CHAPTER 16
Turbo Coding

As noted in Chapter 1, Shannon’s noisy channel coding theorem implies that
arbitrarily low decoding error probabilities can be achieved at any transmission rate
R less than the channel capacity C by using sufficiently long block (or constraint)
lengths. In particular, Shannon showed that randomly chosen codes, along with
maximum likelihood decoding (MLD), can provide capacity-achieving performance.
He did this by proving that the average performance of a randomly chosen ensemble
of codes results in an exponentially decreasing decoding error probability with
increasing block (or constraint) length; however, he gave no guidance about how
to actually construct good codes, that is, codes that perform at least as well as the
average, or to implement MLD for such codes.

In the ensuing years after the publication of Shannon’s paper in 1948 [1],
a large amount of research was conducted into the construction of specific codes
with good error-correcting capabilities and the development of efficient decoding
algorithms for these codes. Much of this research has been described in the previous
chapters of this book. Typically, the best code designs contain a large amount of
structure, either algebraic, as is the case with most block codes, such as RM and
BCH codes, or topological, as is the case with most convolutional codes, which can
be represented using trellis or tree diagrams. The structure is a key component of
the code design, since it can be used to guarantee good minimum distance properties
for the code, as in the BCH bound, and since particular decoding methods, such
as the Berlekamp-Massey algorithm for BCH codes and the Viterbi algorithm for
convolutional codes, are based on this structure. In fact, one can say generally that
the more structure a code contains, the easier it is to decode; however, structure
does not always result in the best distance properties for a code, and most highly
structured code designs usually fall far short of achieving the performance promised
by Shannon.

Primarily because of the need to provide structure to develop easily imple-
mentable decoding algorithms, little attention was paid to the design of codes with
randomlike properties, as originally envisioned by Shannon. Random code designs,
because they lacked structure, were thought to be too difficult to decode. In this
chapter we discuss a relatively new coding technique, dubbed turbo coding by its
inventors [2], that succeeds in achieving a randomlike code design with just enough
structure to allow for an efficient iterative decoding method. Because of this feature,
these codes have exceptionally good performance, particularly at moderate BERs
and for large block lengths. In fact, for essentially any code rate and information
block lengths greater than about 10* bits, turbo codes with iterative decoding can
achieve BERs as low as 107> at SNRs within 1 dB of the Shannon limit, that is,
the value of E, /Ny for which the code rate equals channel capacity. This typically
exceeds the performance of previously known codes of comparable length and
decoding complexity by several decibels, although because decoding is iterative,
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Another important feature of turbo codes is that they are composed of two
or more simple constituent codes, arranged in a variation of the concatenation
scheme introduced in Chapter 15, along with a pseudorandom interleaver. Because
the interleaver is part of the code design, a complete maximum likelihood decoder
for the entire code would be prohibitively complex; however, because more than
one code is used, it is possible to employ simple soft-in soft-out (SISO) decoders for
each constituent code in an iterative fashion, in which the soft-output vaiues of one

In summary, turbo coding consists of two fundamental ideas: a code design
that produces a code with randomlike properties, and a decoder design that makes
use of soft-output values and iterative decoding. The basic features of turbo code
design are developed in Sections 16.1 to 16.4, and the principles of iterative turbo
decoding are presented in Section 16.5.

The original concept of turbo coding was introduced in a paper by Berrou,
Glavieux, and Thitimajshima [2] delivered at the IEEE International Conference on
Communications held in Geneva, Switzerland, in May 1993, and it was further elabo-
rated in [3,4]. Many of the earlier ideas of Batill and Hagenauer on randomlike codes
aund iterative decoding were influential in leading to the turbo coding concept [5-8].
Much of the research community was originally skeptical of the performance claims,
but by the end of 1994 the basic resulis had been confirmed by several other research
groups [9, 10]. Two papers by Benedetto and Montorsi [11, 12] provided the first
theoretical jusiification for the exceptional performance of the codes, and finther
insights were presented in [13, 14]. The research group of Hagenauer was primarily
responsible for luminating the benefits of iterative decoding [15, 16), and additional
understanding was achieved in {17, 18]. The quarterly progress reports, beginning in
1995, of Divsalar, Pollara, Dolinar, and colleagues at the Jet Propulsion Laboratory
provide a detailed look at many aspects of turbo coding [19-22] pariicularly as they
affect deep-space communication issues. Numerous variations of turbo coding have
also appeared in the literature, such as serial concatenation, hybrid parallel and
serial concatenation, and self-concatenation [23-25]. A comprehensive overview of
the first five years of turbo coding is given in the book by Heegard and Wicker [26],
which also contains a thorough discussion of iterative decoding from the point of
view of the theory of belief propagation {27]. Another book covering roughly the
same material was written by Vucetic [28]. and a readable summary of the main
aspects of turbo coding. with an emphasis on iterative decoding, was published by
Ryan [29].

16.1 INTRODUCTION TO TURBO CODING

A block diagram of the basic turbo encoding structure is illustrated in Figure 16.1(a),
and a specific example is shown in Figure 16.1(b). The basic system consists of an
information (input) sequence, two (2,1, v) systematic feedback (recursive) con-
volutional encoders, and an interleaver, denoied by 7. We will assume that the
information sequence contains K™ information bits plus v termination bits to return
the first encoder to the all-zero state Sy = 0, where v is the constraint length of the
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FIGURE 16.1: The basic turbo encoding structure.

first encoder. The information sequence (including termination bits) is considered
to be a block of length K = K* + v and is represented by the vector

U= (uo, Uy, - ,uK,l). (16.1)

Because encoding is systematic, the information sequence u is the first transmitted
sequence; that is

(0 © @ 0
u:\v():(vo U ,vK_l). (16.2a)
The first encoder generates the parity sequence
1 DM 1)
vih = (vé JU ,vK_l>. (16.2b)

The interleaver reorders or permutes the K bits in the information block so that
the second encoder receives a permuted information sequence w’ different from the
first. (Note that the second encoder may or may not be terminated.) The parity
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seguence generated by the second encoder is represented as

A _ (D (2 2) )

v = (Uo U e ) {16.2¢)
and the final ransmitted sequence (codeword) is given by the vector

D= (0P O, 00 B Y e3)
so that the overall (terminated) code has length N = 3K and rate B, = K*/N =
(K —v)/3K ~1/3 for large K.

The information sequence n along with the first parity sequence v'!) is referred
to as the first constitueni code, and the permuted information sequence w' (which
is not transmitted) along with the second parity sequence v is referred io as the
second constituent code. In Figure 16.1(b) both consiituent codes are generated by
the same (2, 1. 4) systematic feedback encoder whose generator matrix is given by

GMy={1 a+bYH/A+D+D*+D*+D% |. (16.4)

The following remarks are related to the typical operation of turbo codes. Explana-
tions will be given in later sections of this chapier.

o To achieve performance close to the Shannon limit, the information block
length (interleaver size) X is chosen to be very large, usually at least several
thousand bits.

o The best performance at moderate BERs down to about 1075 is achieved with
short constraint length constituent encoders, typically v = 4 or less.

o The constituent codes are normally generated by the same encoder, as in
Figure 16.1(b), but this is not necessary for good performance. In fact, some
asymmeiric code designs have been shown to give very good performance [30].

o Recursive constituent codes, generated by sysiematic feedback encoders,
give much better performance than nonrecursive comstituent codes, that is,
feedforward encoders.

o Bits can be punctured from the parity sequences to produce higher code rates.
. R o) .
For example, puncturing alternate bits from v'1 and v(*) produces a systematic
rate R = 1/2 code.

o Bits also can be punctured from the information sequence to produce partially
systematic or nonsystematic turbo codes [31].

o Additional constituent codes and interleavers can be used to produce lower-
rate codes. For example, rate R = 1/4 can be achieved with three constituent
codes and two interleavers, as shown in IMigure 16.2. This configuration is
called a multiple turbo code [19]

o The best interleavers reorder the bits in 2 pseudovandom manner. Conven-
tional block (row-column) interieavers do not perform well in turbo codes,
except at relatively short block lengths.
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FIGURE 16.2: A rate R = 1/4 multiple turbo code.

Because only the ordering of the bits is changed by the interleaver, the sequence
w’ that enters the second encoder has the same weight as the sequence u that
enters the first encoder.

The interleaver is an integral part of the overall encoder, and thus the state
complexity of turbo codes is extremely large, making trellis-based ML or MAP
decoding impossible.

Suboptimum iterative decoding, which employs individual SISO decoders
for each of the constituent codes in an iterative manner, typically achieves
performance within a few tenths of a decibel of overall ML or MAP decoding.
The best performarice is obtained when the BCIR, or MAP, algorithm is used
as the SISO decoder for each constituent code.

Because the MAP decoder uses a forward—backward algorithm, the informa-
tion is arranged in blocks. Thus, the first constituent encoder is terminated by
appending v bits to return it to the 0 state. Because the interleaver reorders
the input sequence, the second encoder will not normally return to the 8 state,
but this has little effect on performance for large block lengths. If desired,
though, modifications can be made to ensure termination of both encoders.

Block codes also can be used as constituent codes in turbo encoders.

Decoding can be stopped, and a final decoding estimate declared, after some
fixed number of iterations (usually on the order of 10-20) or based on a
stopping criterion that is designed to detect when the estimate is reliable with
very high probability.

constituent code, is not the same as overall ML or MAP decoding.



Section 16.1 introduction to Turbo Coding 771

The basic encoding scheme illustrated in Figures 16.1 and 16.2 is referred to as
parallel concatenation, because of its similarity to Forney’s original concatenation
scheme. Compared with conventional serial concatenation, in parallel concatenation
the input to the encoder, rather than its outpui, enters the second encoder, although
it is first permuted by the interleaver. In other words, the two encoders operate in
parallel on diffevent versions of the inforiation sequence.

The example code shown in Figure 16.1(b), punctured to rate 1/2, is capable of
achievinga 107> BER at an SMR of £}, / Ny = 0.7 dB with an information block length
of K =216 = 65536 bits after 18 iterations of a SISC MAP decoder. By comparison,
the NASA standard (2.1, 6) convolutional code with ML decoding requires an
Ep /Ny of 4.2 dB to achieve the same BER. The performance comparison of these
two codes is shown in Figure 16.3. Thus, the raie R = 1/2 turbo code achieves a
3.5-dB coding gain compared with the (2. 1, 6) convolutional code at a 107> BER.
The decoding complexity of the two codes is roughly equivalent, since a 16-state
MAP decoder has about the same complexity as a 64-state Viterbi decoder. This
advantage of turbo codes over conventional methods of coding is fairly typical over
the entire range of possible code rates; that is, several decibels of coding gain can
be achieved at moderate BERs with long iurbo codes of the same rate and roughly
the same decoding complexity as conveniional codes. In addition, the performance
of turbo codes at moderate BERs is within 1 dB of capacity. For the example shown
in Figure 16.3, the BER performance is only 0.7 dB away from the (unconstrained)
capacity and only 0.5 dB away [rom the capacity for binary input channels.

Turbo codes suffer from two disadvantages: a large decoding delay, owing to
the large block iengths and many iterations of decoding required for near-capacity
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FIGURE 16.3: Performaince comparison of convolutional codes and turbo codes.
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performance, and significantly weakened performance at BERs below 107> owing
to the fact that the codes have a relatively poor minimum distance, which manifests
itself at very low BERSs. The large delay appears to make turbo codes unsuitable
for real-time applications such as voice transmission and packet communication
in high-speed neiworks. It is possible, though, to trade delay for performance in
such a way that turbo codes may be useful in some real-time applications involving
block lengths on the order of a few thousand, or even a few hundred, bits. The
fact that turbo codes typically do not have large minimum distances causes the
performance curve to flatten out at BERs below 1073, as shown in Figure 16.3.
This phenomenon, sometimes called an error floor, is due to the unusual weight
distribution of turbo codes, which will be discussed in the next section. Because of
the error floor, turbo codes may not be suitable for applications requiring extremely
low BERS, such as some scientific or command-and-control applications; however,
measures can be taken to mitigate this problem. Interleavers can be designed to
improve the minimum distance of the code, thus lowering the error floor. Also,
an outer code, or a second layer of concatenation, can be used with a turbo code
to correct many of the errors caused by the small minimum distance, at a cost
of a small decrease in overall rate. Both techniques will be discussed later in
this chapter.

