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For masking construction, we can use Hgg g4 (p) as the base matrix. This shortening
gives more flexibility for construciing codes wiih varicus lengibs and raies. For
example, suppose we choose EG(2, 27) for code construction using masking. If we
choose y = 10 and p = 80, the base matrix Hgg ¢4 (80) is then a 10 x 80 array of
128 x 128 permutation matrices. Masking this matrix with a 10 x 80 matrix Z with
column and row weights of 4 and 32, respectively, we obtain a 1280 x 10240 masked
matrix M. The masking matrix Z consists of eight circulants that are constructed
by using eight distinct primitive 10-tuples over GF(2) and cyclically shifting each of
them 10 times. The null space of M gives a (10240, 8961) LDPC code with rate 0.875
whose error performance is shown in Figure 17.32. At a BER of 1079, it performs
only 0.9 dB from the Shannon limit.

Masking is a very powerful techniques for constructing both regular and
irregular LDPC codes.

CONSTRUCTION OF QUASI-CYCLIC CODES BY CIRCULANT DECOMPOSITION

Consider a g x ¢ circulant G over GF(2) with column and row weights §. Because
column and row weights of a circulant are the same, for simplicity, we say that G
has weight 8. For 1 <t < §, let wi. wy, .-+, w, be a set of positive integers such
that 1 < wy, wp, -, wy <6, and wy + wy 4+ --- + w;, = 8. Then, we can decompose
G into ¢ ¢ x g circulants with weights wy, wa, -« , w;, respectively. Let g; be the
first column of G. We split g into # columns of the same length ¢, denoted by ggn,

2 .
gi‘); SR g(l”. such that the first wy 1-components of g are put in g(ih, the next wo

l-components of g; are put in g(f) .-+, and the last w, 1-components of g; are put in
gg” . For each new column gi'), we form a g x ¢ circulant G; by cyclically shifting gg')
downward ¢ times. This results in # ¢ x ¢ circulants, Gy, G, - - - , G,, with weights
wy. wy, -+, wy, respectively. These circulants are called the descendants of G. Such
a decomposition of G is called column decomposition of G. Column decomposition
of G resulfs in a ¢ x r¢g matrix,

H=[Gi1G; - G, (17.73)

which is a row of r ¢ X ¢ circulants. If w; = wy = -+ = w; = w, then H is a regular
matrix with constant column weight w and constant row weight rw. If t = § and
wy; = wy = --- = w(8) = 1, then each descendant circulant G; of & is a permutation
mairix, and H is a row of § permutation matrices. The parameter ¢ is called the
column splitting factor. Figure 17.33 shows a column decomposition of an 8 x 8
circulant of weight 3 into two descendants with weights 2 and 1, respectively.
Similarly, we can decompose G into descendants by splitting its first row into
multiple rows and cyclically shifting each new row to the right ¢ times. Let 1 <c¢ <
maxf{w; 11 <i <l Forl <i <r letw i, w;n -, w . be aset of nonnegative
integerssuch that0 < w; j, wi2. - ,wie < wj,and w; \+w;2+---+w; . = w;. Each
descendant G; in H of (17.73) can be decomposed into ¢ descendant circulants with
weights w; 1, wi 2, -+ . Wi, respectively. This is done by splitting the first row g; | of

G; into ¢ rows of the same length ¢, denoted by g, g%, - . g}, where g} contains

the first w; ) 1-components of g; |, ngﬁ contains the second w;» 1-components of

g 1. -, and gfcf contains the last w; . 1-components of g; ;. Cyclically shifting each
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(100001 10] [10000010] [00000100]
01000011 01000061 000600010
10100001 10100000 00000001
116010600 101010000 10000000
01101000 00101000 61000000
00110100 00010100 00100000
00011010 00061010 00010000
LOOOOIIO]A 00000101 [00001000]
FIGURE 17.3 column decomposition of a circulant of weight 2.
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new row g to the right ¢ times, we obtain ¢ circulants Gi LG Gy that are
descendants of ;. This de @mposmon is referted to as row decomposition. Row
decomposition of G; resulis in the following cq x g maﬁ‘m:
(1)
@iq
D; = i , (17.743
/(‘«((')
& |
which is a column of ¢ g x ¢ circulanis. We call I; the row decomposiiion of G; and
¢ the row splitting factor. In row splitting, we allow w;r = 0. If w;p = 0, G;k) is a

q x g zevo maltrix, regarded as a circufant.
If each circulant G; in H of (17.73) is replaced by its row decomposition D,
we obtain the following ¢ x t array of circulants:

G(l) Gél) (G;l)
] G@) G ... G?
D= DDy D | = A (17.75)
G(C') Gk(l) G;(C')
- 71 ~2 t

.

which is a cq % tg mairix. If each G;M has weight 1, then ID is an array of permutation
matrices. The null space of I gives a code of length n = rg that can be put in
quasi-cyclic form (see Section 5.12).

I G is a sparse matrix, D is also a sparse matrix with smaller density than
G. If no two rows (or two columns) in G have more than one l-component in
comimon, then no two rows (or two columns) in D have more than one 1-component
in common. In this case, the null space of ID gives a quasi-cyclic LDPC code whose
Tanner graph is free of cycles of length 4. If all the circulants in ID have the same
weight, then the code is a regular quasi-cyclic LDPC code.

As shown in Section 8.5 and Sections 17.4,17.5, and 17.7, sparse circulanis can
be constructed from the incidence vectors of lines in either a BEuclidean geometry or
a projective geometry. Furthermore, no two rows {or two columns) either from the
same or from two different circulants have more than one 1-component in commoa.
Consequenily, quasi-cyclic LDPC codes can be constructed by decomposing one or
a group of these geometry circulants {54, 55].
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The incidence vectors of all the lines in EG(m, 2°) not passing through the
origin can be partitioned into

K = (Z(m—l)s _ 1)/(2v -1

cyclic classes, @1, Q2, -+, Q. Each cyclic class Q; consists of 2™ — 1 incidence
vectors and can be obtained by cyclically shifting any vector in the class 2™ — 1
times. Hence, for each cyclic class Q;, we can form a (2™ — 1) x (2™ — 1) circulant
G, using any vector in Q; as the first row and then cyclically shifting it 2”° — 2 times.
The weight of G; is 2°. Consequently, we obtain a class of K circulants,

G ={Gy, Gy, -, Gk} (17.76)

In code construction, we can take a subset of k circulants with 1 < k < K, say
G1, Ga, - - -, Gg, from G and arrange them in a row,

H=[GiG; - Gyl.

We choose column and row splitting factors r and ¢, respectively, and decompose
cach circulant G; in H into a ¢ x ¢ array I; of descendants. Replacing each G; in H
by its array decomposition IJ;, we obtain a ¢ x ks array I of descendant circulants.
Disac(@2™ —1) x kr (2™ —1) matrix. The null space of D gives a quasi-cyclic LDPC
code € whose Tanner graph does not contain cycles of length 4 and hence the girth
of its Tanner graph is at least 6. If I has constant column and constant row weights,
then C is a regular LDPC code.

EXAMPLE 17.27

Consider the three-dimensional Euclidean geometry EG(3, 2%) over GF(23). This
geomelry consists of 511 nonorigin points and 4599 lines not passing through the
origin. The incidence vectors of the lines not passing through the origin form nine
cyclic classes. From these cyclic classes we can form a class of nine 511 x 511
circulants of weight 8,

g:{leGZv'“ ’G9}~

Suppose we take eight circulants from G and arrange them in a row to form the
matrix

H =[G G2 G3 G4 G5 Gg G7 Gsl.

