é!-l'—l + Xi) XZ ;{0.586 5{0.586
L 111 }!_XO’S% + %5{2 4 %XSAM 586 & %35211_ %}{341 -+ %XZ + }TXS-MLL XO.586 XO.586 X0A586

{continued overleaf’)
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TABLE 18.2: (continued)

(©)

e A% \(X) A (X0 ALX) 82 o) 8% (X 54 X)
000 x0 x0 x0 x0 x0 x0
001 %XO.SSG + %X?’AM %X0.586 < %X3‘414 %X0.586 4 %XSAM X0.586 XO.586 X0.586
010 x? x? x? X2 x? x?
011 %XO.586 + %X3'414 %XO.586 € %X3‘414 %XO.586 + %XSAM x0.586 x0.586 x0.585
100 x? x? 1xT+ x4 x4 x? x?
101 %X0.586 + %X3'414 }TXO'S% + %X3A414 %X0.586 + %X3A414 x0.586 x0.586 x0.586
110 x? x4 1x?+ x4 x? x4 x2
111 %XOA586 + %X3.414 %XO.SSG + %X3'414 %X0.586 + %X3‘414 X0.586 XO.586 X0.586
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18.2(c), 1
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The following remarks relaie
o For the unifo nmapp

the MEWEs and the E"Ws are

all error veciors . This is tyue for aw 0y

. A one- 10 one
signal set, thus

| o anoth s);
26 beiween signal points, is called an isomerry.

~

v between
1etry i5 not
an isometry exisis,
a mapping

Problem 18 '5)

o In ?F'igm‘ 18.2(b) there
Thus, this mapping cann

We now let v(D) and v/ (D) = v(D) @ () be any two sequences in the binary
code trellis, where

WD) =vo+ 7D+ D (18.11a}
V(D) =vy+ 7D+ waDZ e (18.11b}

and

(D) = ey D 4oy BT b e DM ey ey £ 00 L > 005 >0, (18.110)
is a nonzero path through the er 10 i

v'(D) differ in at roost L -+ 1 branches. The Ie‘m E(D) then Tepremnt@ an error event
oflength L+1. If y(D) and 7' (D) are the two channel signal sequences corresponding
to v{D) and v/(D), respectively, that is, 3/( )= f{vg)+ f(vp) D+ f(m)Dz - and
y(D)y = f (WO) -+ f(vl)D + j(\17)D2 + -+, then the SE distance between y(D) and
y' (D) is given by
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(h<l<h+L)

S a¥e) = AMeD)].

(h<l<h+l)

Il

(18.12)

v

where the inequality follows from the definition of Euclidean weight given in (18.9¢),
and A?[e(D)] is called the Euclidean weight of the error sequence e(D). We now
prove a lemma that establishes the conditions under which the Euclidean weights
can be used to compute the MFSE distance dfzm of a TCM system.

Lemma 181 (Rare R = &/(k 4 1) Cope LEMMa) [1] Assume the mapping
from the output vector v ol a rate R = k/(k + 1) binary convolutional encoder
to the elements of a 28! -ary signal set S is uniform. Then, for each binary
error sequence (D) in the ervor trellis, there exisis a pair of signal sequences
y(£) and y'(D) such that (18.12) is satisfied with equality.
Proof. From the definition of Euclidean weight, A%(e;) = minv,v[vu\; 21 0]

Sy Y

A%/ (e/) for all time uniis /. Because the mapping is uniform, minimizing over
the k-bit vector [v[“‘”, cee v[(l)] yields the same result in the subset Q (0) with

v,(m = 0 as in the subset Q (1) with v,(O)

independent of the value of vl(o), and A(e;) = min

= 1; that is, the Euclidean weight is
M ] A%,/(el). Further,
a rate R = k/(k + 1) encoder can produce any sequence of k-bit vectors
{vl(/‘), e .vl(”] (only one bit is constrained); that is, every such sequence of
k-bit vectors corresponds to a path through the trellis. Thus, for each binary
error sequence e(D), there exists an encoder output sequence v(D) such that
(18.12) is satisfied with equality. Q.E.D,

Lemma 18.1 implies that the MFSE distance d,zm, between signal sequences
can be computed by replacing the binary labels on the error trellis with the MEWESs
and finding the minimum-weight path through the trellis: that is.

dﬁ‘ﬂ' = MIPe(p)£0(D) /—\Z[Q(Dﬂ

(18.13)

A similar argument can be used to show that the average weight enumerating
function A,,(X) can be computed by labeling the error trellis with the AEWESs and
finding the transfer funciion of ithe modified state diagram (see Problem 18.4). If
the mapping is nonuniform, the rate R = k/(k + 1) code lemma does not hold, and
the computation of A,,(X) and d]z.w becomes much more complex. An example
illustrating this point is given later in this section.

The technique for using the AEWEs to compute A,,(X) will be presented
in Section 18.3. In the remainder of this section we present a series of examples
illustrating the basic principles of designing a TCM system to maximize d/%_“.
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From Table 18.3 we see that all the AEWESs are monomials and that A%(X ) =
(S,%(X ) for all e. Such mappings are called regular mappings, which implies that ihey
are also uniform mappings. Further, in the case of Gray-mapped OPSK, the two
error vectors for which wy(e) = 1 result in A%(@) = 2 for all v, and the error
vector for which wy(e) = 2 results in A%(e) = 4 for all v; that is, A%(@) = 2wy (e)
for all e and v. In other words, there is a linear relationship between SE distance
and Hamming distance. Thus, the rate R = 1/2 convolutional codes with the best
minimum free Hamming distance dy ., will also have the best MESE distance d]%,ee
when combined with Gray-mapped QPSK. For example, the optimum free distance
(2,1.2) code with dy s = 5, when used with Gray-mapped QPSK, results in
an MESE distance of clzm = 10. Compared with uncoded BPSK with unit energy

signals and d]%”.” = 4, this (2, 1, 2) code results in an asymptotic coding gain of
y = 1010g10(dj%rec/d31in) = 10log;(10/4) = 3.98 dB, exactly the same as when this
code 1s used with BPSK modulation. Thus, designing optimum TCM schemes for
Gray-mapped QPSK is identical to finding optimum binary convolutional codes for
BPSK modulation.

For naturally mapped QPSK, however, the situation is different. The two error
vectors for which wy(e) = 1 give, for all v, A?‘,(e) = 2 in one case and A%(@) =4in
the other case, and the error vector for which wg (e) = 2 gives AZ(e) = 2 for all v.
In other words, there is no linear relationship between SE distance and Hamming
distance when natural mapping is used. Thus, traditional code design techniques will
not give the best codes for use with naturally mapped QPSK.

Continuing with the naturally mapped case, let us now consider two different
(2.1, 2) code designs:

Code1:Gy(D)=[ 1+ D> 14D+ D? | (18.14a)
Code2:Go(D)=[ 1+D* D ]. (18.14b)

Code 1 is the optimum free distance (2,1,2) code with dy rree = 5, whereas
code 2 is suboptimum and has dy ... = 3. The encoder diagrams for these two
codes are shown in Figure 18.4(a), and their error trellises with binary labels are
shown in Figure 18.4(b). Now, replacing the binary labels with the MEWEs of
naturally mapped QPSK from Table 18.3(b), we obtain the modified error trellises
of Figure 18.4(c). Examining the modified error trellises for the minimum-weight
error events, we see that d/%,ee = 6for code 1, resulting in a coding gainof y = 1.76dB

compared with uncoded BPSK, whereas code 2 achieves d2 , = 10 and y = 3.98 dB.

free
Thus code 2, clearly inferior to code 1 for binary modulation or for Gray-mapped
QPSK, is the better choice for naturally mapped QPSK.

The following comments apply to Example 18.2:

o The linear relationship between Hamming distance and Euclidean distance
in Gray-mapped QPSK is unique among nonbinary signal sets. In all other
cases, no such linear relationship exists, and the best TCM schemes must be
determined by jointly designing the code and the signal set mapping.
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The nonlinearity of most TCM systems arises from the mapping function f(-),
which does not preserve a linear relationship between Hamming distance and
Euclidean distance.

Both signal mappings in Example 18.2 are regular; that is, each error vector e
has a unique SE distance associated with it, and the AEWESs are equal to the
MEWE:s for all e. For regular mappings, the Euclidean weight enumerating
function A (X) of the code is independent of the transmitted sequence. Thus,
A(X) and dj%_ee can be computed in the same way as for linear convolutional
codes with binary signal sets, that is, by assuming that the code sequence
corresponding te the all-zero information sequence is transmitted.

The critical step in the design of code 2 for naturally mapped QPSK was to
assign the error vector e = (10) with maximum Euclidean weight to the two
branches in the trellis that diverge from and remerge with the all-zero state Sy.
This assignment guarantees the best possible Euclidean distance in the first
and last branches of an error event and is one of the key rules of good TCM
system design.

Each of the coding gains quoted in this example came at the expense of
bandwidth expansion, since the coded systems have a spectral efficiency of
n = 1 bit/symbol = 1/2 bit/dimension, and the spectral efficiency of uncoded
BPSK is n = 1 bit/dimension. Most of the comparisons with uncoded systems
in the remainder of this chapter will involve TCM schemes that do not require
bandwidth expansion; that is, they are bandwidth efficient.

The design of good rate R = 1/2 codes for use with naturally mapped
QPSK will be considered again in Section 18.4, when we take up the issue of
rotationally invariant code designs.

The QPSK signal set is equivalent to two independent uses of BPSK, denoted
by 2 x BPSK. This can be considered a simple form of multidimensional
signaling, a subject that will be covered in Section 18.5.

EXAMPLE 18.3 Rate R = 1/2 Trellis-Coded 4-AM

In this example we consider the same two rate R = 1/2 convolutional codes as in
Example 18.2, but this time with the encoder output vector v = (v v®) mapped
into the one-dimensional 4-AM signal set. Both Gray mapping and natural mapping
of the 4-AM signal set are illustrated in Figure 18.5, where the signal amplitudes are
assigned in such a way that the average signal energy E; = 1. Using the signal point
labeled v = (00) as a reference, we see that there are three distinct SE distances
between the 4-AM signal points:

a® = [(=1/v5) = (=3/V5)P =[2/V5P =038, (18.15a)
b =[(1/¥5) — (=3/V5) = [4/v/5F =32, (18.15b)
2 = [B/V3) —(=3/VDH =[6/V5P =72 (18.15¢)

Clearly, the MSE distance between signal points in this case is A2 = 0.8,

min
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{(a) Gray mapping
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-31V5 CING +11V3 +31V5

(b) MNatural mapping

FIGURE 18.5: Gray and natural mapping of the 4-AM signal set.

uclidean distance structure for Gray- and
pped 4-AM.

i

(a) G ] (F@% Natural mapping
e AZ(X) 8200 2(X) 82(X)
00 X x0 ;{0 X
01 %}{OS + %X”/Q XOS XO’S }{048
10 XO,S ;{0‘8 )(32 X3'2
11 X3'2 ZBAZ %XQS + %Xf/.Z XO'S

In Table 18.4 we list, for both Gray and natural mapping of 4-AM, the four
possible error vectors e and the four coa'"respondmo AEWEs A\z(}( ) and MEWESs
52()(} In Problem 18.6 it is shown that A,\ o) = A\ﬂ 1O in both cases, and thus
the mappings are uniform. We note that in each case, however, there is exactly one
error vecior e for which A2(A) is not a monomial, and thus the mappings are not

regular.
If we now replace the binary labels on the error trellises showa in Fioure 18.4(b)
with the MEWESs of Gray- and naturally mapped 4-AM from Table 18.4, we obtain

the modified error trellises of Figures 13.4(d) and 18.4(e), Iespeciwely Examining
the modified error trellises for the ummmnm weight error events, we see that for
Gray-mapped 4-AM (rmme 18.4(d)) d ﬁee = 7.2 for code 1, resulting in a coding

gain of y = 10logy(d? ﬁee Jd2. ) =2.55dB compared with uncoded 2-AM with unit

min
energy signals and dmm = 4, whereas code 2 achieves only dﬂge = 2.4, resulting
in a coding loss of y = —2.22dB. Thus, code 1 is clearly the better choice for
Gray-mapped 4-AM. For 4-AM with natural mapping (Figure 18.4(e)), the situation
is exactly reversed, and the best choice is code 2, which results in a coding gain of

y = 2.55 dB compared with uncoded Z-AM.
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The {following observations relate to Example 18.3:

e Inboth cases, the mappings are nonregular; that is, for some error vectors e, the
MEWE does not equal the AEWE. This implies that the weight enumerating
function A(X) of the TCM system changes depending on the transmitted
sequence; however, since A%O(X) = Ai_l(X) for all e in both cases, the
mappings arc uniform, and the MFSE distance dﬁ .. can be computed by

replacing the labels e in the binary error trellis with their corresponding

MEWEs 8£(X ) and using the transfer function method.

o By definition, all reguiar mappings must be uniform, but the reverse is not
true.

e As in Example 18.2, the critical step in designing the best codes for both
mappings was to assign the error vector with maximum Euclidean weight to
the branches in the trellis that diverge from and remerge with the state Sp.

o In Example 18.3, unlike in Example 18.2, coding gain is achieved without
bandwidth expansion, since the coded signal set, 4-AM, has the same dimen-
sionality as the uncoded signal set, 2-AM. This explains the somewhat smaller
coding gain, 2.55 dB versus 3.98 dB, achieved in Example 18.3 compared with
Example 18.2.