The fundamental property of turbo codes that underlies their excellent per-
formance at moderate BERs is the randomlike weight spectrum of the codewords
produced by the pseudorandom interleaver when systematic feedback encoders are
used. T'o understand this feature we consider a series of examples.

EXAMPLE 16.1 Weight Spectrum of a Terminated Convolutional Code

Consider the conventional (2, 1. 4) convolutional code with nonsystematic feedfor-
ward generator matrix

Gy D)y=[1+D+D*+D>+D* 1+D*]. (16.5)

The minimum free distance of this code is 6, obtained from the information
sequence w = (110 -..). If the encoder is converted to systematic feedback form,
the generator matrix is then given by

G =[1 A+DY/(1+D+D*+D>*+D%Y . (16.6)

Because the code is exactly the same, the free distance is still 6, but in this
case the minimum-weight codeword is obtained from the information sequence
w=1[10000100 --.]; that is, u(D) = 1 + D°. The two different encoders result
in identical codes, but with different mappings between information sequences and
codewords. Now, consider that each encoder is terminated after an information
block of length K* = K — 4 by appending 4 bits to return the encoders to the
O state. (Note that for the feedback encoder, the K* termination bits depend on
the information block and arc in general nonzero.) In this case we obtain an
(N, K*) = (2K, K — 4) block code with rate R, = (K — 4) /2K =~ 1/2 for large K.
This block code contains exactly K — 5 weight-6 codewords, because the information
sequence that produces the weight-6 codeword can begin at any of the first K — 5

informafion positions and generate the same cedeword. A similar analysis revea

1
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TABLE 16.1: Weight spectra of two (32, 12) codes.

(a) Terminated convolutional || (b) Parallel concatenated
Weiglht Multiplicity Weight Multiplicity

0 1 0 1

1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

5 0 5 1

6 11 6 4

7 12 7 8

8 23 8 16

9 38 9 30
10 61 10 73
11 126 11 144
12 200 12 210
13 332 13 308
14 425 14 404
i5 502 15 496
16 545 16 571
17 520 17 558
18 491 18 478
19 346 19 352
20 212 20 222
21 132 21 123
22 8 22 64
23 38 23 24
24 11 24 4
25 2 25 4
26 0 26 1
27 0 27 0
28 0 28 0
29 0 29 0
30 0 30 0
31 0 31 0
32 0 32 0

that for weight-7 and other low weights, the number of codewords is also large, on
the order of K or larger. In Table 16.1(a), we give the complete weight spectrum of
the (32, 12) code that results from choosing X = 16. Observe that the number of
codewords at each weight grows rapidly until it reaches a peak at length 16, half the
block length. In other words, the weight spectrum of the code is dense at the low
end, and this results in a relatively high probability of error at low SNRs, even with
MI. decoding.
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In general, if an unterminated convolutional code has A; codewords of weight
d caused by a set of information sequences {u(D)} whose first one occurs at time unit
[ = 0, then it also has Ay codewords of weight d caused by the set of information
sequences {Du(D)}, and so on. Terminated convolutional codes have essentially the
same property. In other words, convolutional encoders are time-invariant, and it is
this property that accounts for the relatively large numbers of low-weight codewords
in terminated convolutional codes.

Next, we look at an example in which a pseudorandom interleaver is used to
produce a parallel concatenation of two identical systematic feedback convolutional
encoders.

EXAMPLE 16.2 Weight Spectrum of a Parallel Concatenated Code

Consider the systematic feedback convolutional encoder of (16.6), a length K = 16
input sequence, and the size-16 interleaving pattern given by the permutation

[1=10.8.159,4,7,11,5,1,3,14,6,13,12,10,2]. (16.7)
16

The input sequence is first encoded by the parity generator (1 + D*) /(1 + D + D?+

D? + D*), producing the parity sequence vl (D). Then, the interleaver takes the
12 information bits plus the 4 termination bits and reorders them such that

wy = U0, U] =UR, Uy =Ul5, - ,Ujs = U3 (16.3)

This permuted input sequence is then reencoded using the same parity generator
(1+ D% / (1+ D+ D? + D3 + D*), thus producing another version of the parity
sequence. To compare with the code of Example 16.1, we now puncture alternate

bits from the two versions of the parity sequence using the period 7 = 2 puncturing
matrix:

P:[(l) H (16.9)

The result is a parallel concatenated code with the same dimensions as the code
in Example 16.1, that is, a (32, 12) code. The weight spectrum for this parallel
concatenated code is given in Table 16.1(b). We see that there is a noticeable dif-
ference between this weight spectrum and the one for the terminated convolutional
code shown in Table 16.1(a), even though the code generators are the same. This
altered weight spectrum is a direct result of the interleaver that permutes the bits
for reencoding. Note that the free distance has decreased, from 6 to 5, but that there
is only one weight-5 codeword. More importantly, the multiplicities of the weight-6
through weight-9 codewords are less for the parallel concatenated code than for the
terminated convolutional code. In other words, in the parallel concatenated case,
there has been a shift from lower-weight codewords to higher-weight codewords
relative fo the convolutional code. This shifting of low-weight codewords toward

higher weights in the parallel concatenation of feedback convoluticnal encoders has
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been termed speciral thinning [13] and results when interleaving causes almost all
the low-weight parity sequences in the first constituent code to be matched with
high-weight parity sequences in the second constituent code. For example, consider
the weight-2 input sequence w = (1000010 - .- 0) ithai causes the low-weight parity
sequence v?V = (11001100 - - - 0). Thus, without the interleaver, the terminated con-
volutional code produces a codeword of weight 6. The interleaved input sequence
is given by w' = (100000010 --0) and produces the high-weight parity sequence
v? = (1100101111000110). Combining v\) and v(® and then puncturing aliernate
bits using the period T = 2 puncturing matrix given in (16.9) produces the parity
sequence (1100100101000100). Thus, the same weight-2 input sequence produces 2
codeword of weight 8 in the parallel concaienated code. This behavior is typical of
parallel concatenation; that is, when feedback constituent encoders are used, most
low-weight codewords are shifted to higher weights. In the next example we see that
this speciral thinning becomes more dramatic for larger block lengths.

EXAMPLE 16.3 Spectral Thinning

Consider the same systematic feedback convolutional encoder as in Examples 16.1
and 16.2 but with a block length of ¥ = 32, including the v = 4 termination bits.
The weight spectrum of the terminated (64, 28) convolutional code is shown in
Table 16.2(a}. Now, consider the same encoder in a parallel concatenation scheme,
using the size-32 interleaving pattern given by

T[] =10.16,7,17,12,28,19,2.8.11,22,9, 4. 20, 18, 26,
P 1,3,14,6,13,31,10,29,25,24,15,30,5,.23,27.21]  (16.10)

and the same period T = 2 puncturing matrix as in Example 16.2. The result is the
(64, 28) paraliel concatenated code whose weight spectruum is given in Table 16.2(b).
We note that there is now a more pronounced difference beiween this weight
spectrum and the one for the terminated convolutional code given in Table 16.2(a)
than in the K = 16 case. The free distance of both codes is 6; that is, there is
no change in df., but the multiplicities of the low-weight codewords are greatly
reduced in the parallel concatenated code. This result can be seen more clearly in
the plots of the two weight spectra shown in Figure 16.4. In other words, the effect
of spectral thinning becomes more dramatic as the block length (interleaver size) K
increases. In fact, for even larger values of K, the codeword and bit multiplicities of
the low-weight codewords in the turbo code weight spectrum are reduced by roughly
a factor of K, the interleaver size, compared with the terminated convolutional code.
This reduction by a factor of X in the low-weight multiplicities is referred to as the
interleaver gain [11] and will be verified analytically in the next section.

Several remarks can be made regarding Examples 16.1-16.3:

o Differentinterleavers and puncturing matrices would produce different results,
but the behavior observed is typical in most cases.
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TABLE 16.2: Weight spectra of two (64, 28) codes.

(a) Terminated convolutional (b) Parallel concatenated
Weight | Multiplicity || Weight | Multiplicity | Weight | Multiplicity || Weight | Multiplicity
0 1 33 25431436 0 1 33 25716960
1 0 34 23509909 1 0 34 23669905
2 0 35 20436392 2 0 35 20464409
3 0 36 16674749 3 0 36 16623260
4 0 37 12757248 4 0 37 12662360
5 0 38 9168248 5 0 38 9024333
6 27 39 6179244 6 6 39 6012086
7 28 40 3888210 7 9 40 3729485
8 71 41 2271250 8 15 41 2156481
9 118 42 1226350 9 9 42 1160459
10 253 43 615942 10 80 43 573214
11 558 44 287487 11 119 44 262676
12 1372 45 124728 12 484 45 110369
13 3028 46 50466 13 1027 46 42264
14 6573 47 19092 14 3007 47 15269
15 14036 48 6888 15 6852 48 4556
16 29171 49 2172 16 17408 49 1416
17 60664 50 642 17 40616 50 335
18 122093 51 140 18 90244 51 103
19 240636 52 35 19 193196 52 20
20 457660 53 6 20 390392 53 5
21 838810 54 2 21 754819 54 1
22 1476615 55 0 22 1368864 55 0
23 2484952 56 0 23 2367949 56 0
24 3991923 57 0 24 3874836 57 0
25 6098296 58 0 25 5988326 58 0
26 8845265 59 0 26 8778945 59 0
27 12167068 60 0 27 12149055 60 0
28 15844169 61 0 28 15907872 61 0
29 19504724 62 0 29 19684668 62 0
30 22702421 63 0 30 22978613 63 0
31 24967160 64 0 31 25318411 64 0
32 25927128 32 26289667

Spectral thinning has little effect on the minimum free distance, but it greatly
reduces the multiplicities of the low-weight codewords.

As the block length and corresponding interleaver size K increase, the weight
spectrum of parallel concatenated convolutional codes begins to approximate
a randomlike distribution, that is, the distribution that would result if each
bit in every codeword were selected randomly from an independent and
identically distributed probability distribution.

There is only a small spectral thinning effect if feedforward constituent
encoders are used, as will be seen in the next section.

One can explain the superiority of feedback encoders in parallel concatenation
as a consequence of their being IIR, rather than FIR, filters, that is, their res-
ponse to single input 1’s is not localized to the constraint length of the code
but extends over the entire block length. This property of feedback encoders
is exploited by a pseudorandom interleaver to produce the spectral thin-
ning effect.
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FIGURE 16.4: An illusiration of spectral thinning.

It is also worth noting that parallel concatenated codes are no longer time-
invariant. This can easily be seen by considering the effect when the input sequence
in Example 16.2 is delayed by one time unit; that is, consider the input sequence
u = [0100001000000000]. The first parity sequence v(U = [0110011000000000]
is also delayed by one time unit, but the interleaved input sequence is now
w = [0000000010010000], which produces the second parity sequence v =
[0000000011010011]. This is clearly not a delayed version of the v in Exam-
ple 16.2. In other words, the interleaver has broken the time-invariant property
of the code, resulting in a time-varying code. To summarize, to achieve the spec-
tral thinning effect of parallel concatenation, it is necessary both to generate a
time-varying code (via interleaving) and to employ feedback, that is, IIR, encoders.

It is clear from the preceding examples that the interleaver plays a key role
in turbo coding. As we shall now briefly discuss, it is important that the interleaver
has psendorandom properties. Traditional block or convolutional interleavers do
not work well in turbo coding, particularly when the block length is large. What is
important is that the low-weight parity sequences from the first encoder get matched
with high-weight parity sequences from the second encoder almost all the time.
This requires that the interleaver break the patterns in the input sequences that
produce low-weight parity sequences. Interleavers with structure, such as block or
convolutional interleavers, tend to preserve too many of these “‘bad” input patterns,
resulting in poor matching properties and limited spectral thinning. Pseudorandom
interieavers, on the other hand, break up almost all the bad patterns and thus
achieve the full effect of spectral thinning. In Example 16.2, the 11 input sequences

w(D)=D'(1+D%), 1=01,-,10. (16.11)
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FIGURE 16.5: A (4 x 4) block interleaver for a (32, 12) turbo code.

are bad because they generate a low-weight (4 in this case) parity sequence. As can
be seen from a careful examination of Figure 16.5, if a 4 x 4 block (row—column)
interleaver is employed, 9 of these 11 sequences will maintain the same bad pattern
after interleaving, resulting in a large multiplicity of low-weight codewords. The
weight spectrum of the code in Example 16.2 with this block interleaver, shown in
Table 16.3, is clearly inferior to the weight spectrum shown in Table 16.1(b) obtained
using the interleaver of (16.7). Pseudorandom interleavers, such as those in (16.7)
and (16.10), generate a weight spectrum that has many of the same characteristics
as the binomial distribution, which is equivalent to the weight spectrum assumed
by Shannon in his random-coding proof of the noisy-channel coding theorem. In
other words, codes with random (binomial) weight distributions can achieve the
performance guaranteed by Shannon’s bound. Turbo coding with pseudorandom
interleaving results in a way of constructing codes with weight spectra similar to a
binomial distribution, and a simple, near-optimal iterative decoding method exists.