We choose column and row splitting factors + = 2 and ¢ = 4, respectively, and
decompose each circulant G; into a 4 x 2 array IJ; of eight 511 x 511 permutation
matrices. Replacing each circulant G; in H by its array decomposition ID;, we obtain
a 4 x 16 array i of 511 x 511 permutation matrices. [} is a 2044 x 8176 matrix
with column weight 4 and row weight 16. The null space of I gives an (8176, 6135)
quasi-cyclic LDPC code with rate 0.75 and a minimum distance of at least 6. Its
error performance with SPA decoding is depicted in Figure 17.34. It has a beautiful
waterfall error performance all the way down to a BER of 10~ without error floor.
Ata BER of 10719 it performs 1.4 dB from the Shannon limit.
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FIGURE 17.34: Error performance of the (8176, 6135} guasi-cyclic code given in
Example 17.27.

Quasi-cyclic LDPC codes can also be constructed based oun the incidence
vectors of the lines in a projective geowmetry {17, 52, 55, 56]. Consider the m-
dimensional projective geometiy PG{m, Z%). There are two cases 10 be considered,

even and odd m. For even m., the ivvidrﬂnce vector of each line in PG(m.2%) is
primnitive, and the incidence vectors of ali ihe lines can be partitioned into

P

Ky o= (2" — 1)/(22*‘ -1

cyclic classes. Each class consists of (2" +DY — 1)/(2° — 1) incidence vectors that can
be blamed by cyclically shifting any vector in the class. For dl > 3, there are
VAL i)/(27‘ — 1) lines in PG(m. 2°) whose incidence vectors are ﬂot primitive,
and the incidence vectors of all the othez fines are primitive. The primitive incidence
vectors can be partitioned into

—_0S (7 (m—1)s 1)/{72\ _

cyclic classes. Therefore, quasi-cyclic LDPC codes can be constructed based on the
cyclic classes of incidence vectors of lines in a projective geometry.

EXAMPLE 1 7 28

Consider the three-dimensional projective geometry PG(3, 2%) over GF(2%). This
geometry consists of 585 points and 4745 lines. Each line consisis of 9 points. There
are 65 lines whose incidence veciors are not primitive, and the incidence vectors
of the other 4680 lines are primitive. The 4680 primiiive incidence vectors can be



partitioned into eight cyclic classes, with each class consisting of 585 vectors. Based on
these eight cyclic classes of incidence vectors, we can form eight 585 x 585 circulants,
G, Gy, -+, Gg. Each circulant G; has weight 9. Suppose we want to construct a
quasi-cyclic LDPC code of length 9360 with rate 0.875. First, we decompose each
circulant G; by column decomposition into three descendant circulants, G; (. G, 2.
and G; 3, with weights 4, 4, and 1, respectively. Removing the descendant with
weight 1, we obtain the 585 x 1170 matrix

D =616

£y

£
N

which consists of two 511 x 511 descendant circulants of G;. We decompose each
circulant of I); by row decomposition into two descendants, each having weight 2.
The result is the following 2 x 2 array of 511 x 511 circulants:

a1ty (1)
o= G od |
; .
Gl G
which is a 1170 x 1170 matrix with both column and row weight 4. We then form the
following 1170 x 9360 matrix:
D = [D] D7 D3 D} D§ Dy D7 Dg],

which has column and row weights 4 and 32, respectively. The null space of I gives
a (9360, 8192) quasi-cyclic LDPC code with rate 0.875. The error performance of
this code is shown in Figure 17.35. At a BER of 107, it performs 0.95 dB from the
Shannon limit.
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FIGURE 17.35: Error performance of the (9360, 8192) quasi-cyclic code given in
Fxampie 17.28.
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where cach submatrix H; is formed based on a parallel bundle P; of lines in
EG(m, p*). The column and row weighis of Hipg g4 are y and p®, respectively, The
null space over GF(2) of this binary matrix gives a Gallager LDPC code of length
n = p"™ and minimum distance of at least y + 1 for odd y and y + 2 for even y.
Clearly, for p = 2, we obtain the class of EG-Gallager LDPC codes given in the

previous sections.

EXAMPLE 17.29

Letm = 2,5 = 1, and p = 43. The two-dimensional Euclidean geometry EG(2,
43) consists of 1849 points and 1892 lines. The 1892 lines can be grouped into 44
parallel bundles, each consisting of 43 lines parallel to each other. Each line consists
of 43 points. Taking 4 and 6 parallel bundies, we can construct two EG-Gallager
LDPC codes that are (1849, 1680) and (1849, 1596) codes with rates 0.9086 and
0.8632, respectively. With y = 4 and 6, the lower bound y + 2 on the minimum
distance of an EG-Gallager code gives their minimum distances as at least 6 and
8. respectively. The bit-error performances of these two EG-Gallager LDPC codes
with SPA decoding are shown in Figure 17.36 (assuming BPSK signaling). Ata BER
of 107, the (1849, 1680) code achieves a 5.7-dB coding gain over the uncoded BPSK
system and is 1.5 dB from the Shannon limit for rate 0.9086, and the (1849, 1596)
code achieves a 6-dB coding gain over the uncoded BPSK system and is 2.1 dB from
the Shannon limit for rate 0.8632.

EXAMPLE 17.30

Suppose it is desired to construct a rate-1/2 LDPC code with length around 6400
based on geometry decomposition and masking. To satisfy the length constraint, we
must choose m, s, and p such that p™* ~ 6400. There are many possible choices
of m, s, and p for which p™ =~ 6400. One such choice is m = 2, s = 4, and
p = 3. With this choice, the geometry for decomposition is the three-dimensional
Euclidean geometry EG(2, 3*). This geometry consists of 6561 points and 6642 lines,
and each line consists of 81 points. The 6642 lines can be grouped into 82 parallel
bundles, with each parallel bundle consisting of 81 parallel lines. We decompose this
geometry based on a parallel bundle P(2. 1) of lines. Then, there are 81 connecting
parallel bundles of lines, Q1. Q2. --- ., Og, with respect to P(2, 1). The incidence
matrix &; of a connecting parallel bundle Q; is an 81 x 6561 matrix consisting of
eighty-one 81 x 81 permutation matrices. To achieve the desired rate 1/2 and length
equal or close to 6400, we set p = 80 and y = 40. With this choice of p and y,
we construct a base matrix Hgg ¢ 4(80) based on (17.72). Hgg.ca is a 3240 x 6480
matrix with column and row weights 40 and 80, respectively. It 1s a 40 x 80 array of
81 x 81 permutation matrices. Next, we need to construct a 40 x 80 masking matrix
Z. Suppose we choose the column and row weights of Z to be 3 and 6, respectively.
To construct Z, we choose two distinct primitive 40-tuples over GF(2). Cyclically
shifting these two distinct primitive 40-tuples, we form two 40 x 40 circulants G
and Go. Then, Z = [G(G;]. Because the weight of each circulant is 3, it is easy to
construct Gy and G, such that the Tanner graph of 7 is free of cycles of length 4.

Masking the base matrix Hpg ¢4 (80) with Z, we obtain a 3240 x 6480 masked matrix
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M = Z @ Hgg.64(80) with column and row weights 3 and 6, respectively. The null
space of M gives a (3, 6) regular (6480, 2240) LDPC code wiih rate 1/2. The error
performance of this code decoded with the SPA is shown in Figure 17.37. It has both
good bit- and block-error performances. At a BER of 1079, it performs 1.5 dB from

the Shannon limit.

Construction based on finite geometries over GF(p*) results in a very large
class of finite-geometry LDPC codes containing all the finite-geometry LDPC codes
constructed in the previous sections of this chapter as subclasses.

RANDOM LDPC CODES

In addition to being formed by the geometric construction presented in the previous
sections, LDPC codes also can be constructed by computer search in a pseudorandom
manner based on a set of guidelines satisfying the conditions given in Definition 17.1.
This construction results in an ensemble of random codes that have been proved to
contain good LDPC codes [10].