EXAMPLE 18.4 Rate R = 2/3 Trellis-Coded 8-PSK

Now, consider arate R = 2/3 convolutional code with 8-PSK modulation in which we
denote the three encoder output bits by the vector v = (v®vy©®) In Figure 18.6
these three bits are shown mapped mto the 8-PSK signal set according to the natural
mapping rule. Each signal is again assumed to have unit energy. but in this case the
MSE distance between signal points, computed in (18.10a}, is A,zm” = (0.586. Thus.
compared with the QPSK signal set with the same average energy, the MSE distance
of 8-PSK is reduced from 2.0 to 0.586.

In Table 18.5 we list the cight possible error vectors e and the eight corre-

sponding AEWE:s, AE.O(X), Ai‘l (X). and Aﬁ(X), and MEWEs, 830()(), 52.1(){), and

¢

TABLE 18.5: Euclidean distance structure for naturally mapped 8-PSK.

e AZ LX) A (X) ALX) S oK) | 82 0 | 82
000 xY xU x4 x0 x! xY
001 xU.580 x {1586 xU.586 ¥ 0.586 X().SH(\ 30580
010 x? x- x? x? x? x?
011 %X()‘S‘% + %X}'JH %X().SS(N + %X3'414 %X().SSG + %X}J'I-l x1.586 x U586 | 50.586
100 xt Xt x4 x4 x4 x4
(01 x4 x4 x4l x4 X}.«Hd x344
1o x? be be be Ve x?
111 %XU.SS\% + %Xiéi«i %X(),Fu% + %XB' Hid %XU.SNO + %Xfi.-&l-s x U580 xU80 1 x0.580
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in this case we see
8.8 it is shown that Gray mapping o
-PSK mapping shown in Figure 18.2(a

vectors [hci result in different |
He erior vectors e = (011) and e
the other six error vectors COrTespoi d toonly a

i
[9d
G~

I ossﬂbie ode designs for naturally mapped 8 ,
using the error trellis labeled with l‘ﬁvH‘W 5.

166

> = 2/3 convolutional code whose parity-check mairiz in
is given by
+D+1 (DPHDHDP4+D+D 1. (18.16)

’D

This is the v free distance (3,2, 1) code with constraint length v = 2 and
du free = 3. The encoder diagram is shown in Figure 18.7{a). the 2V = 4-state binary
ervor trellis is given in Figure 18.7(b). and the modified error trellis labeled with the
turally mapped 8-PSK is shown in Figure 18.7(c).

From Figure 18.7{(c) we see that the nonzero path associated with the sequence
of states 5352535 Tesul n an MEFSE distance of d]:’ = 1.758. Because this TCM
scheme bhas a speciral efficiency of n = 2 mts/symbol the appropriate UmodPﬂ
system with which to compare is QPSK with an average signal energy £, = 1. For
this signal set, ‘Y;an 2.0, and thus paturall vy mapped TCM suffers a coding loss m‘
= 101ogo(df,, /d},,) = 1010g,(1.758/2) = ~0.56 dB in this case!

MNow, we ask the guestion, Is it possible to achieve a positive ‘odlim.or

withotit bandwidth expansion with 4-state, rate R = 2/3 coded, naturally
8-PSK7 Because the naturally mapped 8-P5K signal set is nonregular, we may {
' r TCM scheme by considering suboptimuim rate R = 2/3 codes. In ad dmm we
@ﬂsﬁder arate R = 1/2 code with one uncoded information bit as equivalent to
2/% code: that is, both have a spectral efficiency of n = 2 bits/symbol when
with 38-PSK modulation. To illustrate this latter approach, we considez
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vi2(D)

u?(D)

u(D)

(c) Modified error trellis

FIGURE 18.7: Encoder diagram and error trellises for rate R = 2/3 coded 8-PSK.

the same two (2,1, 2) codes as in Example 18.2, although this time we include an
uncoded information bit and use the systematic feedback form of the encoders.
Thus, the two rate R = 1/2 generator matrices are given by

Codel:Gi(D)=[1 (D*+D+1/D*+1 ], (18.17a)
Code2: Gy(Dy=[1 D/D*+1 ]. (18.17b)
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(a) Encoder diagram

(b) Error trellis
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A5
{5,
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Pss 7

s WL

(c) Modified error trellis

FIGURE 18.8: Encoder diagram and error (rellises for rate R = 1/2 coded 8-PSK
(code 1).

The encoder diagrams for these two codes are shown in Figures 18.8(a) and 18.9(a),
their binary error trellises are given in Figures 18.8(b) and 18.9(b), and the modified
error trellises labeled with MEWESs for naturally mapped 8-PSK are shown in
Figures 18.8(c) and 18.9(¢c). respectively. The uncoded information bit is handled by
adding a parallel transition to each branch in the binary trellis of the rate R = 1/2
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u®(D) Vvi3(D)y

um(D) V“)(D)

V(D)

(b) Error trellis

X‘().Sh’ﬁ

(c) Modified ervor trellis

FIGURE 18.9: Encoder diagram and error trellises for rate R = 1/2 coded 8-PSK
(o \
\dee 2/.

code. Thus, there are two branches connecting each pair of states in the binary error
trellis, one for each of the two possible values of the uncoded bit. We follow the
convention that the first bit listed on each branch of the binary error trellis is the
uncoded bit. In the modified error trellis, we show only one branch connecting each

Lol 18 Lwa IDCERLLCES YT AT RLT 1AL S N

pair of states; that is, it has the same structure as the trellis for the rate R = 1/2 code,
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but its label is the minimum-weight label of the two MEWESs for the corresponding
parallel branches in the binary ervor treilis. For example, in Figure 18.8(b), the two
parallel branches connecting state Sy to itself in the binary error irellis are labeled
’GOO) and (100). Thus, in Figure 18.8(c). the two comspond‘m MEWEs are X9 and

Iy

4 and the single branch connecting state 5 to itself is labeled X9,

For 411/ TCM scheme with pmaﬂr:; iransitions, the calculation
distanice d2 involves two ferms: (1) the MESE distance 82 , between

free

paths 1013%@1 than one branch and (2) the MSE f“hstame 5; .y between distinet trellis
pmhs one branch in length. Because 52%) is the free distance between irellis paths

ssociated with the coded bits, it can be computed from the ervor irellis labeled with
fhe MEWEs. Because 81 e 00 the other hand. is the minimum dlaial between
parallel transitions associated with the uncoded bits, it must be computed separately.
Then, the overall MFSE distance is given by

2 o2 PPN
free” Omi‘;i}~ \io.ig}

{(AMPLE 1

(Continu

The paml lel transition distance 8;””, ts independent of the code and depends only
on the mapping used. From Figures 18.8(b) and 18.9(b) it is clear that the paraliel
brmch tabels always differ by the error vector (100). Thus, from Table 18.5 we

conclude that 53”11 = 4.0. Now, we can see from Figures 18.8(c) and 18.9(c) that

57/66 = 3{0.586) = 1.758 for code 1, and 5; o = 2(2.0) 4- 0.586 = 4.586 for code 2.
Thus,
me = mm{éﬁw 2 ) =min{1.758,4.0} = 1.758.  (code 1) (18.19a)
and
Ay = Min{87,,. 87, = min(4.586, 4.0} = 4.0, (code 2) (18.19b)

and the asymptotic coding losses (gains) compared with uncoded QPSK are y =
—(.56 dB for code 1 and y = +3.01 dB for code 2. Thus, for the three different
codes considered in this example, the best performance, and the only coding gain,
is achieved by the suboptimum (in terms of dy r...) rate R = 1/2 code with one
uncoded bit. This simple 4-state code achieves a 3.01-dB coding gain compared with
uncoded OPSK without bandwidth expansion. (Problem 18.9 illustrates that other
mapping rules for 8-PSK result in less coding gain than natural mapping.)

The following remarks relate to Example 18.4:

o All mappings for the 8-PSK signal set are nonregular. Thus, the weight
enumerating function A(X) depends on the tfransmitted code sequence for all
38-PSK—based TCM systems; however, if the mapping is uniform, the average
weight enumerating function A, (X) can be computed by labeling the branches
of the error trellis with the AEWESs and using the transfer function method.
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e Virtually all signal sets and mappings used in practical TCM systems are
nonreguiar, although symmetries usually exist that allow a uniform mapping.

@

The MEWESs can be used to compute the MFSE distance d 2, .o Of TCM systems
with uniform mappings, as shown in Examples 18.2, 18.3, and 18.4; however,
to determine the average weight enumerating function A,,(X), the AEWEs
must be used, as will be illustrated in Section 18.3.

o The critical advantage of naturally mapped 8-PSK over other uniform map-
pings for 8-PSK is that the error vector for all parallel transitions, e = (100),
is assigned to the largest possible EW, A%(e) = 4.0, by the natural mapping
rule (see Problem 18.9). In other words, for 8-PSK, the MSE distance between
signal points on parallel transition paths is maximized by natural mapping, thus
minimizing the probability of a one-branch (parallel transition) error event.

e An exhaustive search of all possible 8-PSK TCM schemes with n = 2
bits/symbol and 4 states indicates that the best scheme is code 2 in Exam-
ple 18.4, that is, the suboptimum rate R = 1/2 code with one uncoded bit,
combined with natural mapping. This illustrates that, unlike code designs for
binary modulation, the best TCM designs often include uncoded information
bits resulting in parallel transitions in the trellis. (If uncoded bits are employed
in the design of codes for binary modulation, the minimum free Hamming dis-
tance can never exceed the minimum Hamming distance between the parallel
transition branches, which equals 1.)

e All the encoders in Example 18.4 were given in systematic feedback form.
Equivalent nonsystematic feedforward encoders exist that give slightly differ-
ent BER performance because of the different (encoder) mapping between
information bits and code bits. Systematic feedback encoders are usually pre-
ferred in TCM system design because they represent a convenient canonical
form for representing minimal rate R = k/(k + 1) encoders in terms of a single
parity-check equation. This canonical representation simplifies the search for
the best encoders.

o Larger coding gains can be achieved by employing more powerful codes, that
is, longer constraint lengths. Tables of the best TCM code designs for a number
of important signal constellations are given in Section 18.2.

The rate R = k/(k + 1) code lemma guarantees that if the mapping is uniform,
any error sequence e(D) in the binary error trellis with a given Euclidean weight
A?[e(D)] corresponds to a pair of signal sequences y(D) and y'(D) in the trellis
separated by a free squared Euclidean distance of A?{e(D)]. In this case, the MFSE
distance d]%,e . of a TCM system can be computed using the method of Euclidean
weights; however, if the mapping is not uniform, the rate R = &k/{k + 1) code lemma
does not hold, and the method of Euclidean weights will, in general, give only a
lower bound on the actual d%,,ee. This point is illustrated in the following example.

EXAMPLE 18.5 Nonuniform Mappings

Consider the two nonuniform mappings of 8-PSK shown in Figures 18.2(b) and
(¢), along with their AEWEs and MEWE:s listed in Tables 18.2(b) and (c). If these
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mappings are used alos Wﬂ COde 2 ﬁo n Bxample 18.4, whose encoder diagram
and binary error trelli es 1 9(&) and (b),ﬁk/up ctively, we obtain
the modiﬁefi erro 18.10.

1‘1 g 0 f Figure 18.2(b) and Table 18.2(b),
th g (0) and Q(i\ Let e(D) =

vy between

ix
(MO) + (dii)

he subs
11

ets
D + ( )3“ +(110)5° be a path through
ure 18.9(b) that starts and ends in state Sp. From the

0
g e 18.10(a), we can compute the EW of e(D) as follows:
27 V1 %
A{e(D)] = 0.586 4+ 0.586 + 0.586 + 0.586 = 2.344. 18.20
!

For the rate B = k/(k + 1) code lemma ﬁ;@ ﬁe satisfied, there must exist a pair
-branch irellis paw , (D) and ¥'(D), star g and stopping in the same state,

h (D) and whose corresponding signal sequences y{(D)
; t4 apari. From Figure 18. Z(D) and Table 18. Z(b\ Wwe see
it the @eon‘sd path fah must start with the D ‘anches vo = (101) and vj = (011),

[ © of binary labels such that ey = vy @ % = (110), and

30.586 .
$5 ‘}1\ = > 53 ]
iy 30 " ’
el S s <07 / e

T M B

(a) Mapping of Figure 18.2(b)

CA ;\(0.58(7 /57\
23T == T = ) f
) ANV et O

(b) Mapping of Figure 18.2(¢)

FIGURE 18.10: Modified error trellises for two nonuniform mappings.