Pseudorandom interleaving patterns can be generated in many ways, for
example, by using a primitive polynomial to generate a maximum-length shift-
register sequence whose cycle structure determines the permutation. Another
method uses a computationally simple algorithm based on the quadratic congruence

i 1
ey = % (mod K), 0<m <K, (16.12)

to generate an index mapping function ¢, — ¢, (mod K), where K is the inter-
leaver size, and k is an odd integer. For example, for K = 16 and k = 1, we obtain

rol]
C

s 1,3

{re YV —= (0 610 15.5.12. 4. 13.7.2. 14 .11. 9. 8 (1613
Lo, ) 0, 4,2,0,10,10,2,14,4,12, /7,4, 14, 21,9, 8) (10.22)

9
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TABLE 16.3: The weight spectrum
of a block interleaved (32, 12)

turbo code.

Weiight Mul¢iplicity
0 1
1 0
2 0
3 0
4 0
5 0
6 21
7 6
8 13
9 40

10 67
11 154
12 190
13 308
14 411
15 486
16 555
17 532
18 493
19 350
20 230
21 140
22 64
23 28
24 3
25 4
26 0
27 0
28 0
29 0
30 0
31 0
32 0

which implies that index O (input bit ) in the interleaved sequence w’ is mapped
into index 1 in the original sequence u (i.e., uy = u1), index 1 in w’ is mapped into
index 3 in w (| = u3), and so on, resulting in the permutation

[1=11.3.14.6,13.12.10.2.0.8,15.9.4,7,11,5). (16.14)
16
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It this interleaving pattern is shifted cyclically to the right r = 8 times, we obtain
the interleaving pattern of (16.7). For K a power of 2, if can be shown that these
quadratic interleavers have statlsncal properties similar to those of randomly chosen
interleavers, and thus they give good performance when used in turbo coding [32].
Other good interleaving patterns can be generated by varying k£ and r, and the
special case r = K /2 (used to obtain (16.7)) results in an interleaver that simply
interchanges pairs of indices (see Problem 16.2). This special case is particularly
interesting in terms of implementation, since the interleaving and deinterleaving
functions (both used in decoding) are identical. Finally, when K is not a power of
2, the foregoing algorithm can be modified to generate similar permutations with
good statistical properties.

The basic structure of an iterative turbo decoder is shown in Figure 16.6.
(We assume here a rate R = 1/3 parallel concatenated code without puncturing.)
It employs two SISO decoders using the MAP algorithm presenied earlier in
Chapter 12. At each time unit /, three output values are received from the channel,
one for the information bit u; = vlo) denoted by r , and two for the parity bits

vl(l) and vlz) denoted by r<1) and r(Z) and the 3K-dimensional received vector is

denoted by
(O eI O, (1) (2) o O @
r= (0 Yo o T K_HKvHKﬂ), (16.15)

Now, let each transmitted bit be represented using the mapping 0 — —1 and
1 — +1. Then, for an AWGN channel with unquantized (soft) outputs, we define

the log-likelihood ratio (L-value) L ( O, (O)) =L (m l rl(o)> (before decoding) of

a transmitted information bit u; given the received value rfo) as

P( +1|,(0>)

( (0)

)
(n |Ml—+1)P(M1 +1)
! )

(’|u1 1

L(uy | rl(o)) =In

P

P
=In

P Py =-1

L(’.[(ﬂ) L, ,AI(Z)

L LY
§
| iLH.(”HC,,,m, i »
!

Y

i)
g £ L |Deinterleaver frmres-
L7()| pecoder 1 (4) | Decoder 2 —Deinterleaver Decision

Deinterleaver e

L3uy) L) = Lorf

A
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(0
P(’/ !M[:‘f’l)‘ x P(ll[:—i—l)

=1In +In
P {(7’[(0) fup = *1) Py =-1)
v<E\./NU>(;-,‘0‘—1)2
e P = +1
~In _pp P =4D (16.16)

e—(E\/NO)(_r,‘O’H)‘ Py =-1)

where E;/Ny is the channel SNR, and #; and r,(o) have both been normalized by a
factor of ./E;. This equation simplifies to

£ (o) = [ 1) () o =T

No PGy =-1
_oB o, P =4 (16.17)
Ny Py =1

= Lcr](O) + Lo (un),

where L, = 4(E;/Ny) is the channel reliability factor (see Section 12.5), and L, (u;)
is the a priori L-value of the bit u;. In the case of a transmitted parity bit v(J ), given

the received value 1, ) j=1,2, the L-value (before decoding) is given by

L(of (1) = L+ L (o) = Ler”. j=1.2, (16.18)

since in a linear code with equally likely information bits, the parity bits are also
equally likely to be +1 or —1, and thus the a priori L-values of the parity bits are 0;

that is, , ( . —H)
L (U;f ) =In m =0, j=1.2 (16.19)

(We note here that L, (i7) also equals 0 for the first iteration of decoder 1 but that
thereafter the a priori L-values of the information bits are replaced by extrinsic
L-values from the other decoder, as will now be explained.)

The received soft channel L-values Lcr( ) for u; and LCr[D for v, ) enter
decoder 1, and the (properly interleaved) received soft channel L-values L, r ) for

u; and the received soft channel L-values L., @ tor v(2)
of decoder 1 contains two terms:

(1

enter decoder 2. The output

L LD @) =In [P (uz =+1/r, L(l))/ (Ml =-1{m, M})ﬂ, the a posteri-

ori L-value (after decoding) of each information bit produced by decoder

1 given the (partial) received vector rj = [ (()O)Iél), 71(0)71(1), . ,1}?) 17 ;g) 1]
and the a priori input vector ]LSYD ES [Lgl)(uoL Lél)(ul). e ,L; )(MK,I)} for

decoder 1, and
2. LED () = LY ) — [L(z‘,(O) + LLD (u/)], the extrinsic a posteriori L-value
(after decoding) associated with each information bit produced by decoder 1,
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which, after interleaving, is passed to the input of decoder 2 as the a priori
value [,22) (uy).

Subtracting the term in brackets, namely, Lcrl(o) -+ ng) (u;), removes the effect of
the current information bit u; from LY (u;), leaving only the effect of the parity
constraints, thus providing an independent estimate of the information bit u; to
decoder 2 in addition to the received soft channel L-values at time [. Similarly, the
output of decoder 2 contains two terms:

1L L@ @) =In [P (uz =+1/m, L(ZZ)) /P (Ml = -1, L(zz))], where r; is the
(partial) received vector and L the a priori input vector for decoder 2, and
2. L9 w) = LO ) — [Lcrfo) +LP (u;)], and the extrinsic a posteriori L-

values LE,Z) (u;) produced by decoder 2, after deinterleaving, arc passed back
to the input of decoder 1 as the a priori values szl)(u;).

Thus, the input to each decoder contains three terms, the soft channel L-values
Lcr,(o) and Lcr[a) (or Lcrl(z) ) and the extrinsic a posteriori L-values LE,Z) (uy)= szl) (up)
{or Lél) (uy) = Lflz) (u1)) passed from the other decoder. (In the initial iteration of
decoder 1, the extrinsic a posteriori L-values ng) (up)= Ll(,l)(uz) are just the original
a priori L-values L, (u;), which, as noted before, are all equal to 0 for equally
likely information bits. Thus the extrinsic L-values passed from one decoder to the
other during the iterative decoding process are treated like new sets of a priori
probabilities by the MAP algorithm.) Decoding then proceeds iteratively, with each
decoder passing its respective extrinsic L-values back to the other decoder. This
results in a furbo or bootstrapping effect in which each estimate becomes successively
more reliable. After a sufficient number of iterations, the decoded information bits
are determined from the a posteriori L-values L® (u;), [ =0,1,--- , K —v—1, at
the output of decoder 2. Because the decoded output is taken only after the final
iteration, it is more accurate to refer to the SISO constituent decoders as a posteriori
probability (APP) estimators rather than MAP decoders, since their outputs are
extrinsic a posteriori L-values that are passed to their companion decoder for more
processing. A more complete discussion of iterative turbo decoding is given in
Section 16.5.

Although it 1s true, as stated previously, that the extrinsic a posteriori L-
values L. (i) passed between decoders during the first iteration of decoding are
independent of u;, this is not so for subsequent iterations. Thus, the extrinsic
information becomes less helpful in obtaining successively more reliable estimates
of the information bits as the iterations continue. Eventually, a point is reached at
which no further improvement is possible, the iterations are stopped, and the final
decoding estimate is produced. Methods for determining when to stop the iterations,
known as stopping rules, are discussed in Section 16.5.

It is worth pointing out here that the term furbo in turbo coding has more to
do with decoding than encoding. Indeed, it is the successive feedback of extrinsic
information from the SISO decoders in the iterative decoding process that mimics

the feedback of exhaust gases ina turb@chqrged engine,

il LOCUDall VL Callaust 1RCar Cragans
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Finally, before moving on to a more detailed discussion of turbo coding,
we note that many of its features are similar to those observed for low-density
parity-check (LDPC) codes, to be discussed in Chapter 17. Both encoding schemes
produce codes with randomlike weight distributions and a thin weight spectrum.
Both decoding methods make use of APP likelihoods in an iterative process,
and they both employ the concept of extrinsic information. In fact, it was the
discovery of turbo coding in 1993 that led to a rediscovery of the merits of LDPC
codes, which had been largely neglected by the research community for more than
30 years.

16.2 DISTANCE PROPERTIES OF TURBO CODES

As illustrated in Examples 16.1 through 16.3, the fundamental property of turbo
codes that allows them to achieve such excelient performance is the randomlike
weight spectrum, or spectral thinning, produced by ihe pseudorandom interleaver.
In this section we examine the weight spectrum of turbo codes in more detail.
In particular, we consider a series of examples for parallel concatenated codes
(PCCs), including both parallel concatenated block codes {PCBCs) and parallel
concatenated convolutional codes (PCCCs).

As noted in the remarks following Example 16.3, the exact weight spectrum of
a turbo code depends on the particular interleaver chosen. Thus, in order to avoid
exhaustively searching all possible interleavers for the best weight spectrum for a
specific PCC, we introduce the concept of a uniform interleaver [11].

DeriniTioN 16.1 A uniform interleaver of length K is a probabilistic device

that maps a given input block of weight w into all its distinci [( » ) permuta-
. . - K

tions with equal probability 1 w )

Using the notion of a uniform interleaver allows us to calculate the average

(over all possible interleavers) weight spectrum of a PCC. This average weight spec-
trum is typical of the weight spectrum obtained for a randomly chosen interleaver.

EXAMPLE 16.4 A Parallel Concatenated Block Code

Consider the (7, 4, 3) Hamming code in systematic form. The weight enumerating
function (WEF) for this code is given by

A =1X3 +7x4 + X7, (16.20)

that is, in addition to the all-zero codeword, the code contains 7 codewords of weight
3,7 codewords of weight 4, and the ali-one codeword of weight 7. The complete list of
16 codewords is shown in Table 16.4. Splitting the contributions of the information
and parity bits gives the input redundancy weight enumerating function (IRWEF)

AW, Z)=WQRZ*+ Z) + W2BZ +32)+ W3A +32) + W*Z3.  (1621)

In other words, there are 3 codewords with information weight 1 and parity weight
2, 1 codeword with information weight 1 and parity weight 3, 3 codewords with
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TABLE 16.4: Codeword list for

the (7, 4, 3) Hamning code.