Suppose it is desired to construct an LDPC code of length » with rate k/n.
To construct a parity-check matrix for this desired code, we need to choose an
appropriate celumn weight y and an appropriate number J of rows. It is clear that
J must be at least equal to n — k, the number of parity-check symbols of the desired
code. In computer construction, J is usually chosen to be equal to n — k. For H to
have constant row weight p, the condition

yxn=px -k (17.81)

must hold. Otherwise, H cannot have constant row weight. In this case, we simply try
to keep all the row weights close to p. If n is divisible by n — k, it follows from (17.81)
that p 1s a multiple of y; that is, p = yn/(n — k). For this case, we can construct a
regular low-density parity-check matrix with column weight y and row weight p. If
n is not divisible by n — k, we divide ¥ x n by n — k and obtain

yxn=pn-—~k)+b, (17.82)

where p and b are the quotient and remainder, respectively, with 0 < b < n — k. The
expression of (17.82) can be rearranged as follows:

yxn={n—k—>bp-+blp+1). (17.83)

which suggests that we can construct a low-density parity-check matrix H with two
row weights, p and p + 1, respectively. For convenience, H is constructed in such
a way that its top » rows have weight p + 1, and its bottom #n — k — b rows have
weight p.

The construction of H is carried out step by step. At each step, one column
is added to a partially formed matrix. Each added column must satisfy certain
constraints. For 1 < i < n, at the ith step, a binary (n — k)-tuple of weight y is chosen
as a candidate column h; and is added to the partial parity-check matrix

Hi—l = [hlv h27 T hi—l] (1784)
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obtained at Lh (z - i)ﬁv stey
:f\E[ = i l

-check matrix .
the following
constrainis

1. Choose k; at random from the remaining bmcd/ {(n — ky-tuples that are not

being used in H; | and that were nol rejecied sarlier.

2. Check whether h; has more than one 1-component in convmon with any column
inH;_;. if not, go to step 3; otherwise. reject by and go back to step 1 to choose
anocther candidate column.

3. Addh; to H;_1 to form a tempo pariial parity-check mairix H;. Check the
row weights of Hl;. If all the tok rows of r'l have weights | s than or equal to
o+ 1, and all the botiomin —k — b1 ave weights less than or equal
to p, then permanently md y to H;_ ] 1,,- and go 1o siep 1 to continue
the construction process. if any of the top b rows of 1 has weight exceeding
o+ 1,01 any of the bot’{om n—k P Hi; has weight exce edmg 0, reject

Iy and go to step 1 to choose another candiaate column.

The step-by-step consiruction pi‘OPeSS cntinues until a parity-check matrix
H with n columns is formed. If b = 0, H is a regular matiix with row and column
weights o and y, respectively. If b £ 0, then I has two row weights, p + 1 and p.
For a given n, &, and y, it is possible that all the (n — k)-tuples are either used or
rejected before M is formed. To reduce this possibility, we need to choose 1, k, and
y such that the total number of binary (n — k)-tuples, ( /‘) is much larger than the
code length n, or we can relax the row weight conm‘alms in step 3 to allow multiple
row weights. This also reduces the probability that a chosen candidate colurmn that
satisfies the constraint in step 2 will be rejected in step 3. Of course, we can restart
the construction process by choosing another sequence of candidate columns.

if the row rank of Hl is exacﬂy n — k, the nuil space of H gives an (n, k) LDPC
code with rate exactly k/n. If the rank of I is less than » — k&, then the null space
gives an (n. kY LDPC code with &’ > k and rcate &'/n > k/n. We can readily show
that the rate R of the construcied code is lower bounded as follows:

R>1-—-~
o
The constraint at step 2 of column selection ensures that the Tanner graph of the
code does not contain any cycle of lengih 4. Therefore, the girth of the Tanner
graph is at least 6. The foregoing construction is efficient only for small y, usually 3
or 4. For large y, to check the constraints at sieps 2 and 3 can be computationally
expensive. Because at step 1 of the consiruction a column is chosen at random from
the remaining available binary (n — k)-tuples, the code constructed is not unique.
The construction gives an ensemble of random LDPC codes. With this construction
it is very hard to determine the minimum distance of the code constructed. For small
v, 3 or 4, the lower bound, v + 1, on the minimum distance can be very poor.

Suppose we want to construct a (504, 252) LDPC code with rate 1/2. We choose
y = 3. Because n = 504, and n — k = 252, n/(n — k) = 2, so we choose row weight
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p =2 x 3 = 6. The number of binary 252-tuples with weight 3 is

{252\ = 2635500
\3) T

which is much larger than the code length n = 252. Following the construction
procedure, we obtain a regular 252 x 504 parity-check matrix H with celumn and
row weights 3 and 6, respectively. The density of H is 6/504 = 0.012. Its row rank is
252, and hence its null space gives a (504, 252) LDPC code with rate 1/2. Because y
is 3, the minimum distance of the code is at least 4. The true minimum distance of
this code may be greater than 4. The bit-error performance of this code with SPA
decoding is shown in Figure 17.29. We see that this code performs very close to the
rate-1/2 (512, 256) EG-Gallager code given in Example 17.23.

Randoin construction results in a large ensemble of LDPC codes that contains
finite-geometry LDPC codes as a subclass. Clearly, there must exist random LDPC
codes that outperform finite-geometry LDPC codes in error performance, especially
long random codes. Computer-generated random LDPC codes, in general, do
not have the structural properties of the finite-geometry LDPC codes, such as
cyclic or guasi-cyclic structure. Consequently, encoding of a random LDPC code
in hardware is much more complex than encoding a finite-geometry LDPC code;
that is, its encoding cannot be implemented with linear shift regisiers. Because
computer-generated LDPC codes. in general. have relatively small column weight,
the number of check-sums orthogonal on a code bit that can be formed is small.
As a result, these codes perform poorly with one-step majority-logic decoding
or bit-flipping decoding. Furthermore, computer-generated random LDPC codes
with SPA decoding do not converge as fast as finite-geometry LDPC codes do.
For finite-geometry LDPC codes with SPA decoding, usually 5 iterations give a
performance only a fraction of a decibel from their performance with 100 iterations,
as demonstrated in Figure 17.11 for the (4095, 3367) cyclic EG-LDPC code. With
all these disadvantages. long random LDPC codes do perform very close to the
Shannon limit. For example, very long random LDPC codes (107 bits long) have
been constructed and shown to perform only a few thousandths of a decibel from
the Shannon limit [14].

IRREGULAR LDPC CODES

An irregular LDPC code is defined by a parity-check matrix H with multiple
column weights and multiple row weights. In terms of its Tanner graph, the variable
nodes (code-bit vertices) have multiple degrees. and the check nodes (check-sum
vertices) have multiple degrees. It has been shown that long random irregular codes
perform arbitrarily close to the Shannon limit |8, 12-14]. Irregular LDPC codes are
most commonly designed and constructed based on their Tanner graphs. One such
approach is to design these codes in terms of the degree distributions of the variable
and check nodes of their Tanner graphs [12, 13].

Consider the Tanner graph G of an irregular LDPC code with parity-check

m iv H] {ac 3 H o8 A tha cobiimng of B and tha chasl-
malrix H. The variable nedes in G correspond to the columns of H, and the check

nodes of G correspond to the rows of H. The degree of a node in § is defined as
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i ce redi . Let ny and Ry be the desired code length and rate,
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nodes using the desired code length n,; thatis, Ny = 1 x ng.
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than nz(1 — Ry), then we convert the excess degree-2 variable nodes to variable

D P R
noucy UL L

P o

next-higher degice, say, degiee 3 if it exists. The resuli is a modified
variable-node degree distribution p*(X). In a Tanner graph, the sum of check-node
degrees (equal to the total number of edges of the graph) is equal to the sum of
variable-node degrees. If we modify the variable-node degree distribution y(X), we
must change the check-node degree distribution p(X) accordingly to make the sum
of check-node degrees the same as the sum of variable-node degrees in the new
variabie-node degree distribution.