978 Chapter 18 Trellis-Coded Modulation

d2 f (vo), fopl= d%[yo. ¥l = 0.586. (The branches assigned to vg and v;, can also
be reversed without changing the result.) Thus, from Figure 18.9(b), the path pair
must start either from state S, or from state S3. Similarly, the next three pairs of
branch labels must be v; = (001) and v} = (010), v, = (111) and v, = (000), and
v3 = (101) and v; = (011) (or the reverse of these labels) to satisfy the distance
conditions; but a close examination of Figure 18.9(b) reveals that no pair of paths
with these labels and starting either from state S, or from state S3 exists in the trellis.
Thus, it is impossible to find a pair of paths v(D) and v/(D), starting and stopping
in the same state, that differ by the error path e(D) and whose corresponding signal
sequences y(D) and y'(D) are distance 2.344 apart; hence, the rate R = k/(k + 1)
code lemma is not satisfied.

Next, consider the nonuniform mapping of Figure 18.2(c) and Table 18.2(c),
in which there is an isometry between the subsets Q (0) and Q (1). Let e(D) =
e +e1D + e, D? + e3D% + e4 D* = (110) + (101) D + (100) D? + (101) D3 + (110) D*
be a path through the binary error trellis of Figure 18.9(b) that starts and ends in
state Sp. From the modified error trellis of Figure 18.10(b) we can compute the EW
of e(D) as follows:

A?[e(D)] = 2.0 4 0.586 + 2.0+ 0.586 + 2.0 = 7.172. (18.21)

For the rate R = k/(k + 1) code lemma to be satisfied, there must exist a pair
of 5-branch treliis paths, v(D) and v'(D), starting and stopping in the same state,
that differ by the error path e(D) and whose corresponding signal sequences
y(D) and y'(D) are distance 7.172 apart. From Figure 18.2(c) and Table 18.2(c) we
see that the desired path pair must start either with the branch pair vo = (000)
and v, = (110) or with the branch pair vo = (100) and vy = (010), since
these are the only pairs of binary labels such that eg = vop ® v, = (110), and
d2[ f (vo), fvp] = di[yo.yy] = 2.0. From Figure 18.9(b) we see that the path
pair must start either from state Sy or from state Sy in both cases. As in the
previous case considered, the next four pairs of branch labels are similarly con-
strained to satisfy the distance conditions. It is easily seen that there is only
one possible branch pair corresponding to the error vector ey = e3 = (101), but
there are two possible branch pairs corresponding to the error vectors e; = (100)
and e; = (110). Again, a close examination of Figure 18.9(b) reveals that no
pair of paths with these labels and starting either from state Sy or from state
St exists in the trellis. Thus, it is impossible to find a pair of paths v(D)
and v'(D), starting and stopping in the same state, that differ by the error
path e(D) and whose corresponding signal sequences y(D) and y' (D) are dis-
tance 7.172 apart; hence, the rate R = k/(k + 1) code lemma is again not
satisfied.

Example 18.5 leads to the following observations:

o When the mapping is nonuniform, there are still many error sequences for
which the rate R = k/(k + 1) code lemma is satisfied; however, Example 18.5
illustrates that this is not true for all error sequences.

e Example 18.5 shows that an isometry between the subsets @ (0) and Q (1) is
necessary, but not sufficient, to guarantee that the rate R = k/(k + 1) code
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lemma is satisfied. See Problem 18.10 for an example illustrating this fact that
uses a different signal constellation.

o Because the rate R = k/(k + 1) code lemma is not satisfied for nonuniform
mappings, the method of Euclidean weights provides only a lower bound on
er .. i1 this case. This is also true of the method {0 be presented in Section 18.3
for determining the AWEF A, (X) of a TCM system from the AEWEs.

o Using a nonuniform mapping does not necessarily imply an inferior TCM
system, just one that is more difficult to analyze. In this case, a supertrellis of
(232 = 227 states must be used to determine the set of distances between all
possible path pairs; however, uniform mappings result in the best designs for
most practical TCM sysieras (see Problem 18.11).

£

A more stringent uniformity condition, called geometric uniformity, was intro-
duced by Forney [23]. When this condition is satisfied, the computation of
weight enumerating functions is simplified, but many practical TCM systems
are not geometrically uniform.

O

amples 18.2, 18.3, and 18.4 illustrate two basic rules of good TCM system design:

. Rule 1. Signal set mapping should be designed so that the MSE distance between

parallel transition branches is maximized.

Rule 2: The convolutional code should be designed so that the branches in the

modified error trellis leaving and entering the same state have the largest
possible MSE distance.

A general block diagram of a TCM system is shown in Figure 18.11. At each
ky (k=1 @

time unit /, a total of k information bits, w; = (u, Uy e Uy ), enter the

u;k) = .
o
T4 =]
u;/\ + 1) .
& vm — g -
T . o ! Signal mapper Y,
uf® > Convolutional
! <} o
o encoder o
(e [} i
b = rate k/(k + 1)
! S
I

FIGURE 18.11: General TCM encoder diagram and signal mapper.
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system. Of these, a total of k < k bits, namely, u,(") u[(k Do (1) , enter a rate

Al 4 A1

R = K/\K + 1 b_)/bt@ludu(: feedback convolutional encoder, plOCluClug ine ouiput

bits v(k) l(/‘ ..., [(1) U;O) where vl( Vs the parity bit, and v,(k), ;k 1), S I<1)

are mformation bits. These & + 1 bits enter the signal mapper along with the & — k

uncoded information bits ufk) = vl(k) l(k - (k Do (kH) = vlkH) Finally,

the k + 1 bit vector v; = (v(“, (k= 1), e (1) (0>) is mapped mto one of the
= 21 possible points in the 51gna1 set S H k = k, then there are no uncoded

1nf0rmat10n bits and no parallel transitions in the trellis diagram.
In the next section we will study a technique called mapping by set partitioning

[1] in which the k+1 coded bits v(k) (k b ... vlm @ are used to select a subset of
(b =D D)

’ l » 3

size 26 from the signal set S, and then the k —k uncoded bits v,
are used to choose a particular signal point from within the selected subset. Thus,
a path through the trellis indicates the particular sequence of selected subsets, and
the 2% parallel transitions associated with each trellis branch indicate the choice
of signal points within the corresponding subset. This mapping technique allows us
to design TCM systems that satisfy the two basic design rules noted.

18.2 TCM CODE CONSTRUCTION

There are three basic steps in designing a TCM system:

1. Signal set selection
2. Labeling of the signal set
3. Code selection

A signal setis chosen primarily to satisfy system constraints on spectral efficiency and
modulator design. For example, if a spectral efficiency of n = k bits/symbol is desired,
a signal set with 28*1 points must be selected. Similarly, if, because of nonlinearities
in the transmission path (e.g., a traveling wave tube amplifier), a constant-amplitude
signaling scheme is required, then a PSK signal set must be chosen. If amplitude
modulation can be accommodated, then a rectangular or QAM signal set will give
better performance. Several typical signal sets were shown in Figure 18.1. As an
example, consider a linear transmission path and a spectral cfficiency requirement
of n = 4 bits/symbol, the specifications for the CCITT V.32 modem standard that
can achieve data rates up to 14.4 Kbps over voice-grade telephone lines. In this case,
the 32-CROSS signal set was chosen for implementation.

The next step in the design process is to assign binary labels, representing
encoder output blocks, to the signal points in such a way that the MFSE distance
d/% - Of the overall TCM system is maximized. These labels are assigned by using
a technique called mapping by set partitioning [1]. This technique successively
partitions the signal set into smaller subsets of equal size, thereby generating a tree
structure in which each signal point corresponds to a unique path through the tree.
If binary partitioning is used, that is, at every level in the partitioning tree each
subset from the previous level is divided into two subsets of equal size, the tree has
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k -+ 1 ievels. Thus, each path through the tree can be represented by a (k + 1)-bit
label, which can then be assigned to the corresponding signal point. To maximize

2
d]w” the pﬁmuomno must be done in such a way that the two Lasm rules for good

TCM system gw discussed in Section 18.1 are satisfied. This requires that the
minimum squared subser disionce (MSSD) A~ that is, the MSE distance between
i the same subset, be maximized ai each leve] p of the partidon

signal points v
tree. The approach is illustrated with two examples.

‘ 5;)) ‘@

™

x/ovmdm the binary partitioning tree for the 8-PSK signal set § shiown in Figure 18.12.
vel O of the par @Uomug tree contains the full 8-PSK signal set 5. Assuming unit
ewergy signals, ;I MSSD at level 0 was (‘Oiﬂpﬂ, ted in (18. 10&) and is dencied by
Lﬁ = (.586. (A 5 s the same as the prewm Iy ¢ “,ﬁn@d A7 . the MSE distance
oetween signal points. The notation A() indicates that this term corresponds to the
MSSD at level 0 in the set-partitioning tree.) Label bit v'% then divides the set §
into two subseis, ¢ (V) = 0 (0) and Q (1). each containing four si gi 1 points such
that the MSSD of both subsets at level 1 is given by 4 2 = 2.0. It is important to
poini out here two properties of this partition:

L. There is no partition of 8-PSK inio two equal-size subsets that achieves a larger
MSSD,

2. Subset O (0) is isomorphic to subset O (1) in the sense that @ (1) can be
o‘btade from @ (0) by rotating the points in @ (0) by 45°.

S =8.PSK

RSN

\
> ¢ Aj=0586

o Qe RN s}
\ A / \ 5
Hi 6 di o Aj=20
o, o o, o
Rk o~
v = Of,f 1 0 1
o(0) .~ 0(10) o1 L oD
~e- O PN ~o
(8] Q o Q o] e} a
/ \ / \ / \ / R
& // o ¢ ® ¢ @ P As=4.0
\ \0 / o / ;o
;o 3 U O o7
v =0 ] 0 1 0 1 0 A1
/7y o /TN Ty
/e\ -0~ PLEES ~en P P PN
O [} O [¢] a O Q O © o] Q G e} o] e}
/ \ / NS N/ A / NS N N/ A .
O 2 SN A S X R SN S 2 S X S S e
... P o, o v o v 0 o o D L v Lo o g
o - o Rl o~ fohe o~ o
Q(000)  ©(100)  O(010)  Q(110) g0 101y 2011y Q1)

FIGURE 18.12: Partitioning of 8-PSK.
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These two properties of 8PSK partitioning, namely, maximizing the MSSD
and maintaining an iscmetry among all subsets at the same level, are characteristic
of most practical signal set partitionings. The isometry property implies that the
MSSDs are the same for all subsets at a given level.

Continuing with the example, we see that label bit v’ now divides each
of the subsets Q (0) and Q (1) at level 1 into two subsets, containing two signal
points each, such that A% = 4.0 for each subset at level 2. We see again at
level 2 that the subset distance has been increased and that the four subsets
are isomorphic and thus have the same MSSD. The four subsets are denoted as
0 (vDv @) = 0 (00), ¢ (10), ¢ (01), and Q (11), representing the four possible
values of the binary label (vDv @), Finally, label bit v® divides each of the subsets
at level 2 into two subsets containing one signal point each at level 3. This is the
lowest level in the partitioning tree, and the MSSD A% at this level is infinite,
since there is only one signal point in each subset. The eight subsets at level 3,
0 (vPvDy©®) = 9 (000, Q (100), Q (010), @ (110), Q (001), @ (101), O (111), and
Q (011) are represented by a unique binary label (v® vy that corresponds to
a path through the partitioning tree. This binary label then defines the mapping
between a 3-bit encoder output block and a corresponding signal point in the 8-PSK
signal set.

As noted in Section 18.1, a TCM system using 8-PSK can employ either a
rate R = 2/3 code or a rate R = 1/2 code with one uncoded bit. To best describe
the code design procedure, we consider the case of a 4-state, rate R = 1/2 code
with one uncoded bit in the remainder of this example. In this case only the first
two levels of the partitioning tree are used, and each of the four subsets at level
2, that is, the subsets @ (00), 0 (10), Q (01), and @ (11), contains two signal points
separated by the distance A3 = 4.0. First, the two coded bits (v v©®) are used to
select a subset, and the uncoded bit v@ is then used to select the signal point to
be transmitted. This means that each branch in the code trellis, which represents
a parallel transition, is assigned one of the level-2 subsets Q (00), Q (10), Q (01),
or O (11) with subset distance A2 = 4.0. Note that, since A% was maximized by
the partitioning procedure, this guarantees that the MSE distance 5;%11‘11 between
parallel transition branches is maximized, thus satisfying rule 1 for good TCM
code design.