Information Parity
0 0 0 0|0 O O
1 06 0 01 0 1
01 0 01 1 O
11 6 010 1t 1
6 01 0j0 1 1
1 0 1 01 1 O
6 1 1 011 0 1
111 00 0 O
6 60 1,1 1 1
10 0 1|10 1 0
6 1 0 10 0 1
11 0 1|1 0 O
0 6 1 1]1 0 0
1 0 1 116 0 1
01 1 1,0 1 0
1 1 1 1|1 1 1

information weight 2 and parity weight 1. and so on. Finally, the conditional weight
enumerating function (CWEF) for each input weight is given by

A1(Z) =37% + 73,
Ay(Z) =3Z +37%,
A3(Z) =1+3Z,

(16.22)

Au(Z) = Z3.

Now, we examine how the uniform interleaver concept can be used to compute
the average IRWEF for PCCs. First, consider the general case shown in Figure 16.7
of a PCBC with two different (n, k) systematic block constituent codes, Cy and Cs,
with CWEFs given by ASH(z) and AS(Z), w = 1, --- , k, connected by a uniform
interleaver of size K = k. The original informaiion block and both parity blocks are
transmitted, resulting in a (2n — k, k) PCBC. Assume that a particular input block
of weight w enters the first encoder, thereby generating one of the parity weights
in Ag" (Z). From the definition of the uniform interleaver, it foliows that there is an
equal probability that the second encoder will match that parity weight with any of
the parity weights in AS2(Z). Thus, the average CWEF of the PCBC is given by

ASHZ)ASH(Z)
(Y
\w )

APC(zy = (16.23)
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Transmitted bits
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b
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FIGURE 16.7: A parallel concatenated block code.

and the average IRWEF is given by

APCW, 2y =) Ay W¥ZE= ) WYARC(Z). (16.24)
w,Z (1=w=<K)

Also, we can express the bit CWEF and the bir IRWEF as follows:

BIC(z) = %A{;C ) (16.25a)
and
BPC(wW, 2) = Z B, .W¥Z*= Y  WYBlC(2), (16.25b)
w,z (1=w=<K)

where By, . = (w/K)A, .. Finally, the average codeword and bit WEL's are given by

APC = 0 AgXY = APCW, Z)

W=Z=X
(dnin=d)
(16.26a)
_ VV“’AiC(Z)'
W=Z=X
(1=w=K)
and
BPC(x) = d _ pPC I
X) Z BX'=B"W.2)|
(dnin=d)
(16.26b)

- T wpPC ‘
L WY BlC(Z) S
(I<w=<K)

The following remarks apply to the use of the uniform interleaver concept to
calculate WEFs for PCBCs.
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e The codeword CWEF APC(Z), IRWEF APC (W, Z), and WEF AT (X) of the
PCBC are all average quantities over the entire class of uniform interleavers,
and thus their coefficients may not be integers, unlike the case in which these
quantities are computed for the constituent codes individually.

o Equations (16.26) represents two different ways of expressing the codeword
and bit WEFs of a PCBC, one as a sum over the codeword weights d that is
valid for both systematic and nonsystematic codes and the other as a sum over
input weights w that applies only to systematic codes.

o The codeword and bit WEF expressions in (16.26a) and (16.26b) are general
and apply to all systematic codes. Expressions similar to the sums over input
weights w that are valid for nonsystematic codes are given by

AX) = AW, Dlw—r = ) W A,M|y, (16.26¢)
(I=w=Kk)
and
B(X)=BW, X)ly_1= Y WYBu(X)|y_, (16.26d)
(1=w=K)

where A(W, X) and B(W, X) are the input—output weight enumerating
functions (IOWEFs), and A,(X) and B,(X) are the conditional weight
enumerating functions (CWEFs) of the nonsystematic code.

e A more general class of PCBCs results if the two constituent codes, €1 and
C;, have different block lengths, n{ and n;.

EXAMPLE 16.4 (Continued)

For the (10, 4) PCBC with two identical (7, 4, 3) Hamming codes as constituent
codes, the CWEFs are

322 Z3 2

APC(zy = 5.—:—) =2252%+1.57% +0.2525,
3Z2 2
AFC(z) = CZI32V 1522 4323 1 152°,
, (16.27)

1437

APC(z) = £—+4—) — 025+ 1.52 +2.252°,
332
APC(Z) = (Zl) — 75
the IRWEFs are

APCW. Zy =W (2.2524 +152° + 0.2526) + W2 (1.522 +37% 4+ 1.524) +

W3 (0.25 +157 + 2.2522) + WHz6 (16.28a)
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and
BPC(wW, 2) = w (0.562* +0.372° + 0.0626) + w2 (07572 41523 +0.752%) +
w> (0.19 +1.12Z + 1.6922) + wz6; (16.28b)
and the WEFs are
APCON) = 0255 +3x4 +7.5%° +3x° 402557 + x10 (16.28c¢)
and

BPC(X)=019X%+1.87x* +3.75%° + 1.12%°% + 0.06X7 + X0, (16.284)

We now make the following observations regarding Example 16.4:

o The coefficients of the codeword WEF’s for the PCBC are fractional, owing
to the effect of averaging.

o The sum of all the coefficients in AP (X) equals 15, the total number of
nonzero codewords in the PCBC.

o The minimum distance of the (10, 4) PCBC is almost certainly cither 3 or 4,
depending on the particular interleaver chosen.

o In this example, a detailed analysis (see [11]) of the 4! = 24 possible interleav-
ing patterns reveals that exactly 6 result in a minimum distance of 3, and the
other 18 result in a minimum distance of 4.

o The average codeword multiplicities of the low-weight codewords are given by
Az =0.25and A4 = 3.0.

o The average bit multiplicities of the low-weight codewords are given by
B3 =0.19 and B, = 1.87.

Now, we examine the more general case, illustrated in Figure 16.8, of forming
the constituent codes in a PCBC by concatenating i codewords of a basic (n, k)
systematic code C to form an (hn, hk) h-repeated code C" and using an interleaver
size of K = hk. Again, the original information block and both parity blocks are
transmitted, resulting in a (2hn — hk, hk) PCBC. In this case, the IRWEF of the
code C" is given by

A (W, Z) = [1 1 ACw, Z')]h ~1, (16.29)

where we have included the 1°s in (16.29) to account for the fact that a combination
of all-zero codewords and nonzero codewords in the basic code C can be used

to form a nonzero codeword in the A-repeated code ChoIf A 1(Z’) and Ai (Z)
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Transmitted bits

I
Code C | | —E Code C}

h

Interleaver
length K = hk

FIGURE 16.8: A PCBC with repeated block constituent codes.

represent the CWEFs of two h-repeated constituent codes CJ and C}, then the
average CWEF of the PCBC is given by

A5 as 2)
APC(zy = B T (16.30)
K
(%)
the average IRWEFs are given by
APC W, z) = Z wvaPC(z) (16.31a)
(I<w<hk)
and w
BPCW,2)= Y~ I_WwA;jC(Z), (16.31b)
(=w=<hk)

and the average WEFs can be computed using (16.26).

EXAMPLE 16.5 A PCBC with Repeated Block Constituent Codes

Consider the (20, 8) PCBC formed by using & = 2 codewords from the (7,4, 3)
Hamming code, that is, a (14, 8) 2-repeated Hamming code, as both constituent
codes, along with a uniform interleaver of size X = hk = 8. The IRWEF of the
(14, 8) constituent code is

2
AW, Z) = [1 +WQBRZ*+ ZH + WRZ +3ZH+ W1 +32) + W“zﬂ -1

= W(6Z%+22%) + WH6Z + 62> 492 +62° + 25 +
W32+ 6Z + 1823 +242% + 62°) + W*(152% + 4023 4+ 152%) +
W2(6Z +247° + 1873 + 62° + 225 +
WO +674+972 +62% 4 67°)+ W (273 + 674 + w8z (16.32)

LA T
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and its CWETFs for each input weight are given by
A(Z) =672 +27°, ANZ) =6Z + 622+ 92 4625 + 70,
A(Z) =24 6Z +18Z3 42474 + 62>,  Ay(7) =15Z% + 4023 4+ 1524,
A5(Z) = 6Z +24Z% + 1823 4 625 +22Z°%, Ag(Z) =1+ 6Z +9Z% + 6Z* + 625,

A1(Z) =273 + 677, Ag(Z) = 76, (16.33)

Noie that this code still has a minimum distance of 3; that is, it is a (14, 8, 3)
code, since each of the seven weight-3 codewords in one code can be paired with the
all-zero codeword in the other code, resulting in a total of 14 weight-3 codewords
in the 2-repeated code. Thus, by itself, this (14, 8, 3) code would not be interesting,
since it is longer (more complex) than the (7, 4, 3) code but does not have better
distance properties; however, when it is used as a constituent code in a (20, 8) PCBC,
the resulting code has better distance properties than the (10, 4) PCBC formed from
a single Hamming code.

EXAMPLE 16.5 (Continued)

Using (16.30) we can compute the CWEFs of the (20, 8) PCBC with two identical
(14, 8, 3) 2-repeated Hamming codes as constituent codes as follows:

(622 +273)°

APC(zy = : =4.57% +32° +0.52°,
APC(Zy — (62 + 622 + 97 + 625 + 76)°
2 - 28
=1.297%+2577° +1.297% +3.862° +6.4372° + 377 +
33278 +3.8672° +1.9370 + 0.4321 + 0.04712,
b (2+6Z+1873 +242% +625)
AfCz) = =
=0.07 4+ 043Z +0.64Z% + 1.297° +5572* +5.572°> +
7.077% +15.4377 +14.1478 +5.147° 4+ 0.64719,
ppC gy o (SZ+402°+ 152%)?
4 - 70
=3217%+17.147° +29.297% + 171477 + 3.2175,
bc (62 + 2422 + 1873 + 625 +225)’
APz =

56
=0.64Z> +5.1473 +14.142* +15.437° +7.072° +5.57Z" +
55778 +1.297° + 0.64719 + 0.43711 +0.07212,
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pc (1462 +92% +62* +625)°
AbCz) = 5
O
=0.04 +043Z +1.932> +3.86Z% +3.322* +32° +
6.437° +3.8677 +1.2978 +2.577° + 129710,

273 + 674)°

APC(z) = L*é?) =052°+377 +4578,
2

Z6

Ab€(z) = ) =z (16.34)

1

Then, we can compute the IRWEFs APC(W, Z) and BF¢(W, Z) and the WEFs
APC(X) and BPC(X) using (16.31) and (16.26), respectively (see Problem 16.4).

We now conclude our discussion of PCBCs with a few observations regarding
Example 16.5.

e The minimum distance of the (20, 8) PCBC is almost certainly either 3 or 4,
depending on the particular interleaver chosen, the same as for the (10, 4)
PCBC.

o However, the average codeword multiplicities of the low-weight codewords
have decreased from A3 = 0.25 to A3 = 0.07 and from A4 = 3.0to A4 = 1.72,
respectively, despite the fact that the (20, 8) PCBC contains 16 times as many
codewords as the (10, 4) PCBC.

o Also, the average bit multiplicities of the low-weight codewords have decreased
from B; = 0.19 to B3 = 0.03 and from B4 = 1.87 to B4 = 0.48, respectively.

e This is an example of spectral thinning; that is, the multiplicities of the low-
weight codewords in a PCBC are decreased by increasing the length of the
constituent code and the interleaver size.

e Increasing the code length and interleaver size by further increasing the
repeat factor £ leads to additional spectral thinning, which results in improved
performance at low SNRs, but for block constituent codes the beneficial effect
of increasing s diminishes for large h.

o A better approach would be to increase the interleaver size by using longer
block constituent codes, but efficient SISO decoding of the constituent codes
is more difficult for large block sizes.

Now, we consider the case of PCCCs, in which the constituent codes are
generated by convolutional encoders, as illustrated in Figure 16.1. An exact analysis,
similar to the foregoing examples for PCBCs, is possible but is complicated by issues
involving termination of the constituent encoders. Hence, we make the simplifying
assumption that both constituent encoders are terminated to the all-zero state. (As
noted previously, this is normally the case for the first encoder but not for the second
encoder, because the required termination bits are generated by the interleaver only
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with probability 1/2", where v is the constraint length of the encoder.) The resulting
analysis is nearly exact whenever the interleaver size K is at least an order of
magnitude larger than the constraint length v of the constituent encoders. Because
turbo codes are most effective for shori consiraint lengths and large interieaver
sizes, this condition always holds in practice.