The next step in code construction is to construct a Tanner graph by connecting
the variable nodes and check nodes with edges under the constraints given by the
degree distributions. Because the selection of edges in the graph construction is not
unique, edges are selected randomly. During the edge selection process, effort must
be made to avoid having cycles among the degree-2 variable nodes and cycles of
length 4 in the code graph. As a result, computer search is needed. Once a code graph
is constructed, we form the corresponding parity-check matrix H. Then, the column
and row weight distributions of H are the same as the variable- and check-node
degree distributions. The null space of H gives an irregular code of the desired
length and rate. The described construction gives a random irregular LDPC code.

The masking technique presented in Section 17.11 can be used to simplify
the construction of irregular LDPC codes based on the degree distributions of
variable and check nodes of their Tanner graphs. For masking, the array Hrg ¢4(p)
of permutation matrices given by (17.72) is used as the base matrix. Suppose the
degree distributions y (X) and p(X) have been designed for a given code rate Ry and
length ng. Suppose geometry EG(m, p*) is used for constructing the base matrix.
We choose parameters y and p such that pp™ 1% is equal or close to the desired
code length n4, and (p — y)/y is equal or close to the desired rate R;. We construct
a y x p masking matrix Z = [z; ;] with column and row weight distributions ¢(X)
and d(X), respectively, identical to the degree distributions y(X) and p(X) of the
variable and check nodes, respectively, where d, < y and d. < p.

In constructing the masking matrix Z, we put columns with weight 2 in
the parity-check positions and make them cycle free among them. The cycle-free
condition can easily be achieved by using a set of weight-2 columns obtained by
downward shifting two consecutive 1’s from the top of Z until the second 1 reaches
the bottom of Z as shown:

1 0 0 0 0
11 0 0 0
01 1 0 0
7| 0 0 1 1 0 | other columns | (17.87)
6 66 6 ... 1
1 0000 - 1 |

Masking the base matrix Hgg g4 (0) given by (17.72) with Z, we obtain the
masked matrix
M=Z®HEec.calp)
wiih column and row weighi disiribuiions ¢(X) and d(X), respeciively. Consequenily,
the associated Tanner graph of M has variable- and check-node degree distributions
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y(X) and p(X), as designed.
code with the iswned d sree

gives an irregular LDPC
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ruct code graph, as is needed in

do not have to worr
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selection (or assignment) in th
computer generation of an irre

We now use two e
codes using the masking te

iction of irregular LDPC

1 length ny = 4000 and rate 0.82 is to
ugue, we find the asymptotically
iions for rate 0.82:

Suppose an irtegulay LDPC
be constructed. Using the deus;
optiraal variable- and check-node degree dis

¥ (X) = 0.4052X +0.39274" + 0.1466%° + 0.0555% .
p(X) = 0.3109%' + 0.6891 1.

The maximum variable- and check-node degrees are 8 and 20, respectively. Suppose
we choose the two-dimensi “1a}; E uehueap geometry EG(2,2%) over GF(2°) for
constructing ihe base maitrix H ca(p) given by (17.72). Using this geometry, we
can partition the incidencs matrix of a pmaﬂpﬂ bundle of fines into sixty-four 64 x 64
permuiation matrices. To achieve a code length close o the desired code length

4000, we choose p = 63, which is larger than the maximum check-node degree 20.

To achieve a raie close io the destred code raie 0.82, we choose y = 12, which is
greater than the maximum variable-node degree 8. For the choice of y = 12 and
o = 63, the rate of the code is at least (o —y)/p = (6’4 —12)/64 = 0.81, which is close
to the desired rate 0.82. The lengih of the code is 63 x 64 = 4032, which is close to
the desired code length. It follows from (17.72) ’d at the base matrix Heg ga(63)is a
768 x 4032 mairix, which is a 12 x 63 array of 64 x 64 permulation matrices. For the
desired code, the number of pariiy-check bits is 4000 x (1 —0.82) = 720; however, the
number of degree-2 variable nodes compuied using the first coefficient y, = 0.4052
of y(X) is nyg x yp = 4000 x 0.4052 = 1620, which is larger than 720, the number
of parity-check bits of the desired code. Therefore, we modify the variable-node
degree distribution p(X) by converting 903 variable nodes of degree 2 to degree 3.
The degree vedistribution resulis in a new variable-node degree distribution,

PH(X) = 0.1798X +0.6181%% + 0.1466X° + 0.0555% .

There is a small change in the coefficieni of each degree in the check-node degree
distribution p(X). Next, we need to construct a 12 x 63 masking matrix Z with
column and row weight distributions identical to the modified degree distributions
»*(X) and p*(X). Table 17.5 gives the desired column and row weight distributions
of the masking matrix Z. By computer search, we find the desired masking matrix Z.

Maskmo the 768 x 4032 base matiix Hgg ¢4 (63) with Z, we obtain the masked
matrix M = Z® Hgg. 6.4 (63). The nuli space of M gives a (4032, 3264) irregular code
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TABLE 17.5: Desired column and row weight distributions of the

masking matrix Z for Exampie 17.32.

Column weight distribution Row weight distribution
Column weight | No. of columns | Row weight | No. of rows
2 11 19 4
3 39 20 8
7 9
8 4
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FIGURE 17.38: Error performances of the three (4032, 3264) irregular LDPC codes

given in Examples 17.32 and 17.33.

Cy with rate 0.81. The error performance of this code with SPA decoding is shown
in Figure 17.38. At a BER of 107>, the code performs only 1 dB from the Shannon
limit; however, it has an error floor starting around a BER of 1079, Figure 17.38
also includes the error performance of a (4032, 3264) irregular code Cy constructed
based on the original asymptotically optimal degree distributions without degree
redistribution. We see that C| performs much better than C,. The error floor of C;

occurs above a BER of 107°.
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Y41 (X) = 0.4052X7% + 0.3927 X3 + 0.1466 X7 + C@f’ss*
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- 23
po1tX) = 03109 X2 1 0.6891 %%,
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Table 17.6. For iﬁ&o’l
given in Bx le 17.

the «

atrix My =

‘O’ f"’64) eguiar J_/JLMP\, cod C . The error performance of this code is aﬁs
shown in Figure 17.38. We see that C

+1 has much better error floor performance
:w‘.han cod fCI and f’v, given in Example 17.32. Actually, there is ne en‘m‘ floor down
i0a BER of 5 x 1077 however, there is a small performance degradation {less than
0.15 dB) above a Bbta of 1077,

Examples 17»32 and 17.32 show that pushnm the error ficor down by increasing
¢ degrees of variable nodes of the code graph, the error performance of the code
moves away {rom Ehe Shannon limit io the “-Jva‘ie -fall region.

TABLE 17.6: Column and row weight distributions of the masking

matrix for Example 17.33
Colmmn weight distribution Row welght distribnition

Column weight | MNo. of colummns | Row weight | Mo, of ro

3 25 23 4
4 25 24 8
8 9

8] 4
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EXAMPLE 17.34

The following optimal degree distributions of variable and check nodes of a Tanner
graph are designed for a rate-1/2 irregular LDPC code of infinite length [12]:

y(X) = 0.47707681X + 0.28057X% + 0.034996X> + 0.096329X*
+ 0.009088X° + 0.0013744x % + 0.100557x 4,
p(X) = 0.982081x7 + 0.0179186 X5,

Suppose we want to construct a rate-1/2 irregular LDPC code with length
around 10000 using masking based on these degree distributions. To construct
such a code, there are many geometries that can be used for constructing the
base matrix for masking. We choose the two-dimensional Euclidean geometry
EG(2.27) for constructing the base matrix Hgg ca(p) given by (17.72). Using
this geometry, we can partition the incidence matrix of a parallel bundle of
lines into one hundred twenty-eight 128 x 128 permuiation matrices. Suppose
we choose y =40 and p = 80, which are greater than the maximum variable-
and check-node degrees, 15 and 9, respectively. With the choice of y = 40 and
o = 80, 80 x 128 = 10240, which is close to the desired code length 10000,
and (p —y)/y = (80— 40)/80 = 0.5, which is the same as the desired rate 1/2.
It follows from (17.72) that the base matrix Hgg ¢4(80) is a 40 x 80 array of
128 x 128 permutation matrices. For masking. we need to construct a 40 x 80
masking matrix Z with desired column and row weight distributions given in
Table 17.7. This is done by computer search. Masking Hrs ¢4(80) with Z, we
obtain a 5120 x 10240 masked matrix M = Z ® Hgrc. ¢4(80). The null space of
M gives a (10240, 5102) irregular LDPC code C with rate 1/2. The error per-
formance of this code is shown in Figure 17.39. At a BER of 1079, it performs
1 dB from the Shannon limit.