Now, we consider the assignment of the level-2 subsets @ (00), O (10), O (01),
and Q (11) to the branches of the code trellis. Note that the trellis is completely
defined by the set of branches leaving each state. In this example there are a total of
2K = 2 branches leaving each of the 2" = 4 states. Because there are only four level-2
subsets from which to choose, exactly half of these subsets must be assigned to each
set of two branches leaving a state. From Figure 18.12 we can see that the distance
between diverging branches is maximized if the two branches leaving each state are
assigned subsets belonging to the same level-1 subset, @ (0) or @ (1). In other words,
the level-2 subsets @ (00) and Q (10) (belonging to @ (0)) should be paired, and the
level-2 subsets Q (01) and Q (11) (belonging to Q (1)) should be paired. To ensure
that the distance between remerging branches will also be maximized, the same
level-2 subset pair (either {Q (00), @ (10)} or {Q (01), O (11)} should be used to
label the diverging branches of both states in each trellis ““butterfly,” and the level-2
subset pair should be assigned in such a way that the two remerging branches of
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boﬁ[h Sua[es in the butterfly are labeled by the same pair (see Figure 18.13). Finally,
to ensure that all signal points are used equally ofien, subset 0 (0) {pair

{ ”m} £ (10)}) shouid be assigned to half the states {one auuerﬂy)ﬂ and subset
o ( pau {Q 0D, Q (1D} to the other half {the other butterfly). Because each of
Lhc evel-1¢g E:s ets (Q (0 urﬁ { (1)) contains 2k =4 signal points, and their MSSD

1 =2.01s g e for a subset of four poinis, this guarantees that ihe

MSE distan es l eaving and entering the same state is maximized,
thus saus’nqu ;ule CM system design. The {inal labeling of branches
for this example 16 hown in Figure 18.13, where the trellis represents a 4-state, rate

R = 1/1,&, feedior waid Mcode

The following remarks relate io Example 18.6:

o The assignment of signal points from only one level-1 subset (@ (0) or Q (1)) to

afll the b ram‘hes leaving and entering each state implies that the code bit v(®,
ich determines the subset chosen at level 1, must be the same for each set
of branches leaving or entering a particular state. This places some restrictions
on the codes that vield good TCM designs.

a7l
W

o In general, half of the 2"~% butterflies in the code irellis are assigned to subset
0 (0) and the other half to subset @ (1). This ensures that all signal points are
used with equal probability.

o 1t SQEW possible, in the manuer described here, to ensure that the diverging
and remerg ﬂg branch distance equals A2, thus guaranteeing that Bf o = 7&2

except i the special case v = k. In this case, the trellis is fully connected
and contains only a single butierfly, thus implying that either the diverging or

24 trellis section of any (n. k. v) encoder can be decomposed into a set of o=k

fully connected
subtrellises containing 7/‘ states each. These subtrellises. called burrerflies. connect a subset of 2/‘ states
at one time to a (in general. different) subset of 2 2k states at the next time. For example, in Figure 18.13.

the pair (7/ = 2} of states Sy and $» connect to the state pair Sy and §;. forming one of the 2" =k — 2
butterflies. and the other butterfly is formed by the state pair §| and 53 connecting to the state pair 5
and S3.
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remerging distance must equal only A%. Hence, 2-state trellises (v = 1) with
rate R = 1/2 codes (k = 1) do not yield good TCM desigas.

If a rate R = 2/3 code is used in the preceding example, then k = k = v,
and the trellis is fully connected. This implies that 52,,6 . 18 at most equal to
A% + A% = 2.586, no matter which code is selected. Thus, for 4-state 8-PSK
TCM schemes with n = 2 bits/symbol, rate R = 2/3 codes are suboptimal

compared with rate R = 1/2 codes with one uncoded bit.

In the partitioning of 8-PSK, the two subsets at level 1 are equivalent to
QPSK signal sets, and the four subsets at ievel 2 are equivaleni to BPSK signal
sets. This isometry between subsets at the same level of the partition tree is
characteristic of all PSK signal set partitionings.

For the 8-PSK partition shown in Figure 18.12, mapping by set partitioning
results in the natural mapping rule discussed in Section 18.1. If the order of the
subsets at any level in the partitioning tree is changed, the resuiting mapping
is isomorphic to natural mapping.

Mapping by set partitioning always results in the distance relation A% < Azl <
o< A,Z which, along with the proper assignment of subsets to trellis branches,
guarantees that the two rules of good TCM system design are satisfied.

The separate tasks assigned to coded and uncoded bits by set partitioning,
namely, the selection of subset labels for the trellis branches and the selection
of a signal point from a subset, respectively, imply that the general TCM
encoder and mapper in Figure 18.11 can be redrawn as shown mn Figure 18.14.

Signal mapper

Select signal
from subset

o6 oo

- . V,(rk) —— Y
e Convolutional °
° encoder o Select
° hd (n subset
- Vi
— rate k/(k + 1) o
Vi

FIGURE 18.14: Set-partitioning TCM encoder diagram and signal mapper.
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If k = k, then there are no parallel transitions, and the subset labels on the
trellis become signal point labels.

EXAMPLE 18.7 Partitioning of 16-QAM

As asecond example of set partitioning, we consider the 16-QAM signal set, denoted
by S, shown in Figure 18.15. Leiting A% represeni the MSSD at level 0, we see that
the average signal energy is given by the expression

E, = (1/16) {4[(80/27 + (20/2 | + 8] B20/2 + (20/2?
+ 4] (380/27 + 30/27 |
= (1/16) [283 + 2083 + 1843 | = 583/2. (18.22)

Thus, A% = 2/5if the average energy £, = 1. Atlevell of the partitioning tree,
we obtain the subsets O (0) and @ (1), each isomorphic to an 8-AM/PM constellation,
and it is easy to see that A% = 2&%. Continuing down the partitioning tree, we obtain
four subsets at level 2, each isomorphic to 4-QAM. with A% = ZA%; eight subsets at
level 3, each isomorphic to 2-AM, with L\% = ZA%; and, finally, the 16 signal points
at level 4, each labeled according to the set-partitioning mapping rule.

The following observations relate to Example 18.7:
p

o The 16-QAM signal set can be considered a mulitidimensional version of
4-AM, thatis, 2 x 4-AM.

o Inthe 16-QAM case. the MSSD doubles at each level of the partitioning tree;
that is, L\,.z = ZA?_lq i =1,2.--- k. This is characieristic of most partitionings
of rectangular-type signal constellations used in praciice.

o 16-QAM is a (translated) subset of the two-dimensional integer lattice Z2, and
the subsets at cach level of the partitioning are isomorphic.

o It is not always possible to partition signal sets based on a lattice in such a way
that all subsets at a given partition level are isomorphic. In this case, although
the subsets are no longer distance invariant, they all still have the same MSSD
AI.Z. An example of this situation: is shown in Section 18.4 for the 32-CROSS
consiellation.

o TCM systems based on 16-QAM modulation can employ code rates R of 3/4
or 2/3 with one uncoded bit, or 1/2 with two uncoded bats.

We now consider the last siep in the design process, that of code selection.
Assume that the code is generated by a raie R = k/(k + 1) systematic feedback
convolutional encoder with parity-check matrix

H(D) = [h(’?w)/hmwm YD) /RO (D) 1] . (18.23)
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FIGURE 18.16: Two systematic feedback convolutional encoder realizations.

labels in the set-partitioning tree will agree in the trailing g(e) positions.
This implies that they follow the same path through the tree for the first
q(e) levels, and thus A%(e) > Aém. Because this condition holds for all v,
2(e) — mi 2 2
A“(e) = miny Aj(e) > Aq(e). Q.E.D.
Using the set-partitioning lemma, we can now write

] P
2 . 2 {
min (1827}

s > Ao
T = a(D) D) 4 D)
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following comments apply to the set-partitioning lemma.

L £
T the o - 2
For the case e = §, we take A“(e) = o= =0.
Inequality (18.26) is sausﬁ >d with Pquahw for most . For example, the only

,,Acepuon for
are AZ2(1001

5 A(101) > Aoﬁ and the only ex cepuom for 16-QAM
]1@1) > AL and AZ(1111) > A,

. . - oo
iwmuim value of 5ﬁ.peﬂ

r ¢ for which

[ vect

the MI'SE distance
not require compu-
bls can be especially
esigned based on a lattice

Sets of optimum TCM code designs based on the foregoing search procedure

e
are listed in Tables 18.6(a)-(d). The codes were found by computer search [4]. Each

table gives the followir

0

O

information:

P N

e MSEDs A7, 1 =01, [k

The encodesr constraint length v.

The number of coded information bits k.

The parity-check coefficients /) = [/’zf,")q hf;’_)y o ’11” /1(’ ] F=0.1,- .k,
A

int octal form.

The MFSE disiance d2 free . An asterisk (%) indicates that d/:{ occurs only along
> 82 In Tables 18.6(a) and (b), the ratio

o s 52
parallel transitions: that is, 67, i

the MISSD at level 0, assuming the average energy £, = 1, is
given, (m hese cases, L\a varies with the signal constellation cousidered, but
ihe rafio ¢ /“ /AO is constant.)

o0

The asymptotic coding gain in decibels compared with an uncoded modulation
system with the same spectral efficiency. The notation denotes the two signal

constellations being compared; for example, vacr/160am denoies the coding
gain of a coded 32-CROSS constellation compared with uncoded 16-QAM.
The number of information bits k transmitted per coded symbol. which equals
the speciral efficiency » in bits/symbol, is also given. In Tables 18.6(a) and
(b), coding gains are given for several different spectral efficiencies based on
constellaiions chosen from the same lattice. The notation yc,y denotes the
coding gain of a coded lattice of infinite size compared with the uncoded lattice.

The rage number of nearest neighbors Ag, . In Tables 18.6(a) and (b),
A(//.’W is given only for the infinite spectral efficiency case, that is, k — co.
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TABLE 18.6: List of optimum TCM codes.

o~y ~ . P ; 1
(a) Codes for one-dimensionai AM based on 7Z*

2 Pl = A2 2 2
(A2.0=i <2 = A} 44l 16A]

Y4-AM/2-AM Y§-~AM/4—-AM ycju Adfyee
vk O g A k=1 k=2 tk— 00y | th— oo}
2 1 2 S 9.0 2.55 331 3.52 4
2 1 2 5 9.0 2.55 3.31 3.52 4
3 1 04 13 10.0 3.01 3.77 3.97 4
4 1 04 23 110 342 4.18 4.39 8
5 L 10 45 130 4.15 491 5.11 12
6 1 024 103 14.0 4.47 523 5.44 3
7 1 126 235 16.0 5.05 5.81 6.02 66
8 1 362 515 16.0" — 5.81 6.02 2
1 362 515 17.0 5.30 — —
(b) Codes for two-dimensional AM/PM based on 7>
[A2.0 </ =3} = A5.287.40% 347
Y16~ QAM/8—PSK | Y32—-CR/16—QAM | Y64—QAM/32-CR | YC/U /\z(/,u,
TARIREE RN T dfzm/Aﬁ k=3 k=4 k=5 th = o0} | tk — 00)
201 — 2| 5] 407 436 3.0l 2.80 3.01 4
3l2| o4 02f 11| 50 533 3.98 377 3.98 16
412| 16| 04| 23| 60 6.12 4.77 4.56 477 56
si2| 10| 06| 41| 60 6.12 477 4.56 4.77 16
6121 064| 016] 01| 70 6.79 5.44 5.23 5.44 56
702) 042| 014| 203 80 7.37 6.02 5.81 6.02 344
82| 304] 056| 400 80 7.37 6.02 5.81 6.02 44
9|2|0510}0346 | 1001 | 8.0° 7.37 6.02 5.81 6.02 4
(¢) Codes for 8-PSK
{A7.0 i <2} = dsin?(/8). 2.4
~ . R V8- PSK/4—PSK
v k ni2 w'h Rt dﬁw /A7 k=2 e
2 1 — 2 5 4.000* 3.01 1
3 2 04 02 1 4.586 3.60 2
4 2 16 04 23 51072 4.13 ~2.3
5 2 34 16 45 5758 4.59 4
6 2 066 030 103 6.343 5.01 ~5.3
7 2 122 054 277 6.586 5.7 ~0.5
8 2 130 072 435 7515 5.5 =15
(d) Codes for 16-PSK
87,02 = 3] = 4sin’ /160, dsin? /80, 2. 4
S ] 0 5 7 YVi6—PSK/8—PSK
i 2 (h (] 2 -
v k h'>) h h dﬁw /8% k=3 A,[ﬁw
2 ! — 2 5 1.324 3.54 4
3 1 — 04 13 1476 4.01 4
4 1 — 04 23 1.628 4.44 8
5 1 — 10 45 1.910 5.13 8
6 l — 024 103 2.000° 533 2
7 1 — 024 203 2.000* 533 2
8 2 374 176 427 2.085 551 ~8.0