We begin by illustrating the procedure for computing the CWEFs 4,,(Z) of
the equivaleni block code produced by a convolutional encoder that starts in the
all-zero state So = 0 and returns to the all-zero state afier an input sequence of
length X, including fermination bits. For an (n, 1, v) convolutional encoder, the
equivalent block code has dimensions (nK, K — v). The situation here is somewhat
different from that presented in Chapter 11, where we were interested in computing
the WEF of all codewords that diverged from the all-zero state at a particular
time and remerged only once. This WEF was the appropriate one to consider
for evaluating the event- and bit-error probabilities per unit time of an encoder
driven by semi-infinite (unterminated) input sequences. To evaluate the block- and
bit-error probabilities of PCCCs, however, the WEF must include the effect of
multiple-error events, that is, error events that diverge from and remerge with the
all-zero state more than once. This is because the encoders are driven by finite-length
{terminated) input sequences, resulting in an equivalent block code, and the error
probability analysis must consider the entire block, rather than just a particular time
unit. Thus, we will modify the single-error event WEF from Chapter 11 to obtain a
multiple-error event WEF appropriate for PCCCs.

From Figure 16.9 we can see that any multiple-error event in a codeword
belonging to a terminated convolutional code can be viewed as a succession of
single-error events separated by sequences of (’s. We begin by considering all
codewords that can be constructed from a single-error event of length A < K;
the error event is surrounded by (K — ) 0’s. Because the (K — A) 0’s are divided
into two groups, one preceding and one following the error event, the number of
single-error events is the number of ways of summing two nonnegative integers that
add to K — A. Thus, the multiplicity of block codewords for single-error events is
given by

c[x,1]=<[<_1k“):1{—x+1. (16.35)

Next, consider a pair of error events with total length A < K; that is, the two error
events have a total of (K — 1) 0’s appearing before, after, or between them. In this
case, the (K — A) 0’s are divided into three groups, and the number of double-error
events is the number of ways of summing three nonnegative integers that add to

All-zero (correct) codeword

-

WA

Error events

FIGURE 16.9: Multiple-error events in a terminated convolutional code.



792 Chapter 16 Turbo Coding

K — ). Thus, the multiplicity of block codewords for double-error events is given by

C[k,2]=<K_Hz)Z(K—)\+2)(K—x+1)~ (16.36)

2 2

In general, the number of s-error events with total length A < K is the number of
ways of summing & + 1 nonnegative integers that add to K — A, and the multiplicity
of block codewords for h-error events is given by (see Problem 16.7)

c[x,h]:<K‘2‘+’“>. (16.37)

To proceed with the computation of the CWEFs A,,(Z) of the equivalent block
code produced by a convolutional encoder that terminates after an input sequence
of length K, we must know the number AS’)Z, , of single-error events of length A < K

with input weight w and parity weight z, the number A(u%l , of double-error events
of total length A < K with input weight w and parity Wéfght z, and so on. We can
obtain the single-error event enumerators A(l)A(Z) Z(L AS)Z 225, A < K, directly
from the IRWEF A(W, Z, L) of the unterminated convolutional code by simply
dropping all terms of order larger than LX and then collecting together all terms
with input weight w and length A. To determine the double-error event enumerators
A? )K(Z) Z(Z) Afi):’/\Zi A < K, we must examine all pairs of terms in the IRWEF
A(W, Z, L) for which the total length of the two error events is 4 < K. We can do
this by defining the double-error event IRWEF AD (W, Z, L) of the unterminated
convolutional code as follows:

AP W, Z, Ly=[AW, Z, L)]. (16.38)

We can now obtain the double-error event enumerators AS?A(Z), & =< K, from the
double-error event IRWEF A®) (W, Z, L) by dropping all terms of order larger than
LX and then collecting together all terms with input weight w and length A. We can
find higher-order error event enumerators in a similar way. Then, we can compute
the CWEFs as
Aw(Z) = > crn1 A%, (@), (16.39)
(A=K, 1=h=<hma)

where 4., the largest possible number of error events associated with a weight w
input sequence, depends on w and the code parameters.

EXAMPLE 16.6 Computing WEFs for a Terminated Convolutional Code and
a PCCC

For the (2, 1, 2) systematic feedback convolutional encoder whose generator matrix
is given by
Gp(D)=[1 (1+D»/1+D+D? ] (16.40)

and whose encoder block diagram and state diagram are shown in Figure 16.10,
consider the (18,7) block code obtained from a length K = 9 input sequence,
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o !0

FIGURE 16.10: Encoder diagram and state diagram for Example 16.6.

including v = 2 termination bits. The IRWEF of this encoder is given by (see
Example 11.14 in Chapter 11)

AW, Z.L)y=LW3 2> + L*W?Z  + w3z  + w'z?) +
Loowizt+ wizh + L7zl 12wzt w22 + WO Zh +
L2ew?z8 + 3wzt 2wzt + wozh + LOBW3Z0 + 3w Z0 4
3WIZY+ WOz 4 2WOZt  WTZh (16.41)

After dropping all terms of order larger than L°, we obtain the single-error event
enumerators as follows:

Ahaoy=zt ahz=12°

=2 o=z Ao =22t allm =225 Al =328
AS@ =72, App(z)=27", @ =2zt ANz =374 aly2) =326
Aé%%@ =zt 4+ 7%, ‘4%(2) =27", A;%(Z) =374

A=z Ay =2 +27"

s =2 (16.42)

Note that there are no weight-1 input sequences for this code, since a second 1 is
needed to terminate the encoder. To determine the double-error event enumerators
AS?A(Z), we first form the double-error event IRWEF A@ (W, Z, L) as follows:

APDW, Z, Ly=[AW. Z, L)}
=LOWOz* 1207 W3zZ8 + L3 WA Z® 1 2wz 42wz +
Lew>z8 +6woz8 42w’ z% 4 ... . (16.43)
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Dropping all terms of order greater than L° gives us the double-error event
enuinerators

A2 =28

a(z) =225 a¢)z) =22}

(16.44)
AZzy =24 A (z) =225 AZy(z)=67°
AP(z) =224, ASN(2) =22°
Following the same procedure, we obtain the triple-error event IRWEF,
AW, Z, L) =[AW, Z, P = L°W°Z% + ... (16.45)

and we see that there 18 only one triple-error event of total length A < 9. The
triple-error event enumerator is given by

ASNZ) = Z°, (16.46)

and it is clear that there are no higher-order error events of total length A < 9.

Before using (16.39) to compute the CWEFs, we must determine /.45 for each
input weight w. From the double-error event IRWEF in (16.43) we see that there
are no double-error events with input weight w < 4; that is, sy, = 1 for input
weights 2 and 3. Similarly, from (16.45) we see that there are no triple-error events
with input weight w < 9; that is, 4,,,x = 2 for input weights 4 through 7. Finally,
it is clear that Ay, = 3 for input weight 9. Now, using (16.37) and (16.39), we can
compute the CWEFs for the (18, 7) block code as follows:

Ay (Z) = [4. 11485 2) + c[7.11450(2) = 62 + 32
A3(Z) = ¢[3.1)A§3(2) + c[5, 1JAYH(Z) + cf6. 1145%(2) +
¢[8, 1148%(2) + ¢[9,1]45%(2)
=72%+132* + 728
Ax(Z) = e[S, 1]A52Z) + c[6,1]A04(Z) + €[7, 1]AL5(2) + c[8,1]40%(2) +
c[9, 1]A¢ o(Z) +¢[8, 2]A§fg(z)
=572 +162% +37° 43278
As(Z) = o[T.1]AL0(Z) + c[8, JASX(Z) + c[9. 1]AS 3 (Z) +
c[7,20A85(2) + ¢[9, 21455(2)

=37%+102* +122% 4278
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A(Z) = c[8. 1]AJ3(Z) + ¢[9.1]AL3(Z) + cl6, 21454 (Z) +
c[8, 21A33(2) + ]9, 21405(Z)
=7 +14z% + 1225
A7(Z) = e[9, 1]AYN(Z) + ¢[8, 2]ATH(D) + ¢[9, 2]AVN(2) = 72* + 228
Ao(Z) = ¢[9,3145)(Z) = Z°. (16.47)

As a check, we note that the CWEFs include a total of 127 nonzero codewords, the
correct number for an (18, 7) code. Finally, the IRWEF and WEF are given by

AW, Z) = W2 (62* +328) + W3 (722 +137% +72°) +
w4 (522 +162% +325 + 328) + WS (322 +10Z* + 1226 + 2;:8) +
W (zz L1474 + 1226) + W (72‘-‘ + 226) + WOz, (16.48a)
and

A =13 +11X04+16X7+20x3 +17xX°+17x0 4 191 +15x17 4 4513 4 x5,
(16.48b)

Note that this terminated convolutional code has free distance 5, the same as
the free distance of the unterminated code; that is, it is an (18, 7, 5) code. We can
also see that it has codeword multiplicities of A5 = 7. Ag = 11, A7 = 16, - -; that
is, it has a dense weight spectrum. We next calculate its average-weight spectrum
when it is used, along with a size K = 9 interleaver, as a constituent code in a
(K, K —v) = (27,7) PCCC.

Before proceeding with this calculation, however, we must modify the uniform
interieaver concept to take into account that the termination bits of a convolutional
encoder are not information bits. In other words, for an input sequence of length
K, the number of information bits is only N — v, where v is the encoder constraint
length, and we must modify the denominator in the uniform interleaver averaging
expression given in (16.23) so that we divide only by the number of valid input
sequences of each weight and not by all length-X sequences of a given weight; that
is, because the v termination bits are fixed for a given information sequence of
length X — v, only a fraction 1/2" of all length-K input sequences are valid. This
technical detail complicates our example somewhat, but, as we will see shortly, for
large K and small v, that is, normal turbo code parameter values, we can use an
approximate analysis that makes this modification unnecessary.

EXAMPLE 16.6 (Continued)

We begin by noting from (16.47) that there is 1 valid input sequence for weights 0
and 9, there are no valid input sequences for weights 1 and 8, there are 9 valid input
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sequences for weights 2 and 7, and there are 27 valid input sequences for weights 3,
4,5, and 6. Then, using the modified version of (16.23), we can compute the average
CWEFs of the (27, 7) PCCC as follows:

674 + 375
APC(z) = (62* +32°) _ 478 4 4710 £ 712
ppe iz o 12 +1324 726)*
3 - 27
=1.81Z2* +6.747° +9.897% + 6.747'0 + 1.81212,
APz - 57 416784320 + 378)°
4 - 27
=0.93Z%+5.937% + 105928 + 467710 + 389712 + 0.677 + 033716,
aPC g o (7410244 1220+ 228)
5 - 27
=0.332%+2.227%+ 63728 +9.33210 + 6.817'2 + 1.7871 4 0.1571°,
e 2 (187 1226)°
6 - 27
= 0.047% +1.047° + 81578 +12.44710 4 533712,
774 +276)°
AP (z) = L-ig—) =5.4478 +3.112"0 + 044212,
2
Z6
AFC(z) = g—l)— =72 (16.49)

Finally, we can compute the average IRWEF A”¢(W, Z) and the average WEF
APC(X) using (16.24) and (16.26a), respectively (see Problem 16.8).

We now make a few observations regarding Example 16.6.

e The free distance of the (27, 7) PCCC is 7, an increase of 2 compared with the
(18, 7) constituent code. An increase in free distance is expected, though, since
the (27,7) code has a lower rate than the (18, 7) code. Note that in this case
the minimum-weight codeword is produced by an input sequence of weight 3.

o The average multiplicities of the low-weight codewords, namely, A7 =
1.81, Ag = 0.93, and A9 = 7.07, are smail compared with the low-weight
multiplicities of the (18, 7) code. This is another example of spectral thinning.

e Increasing the code length and interleaver size K leads to additional spectral
thinning, which results in improved performance at low SNRs. In fact, we will
see shortly that for large X, the multiplicities of the low-weight codewords in
a PCCC are reduced by a factor of K compared with the constituent codes.
This multiplicity reduction factor is called the interleaver gain.
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o The calculation of the average bit IRWEFs B(W, Z) and B” C(w, Z) for this
example is also complicated by the fact that the termination bits are not
information bits, and the factor (w/K) in (16.25) must be adjusted to consider
only the information bits (see Problem 16.9).

o The observations that turbo coding produces (1) a normal increase in free
distance owing to the reduction in code rate and (2) a large decrease in
codeword and bit multiplicities owing to the interleaver gain illustrate that,
unlike conventional code design, turbo codes are designed to reduce the
low-weight multiplicities rather than to increase the free distance. This results
in much better performance than conventional codes achieve at low and
moderate SNRs but somewhat weaker performance at high SNRs.

o By including the termination bits for the first encoder in the interleaver, we
cannot guarantee that the second encoder terminates (in fact, as noted earlier,
it will do so only with probability 1/2"), but this has little effect on code
performance for large K.