TABLE 17.7: Column and row weight distributions of the masking
matrix for Example 17.34.

Column weight distribution Row weight distribution
Column weight | No. of columns | Row weight | No. of rows

2 38 8 39
3 22 9 1
4 3
5 8
7 1

15 8
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FIGURE 17.39: Error performances of the two (10240, 5120) irregular LDPC codes
given iin Example 17.34.

GRAPH-THEORETIC LDPC C(

Finite geom@ﬁt"f s form a branch of combinatorial mathematics. Besides finite
geometﬁes there are Ouhev sranches in combinatorial mathematics that can be used
for constructing U f es. These branches include graph theory, combinaioric

designs, and difference sets [3& 41, 57, 58]. In Section 83 we showed that codes
construcied based on perfect difference seis are one-step MLG decodable, and we

also showed in Section 17 5 that the codes constructed based on a special class of
perfect difference sets are LDPC codes whose Tanner graphs do not contain cycles
of length 4. Construction of LDPC codes based on random bipartite (or Tanner}

graphs was briefly d 1s<:ussed in the previous section of this chapier. Construction
based on random graphs results in an ensemble of LDPC codes. In this section we
present another graph-theoretic approach to the construction of LDPC codes [59].
The construction is based on selecting a set of paths of the same length in a given
graph that satisfies certain consirainis.

Let § = (V. £) be a connected graph with vertex set V = {vq, v2,--- , v,} and
edge set £ = {e1. ez, - .er}. We require that G not contain self-loops, and two
vertices in § are connected by at most one edge (i.e., no multiple edges between two
vertices). Some basic structural properties of a graph were discussed in Section 17.2.
Two paths in G are said to be disjoint if they do not have any vertex in common. Two
paths are said to be singularly crossing each other if they have one and only one
vertex in common; that is, they intersect (or cross each other) at one and only
one vertex. For 1 < y < g4, let P be a set of paths of length y — 1 in G, that safisfies
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the following constraint:
Any two paths in P are either disjoint or singularly crossing each other.

This constraint is called the disjoint-crossing (DC) constraint. Let n = |P| denote the
number of paths in P and ¢, denote be the number of vertices in G that are covered
by (or on) the paths in P. For simplicity, we call the vertices in G that are covered
by the paths in P the vertices in (or of) P. We form a ¢, x n matrix H = [A; ;]
whose rows correspond to the ¢, vertices in P and whose columns correspond to
the n paths in 7, where h; ; = 1 if and only if the ith vertex v; of P is on the jth
path in P; otherwise, /; ; = 0. This matrix is called the incidence matrix of P. The
columns of this matrix are called the incidence vectors of the paths in P with respect
to the vertices in P; the jth column simply displays the vertices on the jth path of P.
Because the length of each path in P is y — 1, there are y vertices on each pathin P.
Therefore, each column of H has weight y. The weight of the ith row of H is equal
to the number of paths in P that intersect at the ith vertex v; of P. It follows from
the DC constraint that no two columns (or two rows) of H can have more than one
1-component in common. If y is much smaller than the number ¢, of vertices in P,
H is a sparse matrix. Then, the null space C over GF(2) of H gives an LDPC code
of length » whose Tanner graph does not contain cycles of length 4. The minimum
distance of C is at least ¥ 4 1. If the rows of H have the same weight p (i.e., each
vertex of P is intersected by p paths in P), then C is a (y, p)-regular LDPC code.

The path set P can be constructed by using a trellis 7 of y — 1 sections with y
levels of nodes, labeled 0, 1, - -+, ¥ — 1. Each level of 7 consists of ¢ nodes that are
simply the ¢ vertices of G. For 0 < k < y — 1, a node v; at the kth level of 7 and a
node v; at the (k 4 1)th level of 7" are connected by a branch if and only if (v;, v;)
is an edge in G. This (y — 1)-section trellis 7 is called the path trellis of G of length
y — 1. A path of length y — 1 in G is a path in 7 starting from an initial node at the
Oth level of 7 and ending at a terminal node at the (y — 1)th level of 7 such that all
the nodes on the path are different. Figures 17.40(a) and 17.40(b) show a complete
graph (i.e., every two vertices are connected by an edge) with seven vertices and its
path trellis of length 2, respectively.

To find a set P of paths of length y — 1 in G that satisfies the DC constraint, an
extend-select-eliminate (ESE) algorithm {59] can be devised to parse the path trellis
T of G. Suppose we have parsed the trellis 7 up to the kth level of 7 with the ESE
algorithm, with0 <k <y — 1. For1 <i < ¢, let N;; denote the number of survivor
paths of length k terminating at the ith node of the kth level of 7 (i.e., the paths
that satisfies the DC constraint). Let P; ; denote this set of survivor paths. Now, we
extend all the paths in P; ; to the (k + 1)th level of T through the branches diverging
from node i. At node i of the (k + 1)th level of 7, we select a set P; ;1 of paths of
length k + 1 that satisfies the DC constraint and eliminate all the other paths that
terminate at node i. The result is a survivor path set P; ;1 at node i of level k + 1
of 7. This ESE process continues until the (y — 1)th level of 7 is reached. Then,
the union of the survivor sets, Py ,_1, Py, 1,---, P, ,_1, gives the path set 7. For
1 <i<gqgand0 <k <y, all the survivor paths in P, start from different initial
nodes at the Oth level of 7 and intersect only at node i of the kth level of 7. Two
survivor paths terminating at two different nodes at the kth level of 7 are either

hvie 34 LA ARE CRLICTOIRL N0 (588w

disjoint or cross each other only once at a node of an earlier level of 7. Selection of
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of paths of length 2 satisfying the DC constraint found by the ESE algorithm.

surviver paths {erminating at o ] ith level of 7 affects the selection of
survivor paths terminating at the other nodes of the same level of 7. To maintain
all the sets of survivor paths at each level of 7 at about the same size, we create
a priority list of the nodes at each level. The node with the smallest number of
selection at level k + 1 of 7, whereas the one with the largest number of survivor
paths terminating at it at level £ of 7 has the lowest priority for the survivor path
selection at level k +1 of 7.
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We see that the paths in 7 cover all seven vertices of the graph. The incidence
matrix for this set of paths 1s

11106000

1061 100

0101 010
M=|10000 1 1 (17.88)

0061100 1

00 1 01 1 0

001 0010 1

which has constant vow and column weighis. The null space of H gives a (3, 3)-
regular (7, 3) LDPC code with a minimum distance of 4 whose Tanner graph does
not contain cycles of length 4, but it does contain cycles of length 6. One such cycle
is depicted by the heavy lines shown in Figure 17.41.
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FIGURE 17.41: The Tanner graph of the (3, 3)-regular LDPC code generated by the
parity-check matrix given by (17.88).