Adapted from [4].
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The codes listed for one-dimensional AM are based on the one-dimensional
integer lattice Z!, and the codes lisied for iwo-dimensional AM/PM are based on
the two-dimensional integer lattice Z?, where these lattices are infinite extensions
of the one- and two-dimensional signal constellations shown in Figures 18.1(a)
and 18.1(b). In these cases the same codes yield the same maximum d]%Aee/A%
independent of the size of the signal consieilaiion chosen from the lattice, although
the minimum number of nearesi neighbors can vary owing to the effect of the
signal constellation boundaries. In Tables 18.6(a) and (b), to negate the effect of
constellation boundaries, we list only the average muliiplicities Ay, assuming a
signal constellation of infinite size. Because set partitioning of an infinite lattice
results in a regular mapping, the values of Ag,  in Tables 18.6(a) and (b) are
all integers. In Table 18.6(a), we see that for codes based on Z!, the asymptotic
coding gain y increases with the spectral efficiency k; that is, the largest coding
gains are achicved in the limit as & — co. Also, two optimum 256-state codes are
listed. The first code, whose a"}% .. Occurs along parallel transitions, is optimum when
the number of information bits k£ > 2: that is, when the trellis contains parallel
transitions. The second code, which achieves a larger d/;z-,_ee, is optimum only when
k = 1, that is, when the trellis does not contain parallel transitions. In Table 18.6(b)
we note the relatively large asymptotic coding gains of coded 16-QAM compared
with uncoded 8-PSK. This difference is due 1o the restriction that PSK signals must
all have the same energy. The coding gains of 16-OAM compared with uncoded
rectangular constellations are not as large, as shown in Problem 18.15. In contrast
with the lattice-based codes, in Tables 18.6(c) and {d) we see that different codes are
optimum for 8-PSK and 16-PSK consiellations, and that the nonregular mapping
can result in noninteger values of the average multiplicities Ay,

When a trellis contains parallel transitions, care must be taken in computing
the value of Ay, .. since each parallel branch may contribuie to a minimum-distance
path. For example, in Table 18.6(a), Ay, = 4 for the 4-state coded integer lattice

the 4-state code in Table 18.6(a}, we note that the error trellis for the coded lattice
7' is formed by replacing each branch with an (infinite) set of parallel transiiions.
In this case the trellis branches labeled e = (00) will now contain the set of paraliel
transitions representing all error vectors e = (---e®e@00), the trellis branches
labeled e = (10) will now contain the set of parallel {ransitions representing all
error vectors e = (---¢®¢?10), and so on. The MSE distance 9A3 is achieved by
a path that diverges from state Sy along the branch labeled e = (10) to state S (a
squared distance of 4A(2) ), continues to state S along the branch labeled e = (01)
(a squared distance of A%), and remeryges with state Sy along the branch labeled
e = (10) (a squared distance of 4/_\%). MNow, note that for a given parallel transition
on the branch labeled e = (00) leaving state S, say e = (---e@e®000), there are
two parallel transitions, e = (---e@e®110) and e = (--- @3 010). with squared
distance «’mg on the diverging branch labeled e = (10). The same situation holds
when the minimum-weight path remerges with state Sy along the branch labeled
e = (10). For the middle branch on the minimum-weight path, there is only one
parallel transition. e = (---e®¢001), with squared distance A3 along the branch
labeled e = (01). Because there are four possible combinations of minimum-weight
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paths, in this case, Ay, = 4. Another example of computing Ay, for a trellis
with parallel transitions is given in Problem 18.16. Finally, we recall that when Ay,
of the coded system exceeds A,,;, of the uncoded system, the real coding gain at
practical BERs of around 10> is somewhat reduced compared with the asymptotic
coding gain y.

1t is interesting to note that many of the optimum codes listed in Table 18.6
contain one or more uncoded bits. This is because, particularly for short constraint

lengths, the parallel transition distance 8;7 " = A% 1 is already larger than the

free distance 52 ., between trellis paths, and thus using a higher rate code cannot
improve the overall free distance df2 . For longer constraint lengths, however, the
free distance 8;1 .. Detween trellis paths increases, and then more coded bits, that

is, a larger k, must be used to increase the parallel transition distance 62, and

min
consequently the overall free distance d2 freer

18.3 TCM PERFORMANCE ANALYSIS

The average weight enumerating function (AWEF) A, (X) and the average input
output weight enumerating function (AIOWEF) A,,(W, X) of a TCM system can be
computed by labeling the branches of the binary error trellis with their corresponding
AEWESs, augmented by the input weight enumerators when computing A, (W, X),
and then forming the modified state diagram and using the transfer function approach
developed in Chapter 11. Once A,,(X) and A,, (W, X) have been evaluated, the
event-error probability P(E) and the bit-error probability P,(E) can be estimated
using the union bounding techniques developed in Chapter 12. For an unquantized-
output AWGN channel whose inputs are drawn from the TCM signal set, this
process gives the expressions

P(E) = f(d} B, /4No)An(X)| (18.28a)

e Ex/4Ny
and

Py(E) = (1/K) (o, By JANDI Ay (W, X) /3| . (18.28D)

X=e™ /0 W]
where f(x) = ¢* Q(+/2x), and d]%, .. is computed under the assumption of a unit aver-
age energy signal set. The reader should note the similarity between the expressions
in (18.28) and those derived for binary convolutional codes in Chapter 12. In fact,
they are identical except that the WEFs are replaced by average WEFs, and the
Hamming distance, dy fi.. in Chapter 12 is replaced by d free/ 4 Where d]:t is SE
distance, in the precedmo expressions. This reflects the fact that, for unit energy
binary signals, dz oo = 41 jree, as noted in (18.8).

The bounds in (18.28) are valid for any TCM system without parallel transitions,
that is, the case for which each error event represents a path through the trellis at
least two branches in length. In the case of parallel transitions, that is, one-branch
error events, the bounds are modified as follows:

P(E) < f(5;

min

E\/4NO)A£{U(X)‘X

o Es/4N

(85, By [ANg) AL ( X)[ (18.292)

e Fs/4Ny
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]

WD
oY)

and

PI)(’") = (1/k) mmE /ANO)aAav )/aVV’ o= Es /4Ny =1

+ (1)) F (5] Es AN AL, (W5

e BNy oy
(18.29%)

where Al (X) and AL, (W. X) represent the AWEF and AICWEF for the parallel
ransition paths, and A/, (X) and Al (W, X) represent the AWEF and AIOWEF
or the trellis paihs, respectively. (It should be noted that AL, (X) and Al (W, X
are simply the AWEFs of the subsets at the last level, that is, level k + 1, in
he sct-partitioning tree.) The use of WEFs to evaluate the performance of TCM
systems was introduced by Zehavi and Wolf [24], and an algorithm for computing
the AWEF was presented in [25]. We now illustrate the application of the bounds
with two examples.

.
s
£
¢

e

EXAMPLE 18.8 4-State, Rate R = 1/2 Trellis-Coded 4-AM
We consider the 4-state. rate R = 1/2 binary feedforward encoder shown for code 2

in Figure 18.4(a) along with naturally mapped 4-AM. The binary error trellis of this
encoder was shown in Figure 18.4(b), and the AEWESs of naturally mapped 4-AM
were listed in Table 18.4(6). Tn Figure 18.17(a) we show the modified state diagram

labeled with the AEWEs. We now compuie the AWEF using the standard transfer

b \\./1
/
/ 3
N e \ o
S’(yf \@?}, > S \) SN S(,/\
=X a=Wwx-
[T Iy i
b= :XUA +?/13/7.2 h = W(§ H\ 3)(71)
C 7}57”\ c = M/‘;“x
J= %/‘(”N + %X 7.2 \/ux X7.2
e = j\/u,s h e = vll
f=x" f=wx"
g= X2 g =X
{a) Modified state diagram (b) Augmented modified state diagram

FIGURE 18.17: Modified state diagrams for naturally mapped,. 4-state, rate R = 1/2
treflis-coded 4-AM.
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function approach as follows:

~ N

XS. XU.8X3‘2(1 _ XOAS) + X3‘2(0.5X0'8 + 0.5X7’Z)2X3'2
(1 — x08)(1 — x08x0) _ (0.5X08 + 0.5%72)2x0
X72 —0.75x39 + 0.5x 44 4 0255208

T 1208 0.75X16 _ 05580 _ 0255144

=X7? +125x%0 +1.75x%8 + 2.0625x%0 + ... (18.30a)

Aav(X) =

Equation (18.30a) implies that for an arbitrary transmitted sequence y, there is an
average of 1 error path y with MFSE distance d]%,ee = d2(y,y) = 7.2, an average of
1.25 error paths y' with SE distance d%(y, y) = 8.0, an average of 1.75 error paths y’
with SE distance d% (y,y) = 8.8, and so on.

In Figure 18.17(b) we show the modified state diagram augmented by the input
weight enumerators. In this case, following the same procedure as before, we find
that the AIOWEF is given by

Agy(W. X) = WX"? +1.25W2x830 + 175w x88 4 2.0625W* X% + ... . (18.30b)

Here we see that the error paths at a distance of 7.2 from the correct path are
always associated with 1 information bit error, those at a distance of 8.0 are always
associated with 2 information bit errors, those at a distance of 8.8 with 3 information
bit errors, and so on.

Finally, the expressions of (18.30) can be used in (18.28) to evaluate P(E)
and P,(FE) as functions of the channel SNR E,/Ny. The bounds are sketched in
Figure 18.18 along with uncoded BPSK, which has the same spectral efficiency of
n = 1 bit/dimension.

The following observations relate to Example 18.8:

e The codeword multiplicities are averages because TCM systems are nonlinear,
and the number of codewords at a particular distance from the correct sequence
depends on the transmitted path.

e The codeword multiplicities are fractional because the signal constellation is
finite, and the mapping is nonregular. Thus, the multiplicity of 1.25 associated
with incorrect paths at distance 8.0 means that, depending on the correct path,
there may be either 1 or 2 incorrect paths at distance 8.0.

o If the same rate R = 1/2 code was used, along with an infinite number of
uncoded information bits, to code the one-dimensional integer lattice Z, the
average multiplicities would be integers, since a regular signal mapping can
then be achieved with set partitioning, as noted in the previous section. In this
case the average number of nearest neighbors is Ay, = 4, since the parallel
transition subsets in both the first and last branches of the shortest error event
contain exactly two signal points distance 3.2 away from any given reference
point (see Problem 18.15).
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Error Probability

16 _ 06 J J J ]“’ J

2 4 6 8 10 12
EJ/N, (dB)

FIGURE 18.18: Error probability bounds for naturally mapped, 4-state, rate R = 1/2
irellis-coded 4-AM.

o Because of the part iCU!EM structure of the encoder in this example, a determin-
isiic relationship exists between codeword distance fr O”H the correct path and
information weight: ﬂ iis, a@ = 6.4+ 0.8w;, where ; represents the SE dis-
tance from the correct path, and wy represents the corresponding information
weight. For example, all codewords distance 14.4 from the correct path have
information weight 10.

o I'rom the bound on £,(E) plotted in Figure 18.18, we see that the real coding
gain at a BER of 1075 of this TCM system compared with uncoded BPSK
is approximately 2.1 dB. This coding gain is achieved without bandwidth
CXpansion.

EX’\MP,F 3.9 A-5%5 u@, Rafm P = 1/2 Trellis-Coc },(*? -PSIK

Now, consider the 4-state, rate R = 1/2 binary feedback encoder shown for code 2 in
Figure 18.9(a) along with one uncoded information bit and naturally mapped 8-PSK
modulation. The binary error trellis of this encoder was shown in Figure 18.9(b),
where there was a parallel transition connecting each pair of states, and the AEWEs
of naturally mapped 8-PSK modulation were listed in Table 18.5. In Figure 18.19(a)
we show the modified state diagram, in which each branch is labeled with the sum
of the AEWES for the corresponding paraltel transition branch labels in the binary
ireilis. We can now compu‘[e the AWEF for the trellis paths A (X) using the
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SlJ S()
a=2x° a=(W+ WwWHx?
b= xOS6  yidld b= %(W+ W2 (X150 4 x4
¢ = X(),SN(} + X_‘»,JM ¢ = X().586+ WX3.4H
4= x 0586 4 x4 d= %(W + Wz)(Xn.ixﬁ 4 XA
o= YOS Lyl o= Y US80 4yt
f=1+x* f=1+wx*
g=2X2 g=(W+ W)X’
(a) Modified state diagram (b) Augmented modified state diagram

FIGURE 18.19: Modified siate diagrams for naturally mapped, 4-state, rate R = 1/2
trellis-coded 8-PSK.

standard transfer function approach as follows:

ZXZ(XO‘S% + X3.414)2X2(1 . X0.586 _ X3.414) +
ZXZ(XO'586 +X3'414)22X2
[XO.SS() + X3A414]2[X0 + X4]
B 4x4.586 _}_4Xﬁ7414
1 —2x0586 _ 7x3414 _ x4586 _ x7.414

A;lv(X) =

— 4X4.586 + 8X5.172 + 16X5‘758 + 32X6.344 4o (18313)

Equation (18.31a) implies that for an arbitrary transmitted sequence y, there is
an average of 4 error paths y with a MFSE distance between trellis paths of
8]%@ = d%(y.y) = 4.586, an average of 8 error paths y with free SE distance
d% (y,¥) = 5.172, and so on. Because this TCM system includes paralle! transitions,
we must also compute the parallel transition AWEF Af,(X). From the 8-PSK

set-partitioning tree, we see that there are only two signal points in each parallel
transition, and that

AL(X) = x*0. (18.31b)

Equation (18.31b) implies that the MSE distance between parallel transitions is
8,,2”[” = 4.0, and hence the MFSE distance of the TCM system is

A} o = min {8, 82,,] =40, (18.31c)

as noted earlier in Example 18.4.
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In Figure 18.19(b) we show the modified state diagram augmented by the input
weight enumerators. In this case, following the same procedure as above, we find
that the AIOWETF is given by (see Problem 18.17)

Al (W, 2

av

B
S’
I

(v o 72\ 44586 o w2\’ se {17 o o2
(w+w?) x5 4 (WJ. W) +o._,5(WJ. w?)