Before extending the analysis to larger block lengths and interleaver sizes,
we note that the uniform interleaver averaging represented by (16.23) results in

dividing the product of the constituent code CWEFs by the factor [5} . Because

there are no weight-1 input sequences to a terminated systematic feedback encoder
(because of the termination bits), the nonzero input weight with the smallest division

factor in (16.23) is the w = 2 term, for which the division factor is (( I; ) For

w = 3, the division factor ) is larger by roughly a factor of K. In other words,

3
compared with their relative influence in the individual constituent codes, weight-
3 input sequences in PCCCs are less important than weight-2 input sequences,
since they are associated with lower average codeword and bit multiplicities. Thus,
particularly for large block lengths K, the codewords associated with weight-2 input
sequences become the most important contributors to the low-order terms in the
weight spectrum of PCCCs.

To develop an approximate weight spectrum analysis of PCCCs for large block
lengths, we begin by simplifying the expression given in (16.37) for the number of
codewords containing s error events of total length A in a terminated convolutional
code with block length K. Because, for the low-weight codewords of primary
interest, both the number of error events i and the total length A of error events
cannot be large (or else the weight would also be large), for large K it is reasonable
to approximate the number of codewords containing # error events in a block as

c[h] %( f )) (16.50)

independent of the total length & of the error events. Then, the CWEFs of the
equivalent (nK, K — v) block code are given by

An(Zy= > clh]AP(2), (16.51)

(A<h<hmay)
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where AV (Z) is the h-error event enumerator for input weight w. (We note here
that the h-error event enumerators of (16.39) and (16.51), Afyh’)k(Z) and Aguh)(ZL
respectively, are related by the expression Az(‘/})(Z) = Z(ng) Afj’y)k(Z); that is,
AP (Z) counts h-error events of all lengths.)

From (16.23), (16.50), and (16.51), the average CWEFs of the PCCC with the

same (nK, K — v) terminated convolutional code as constituent codes are given by

clhilelhy
Al = > %Ag”)(zmg’z)(zy (16.52)
(I=hy Shpax) I<hy<hpmay) ( >
w

For K > h, we can use the approximation

K Kh
( . )m - (16.53)

to obtain
w!
APC(zy ~ Z Z m—'K<’“+h2—w>Ag”>(Z)A§,72)(Z). (16.54)
(1517151’11110.\'> (15172517/7141.\’) T 2

We can further approximate by saving only the (most significant) term in the double
summation of (16.54) with the highest power of K, that is, the term corresponding
to b1 = hy = humayx, which gives us the approximate codeword CWEF

PC ~ w! Qhax~w) (Rinax) 2
AL D~ G K [Aw (Z)] (16.55a)

and the approximate bit CWEF

BPC(Z) = E . —W' K(ZhIlm.\’_w) I:A(hma,\')(z)]Z
w w
K (hpax)? (16.55b)
- w! 2 )
—_ w-w 5 K(thux_w“l) {Agjma.\')(z)] .
(hmax!)

(It is worth noting that taking only the term corresponding t0 by = hy = lypqx In
(16.54) is equivalent to saying that for a fixed input weight w, the lowest-weight
codeword is likely to contain the maximum number of error events, so that it
is merged with the all-zero codeword as much as possible.) Finally, the average
IRWEFs of the PCCC are given by

APCw,zy= > WYAL“®) (16.56a)
(1=<w=K)
and
B w.zy= Y %W“’ASC(Z): S wYBLC(2), (16.56b)

(I=w=Kk) (I=w=K)
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and we can compute the average WEFs using (16.26). (In the calculation of the
approximate IRWIEFSs from (16.56), the sums should be taken only over those w for
which the approximations of (16.50), (16.53), and (16.55) are reasonably accurate,
that is, w’s of relatively low weight.) The extension of this analysis to PCCCs with
different constituent codes is siraightforward.

EXAMPLE 16.7 Computing Approximate WEF's for a PCCC

Consider a (3K, K — 2) PCCC in which both constituent codes are generated by the
(2,1, 2) sysiematic feedback encoder of Example 16.6, but now for a block length of
K > v = 2. For input weights w = 2 and 3, hu4c = 1 and (16.55) simplifies to

APC(Z) ~ wl - K [A(U(Z)] (16.57a)
and
BPC(Z) ~w - w! - KW [A(D(Z)] (16.57b)
and for input weights w = 4 and 5, hye = 2, and (16.55) is given by
i 2
APC(Z) ~ % NGl [A;%’(Z)] (16.582)
and
BEC(Zymw. . g G [A(z)(Z)] (16.58b)

(Note that in Example 16.6 when K = 9, himay = 2 also for w = 6 and 7, but this

is not the case for large K.) Including only these terms in the approximate average
IRWEFs for the PCCC gives

APCW, 2y~ ST WUALC(Z)
(2=w=5)
2 6 2 2
—ow? [Aé”(Z)] + =W [Agl><z>] +ow? [Af)(Z)] +
30 57,2, 77
"IEW I:AS (Z)] I (16.59a)
and
BPC W, 7) ~ Z w¥BIC(z)
2<w<5)
IR 7 IC pU I L Y e VI L Y e i
=W [AZ (Z)] + =W [A3 (Z)] W [A4 (2)} +
150 S[A@RZ)] (16.59b)

The single- and double-error event enumerators AS)(Z) and Ag)(Z) needed to
evaluate (16.59) include all single- and double-error events up to length K; however,
the terms of most interest, that is, the lowest-weight terms, can be obtained from
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Example 16.6, which counts all error events up to length K = 9. Thus, from (16.42)
and (16.44), we obtain

AVZy~ 74+ 28 AD(Z) ~ 22 +32% 4+ 525
22 32 (16.60)
AP (2) ~ 78 AP (2) ~ 276 + 278,
and (16.59) becomes

2 6 2
APC (W, Z) ~ 2w? [z“ + 26] 1 EW3 [zz 13744 526} +
2 30 2
4[]8 N 576 8 o
6W [z} W [22 +ZZ} n
= W2 (228 1470 4 2212) +wh (6216) +
1
1}&/3}?(624 +362° + 11428 + 180710 + 150212) +
1 .
Wi (120212 2402 4 120216) e (16.61a)
and
1 1
PC ~ w2 (478 10 12 a1 16
BICW, 2) ~ WP (42 +8710 147 )+W K(24z )+
1
e o (1824 410875 434228 + 540710 + 450212) 4

1
Wi (600212 +120021 + 600216) T (16.61b)

Note that the approximate expressions of (16.61) contain no terms of order (1/K)>
or higher. (These terms clearly have little influence on the IRWEFs for large values
of K.) Finally, we obtain the approximate average WEFs from (16.26) as follows:

6 36 114 180
APCO) ~ =X+ X ax104 x4 ax2 4 ox B pox 4 (16.61¢)
K K K K
and
18 108 4 342 8 540 4
PC ~ 7 9 10 11 12 13 14
R R R S R S C R S

(16.61d)

The following remarks apply to Example 16.7:

o The minimum free distance of the (3K, K — 2) PCCC still appears to be 7,
but the average codeword multiplicity is only A7 = 6/K. For large K, this
means that the probability that a particular interleaver will result in a weight-7
codeword is very small; that is, the free distance in almost all cases will be
greater than 7.
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8]

Approximations (16.61¢c) and (16.61d) do not indicate the presence of any
codewords of weight 8, because we kept only the most significant term in
the double summation of (16.54). If the term leading to weight-8 codewords
had not been deleted from (16.54), however, it would have order (1/K)? in
APC (X) and order (1/K)> in BPC (X); that is, it would have a negligible effect
on the WEFs for large XK.

e}

The average multiplicity of weight-9 codewords is Ag = 36/K; that is, for large
K the probability of a weight-9 codeword is very small.

[e]

The average multiplicity of weight-10 codewords is Ajg = 2; that is, the
interleaver does not purge the code of weight-10 codewords, and in almost
all cases the free distance of the PCCC will be 10. We see that the weight-10
codewords are generated by weight-2 input sequences, thus illustrating the
importance of weight-2 input sequences when X is large that was noted earlier.

e}

The (average of) two weight-10 codewords are produced by the K — 2 input
sequences u(D) = D/(1 + D3), 0 <[ < K — 3, where we note that 1 + D? is
the shortest weight-2 input sequence that terminates the encoder. This input
sequence generates the weight-4 parity sequence v(D) = 14+ D 4 D? + D3,
A pseudorandom interleaver will typically leave two of these K — 2 input
sequences unchanged (except for time shifts), and in these cases the second
encoder will output the same weight-4 parity sequence, resulting in codewords
of weight 10. (To see this, assume that the first 1 in one of the foregoing weight-
2 input sequences is permuted to an arbitrary position by the interleaver. There
are then two positions out of the remaining K — 1 positions, that the second 1
can appear and still give the same input pattern, namely, either three positions
before or three positions after the first 1. Thus each of the K — 2 “bad”
input sequences has probability 2/(K — 1) of retaining its bad property after
interleaving, which leads io the average multiplicity of Ajg = 2 for weight-10
codewords.)

o FFor each constituent terminated convolutional code by itself, the low-weight
codeword multiplicities increase linearly with K (because of time invariance),
but for the PCCC the multiplicities of the low-weight codewords are smaller
by factors of (1/K)?. p > 1. Note that the largest factor, that is, (1/K)!, is
associated with terms resulting from input sequences of weight 2.

o From (16.61d), we see that the bit multiplicities of the low-weight codewords
are By = 18/K?% By = 108/K?, Byy = 4/K, and so on. Because the bit
multiplicities of the low-weight codewords in the PCCC decrease with K, we
say that the PCCC possesses interleaver gain.

EXAMPLE 16.7 (Continued)

We continue the example by computing the approximate low-weight codeword and
bit multiplicities, using (16.61¢) and (16.61d), for three specific cases: K = 100, 1000,
and 10000. The results are presented in Table 16.5, where the entries for the bit
multiplicities B, clearly portray the interleaver gain effect. For each weight d. the
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TABLE 16.5: Approximate codeword and bit multiplicities for the
(3K, K —2) PCCC of Example 16.7.

166 1960 10000
Ag By Ag B, Ay By

K

d

7 1| 0.06 | 0.0018 |} 0.006 | 0.000018 || 0.0006 | 0.00000018
8 || 0.00 | 0.0000 || 0.000 | 0.000000 || 0.0000 | 0.00000000
9 || 0.36 | 0.0108 || 0.036 | 0.000108 || 0.0036 | 0.00000108
10 || 2.00 | 0.0400 || 2.000 | 0.004000 || 2.0000 | 0.00040000
11 || 5.40 | 0.1620 || 0.540 | 0.001620 || 0.0540 | 0.00001620
12 | 4.00 | 0.0800 || 4.000 | 0.008000 || 4.0000 | 0.00080000
13 || 1.80 | 0.0540 |} 0.180 | 0.000540 || 0.0180 | 0.00000540
14
15
16
17
18
19

2.00 | 0.0400 || 2.000 | 0.004000 || 2.0000 | 0.00040000
1.50 | 0.0450 || 0.150 | 0.000450 || 0.0150 | 0.00000450
0.00 | 0.0000 || 0.000 | 0.000000 || 0.0000 | 6.00000000
1.20 | 0.0600 || 0.120 | 0.000600 | 0.0120 | 0.00000600
0.00 | 0.0000 | 0.000 | 0.000000 || 0.0000 | 0.00000000
2.40 | 0.1200 || 0.240 | 0.001200 || 0.0240 | 0.00001200

value of B, decreases by one or two orders of magnitude for each order of magnitude
increase in K. Note in particular that the interleaver gain for codeword weights 7
and 9 is larger by roughly a factor of (1/K) than for codeword weight 10. This is
because weight-10 codewords are generated by weight-2 input sequences, whereas
weight-7 and weight-9 codewords are generated by weight-3 input sequences. This
is another illustration of the importance of weight-2 input sequences when the block
length K becomes very large.