The graph-theoretic construction of LDPC codes given here is very general
and can be applied to any connected graph G. Because the sclection of survivor
paths at a node of each level of the path trellis 7 of G is not unique, the path set
P obtained at the end of the ESE processing is not unique, and hence the code
constructed is not unique.

EXAMPLE 17.36

Suppose we start with a complete graph G with 400 vertices. We choose y = 6. The
path trellis 7 of G is a 5-section trellis with six levels of nodes, with each level of 7
consisting of 400 nodes. Each path of length 5in G is a path in 7. Applying the ESE
algorithm to process 7, we obtain a set P of 2738 paths of length 5 that satisfies the
DC constraint. The paths in P cover all 400 vertices of the graph. The incidence
matrix H of P is a 400 x 2738 matrix with column weight 6. The null space of H gives
a (2738, 2339) LDPC code with rate 0.8543 and a minimum distance of at leasi 7.
The bit- and block-error performances of this code with SPA decoding are shown in
Figure 17.42. At a BER of 1079, the code performs only 1.7 dB from the Shannon
limit. Note that the number of parity bits of the code is one less than the number of
vertices of the code construction graph.

For a connected graph G = (V, £) with a large number of vertices, especially
a complete graph, processing the path trellis of G of length y — 1 to construct a set
of paths of length y — 1 in G to satisty the DC constraint with the ESE algorithm
may become very complex. To overcome this complexity problem, we can take a
divide-and-conquer approach [59]. Consider a complete graph G with ¢ vertices.
Suppose we want to construct a set P of paths of length y — 1 in G that satisfies the
DC constraint. We first divide G into y blocks, G;, G1, -+ - . G, of equal (or nearly
equal) number of vertices. Each block §; is a complete subgraph of G, and any two
blocks are connected by edges. For each block G; we construct a set 77; of paths ot
length ¥ — 1 in G; that satisfies the DC constraint using the ESE algorithm. Clearly,
P1,P1, -+, P, are disjoint, and two paths from two different sets, P; and P;, do
not have any vertex in common. Next, we form a trellis 7¢ with y levels of vertices,
labeled 0,1, .-,y — 1. For 0 < i < y, the ith level of 7¢ consists of ¢;; nodes
that correspond to the g; 1 vertices in block G; (. For 0 <i < y — 1, the nodes
at the ith level of 7¢ are connected to the nodes at the (i + 1)th level of 7¢ by
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Consider the compipi’e graph G with 582 vertices. Let y = 6. We divide ¢ into
six blocks; each block is a complete graph with S Mfze- Usmo tne divide-and-

conquer ESE algorithm to process the path rwlho f length 5 for each block and the
connecting trellis for the blocks. we obtain a set P Of 10429 paths of length 5 that
satisfies the DC constraint and covers all 582 vertices of the graph. We fotm the
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incidence matrix H for P, which is a 582 x 10429 matrix. The null space of H gives
a (10429, 9852) LDPC code with rate 0.945 and a minimum distance of at least 7
whose Tanner graph does not contain cycles of length 4. The bit- and block-error
performances with SPA decoding are shown in Figure 17.43. At a BER of 10, the
code performs 1.05 dB from the Shannon limit.

We also can construct a path set P of length y — 1 in a connected graph G that
satisfies the DC constraint by choosing one path at a time through the (y —1)-section
path trellis 7 of G. We begin by choosing any path in 7 as the first path in P. We
delete all the branches on this path from 7. Then, we trace the modified path trellis
and choose the second path that either has no common vertex with the first path in
P or intersects with the first path in P at one and only one vertex (DC constraint).
Again, we delete the branches on the second path from the modified path trellis
and obtain a new modified path trellis. Then, we trace this new path trellis and
choose the third path that satisfies the DC constraint with the two paths in P. We
delete the branches on the third path from the path trellis and then start a new path
selection. We continue this process of path selection and removal of branches on
a selected path from the path trellis. Each time we select a path it must satisfy the
DC constraint with the paths already in P. When a node in the path trellis has no
incoming or outgeing branches, it is removed {rom the path trellis together with
all the branches still attached to it. We continue this process until no path in the
path trellis can be chosen without violating the DC constraint, or the path trellis

)

107 ! | | ]
[ 582 vertices, L = 5.(10429, 9852)| 1
107 - 6 subgraphs of 97 vertices each _
S ——  SPA bit 3
F T =——z—  SPA block E
o ==== Uncoded BPSK 1
107 3
> : - ]
= 10k Tl E
£ 8 S~ 3
) i Tl ]
5 107 = S o
3 T4
% [ ]
i 10-7 E -3
g ' ]
1070 3
107 3

10~ \ | | L |
1 2 5 6 7 8 9

FIGURE 17.43: Error performance of the (10429, 9852) LDPC code constructed based
on the complete graph of 582 vertices using the divide-and-conquer ESE algorithm.

EiNy (dB)
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1, where A]Zj ;=1 ME and 0@33/ if the ¢ Lh object xj isint
ise. T ms matrix H is called the incidence wmatriz of the
tsof M are y and o, respectively. Based on the
, (WO m\« 7s of H have ,xacﬂy A I-components in common. If
meets ah the conditions of a regular parity-check matiriz of an LDPC
code given: by Definition 17.1. Then, the null space of lHl gives a {y. p)-regular LDPC

code of length n whose Tanner graph is free of cycles of length 4.

o

Let X = n obiects. The {ollowing blocks:
4. %6} x4, x5, 307}

x3”‘i7p

form a BIBD for the set X. Every block cons lSi’S of y = 3 objects, each ubject
appears in p = 3 biorlfs and every two Obj s appear ‘Eoc, ether in exactly A = 1
block. 1is incidence mairix H is
10 0 0 1 0 17
1100606190
6116 06 01
H=|1 901106 060
6101100
6 6 1 01 1 0
060 1 0 1 1 |

The null space of H g' (7 5) LDPC code with a minimum ch stance of 4.
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Combinatoric design is a very old and rich subject in combinatorial mathe-
matics. Qver the years, many BIBDs have been consiructed with various methods.
Extensive coverage can be found in [41, 58]. There are many classes of BIBDs with
A = 1, which can be used for constructing LDPC codes whose Tanner graphs do not
contain cycles of length 4 {64, 65]. Construction of these classes of designs requires
much combinatorial mathematics and finite-group theory background and will not
be covered here; however, we do present one special class of BIBDs with parameter

= 1 constructed by Bose [63].

Let ¢ be a positive integer such that 20r + 1 = p™, where p is a prime; that is,
20t + 1 is a power of a prime. Suppose the field GF(p™) has a primitive element «
that satisfies the condition a* — 1 = «¢, where ¢ is a positive odd integer iess than
p". Then, there exists a BIBD for a set X of ¢ = 20r + 1 objects with n = 1 (207 + 1)
blocks, each block consists of y = 5 objects, each object appears in p = 5¢ blocks,
and every two objects appear together in exactly & = 1 block. Let the elements of
GF(p™),0,0° =1,a.0?, -, a?" % represent the 207 +1 = p" objects of the set X.
Then, the BIBD for X is completely specified by the following 1 base blocks:

B = {a2i. o{2i+4’, a2i+8’, a2i+12t‘ 0[21'4-161}‘ (17.89)

where 0 < i < r. All the n = (207 + 1) blocks of the BIBD are obtained by adding
each element of GF(p™) in turn to each of the ¢ base blocks. The incidence matrix H
of this BIBD is a (20r + 1) x (207 4 1) matrix with column and row weights 5 and 51,
respectively. The density of H is 5/(20t + 1), which is very small for r > 2. Because
A =1, it follows from Definition 17.1 that the null space of H gives an LDPC code
of length n = 1(20r + 1) whose Tanner graph is free of cycles of length 4. In fact, H
can be put in circulant form. For 0 <i < ¢, let v; be the incidence vector of the base
block B; which is a p"”'-tuple with 1’s at locations 2i, 2i 4+ 4r, 2i + 8¢, 2i + 12¢, and
2i +16r. Let G; be a (20r + 1) x (20r + 1) square circulant matrix obtain by shifting
v; downward cyclically 207 + 1 times (including the zero shift). All the columns {or
rows) of G; are different and are the incidence vectors of 20r + 1 different blocks.
Then, H can be put into the following circulant form:

H=[GyG - Gi_1]. (17.90)

With H in circulant form, the null space of Hi gives a quasi-cyclic BIBD-LDPC code
oflengthn = 1 (20r+1).For 1 < k < t, we canchoose k circulants, Gg, Gy, -+, Gy _1,
to form the following matrix:

H) =[Go G1 -+ Gy_i] (17.91)

with column and row weights 5 and 5k, respectively. Then, the null space of H(k)
gives a quasi-cyclic LDPC code of length n = k(20 + 1).