= (W2 2w 4 W) x4 4 (w2 2wd 125w+ W

\

~

F 15w+ w4 0.25@/8); X2 (18.31d

Here we see that the error paths at a distance of 4.586 {rom the correct path
associated with 2, 3, or 4 information bit errors, those at a disiance of 5.172 ar
associated with between 2 and 8 information bit evvors, and so on. In addition, the
coefficients of the W terms denote the relative likelihood that a certain number of
information bit errors will correspond to error paths of a given weight. For example,
the terms 1.25W4 X172 and 0.25W8 %517 indicate that error paths at a distance of
5.172 from the correct path are five times more likely tc have 4 information bit
errors than 8. Finally, the parallel transition AIOWEF is given by

jas]
[e)

e

)
4]

N

—

2 - o | p PR
AP, Xy = wx0, (18.31e;

)
J

which indicates that all parallel transition error evenis are associated with one
information bit error.

0.001

Error Probability

0.0001

le—05 —

J \ |

8§

EJN, (dB)

le—06

i
£
N

FIGURE 18.20: Error probability bounds for naturally mapped, 4-state, rate B = 1/2
trellis-coded 8-PSK.
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Now, we can use the expressions of (18.31) in (18.29) to evaluate P(F)
and P,(E) as functions of the channel SNR F./Ny. The bounds are sketched in
Figure 18.20 along with uncoded QPSK, which has the same spectral efficiency of
n = 2 bits/symbol.

The following remarks apply to Example 18.9:

o The WEFs for each possible parallel transition, that is, for each subset at level
2 of the partition tree, are identical, because the four BPSK subsets at level 2
are isomorphic. In general, however, this may not be the case, and AP(X) is
computed by taking the average of the WEFs of each subset at level k+1in
the set-partitioning tree.

o The MESE distance path is a parallel transition. This implies that at high
SNRs, AL, (X) and AL, (W, X) are the dominant terms in the error probability
bounds, thus allowing approximate bounds on P(F) and P,(E) to be obtained
very simply.

o The possible codeword weights represented in (18.31a) and (18.31b) are

separated by the value Alznm = 0.586, the MSE distance between signal points.

This is characteristic of any TCM system; that is, codeword weights increase

by multiples of Afnm.

o I'rom the bound on P, (E) plotted in Figure 18.20, we see that the real coding
gain at a BER of 107> of this TCM system compared with uncoded QPSK
is approximately 2.6 dB. This coding gain is achieved without bandwidth

expansion.

As a final comment before leaving this section, we note that whereas the
asymptotic coding gain of a TCM system can be obtained by computing d]%,ee, as
shown in Section 18.1, the real coding gain at a particular BER must be obtained
either from computer simulations or estimated from bounds such as the ones
presented in this section.

18.4 ROTATIONALLY INVARIANT TCM

The typical signal set used in a coded modulation system has several phase symme-
tries; that is, phase rotations by certain angles replicate the signal set. For example,
8-PSK has eight phase symmetries, spaced 45° apart, and any QAM constellation
has four phase symmetries spaced by 90°. In general, when a receiver locks onto a
particular phase, a trial-and-error procedure must be initiated to determine whether
it is in the correct phase. If a particular system is prone to frequent loss of car-
rier synchronization, reacquiring sync can be a time-consuming exercise. Thus, it
is desirable in many applications that a coded modulation system be invariant to
phase rotations. In other words, if the receiver locks onto the wrong phase, the
system should still be able to operate properly. Hence, in case of temporary loss of
synchronization, the receiver must lock onto only one of the possible symmetries
and need not initiate a procedure to reacquire the correct phase.

The basic requirement for a coded maodunlation system to be invariant to
a particular phase rotation is that when the symbols of each code sequence are
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eplaced by the corresponding symbols in the rotated signal set, it is still 2 valid code
sequence. In other words, in the absence of noise, the decoder wonld still decode
a proper code sequence, albeit an incorrect code sequence; however, differential
encoding of the information sequence and differential decoding of the decoder
output sequence can be employed to ensure that the correct sequence is decoded.
Thus, a rotationally invariant code combined with differential mcodipg/decodhﬁ
can be used to provide reliable communication even when the receiver is locked
onto the wrong phase, although a2 small penalty in BER performance is incurred
because isolated single-bit errors at the decoder output are doubled by differential
decoding. (Note that if a code is not rotationally invariant, rotated code sequences
are, in general, not code sequences, and this property may be used to detect an
out-of-phase lock condition.)

To illustrate the idea of rotatios 'mﬂy invariant codes, we start with the simple
case of a binary code with BPSK modulation in which the encoder output bits are
represented as 0 — ~1 and 1 — 4 1 The only phase symmetry of the signal set
is caused by a 180° rotation. which has the effect of mve‘::mg the sign of every
modulation symbol: that is, -1 — #1 and -1 — —1. Thus, every codeword is
replaced by its complement. For any linear code, the complpmem of a codeword
1s a codeword if and only if the all-one seguence is a codeword. Thus, the simple
condition for 180° rotational invariance for any linear binary code with BPSK
modulation is that the all-one sequence is a codeword.

We now consider the case of OPSK modulation and 90° phase symmetries,
beginning with an example.

o

EXAMPLE 18.170 Rate F = 1/2 Coded

Consider a rate B = 1/2 convolutional code with generator matrix
G(D) = [MOMM h‘“(@)] (18.322)
and parity-check matrix

H(D) = ﬁ;ﬁ“(@) 0% D). (18.32b)

whose two encoder output bits ave Gray mapped inio QPSK, as shown in
Figure 18.3(a). In this case the parity-check equation (PCE) is given by

V(DYHT (D) = v V(D)D) & v O (D’ (D)y = 0(D). (18.33)

where V(D) = [v(“(D)N 70 (D) represents a codeword. Now, note that after a 90°
rotation of the signal set, the rotated code sequences become

v(D)y=v"(D) and vOD) =+V(D)a® LD), (18.34)

where 1(D) represenis the all-one sequence. Using the rotated code sequences in
(18.33) we cbtain

Vo (DYH (D) = v'U(D)yh (D) & v (D)@ (D)
; (18.35)
=0 DDy & [vV(D) 0 1(D) | nO (D),
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which must equal §(D) for all ¥V,.(D) = [vﬁl) (D), v,(.o) (D)] for the code to be invariant
io 90° rotations. From (18.33) we see that for any information sequence wu(D),
V(D) = [vD(D), vO(D)] = [w(Dh® (D), w(DYLV(D)] is a valid code sequence.
Substituting this V(D) into (18.35) we have

V,(DYH! (D) = u(D) {[W(D)]Q ® [W(m]z} e hODUD).  (18.36)

Examining (18.36) closely we see that the first term equals u(D) times a nonzero
binary polynomial of degree at most 2v, where v is the constraint length. Considering
1(D) to extend infinitely in both directions, we see that we can write the second teiin
as hO(D)YL(D) = h@ (1)(D), which equals either 8(D) or 1(D) depending on whether
the Hamming weight of h® (D) is even or odd, respectively. For example, code 1 in
Example 182 has k' (D) = 1 + D? and bV (D) = 1 + D + D?, and (18.36) becomes

V,(DYH (D) = D*u(D) ® 6(D) = D*u(D). (18.37)

Clearly, (18.37) is not equal to §(D) for any nonzero w(D), and thus the coded
modulation system is not invariant to 90° rotations.

In the case of a 180° phase rotation, we can see directly from Figure 18.3(a)
that both rotated code sequences are complements of their respective correct code
sequences. This situation is exactly analogous to the BPSK case, and thus rate
R = 1/2 convolutional codes with Gray-mapped QPSK are invariant to 180° phase
rotations if and only if the all-one sequence 1(D) is a codeword.

Now, consider the same example with natural mapping. In this case the 90°
rotated code sequences become

yU(D) =vV (D)@ v D) and vW(D)=v"D) o 1(D). (18.38)

Again, substituting in (18.33) and using V(D) = [u(D)hO(D), w(D)hV (D)), we
obtain

2 )
V. (DYHT (D) = u(D) {[h(”(D)] } & h'Y(D)L(D). (18.39)

which for code 1 in Example 18.2 becomes

2
vV, (D)H' (D) = (1 +D+ D2> w(D) @ 0(D) = (1 + Dy D4) w(D).  (18.40)

As in the case of Gray-mapped QPSK, we see that for naturally mapped QPSK
(18.40) does not equal §(D) for any nonzero w(D), and thus the coded modulation
system is not invariant to 90° rotations.

Fora 1800 phase rotatinn o coa fe

- (D <
rolaiiocn, we see iy e 18.32(b) that s (n = \J(])/n\ @

O Fig‘dlu 1O\ 0 uiat v, o/ (L)
1(D) and vf.m(D) = v\ (D): that is, v,(.”(D’) is the complement of the correct
sequence, and v,(.o)(D) equals the correct sequence. In this case, V.(DYHT (D) =
v (DR (D) @ v (DO (D) = WY(D)L(D). Thus rate R = 1/2 convolutional
codes with naturally mapped QPSK are invariant to 180° phase rotations if and only
if k'Y (D) has even weight.
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The folicwing remarks relate to Ezample 18.10:

=]

o Rotational invariance is a properiy of the code, not the encoder, so the resulis
of Ezample 18.10 also hold f ¥ ’1 e equivalent systematic feedback encoder
with F(D) = [n“’(ﬂ )/11 (D ]

ri at time 0, then terms of the form I 1<O)(u)_V(F)
< v) preamble before reaching their steady-siate
wou.lc affect rotational invariance only in the first
makes sense (o ignore this fransient condiiion by
r“s nfinitely in both directions (see Problem 18.19).

would ha

miw of 'f(b

2

i be generalized to show ihat any rate R = k/(k 4+ 1)

con: fohu'@'m [ coa a linear binary PCE V(D)YH (D) = v¥) (DY (DY @
-@W“)(D)M”{D @& v (D)Y@ (D) = 0(D) that maps into a two-dimensional

1,

et with 90° phase symmetries can at best be invariant to 180° phase

(6]

i1 be seen nexf, binary rate R = k/(k+1) convolutional codes can achieve
90° rotational invariance only by making use of a nonlinear PC

vow nonlinear PCEs can achieve a greater degree of rotational invari-
an ‘m,eaj PCEs, we consider the special case of a raie R = 1/2 convolutional
paturally mapped QPSK modulation. As noted in Exampie 18.10, linear
Hs are not capable of achieving 90° rotational invariance in this case. Before
ronlinear PCE, we write the two encoded sequences in integer {orm as

w0
o
\"D
*3

(D) = v 0Dy + 2vV(D). (18.41)

(D) are elements in the ring of integers Zy. (Throughout
section, we will use the symbol + to denote addition in a ring
wegem and d!«e 5 ﬁ nbol @ to denote addltmn modulo-2, i.e., bgrmzry adﬁmOﬁ)

v,.(D) =v(D)+ (D) (mod4). (18.42)

Similarly, we can write the two parity-check polynomials in integer form as

v<
]

h(D) = hY(D) + 200 (D). (18.43)
Now, consider the PCE given by
[(h(D)v(D) (mod H]' = &(D), (18.44)

where the notat on [ez (E)] means that from the binary representation of every
clement oy = 2oy, e ,U € Zyq i (D) the most significant bit oz]m is chosen; that is,
[e(DH] = a; : (T e p tion represented as [a(D)]! in (18.44) causes this PCE to
be both binary and nounlinear.} For the PCE represented by (18.44) to be invariant
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to 90° rotations, it must still be satisfied when v, (D) is substituted for v(D), which
requires that

h(D)v(D) = h(D)v,(D) = (D) [v(D) +1(D)] (mod 4)
= h(D)v(D) + h(D)L(D) (mod 4) (18.45)
=h(D)v(D) + h(1)(D) (mod 4).