In Problems 16.10 and 16.11 we repeat Examples 16.6 and 16.7 for the system-
atic feedback convolutional encoder whose generator polynomials are inverted, that
is, the encoder given by

GpD)=[1 1+D+DH/1+D% . (16.62)

The (2,1,2) convolutional code generated by this encoder also has dg.. = 5;
however, in this case, the minimum-weight codeword is produced by an input
sequence of weight-2, that is, w(D) =1+ D?. Thus, when this code is converted to a
(3K, K — 2y PCCC, its minimum free distance for both small and large values of K
will be 8. (The parity weight corresponding to the weight-2 input sequence is 3, which
is repeated twice in the PCCC.) In other words, when the minimum-weight codeword
is produced by an input sequence of weight-2, increasing the block length X results
in interleaver gain, which reduces the bit multiplicities, but no improvement in free
distance is achieved. This contrasts with the code in Examples 16.6 and 16.7, where
the free distance improved from 7 to 10 by increasing the block length K.

From the results of Examples 16.6 and 16.7 and Problems 16.10 and 16.11 we
conclude that to maximize the free distance of a PCCC, a constituent code should
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be chosen whose minimum-weight codeword is produced by an input sequence of
weight greater than 2. This is usually the case when the feedback polynomial is
chosen to be primitive, as in Examples 16.6 and 16.7. This is because a primitive
polynomial has maximum cycle length; that is, it maximizes the length of the weight-
2 input sequence needed to terminate the encoder. Depending on the numerator
polynomial, this normally results in higher parity weight than when one or more
shorter, higher-weight input sequences terminate the encoder. Because the free
distance determines the asymptotic, that is, large-SNR behavior of a code, primitive
feedback polynomials are good choices to optimize the large-SNR performance of
PCCCs. One should not conclude, however, that the choice of primitive feedback
polynomials also optimizes the small-SNR performance, where the low-weight
codeword multiplicities and the dynamics of iterative decoding are more important
than the free distance. In fact, experience with different code selections suggests
that, in general, primitive feedback polynomials optimize large-SNR behavior, but
nonprimitive polynomials with shorter cycle lengths are better for small SNRs.
A more extensive analysis of constituent code design for PCCCs is included in
Section 16.4

The preceding discussion, along with a close examination of the power of K,
namely, 2h,q. — w — 1, in (16.55b) illustrate that the input weights that produce low-
weight codewords in the constituent code must be at least 2 to achieve interleaver
gain in PCCCs. Interleaver gain results only when the power of K in (16.55b) is
less than or equal to —1, so that the bit multiplicities decrease with increasing K.
Because hy,qy is always 1 for the lowest-weight input sequences, this means that the
lowest input weight w that produces low-weight codewords must be at least 2. When
feedback encoders, that is, recursive convolutional codes, are used as constituent
codes, almost all weight-1 input sequences produce high-weight parity sequences,
and thus high-weight codewords. (The only exception is when the nonzero input
does not appear until the end of the information block, but the number of these
sequences is small and does not grow linearly with K. Also, when the encoder is
terminated, then at least one more 1 must enter the encoder, and hence the total
input weight is still at least 2 in this case.) Thus, for recursive constituent codes, all
low-weight codewords are produced by input sequences of at least weight 2, and
interleaver gain is achieved.

This is not the case when short block codes are used as constituent codes.
When a short block code is repeated to achieve a large block length and interleaver
size, there exist low-weight codewords produced by a single 1, thus negating the
possibility of interleaver gain. If a single long block code is used as a constituent
code, the desired property can be achieved by choosing the weight of each row of
the generator matrix G to be large; however, efficient SISO decoding methods for
such long codes are difficult o realize.

Interleaver gain is also not possible when short constraint length feedforward
convolutional encoders, that is, nonrecursive convolutional codes, are used as con-
stituent codes. This is because single input 1’s in short constraint length feedforward
encoders produce short, low-weight output sequences, and thus large low-weight
codeword multiplicities result from parallel concatenation. This point is iliusirated
in the next example.
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EXAMPLE 16.8 A PCCC with Feedforward Constituent Encoders

Consider the (3K, K —2) turbo code (PCCC) generated by the paraliel concatenation
of a (2, 1, 2) nonsystematic feedforward encoder, as shown in Figure 16.11. (Recall
that for nonsystematic encoders the weight spectrum is represented by the IOWEF
rather than the IRWEF.) Assume that the generator matrix of the encoder is
given by

G (Dy=[1+D+D* 1+D%]. (16.63)

The code produced by this encoder is identical to the code produced by the
systematic feedback encoder of Examples 16.6 and 16.7, but the mapping between
input sequences and codewords is different. That is, the two codes have identical
WEFs but different IOWEFs. To analyze the weight spectrum of this PCCC, we must
determine both the conditional IOWEF Ag' (X) of the nonsystematic nonrecursive
constituent code €y and the conditional IRWEF Agz(Z) of the (2, 1, 2) systematic
nonrecursive constituent code C; whose parity generator is used to reencode the
input sequence after interleaving. In our example, this systematic nonrecursive code
is generated by the feedforward encoder

G,m=[1 1+D*]. (16.64)
Then, the effect of uniform interleaving is represented by

AS (DA (Z)

APCx, 2y = , (16.65)
K
(v)
and the approximate expression for large X is
clhilelha] ,
AlCx zy~ - > —K—Ag D(X)AYD (7, (16.66)

(I<hy <hmay) ASho<hmay) ( w )

FIGURE 16.11: A PCCC using feedforward constituent encoders.
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where AUV (X and A0 (7) are the conditional 10 and IR /-error event WEFs of
the nonsystematic and systematic constituent codes, Cy and C», respectively. Now,
following the approximations of (16.53)—(16.55) results in

w!

ASC(X Z) ~ ]{(’7177111\'+]7211111\'7w)Ag”mu\)(X)Ag}lnm\)(z) (16678{)

hlma.\’! . h2)71(l.Y!
and

wl

BSC(}(* Z) W - I{(hlmu\+h2ma,\’7w7]-)Afl]}]muv)(X)A%?ZW(L\')(Z).

B imax! - P!
(16.67%)

Because the total codeword weights in the resulting PCCC are sums of powers of X
and Z, the average CWEFs are

APC(xy = aPC(x, Z)[Z_Y (16.68a)

and
BPC(x) = BPC(x, Z){Z_Y. (16.63b)

the average IOWEFS are given by
AFCw = " wrALCx) (16.69a)
(I<w<K)

and

BPCW, Xy = 3 %W?*'AQC(X) = 5 wYBEw, (16.69b)
(I=w=K) (1<w=<K)

and the average WEFs are given by
APCxy = APC(w, X){W_l (16.69¢)

and
BPC(x) = BPC(w, X)|W~l. (16.694)

Beginning with the nonsystematic constituent code generated by (16.63), we
see that its IOWEF is given by (see Problem 11.23)

AW, X, L) = WXL+ WL A+ X0+ W31 + 1)%%7 4+ +
WwLw+2(1 + L)w*1XUJ+4 4o, (1670)

Going directly to the large-K case, we note that for any input weight w, w >
1, hpmaxr = w, since the weight one single-error event can simply be repeated w
times, and therefore i

AW(xy=x"" w>1. (16.71)

Now, for the systematic constituent code generated by (16.64), we find that its
IRWETF is given by (see Problem 11.24)

AW, Z, L) = WZ?L3 + W?Z' LY + W2Z2L (1 + WZ7) +
w3Z2L (222 + Wz2) . (16.72)
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Again, for any input weight w, w > 1, A, = w, and hence,

AWN(Zy=2Z%, w>1. (16.73)

Now, substituting into (16.67) we obtain

and

: K%
ALC X2y S KO wmu) ySu Z = S xS 72 (16.74a)
w:) - . w!:
(w-1)
BPC(x,2) ~ T Xz, (16.74b)

Finally, applying (16.68) and (16.69) gives us the average IOWEFs,

PC w K" 7w g K2 o4 KB 5oo
APCW. X) ~ Z WFX = KWX + —w?x"+ —wx? 4 ...

2 6
(1<w<K)

(16.75a)

and

K2
BPCw, Xy~ WX + Kwix™ + 7W3X21 +oen (16.75b)
and the average WEFs,
K? K3

APC XY~ KX + 7X14 + ?Xﬂ +-- (16.75¢)

and

K* 5

BPC(X)y~ X" + KXY + S X4 (16.75d)

We now conclude this section with a few observations regarding Example 16.8.

e The free distance of the (3K, KX — 2) PCCC is 7, and the average codeword

multiplicity A7 &~ K grows linearly with K. Also, the average bit multiplicity
of the weight-7 codewords is By = 1, because the weight-7 codewords are
generated by weight-1 input sequences, and the interleaver has no effect
(other than time shifts) on weight-1 input sequences. This contrasts with
the feedback encoder case, in which the bit multiplicities all decrease with
increasing K. Thus interleaver gain does not apply to feedforward encoders.

The approximate expressions of (16.75) do not indicate the presence of any
codewords with weights between 7 and 14, because we kept only the most
significant term in the double summation of (16.66). If the terms leading
to codeword weights between 7 and 14 are also retained, we find that the
corresponding codeword and bit multiplicities do not grow linearly with K,
and thus they will have a negligible effect for large K compared with codeword
weights 7 and 14.

o From this example it is clear that when feedforward encoders are employed,

hmay 1s always equal to w. This is because, in the feedforward case, the weight-1
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input sequence produces the minimum length (equal to the constraint length
v) terminated output sequence, and hence the maximum number of error
events that can be produced by a weight-w input sequence is achieved by
simply repeating this shoitest error event w times. This is not true for
feedback encoders, since in this case the weight-1 input sequence produces an
unterminated output sequence.

o As in the case of block constituent codes, long constraint length feedforward
encoders could be used as constituent codes, but efficient SISO decoding
methods for such long codes are difficult to realize.

In the next section we use the results of the weight spectrum analysis presented
in this section, along with standard union bounding techniques, to evaluate the
performance of PCCCs.

PERFORMANCE ANALYSIS OF TURBO CODES

We can now use the union bounding techniques developed in Chapter 12 to estimate
the performance of turbo codes. We will consider both the word-ervor probabiity

Py(E)< ) AdPy, (16.76)
(ree<d)
and the bit-error probability
PyEY< Y BaPu, (16.77)
(d/'reefd)

where Ay is the codeword multiplicity, By is the bit multiplicity, P, is the pairwise
error probability for a codeword of weight d, and dj., is the minimum free distance
of the code. In this chapter we concentrate on code performance for a binary-input,
unquantized-output AWGN channel. In this case, as shown in Chapter 12, P, is

given by
2dRE
szQ(( __b>, (16.78)
No
which can be bounded as
dpoeRE
Pp<f (—f’ e;,() b) (e REr/Noyd, (16.79)

where R is the code rate, E;,/ Ny is the energy per information bit to one-sided noise
power spectral density ratio, that is, the SNR, and the function f (-) is defined as

fa)=e-0 (@z) . (16.80)
Now, substituting (16.79) into (16.76) and (16.77) gives us the expressions
dfree REp —RE} /Ny ?
Py(EY<f <T) (dgd) Ay (6‘ )
Jree= (16.81)

= f (dfre;[REb
0

) CAX)

X:e"REh/NO



808 Chapter 16 Turbo Coding

and

dpee REp =— o d
Pb(E)Ef( .elevo z) S B (el,\E,,/NO)

(dfpe<d) (1682)

_ dfreeREbb
- r(F5) 2w

X =~ REp/Np

Thus, to bound the performance of a turbo code, all one needs is the free distance
dfree, the codeword WEF A(X), and the bit WEF B(X). For values of E,/Ng above
the SNR at which the code rate R equals the channel cutoff rate Rg, that is, for

B 1y, (21—R - 1) g (16.83)
Ny R
the first few terms of each WEF are all that are needed for an accurate estimate of
performance. For values of E/ Ny below this limit, however, more terms are needed
and the bound diverges, a characteristic that is typical of all union bounds.

We now consider several examples illustrating the application of the foregoing
bounds to estimate the performance of turbo codes.