Suppose we decompose each circulant G; in (&) into five (207 1+ 1) % 20 +- 1)

OS50 calll Ly 1L Yo (Lus

circulant permutation matrices by row decomposition as presented in Section 15.12,

G,
Di=| Gy |. (17.92)

| ¢ |
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atrices ﬁ-am I
with a minimum dm anc
rows from D, then th
a minimum distance

1 a minimurm distance of
we remove one row of permutation
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)
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Lett = 21. Then, 20r + 1 = 421, s

primitive element o that sati e 0

integer less ihan 421 (see Problem 17.26). T newf@rew there
4721 objects. This BIBD consists of # = 3841 blocks, ca

\y

GF(421) does have a
¢, with ¢ as a positive odd
a BIBD for aset X of
h b]lock consists of y = 5
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objects, each object appears in exactly 105 blocks, and A = 1. The 21 base blocks are
2i Zi+84 i 2042352 21433
Br = o 2T P8 2252 214336,

10 E I I E
i = Uncoded BPSK B
FER (8420, 6319)
0k == BER (8420.6319)
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Example 17.39.

420, 6319) quasi-cyclic BIBD-LDPC
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for i = 0 to 20. Based on these 21 base blocks, we can form the incidence matrix H
for the BIBD in the following circulant forms:

H = [Go, Gy. -+ , Gy,

where G; is a 421 x 421 circulant. Suppose we choose k = 20 and decompose each
G, into five circulant permutation matrices by row decomposition. We obtain a
5 x 20 array I of 421 x 421 circulant permutation matrices, which is a 2105 x 8420
matrix with column and row weights 5 and 20, respectively. The null space of I
gives a (8420, 6319) quasi-cyclic BIBD-LDPC code with rate 0.7504 and a minimum

At a BER of 10_6, it performs 1.4 dB from the Shannon limit.

CONSTRUCTION OF LDPC CODES BASED ON SHORTENED RS CODES WITH
TWO INFORMATION SYMBOLS

In ecarlier sections of this chapter we used several branches of combinatorial
mathematics as tools for constructing LDPC codes. In this section we present an
algebraic method for constructing LDPC codes based on shortened RS codes with
two information symbols [66]. This method gives a class of LDPC codes in Gallager’s
original torm.

Let o be a primitive element of the Galois field GF(g) where ¢ = p’ is a power
of a prime. Let p be a positive integer such that 2 < p < g. Then, the generator
polynomial of the cyclic (¢ — 1,9 — o+ 1, p — 1) RS code C over GF(g) of length
g — 1, dimension g — p + 1, and minimum distance p — 1 is given by (7.2),

g(X) = (X —a)(X —a?)-- (X — a7
=g+aX+oX fo X7

where g; € GF(g). The generator polynomial g(X) is a minimum-weight code
polynomial in C, and hence all its p — 1 coefficients are nonzero.

Suppose we shorten C by deleting the first ¢ — p — 1 information symbols from
each codeword of C. Then, we obtain a (p, 2, p — 1) shortened RS code C), with only
two information symbols. A generator matrix of this shortened code is given by

g & & - 1 0
Gy = ¢ .
b { 0 g & g - 1]

All the linear combinations of the two rows of G, over GF(g) give all the ¢?
codewords of Cj. The nonzero codewords of Cj, have two different weights, p — 1
and p. Because the minimum distance of Cp, 18 p — 1, iwo codewords in Cj have at
most one location with the same code symbol; that is, they agree at most at one
location. Let v be a nonzero codeword in C, with weight p. Then, the set

C,()” = {cv:c e GF(g)}

of ¢ codewords in C, forms a one-dimensional subcode of Cn with minimum
distance p. Two codewords in C ,(7 ) differ at every location. We partition € into ¢
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has the following structural properties: (1) no two rows in the same matrix H, have
any 1-component in common: and (2) no two rows from two different mairices, H;
and H;, have more than one 1-component in common.

EXAMPLE 17.40

Consider the Galois field GF(2?) constructed based on the primitive polynomial
p(X) = 14+ X + X?. Let « be a primitive element of GF(2?). Then. the four elements
of GF(2*) are 0 = «™, 1 = . @, and &? = 1 + «. The location vectors of these four
field elements are

7o = (1000, z; =(0100), Ze = (001 0), 2, = (0001,

Let p = 3. The cyclic (3, 2, 2) RS code €}, over GF(2?) has generator polynomial
g(X) = X + o and generator matrix

a 1 0
G = [ 0 o 1 }
The code has 16 codewords, and its minimum distance 1s 2. Adding the two rows

of G, we obtain a codeword v = (o, o?, 1) with weight 3. The following set of four
codewords:

[Bv: B e GF2%) = {(0,0,0), (o, 0, 1), (¢ 1. o). (1, e ¢?)}

forms a one-dimensional subcode C(D of Cp with a minimum weight of 3. We
partition €}, with respect to C,, ) and obtain the following four cosets:

CV = ((0,0.0). (@, &%, 1), (&%, 1), (1, &, &)},
CP = {(a.1,0), (0,a.1). (1,0, a). (% &? o)},
¥ = (? a,0),(1,1,1.(0,¢% a). (@ 0,a%,
¥ = (1,620, (@2, 0,1). (@, @, @), (0, 1, &%),

The symbol! location matrices of these four cosets are

1000 1000 1000
D 0010 0001 0100
Hi=2C0=109001 0100 00710/
0100 00610 000 1|
0010 0100 10007
e, _| 1000 0010 0100
2=2C )= 9 100 1000 0010
(0001 0001 00O 1|
0001 0010 10007

& 60100 0100 0100
Hs=ZC=1 9 500 0001 0010
loo10 1000 000 1]
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,F” 0 1 0O 0 0 6 1 1 0 0 07

o l 6 ¢ 0 1 10 06 9§ 6 1 0 ¢ ‘

T 0 0 19 0 ¢ 1 ¢ ¢ 0 1 0
16 060 6 1 0 0 60 0 1
n’/ (h?f\‘ Hv{”l
1 0 00 1 0 0 © 10 0 0

0 0 1 60 6 0 6 1 01 ¢ 0

G 0 0 1 6 1 0 0 6 0 1 6

6 1 0 0 30 1 0 6 0 0 1

- 6 0 1 0 0 1 0 0 1 6 0 0

| 1 0 0 0 001 0 60 1 0 0

101 060 10 0 0 G0 1 0

- ¢ 0 0 1 0 0 0 1 0 06 0 1

g 0 6 1 0 6 1 0 i 6 06 0

601 6 ¢ 6 1 06 ¢ 0 1 6 ©

10 0 0 06 0 1 006 1t 0

0 1 ¢ 16 0 ¢ 0 ¢ 0 1|

The null space Hga(3) gives a regular (12, 4) RS-based Gallager-LDPC code with
rate 1/3 and a minimum distance of 6. The lower bound y -+ 1 on the minmum

1@'\7&71[@& ]/(e pg]

=l Ay A o0 Ag,

o] B B Bayp ) (17.99)
L Ay By o Ay ]

where each submaltriz A, ; is a ¢ x ¢ permutation matrix, Therefore, Hga(y) consisis
ofay x p array of permutation matrices. 1t 1s a (y, p)-regular matrix with column and
row weights y and p, respectively. No iwo rows (or two cotumns) of Hga(y) have
more than one l-component in common, and its density is 1/¢, which is small for
large g. Hence, Hg 4{y) is a sparse matrix that has all the structural properties of the
parity-check mairiz of a regular LDPC code given in Definition 17.1. Furthermore,
it is exactly in Gallages's original form given by (17.1). Therefore. the null space of
Hga(y) gives an LDPC code Cga(y) of Gallager’s type of length n = pg with a
minimum distance of at least y + 1 for odd y and y + 2 for even y. The rate of this
code is at least {p — 1)/ p.