Because h(1)(D) is a constant sequence with k(1) € Z4, (18.45) is satisfied if and
only if

h(1) (mod4) =hV(1) 4+ 2h® (1) (mod 4) = 0. (18.46)
Note, for example, that if h™ (D) has two delay terms, h¥ (D) must have an odd

number of delay terms to satisfy (18.46) (see Problem 18.20).
We can rewrite the PCE of (18.44) as

[h(D)¥(D) (mod 4)]' = [hm(D)v(O)(D) + 200 D)y (D)

+ 200 (D)v* (D) + 46 (D)W (D) (mod 4>]1
- {h(l)(D)v(O)(D) ) [h(”(D)V(D(D)

n h<°>(D)w<0‘>(D)} (mod 4)}1
— O(D), (18.47)

where we have simplified (18.47) by noting that the term 4h© (D)v)(D)(mod 4) =
0(D). Following the restrictions of Figure 18.16(b) for good TCM code design leads
us to search for codes with parity-check polynomiais

KOy =0 0" 4 B D2+ hVD (18.48a)

and
WDy =p" + 1 D 4 nP D 0D 11 (18.48b)

that satisfy (18.46). thus guaranteeing 90° rotational invariance. We must then
substitute these polynomials into (18.47) to specify the binary nonlinear PCE.

We now consider an example in which we choose hD (D) to have only two
delay terms and proceed to derive a general binary nonlinear PCE that guarantees
90° rotational invariance for rate R = 1/2 codes with naturally mapped QPSK.

EXAMPLE 18.11 Rotationally Invariant Rate R = 1/2 Codes for Naturally
Mapped QPSK

Consider the choice
WDy = Db + D, (18.49)
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/hew v > b >a > 0. Note that in this case, since h'P (1) = 2 (mod 4), h (Q)(’D) must
ve an odd number of nonzero terms to satisfy (18.46). Mow, substituting (18.49)
intg {18.47) we obtain the PCE

-
!

%(.DMD%W(ORD\, 4—2[(3”4 POy (D) +h@ (o 0’(&;] (m@cM«);i — O(D).

(18.50)

To exnprass (18.50) using binary {mod-2) arithmetic, we note that we can write the
rnod-4 sum of any two binary sequences m (D) and n(D) a

(D) - a(D) (mod 4) = m(D) @ a(D) + Zm( D) » m( D). {18.51}

where m(D) o m() represents the logical AND of the sequences m(D) and n(D).
Using (18.51) repeatedly in (18.50) and recalling that 4m(D) (mod 4) = 0(D) for

—’—1

any binary sequence m(D), we obtain the binary PCE
DY@ oy (D) + 2 [D/’w“”@) o v Dy @ (D" @ DYV (DY
i

ﬂ’ﬂ(o)(D)V(O)LD}} %1
= D" 0Dy o DV (DY@ (D" @& DYV V(D) @ i (D) (DY = 0(D), (1852)

where (18.52) has been simplified by using the fact that the term (D? @ D)y O(D)
%ias no effect on the most significant bits of the sequence in braces. Equation {18.52)
represents a binary nonlinear PCE that guarantees 90° 1om110 1wl invariance for
rate R = 1/2 codes with h' (D) defined by (18.49) and any h® (D) with an odd
number of nonzero terms, where the nonlinearity is represenied by Ehe logical
AND operation. (In Problem 18.21 it is shown that the preceding nonlinear PCE i
satisfied when the rotated binary sequences given in {18. %o) for natural mapp ng
substituted into {18.52), and k(D) is assumed to have an odd number of ﬂoL,u,ze
ierms.)

The addition of the nonlinear term D"v(O(D) o DUv (D) makes (18.52)
different from a linear PCE for a vate R = 1/2 code. Given this difference, it is not
“lear if (18.52) will, in general, result in an encoder realization with only 2V states.
Considering the specific example

ﬂ)

H(D) = [(D2 + DY/ +D+1) 1] : (18.53)

we show in Figure 18.21(a) an 8-state encoder realization in which the nonlinear
term D2y O (D) o DvO (D) can be obtained directly from the feedback shift register
that forms v (D): that is, no additional states are needed in this case, (The
separate 2-state differential encoder for the information sequence is also shown in
Figure 18.21(a).) This nonlinear encoder results in a 90° rotationally invariant code,
since 9 (D) = D3 + D + 1 has an odd number of delay terms, and thus the rotated
code sequences satisfy (18.52) (see Problem 18.22).
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u(D) —D@ r i - v(D)
I
(@)

u(D) @ v“)(D)
1
r ‘—¥><+é—> W + vO(D)
(b)

FIGURE 18.21: Realization of a rotationally invariant, 8-state, rate R = 1/2 QPSK
encoder (a) with separate differential encoding and (b) with embedded differential
encoding.

The following comments apply to Example 18.11:

o The nonlinear PCE represented by (18.52) can always be realized using
v = max[v, 2(b — a)] delay elements [26]. In this example, v/ = v = 3 (see
Problem 18.23 for an example that includes the case v < 2(b — a)).

o More classes of rotationally invariant codes can be found by dropping the
condition of (18.49) and merely requiring that (18.46) be satisfied; however,
in this more general case, it is not as casy to determine the conditions under
which additional states are not required in the encoder realization.

o Natural mapping is assumed and (18.44) is used as the PCE because these
choices result in simple conditions on the parity-check polynomiais to guar-
antee rotational invariance and because if h'") (D) is chosen as in (18.49), the
PCE contains only one nonlinear term. Additional classes of 90° rotationally
invariant codes can be found if other mappings are assumed or different
PCEs are used, but the code specification and realization is, in general, more
complex.

Fora given v, alarge family of 90° rotationally invariant raie R = 1/Z nonlinear
codes for naturally mapped QPSK are defined by (18.52). A computer search can be
used to select the parameters a and b and the coefficients of h® (D) that satisfy the

conditions of (18.46) and (18.49). maximize dfz-m. and minimize Ag,,. (The search
technique cannot use the method of Euclidean weights to find d]%,ee in this case,

since the code is nonlinear: that is, all pairs of trellis paths must be compared.) A
list of the best 90° rotationally invariant rate R = 1/2 nonlinear codes {or naturally
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bﬂi/sy mbol d;ml =4, Ay = 1 (BPSK)

0° Imvariar 360° Invaria y |
v | k| hY . Ag .. A, | (@B
311 06 3] 10 0.5 12 2 12 1 3.98
411 06 23 12 0.5 12 1 14 2 4.77
511 20 451 14 1.0 16 2 16 i 5.44
61| 050 105 16 1.875 | 26 11 — — 6.02
711 116 217 | 16 0.25 20 2 20 i 6.02
81 220 427 i8 0312 | 24 11 24 2 6.53
91110120 1017 20 0.75 24 2 24 1 6.99

Adapted from [26].

mapped QFSK found for constraint lengihs up ic v =9 is pemﬁmd in Table 18
The parity-check coefficients b)) = i W, hf;’_ln e “ny). ]70' } ,j = 0.1, are given

j Qo Tj &
o

inoctalform, asin Ta b
rotationally invariani r
with the asymptotic m@
invariance are the optimumn

mapping. The value of di—w

The mFC of d/:f L 2nd AZ/, for the best 180° and 360°
/2 inear codes are also listed {or comparison, along
n y of the best nmﬂmeaz code. (The codes for 360°
e distance codes found in Table 12.1 used with Gray

wen in Table 18,6 1s iwice as large as the value of dy.,

XJ

L4, = U9

given in Table 12.1 because the 1 K signals have been normalized to unit energy.
The missing entry for v = 6 means that the best 360° invariant code is identical
to the best 180° invariant r‘ume) The value ©

fy 1 computed with reference o an
uncoded sysiem (BPSK. i efficiency i = 1 bit/symbol that has
MSE distance ri;m = 4 and number of nearest neighbors Ay, = 1. Mote that, in
general, %‘M best nonlinear ¢ i
codes, so thers is some penalty (o be paid in asymptotic coding gain to achieve full
rotational invariance. On the other hand, the values of Ay, ave larger {or the linear
codes, which lessens the suboptimality of the nonlinear codes at moderate BERSs.
(The values of Ay, are, in general, fractional in the non]inear case, since not all

) .
codes have smaller values of df,_m, than the best linear

codewords have a nearest neighbor at distance dfzr .-} For example, the best 8-state,
99° invariant nonlinear code (the code in Example 18.11) has y = 3.98 dB, which is
0.79 4B less than the best 8-state, 180 invariant linear code: however, the nonlinear
code has only one-fourih the number of nearest neighbors of the linear code. In
Figure 18.22 we ploi the simulated BER performance of these two codes. Note that
the suboptimality of the nonlinear code is only about 0.3 dB at a BER of 1075.
Using the nonlinear 90° roiationally invariant codes described in this section
guaraniees that rotated code sequences are still valid paths through the trellis. For the
coding system to operate properly (i.e., with only a smallloss in decoded BER), even
if the receiver has losi synchronization and locked onto the wrong phase, differential
encoding and decoding must be employed. Thus, the input sequence w(D) must pass
through the one time unit delay circuit 1/(D + 1) (shown in Figure 18.21(a)) prior
to convolutional encoding, and the decoded sequence @(D) must be processed by
the inverse circuit (D + 1) after decoding. For some rotaticnally invariant codes, it is
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tr | T | T ]

Linear, 180° S—
Nonlinear, 90° =====
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0.001
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le—05 |-
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FIGURE 18.22: Performance curves for two 8-state, rate R = 1/2 QPSK codes.

possible to embed the differential encoding within the convolutional encoder, thus
eliminating the need for separate differential encoding and decoding circuits. For
the 90° rotationally invariant code of Example 18.11, an encoder realization that
includes embedded differential encoding is shown in Figure 18.21(b).

Any QAM signal constellation has exactly the same four rotational symietries
as the QPSK signal set. Thus, the same approach used for rate R = 1/2 coded QPSK
can be used to construct 90° rotationally invariant codes for rate R = k/(k + 1)
coded 2¢Flary QAM constellations, as long as the two least significant label bits
are assigned using natural mapping. In this case only the first information sequence
viD(D) and the parity sequence v(%(D) are affected by a rotation, so the check
polynomials &* (D), --- ., h® (D) corresponding to the other coded information
sequences v'2' (D). -, v (D) can be chosen to maximize d/z-“,(, and minimize A,
without regard to the invariance constraints. Using the same conditions as in
Example 18.11, we can write a general binary nonlinear PCE for rate R = k/(k + 1)
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coded UAM v ormation biis as

th « /\ coded inf

P e - o rP D (D) @ (2" © DY (D) k(D) (D)
= p"v D) o DY (. (18.54)

Again, following the restrictions of Figure 18.16(b) for good TCM code design, we
Dy, .-+ WM (D) be denoted by

let the check polynomials h
WDy = ot ) ph e Dt DY (18.55)
!

where v > b; > ¢; > 0for 2 < j < k. Further, letting

Bl=max (bp.-o- by, b)Y, a' =max{a;, - a.a). (18.56)
we can realize the soﬂmeew PCE represented by (18.54) using v/ = max(v. b
—a+b —ahd ; 61

nally Invariant Rate R Eza,m] Codes for Naturally
h Two Coded Bits (k = 2)

@

onsider the following parity-check matrix for a rate R = 2/3 convolutional code:

DY =[D/D +D+1) (D*+ D)y +D+1) 1]

o~
Lt
jee]
[

7)

=
I
—
:;3
]
j=h
I
[\
I
o
o]
I
s
[%2]
o
S
i
\
2
ml
-

io pi ovi
16-QAM
shown in

8 state eqcoder wahzauoﬁ of arate R = 3//'
ealization (without differential encoding) is

CM sysiera. T h mrod ¥
igure 18.23.
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ﬁT o AF 2 ~ S
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FIGURE 18.25: E
amodern

ealization of a rotationally invariant, 8-state. rate R = 3/4 16-QAM
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TABLE 18.8: Rotationally invariant rate R = k/(k + 1) QAM codes.

0 = k bits/symbol, a2, =2, Apin = 4(Z%)

80° Invariance | 180° Imvariance | 36G° Invariance | p
I 2 1 ) 2 2 2

v k| h® w® WO a2 a4 Adpe | 4 e Ady,, | (dB)
3127 02) 06 13 5 16 5 16 — — 3.98
412 04 12| 23| 5 8 6 56 — — 3.98
5020 02] 14| 45| 6 16 6 8 — — 477
612020014 1103| 7 80 7 44 7 40 5.44
7121100060205 7 16 8 204 8 172 5.44
| 812110012101417| 8 60 8 28 — — 6.02
Adapted from [26].