For any choice of ¢ (=p*) and y. we can construct asequence of Gallager-LDPC
codes of various lengihs and rates with o = y. y + 1. --- . ¢ — 1. For any choice of ¢
and p, we can coustruct a sequence of Gallager-LDPC codes of length n = pg with
various rates and minimum distances for y = 1.2, -+ . p. For p = g — 1, Cgaly) is
quasi-cyclic. | B cause the construction is based on the (p. 2, p — 1) shortened RS code
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Cp, over the field GF(q), we call C, and GF(q) the base code and the construction
field, respectively.

EXAMPLE 17.41

Let GF(2°) be the construction field. Suppose we choose p = 32. Then, the base
code is the (32, 2, 31) shortened RS code over GF(2°). The location vector of each
element of GF(2%) is a 64-tuple with a single 1-component. Suppose we choose
y = 6. Then, the RS-based Gallager-LDPC code C;4(6) constructed is a (6, 32)-
regular (2048, 1723) LDPC code with rate 0.84] and a minimum distance of at least
8. Its error performance with SPA decoding is shown in Figure 17.45. At a BER
of 107%, the code performs 1.55 dB from the Shannon limit and achieves a 6-dB
coding gain over the uncoded BPSK. If we choose p = 63, the base code is then the
(63. 2, 62) shortened RS code. We set y = 60. The RS-based Gallager-1L.DPC code
is a (60, 63)-regular (4032, 3307) quasi-cyclic code with rate 0.82 and a minimum
distance of at least 62. The error performance of this code with SPA decoding is
shown in Figure 17.46. At a BER of 107%, it performs 1.65 dB from the Shannon
himit. Owing to its large minimum distance, no error floor is expected. This code
can also be decoded with one-step majority-logic decoding to correct 30 or fewer
random errors. If it is decoded with weighted BF decoding. an effective trade-off
between error performance and decoding complexity can be achieved.

(}
Lo 3 T ]
[ == Uncoded BPSK
0L =a- FER (2048, 1723)|
- =e—= BER (2048, 1723)|3
= Shannon limit ]
1077 -
= E
107 T -
2 .
Q. o
x
¢ b
¥ ) 1
S 107 —
g 3
2
10° -
1077 —
0% L | | I | ! |
0 1 2 3 4 5 6 7 8 9

E,/Ny (dB)

FIGURE 17.45: Error performance of the (2048, 1723) RS-based Gallager (6, 32)-
regular LDPC code with construction field GF(2°) given in Example 17.41.
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EXAMPLE 17.42

Suppose we use GF(28) as the construction field and the (32, 2, 31) shortened RS
code over GF(2%) as the base code. We set y = 6. Then, the RS-based Gailager-
LDPC code is a (8192, 6754) code with rate 0.824 and a minimum distance of at least
8. Its error performance with SPA decoding is shown in Figure 17.47. At a BER of
107, it performs 1.25 dB from the Shannon limit and achieves a 6.7 dB gain over
the uncoded BPSK.

The foregoing algebraic construction of LDPC codes is simple and vet very
powerful. It gives a large class of regular LDPC codes. Codes in this class can be
decoded with the SPA, weighted BF, BF, or one-step majority-logic decodings to pro-
vide a wide range of trade-offs between error performance and decoding complexity.

The matrix given by (17.99) is an array of permutation matrices that is in
exactly the same form as the matrix given by (17.72). Hence, it can be masked to
generate new LDPC codes.

CONCATENATIONS WITH LDPC AND TURBC CODES

In most applications of concatenated coding for error control, RS codes are used as
the outer codes, and they are, in general, decoded with an algebraic decoding algo-
rithm, such as the Berlekamp or Euclidean algorithm presented in Chapter 7. If a

10(1 - ]

== Bit ]
= Block

L]

T

!

107"

URRRLL

]

1077

wl

T
A

107°

10~

IARELN IR AR
!

Bit/block-error probability

)

1077k —

10*(7

AL

\Shannon limit

1077 | J | 1 | | !
0.5 1 1.5 2 2.5 3 35 4 4.5

Eh/N() (dB)

FIGURE 17.48: Bit- and block-error performance of a concatenated LDPC-turbo
coding system with a turbo inner code and an extended EG-LDPC outer code.
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Form the transpose H of the parity-check matrix H given in Problem 17.1. Is H”
a low-density parity-check matrix? Determine the rank of H’ and construct the
code given by the nuil space of H’.

Prove that the (n, 1) repetition code is an LDPC code. Construct a low-density
parity-check matrix for this code.

Consider the matrix H whose columns are all the m-tuples of weight 2. Does H
satisfy the conditions of the parity-check matrix of an LDPC code? Determine
the rank of H and its null space.

The following matrix is a low-density parity-check matrix. Determine the LDPC
code given by the null space of this matrix. What is the minimum distance of this
code?

1 1 0 1 0 0 07
001 10100
06 011010
H={00 01101
10001 10
0100011

. 101 0 0 0 1 |

Prove that the maximum-length code of length 27 — 1 presented in Section 8.3 is

an LDPC code.

Construct the Tanner graph of the code given in Problem 17.1. Is the Tanner
graph of this code acychc? Justify your answer.

Construct the Tanner graph of the code given in Problem 17.2. Is the Tanner
graph of this code acyclic? Justify your answer.

Construct the Tanner graph of the code given by the null space of the parity-check
matrix given in Problem 17.5. Does the Tanner graph of this code contains cycles
of length 6? Determine the number of cycles of length 6 in the graph.

Determine the orthogonal check-sums for every code bit of the LDPC code given
by the null space of the parity-check matrix of Problem 17.5.

Prove that the minimum distance of the Gallager-LDPC code given in Exam-
ple 17.2is 6.

Determine the generator polynomial of the two-dimensional type-I (0, 3)th-order
cyclic EG-LDPC code constructed based on the two-dimensional Euclidean
geometry EG(2, 2%).

Determine the parameters of the parity-check matrix of the three-dimensional
type-1 (0,2)th-order cyclic EG-LDPC code ng;'c(& 0, 2). Determine the genera-
tor polynomial of this code. What are the parameters of this code?

Determine the parameters of the companion code of the EG-LDPC code given
in Problem 17.13.

Decode the two-dimensional type-I (0, 3)th-order cyclic EG-LDPC code with
one-step majority-logic decoding and give the bit- and block-error performance
for the AWGN channel with BPSK signaling.

Repeat Problem 17.15 with BF decoding.

Repeat Problem 17.15 with weighted majority-logic decoding.

Repeat Problem 17.15 with weighted BF decoding.

Repeat Problem 17.15 with SPA decoding.

Decode the three-dimensional type-II (0, 2)th-order quasi-cyclic EG-LDPC code
given in Problem 17.14 with SPA decoding, and give the bit- and block-error
performance of the code for the AWGN channel with BPSK signaling.

Consider the parity-check matrix H(El(); . of the three-dimensional type-i (0, 2)th-
order cyclic EG-LDPC code given in Problem 17.13. Split each column of this
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