Because (18.54) defines a large family of 90° rotationally invariant rate R =
k/(k + 1) nonlinear codes for naturally mapped QAM signal constellations, a
computer search can be used to select the parameters a and b and the coefficients
of KD (D) and h® (D), - - , h® (D) that satisfy the conditions of (18.46) and (18.49),
maximize d%, <> and minimize Agy,,.- Alist of the best 90° rotationally invariant rate
R = k/(k + 1) nonlinear codes for naturally mapped QAM found for constraint
lengths up to v = 8 i1s presented in Table 18.8, where the uncoded reference
system is the (scaled) infinite two-dimensional integer lattice Z> with d2. =2and
Amin = 4. The values of dfzree and Ay, for the best 180° and 360° rotationally
invariant rate R = k/(k + 1) linear codes are also listed for comparison, along
with the asymptotic coding gain y of the best nonlinear code. In all cases the
best nonlinear codes found had only two coded bits, that is, k = 2, and the same
codes resulted in the same maximum d]?,_ee independent of the size of the signal
constellation chosen from the lattice, that is, independent of the number of uncoded
bits and the spectral efficiency 5 = & bits/symbol. Because boundary effects cause
the (in general, fractional) values of Ay, to differ depending on & and the size
of the signal constellation, only the (integer) values of Ay, corresponding to an
infinite-size constellation are listed in the table. Note that the best nonlinear codes
have smaller values of d%m than the best linear codes in only two cases, namely,
v =4 and v = 7, and that in the other cases the only penalty to be paid for
full rotational invariance is a somewhat larger value of Ay, . In fact, the best
8-state 90° invariant nonlinear code (the code in Example 18.12) has exactly the
same parameters as the best 8-state 180° invariant linear code. In Figure 18.24
we plot the simulated BER performance of these two codes with one uncoded
bit and 16-OAM, where we see that the 90° invariant nonlinear code is actually
slightly better than the 180° invariant linear code (owing to the effect of higher-
order terms in the distance spectrum of the two codes). Finally, we note that for
larger values of v, more than k = 2 coded bits will be needed to achieve the

: 2
maximuim dﬁee.
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§.24: Performance curves for two 8-state, rate R = 3/4 16-0AM codes.

We now sketch the development of 45° rotationally iavariant rate R = 2/3
codes for naturally mapped 8-PSK modulation by following the same approach used
for the 90° invariant rate R = 1/2 QPSK case. We begin by considering the PCE

[R(D)v(D) (mod 8)]> = 0(D), (18.58)

where (D) = h®(D) + 20D (D) + 4bD (D). w(D) = vO(D) + 2vV (D) + 4v@ (D),
addition is performed in the ring of integers Zg, and the notation [«(D)]* means
that from the binary representation of every element oy = A-oz,m + 20(](1) -+ oz,(o) € Zsg
in ee( D) the most significant bit C{Zm is chosen; that is, [u:z(D)]2 = O{](2>. For the PCE
represented by (18.58) to be invariant to 45° rotations, we require that

k(1) (med8) =h® 1) + 20V 1) + 40P 1) (mod 8) =0, (18.59)
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so that, for example, if h® (D) has two nonzero terms, and h") (D) has one nonzero
term, h® (D) must have an odd number of nonzero terms to satisfy (18.59) (see
Problem 18.24). Now, choosing

h®(D) = D¢ + DY, (18.60a)
h® (D) = D¢, (18.60b)

and
WD) =" +h % b 4 0D 1 h D 41, (18.60c)

where v > ¢ > b > a > 0, and substituting (18.60a) and (18.60b) into (18.58) we
obtain the rate R = 2/3 binary nonlinear PCE

(D" ® Db) v@(Dye D vV (D)@ F(D) WO D)W (D) =0(D),  (18.61a)
where

(D) = DYV (DY o [D”\y(l)(D) & v (D) @ D VO (D) 0 D/’\V(O)(D)]
& D' (D) o [ v (D) © DV (D) 0 D' (D)

® DvO(D) o D'vV (D) o DO (D). (18.61b)

Note that in this case, since h® (1) = 2 (mod 8), and hV'(1) = 1 (mod 8), k¥ (D)
must have an odd number of nonzero terms to satisfy (18.59). Equation (18.61)
represents a binary nonlinear PCE that guarantees 45° rotational invariance for
rate R = 2/3 codes with h® (D) and h'"’(D) defined by (18.60a) and (18.60b),
respectively, and any h@ (D) with an odd number of nonzero terms, where f(D)
represents the nonlinear portion of the PCE. (In Problems 18.25 and 18.26 it is
shown that the preceding nonlinear PCE is satisfied when the 45° rotated binary
code sequences for naturally mapped 8-PSK are substituted into (18.61), and h©® (D)
is assumed to have an odd number of nonzero terms.)

As in the case of the rate R = 1/2 binary nonlinear PCE used to guarantee 90°
rotational invariance for QAM constellations, certain conditions must be satisfied
by the rate R = 2/3 binary nonlinear PCE of {18.61) for the encoder to be realized
with only v delay elements [26]. Let hfo) be the lowest-order nonzero coefficient in
k@ (D), that is,

WOy ="+ +hVD +1, (18.62)

where 1 < ¢ < v — 1. Then, the following four conditions are required to realize
(18.61) with v delay elements:

Ht=>=c—>b, (i)b=2a, ({ii)c=<3a, (@(v)v>2c—a. (18.63)

EXAMPLE 18.13 Rotationally Invariant Rate R = 2/3 Codes for Naturaily
Mapped 8-PSK with Two Coded Bits (k = 2)

Consider the following parity-check matrix for a rate R = 2/3 convolutional code:

HD)=[{(D*+D*/(D*+D+1) D/D*+D+1) 1], (18.64)
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(D) with an odd number of nonzero terms, {18.60) defines
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of {18.62) and (18.63), maxiraize 0‘/ vor ANC minimize Ay, . A list of the best 450
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FIGURE 18.25: Realization of a rotationally invariant, 16-state, rate R = 2/3 8-PSK
encoder.
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TABLE 18.9: Rotationally invariant rate R == 2/3 8-PSK codes.
i = 2 biis/symbol, d2,, =2, Apin = 2 (QPSK)

45° Invariance | 180° Invariance | 36¢° Invariance | y ﬂ

v | k| h® p® p® dﬁee Ady dﬁw Adp, d}m Ay, | (dB)
311 — | 06| 13140 1.0 4586 2.0 — — 1301
42| 14| 02| 23]4586| 1.0 |5172] 4.0 5172| 225 | 3.60
5020 14| 02| 434586 | 025 |5172] 025 |5757| 20 3.60
612|060 |004|127 (5172 | 0469 |6.343| 3.25 — — 1413
712|014 100212355172 0012 6343 0125 [6586| 0.5 4.13
8121201004 1721157571 0016 [7515) 3375 |7.515) 15 4.59

Adapted from [26].

nonlinear code. For v = 3, the best nonlinear code has £ = 1 and one uncoded
bit, but for all v > 4, the best nonlinear code has k = 2 and no uncoded bits. The
nonlinear codes have smaller values of a’%r .. than the best linear codes, indicating
that a penalty must be paid for full 45° rotational invariance; however, the nonlinear
codes generally have smaller values of Al than the best linear codes. For example.
the best 16-state 45° invariant nonlinear code (the code in Example 18.13) loses
0.52 dB in asymptotic coding gain compared with the best 16-state 180° invariant
linear code. In Figure 18.26 we plot the simulated BER performance of these two
codes with naturally mapped 8-PSK modulation, and we see that the 45° invariant
nonlinear code is only about 0.15 dB worse than the 360° invariant linear code at
a BER of 107> (owing mostly to the fact that the nonlinear code has a factor of 4
fewer nearest neighbors than the linear code).
The following comments apply to Example 18.13:

e A similar approach to that used for 8-PSK, but using modulo-16 arithmetic
over the ring of integers Zj4, can be used to find 22.5° roiationally invariant
codes for naturally mapped 16-PSK. In this case the best codes up to v = 7 use
the rate R = 1/2 invariant PCE with two uncoded bits, but for larger values
of v higher-rate PCEs are better [26]. As noted in Section 18.2, this is because
for short constraint Iengths, the parallel transition distance (8311‘11 = 2 in this
case) is already larger than the free distance 8%,80 between trellis paths, and

thus using a higher-rate PCE cannot improve the overall free distance d}%,,e "

o As in the QPSK case, additional classes of fully rotationally invariant codes
can be found for PSK and QAM constellations if alternative mappings are
assumed. different PCEs are used, or other restrictions are placed on the
parity-check polynomials, but the code specification and realization is, in
general, more complex.

We close this section with an example of the 8-state, rate R = 2/3, nonlinear,
90° invariant code designed by Wei [27, 28] and chosen for the V.32 and V.33 high-
speed modem standards. The V.32 standard uses 2 uncoded bits and a 32-CROSS
signal counstellation for a spectral efficiency of n = 4.0 bits/symbol. In the V.33
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FIGURE 18.26: Performance curves for {wo 16-state, rate 8 = 2/3 8-PSK codes.

standard, 4 uncoded bits and a 128-CROSS constellation are used to achieve i = 6.0
bits/symbol.

[ )

EXAMPLE 18.14 The V

(=g
)
]

2 90° Rotationally mmmam TCM Sys

&

A block diagram of the 8-state, rate & = 2/3, nonlinear, 90° invariant encoder and
the 32-CROSS constellatio ased ;r_ha:—, V.32 standard is shown in Figure 18.27.

{Mote that the 32-CROS55 ronmeﬂa tion is not naturally mapped, since 2 90° rotation
of a signal point does not alter the two least significant label bits in the same way
as naturally mapped CPSK.) The encoder has four input information bits, u'!,
u@ ' and ™. Bits 1@ = 0 and u™ = v® are uncoded and directly enter
Tfhe 3/. C MJ;\S signal mapper (modulator). Bits uD and ¢« are first differentially
encoded and then enter the S-state, rate R = 2/3 systematic feedback nonlinear
convolutional encoder, producing the three output bits v and v® (information
bits) and ¢!¥ (a p My bit). The five encoded bits v/, v™M, 1@ v and v then
enter the modulator and are mapped into one of the 32-CROSS signals according



1014 Chapter 18 Trellis-Coded Modulation

u® s
e v
u? S v

Differential 32-CROSS
0 encoder | signal mapper v
a’!) v ]

(O]
l—n> + + + + feocgim V' e
L

Nonlinear convolutional encoder

4 ] @ ]
00000 10010 {01000 11111
(] @ @ @ @ @
00111 11001 0111110101 00101 11000

© @ © =] <] ]
10000 01001 11110|00010 10011 01010

[ ® @ 24 ] o
01110 10111 00110|11010 01101 10100
? (] o Q (] @
11100 00001 10001 {01011 11101 00011

L] =] ] @
11011 01100 | 10110 00100

Signal constellation

FIGURE 18.27: The V.32 TCM system encoder and signal constellation.

to the mapping shown in Figure 18.27. Because one 32-CROSS signal is transmitted
for every four information bits entering the encoder, the spectral efficiency of the
code is n = 4.0 bits/symbol. (The V.33 standard uses the same code along with
four uncoded information bits and a 128-CROSS constellation to achieve a spectral
efficiency of n = 6.0 bits/symbol.) At the receiver, soft-decision Viterbi decoding,
using an 8-state treilis with 4-fold (16-fold in the V.33 case) parallel transitions, 1S
performed based on the noisy received symbols at the demodulator output. After
Viterbi decoding, the decoded output bits u™™ and u® are differentially decoded.
The 8-state, rate R = 2/3 nonlinear encoder used in the V.32 and V.33
standards was designed completely by hand. without benefit of a systematic code
search [27, 28]. Tt is invariant to 90° phase rotations of the 32-CROSS constellation
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FIGURE 18.28: Three-level partitioning of the naturally mapped 32-CROSE signal
com‘{eﬂaﬁon.
shown in Figure 18.27, has free distance dﬂge = 5 and average number of nearest
neiﬁhbors Ay, = 6. 716w and achieves a real coding gain of 3.6 dB at a BER

of 107 compared with uncoded 16-QAM (n = 4.0) and 64-QAM (3 = 6.0},
respectively, without bandwidth expansion. {The fractional value of Agy,, 18 due to
the nonlinearity of the code and the boundary effects of the constellation.)

An equivalent ecncoder, described in Example 18.12 and skeiched in
Figure 18.23, was designed using a systematic code search. When this encoder
15 used with the naturally mapped 32-CROSS constellation (see Figure 18.28), it
requires only one AND gate and one differentially encoded information bit, and
differential encoding can be embedded within the encoder. (Note, as mentioned in
Section 18.2, that level 3 in the partition tree is an example of a case in which not all
subsets at the same level are isomorphic.)

For two-dimensional signal constellations, since it is impossible to achieve 90°
invariance with linear codes (the best that can be done is 180° invariance), nonlinear
codes are needed for full rotational invariance. This was the crucial insight made by
Wei [28] in the design of the V.32 code.

MULTIDIMENSIONAL TCM

Up to this point in our discussion of TCM we have counsidered only the case in which
the (k + 1) convolutional encoder output biis at each time unit are mapped into one