EXAMPLE 16.9 Performnace Bounds for Turbo Codes

Consider the rate R = 1/3 PCCC generated by the systematic feedback encoder of
Examples 16.6 and 16.7. Approximations to the codeword and bit WEFs are given
in (16.61c) and (16.61d), and the free distance of this code is dpe. = 7. (Note that for
large K, most interleavers will result in a free distance of df. = 10, but in evaluating
the bound we must use the smallest possible free distance, namely, dfe. = 7.)
Substituting these expressions into (16.81) and (16.82) allows us to calculate the
bounds on word- and bit-error probability as functions of E,/Ny. Results are
shown in Figure 16.12 for three values of the interleaver size (information block
length): K = 100, 1000, and 10000. (The program used to plot the bounds of
(16.81) and (16.82) was based on the approximations of the WEFs given in (16.61c)
and (16.61d) but included more terms for greater accuracy.) P, (E) is plotted in
Figure 16.12(a), and P, (E) in Figure 16.12(b). For comparison we also show the
three corresponding P, (E) simulation curves for the optimum free distance (3, 1,
4) terminated convolutional code in Figure 16.12(a), and the corresponding P (E)
simulation curve for the unterminated version of this code in Figure 16.12(b). A
16-state convolutional code is chosen for comparison with the 4-state PCCC because
their decoding complexities are roughly equal. Finally, a simulation curve for the
PCCC with K = 10000 is shown in each figure. The PCCC simulations were
generated using a typical pseudorandom interleaver and 18 iterations of decoding.

Several observations regarding Example 16.9 follow:

o The PCCC curves in Figure 16.12(b) clearly indicate the effect of interleaver
gain. For each factor-of-10 increase in X, the P, (E) curves improve by roughly
the same factor. (Note, however, that the SNR difference in the P, (E) curves,
that is, the coding gain, achieved by increasing K becomes smaller for large
Eb/NO-)
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FIGURE 16.12: (a) Word- and (b) bit-error probability curves for a PCCC
convolutional code with rate R = 1/3.

and a
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The Py, (E) curves for the PCCC in Figure 16.12(a) merge for large K because
the number of weight-10 codewords remains fixed at two and does not decrease
with increasing K. For the convolutional code, on the other hand, P, (E)
becomes worse as K increases. This is to be expected, since with increasing
block length the occurrence of at least one error event becomes more likely.
This effect is masked by the interleaver for the PCCC, because there are no
low-weight codewords whose multiplicities increase linearly with K.

Compared with the convolutional code, the PCCC offers substantial coding
gain, both in terms of P, (E) and P, (E). For example, for P, (E) = 102,
the PCCC with K = 10000 achieves a 3.8-dB coding gain compared with the
convolutional code, despite the fact that the convolutional code has free
distance 12, larger than the (most likely) free distance of 10 for the PCCC.

The bounds are not extended to SNRs below 2 dB, the cutoff rate limit for
rate R = 1/3 given by (16.83), since they diverge below this point, as noted
previously. (In the case of K = 10000, the PCCC simulation is used to extend
the bound below 2 dB.) At lower SNRs, the simulation curves show much
better performance than predicted by the bounds, but at higher SNRs the
bounds predict the performance very accurately. Tighter bounding arguments
can be employed to improve the bounds at low SNRs {33], however.

If the bounds are being used to estimate performance for a particular inter-
leaver and block length for which the low-order terms in the WEFs are known,
the factor f(dfe.REp/Ng) should be adjusted to the actual value of dp.

EXAMPLE 16.10 Turbo Code Performance as a Function of Constraint
Length

Now, consider the series of rate R = 1/3 PCCCs with constraint lengths v =1, 2, 3,
and 4 whose constituent encoders are shown in Table 16.6. With the exception of
code E, cach of the generators was chosen to have a primitive feedback polynomial
so as to achieve the best possible minimum free distance. The generator for code
E has a nonprimitive feedback polynomial. The results of the P, (E) bound of

TABLE 16.6: Code parameters for Figures 16.13 and 16.14.

Code Generator matrix G(D) il
A L 1/(+D) -
B [1 Q+DYH/1+ D+ D%]

C [1 (+D+D*+D%/(1+ D+ D]
D [1 1+ D+D?+ D%/ + D+ DY]
E L G+2Y%0+D+D"+ D"+ DY)
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FIGURE 16.13: Bit-error probability bounds for rate R = 1/3 PCCCs with v =1, 2, 3,
and 4 and X = 100 and 1000.

(16.82) for each code are shown in Figure 16.13 for two values of the interleaver
size (information block length): X = 100 and 1000. In addition, the simulated
performance of the two 16-state (v = 4) codes, codes D and E, is shown in
Figure 16.14 for a pseudorandom interleaver of size K = 21 = 1024 and 18
iterations of decoding.

The following remarks apply to Example 16.10

o The bounds in Figure 16.13 indicate that substantial coding gains can be
achieved at P, (E)’s below 107> by increasing the constraint length v of the
constituent code. For example, for P, (E) = 108 and a block length of
K = 1000, the 16-state (v = 4) primitive constituent code (code D) gains
6.5 dB compared with the 2-state (v = 1) constituent code (code A).

o Selecting a larger constraint length can be used as a substitute for a larger
block length if decoding delay is an issue. For example, the 16-state primitive
code (code D) with K = 100 gains 0.5 dB compared with the 4-state code
(code B) with K = 1000 for P, (E) = 107",

o The bounds in Figure 16.13 indicate that the 16-staie primitive constituent
code (code D) performs better than the 16-state nonprimitive code {code E)},
but the simulations in Figure 16.14 show that this is true only at high SNRs.
This result illustrates that the bounds accurately predict performance only at
SNRs above the cutoff rate limit, 2 dB in this case. {Note that the simulation
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FIGURE 16.14: Bit-error probability simulations for two rate R = 1/3 PCCCs with
v=4and K = 1024.

results in Figure 16.14 show the performance of these two codes at a lower
SNR range than the bounds in Figure 16.13).

o The superior performance of the 16-state primitive code (code D) at higher
SNRs is due to its larger free distance (see Problem 16.15).

EXAMPLE 16.11 Performance of Recursive and Nonrecursive PCCCs

Finally, consider the two rate R = 1/3 PCCCs generated by the nonsystematic
feedforward encoder of Example 16.8 and by the systematic feedback encoder of
Examples 16.6 and 16.7. As we have noted previously, the constituent encoders by
themselves generate identical rate R = 1/2 codes. The approximate bit IOWEF
of the nonrecursive PCCC is given in (16.75b). For large K, the free distance of
this code is dje. = 7. An approximation to the bit WEF is given in (16.75d). In
Figure 16.15 we show the P, (E) bound obtained by substituting this expression
into (16.82), along with the corresponding bound for the recursive PCCC from
Examples 16.6 and 16.7, shown previously in Figure 16.12(b). The interleaver size
(information block length) is K = 1000. Also plotted in the figure are the P, (E)
bounds for the unterminated rate R = 1/3 convolutional codes obtained by simply
repeating the second output of each R = 1/2 code without permuting the input
sequence. These latter curves represent the equivalent R = 1/3 performance of the
two constituent codes (nonrecursive and recursive) without parallel concatenation.
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FIGURE 16.15: Bit-error probability bounds for nonrecursive and recursive PCCCs
and convolutional codes with rate R = 1/3.

We now conclude this section with some comments regarding Example 16.11.

e The P, (E) curves for the unierminated convolutional codes without parallel
concatenation (curves A and C) indicate that the performance of the two codes
is almost the same. This is to be expected, since the two encoders generate
identical codes, and the only difference in their BERs is a consequence of the
different mappings between information sequences and codewords.

o For the nonrecursive codes parallel concatenation {(curves A and B) produces
little improvement, because there is no interleaver gain for feedforward
encoders.

e For the recursive codes, on the other hand, parallel concatenation results in
substantial coding gain (curves C and D). For example, for P (E) = 1075, the
recursive PCCC with X = 1000 achieves a 4.3-dB coding gain compared with
the rate R = 1/3 equivalent code without parallel concatenation.

o The superiority of employing systematic feedback encoders rather than non-
systematic feedforward encoders as constituent codes in a PCCC can clearly
be seen by comparing curves B and D. For example, for Py (E) = 1079, the
recursive PCCC gains 3.8 dB compared with the nonrecursive PCCC.

In the next section we continue our analysis of turbo codes by examining the
parameters that provide the best constituent code designs.
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16.4 DESIGN OF TURBO CODES

For SNRs (values of E;,/Ny) above the cutoff rate limit of (16.83), our discussion of
the design of PCCCs is based on the upper bound on bit-error probability derived
in the previous section. {For smaller SNRs, considered later in this section, the
dynamics of iterative decoding have a larger influence on code design than error
probability bounds.) We begin by using (16.25a) and (16.26b) to express the bit

WEF B(X) of a systematic code as a sum over input weights w as follows:

w
BX)y= Y W Au@|
(1<w<K)

. (16.84)
=7Z=X

Then, using the looser form of the bound of (16.82) (i.e., without the function f(-), a
scaling factor that depends only on df.) and (16.84), we can approximate the bound
on the bit-error probability of a PCCC as follows:

P(E)~ S %W“’Aw(Z) ; (16.85)

. s
=Z=e RE/No
(Wyin<w=K)

where wy, 1s the minimum-weight nonzero valid input sequence, that is, the
minimum-weight nonzero input sequence that terminates the encoder. Now, using
the approximation for large K of (16.55a), we obtain

1 2
Pb(E) ~ Z _iué_Ww w 5 K(thu,\’*w) I:Az(,(/jl’m“) (Z)] ‘

(wmin Sw§K> (hlna)C v) W:Z:g"REh/NO

w! 2
= Z W — K(thu.\’*w*l) WU) I:A](ll)’lmu.\') (Z)] ‘

5 i .
(wmiNSLUSK) (hmax!) W:ZZZ—R[;/’/NO

(16.86)

We now note that for (n, 1, v) systematic constituent encoders, the resulting PCCC
has rate
R— K—-v N
T On—-DK 2n

We next comsider nonrecursive PCCCs with (n, 1, v) systematic feedforward con-
stituent encoders. In this case, wyiy = 1, since only zeros are required to terminate
an information sequence for a feedforward encoder. Also, as noted in the previous
section, h;,.y = w for feedforward encoders. Finally, since for any (n, 1, v) systematic
feedforward encoder Afuw)(Z) = [Agl)(Z)]w (see Problem 16.16), we obtain from
(16.86) for nonrecursive PCCCs with (n, 1, v) systematic feedforward constituent
encoders and large K

1
— (for large K). (16.87)

(w—1)
PE)~ Y %W’” [42)]

(Isw=K)

2w
(16.88)

W=Z=eREn/No

From (16.88) we see that, even in the best case (w = 1), P, (E) does not decrease
with increasing K'; that is, no interleaver gain is possible with feedforward encoders.
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A similar analysis applies to PCBCs with (i, hk) block constituent codes and an
interleaver size of K = hk.

We now consider recursive PCCCs with (n, 1, v) systematic feedback con-
stituent encoders. In this case, wy;; = 2, since a weight-1 input sequence cannot
terminate the encoder, but there always exists a weight-2 input sequence, of degree
no greater than 2¥ — 1, that does terminate the encoder (see Problem 16.17). Also,
since each single-error event in a multiple-error event requires at least two input 1’s
to terminate, Ay, = |w/2] for feedback encoders. We now note that for the term
involving the block length XK in (16.86)

(16.89)

K(zhllm,\'*wfl) — [<72 if w is odd
K1 if wis even.

Thus, for large K, the terms with odd w are negligible compared with the terms
with even w, and in (16.86) we need only consider terms of the type A(le’jf(Z}.

. w
Further, since for any (n. 1, v) systematic feedback encoder Agﬁf})(z ) = [A‘ZD(Z)]
(see Problem 16.16), we must examine the properties of the term A(ZU (Z), that is,
the parity weight enumerator for single-error events with input weight 2. We begin

by considering an example.

EXAMPLE 16.12 Calculating Ag)(Z) for a (2,1,2) Systematic Feedback
Encoder

Consider the state diagram of the (2, 1, 2) systematic feedback encoder of Exam-
ples 16.6 and 16.7 shown in Figure 16.10. In this case, it is clear that the shortest
single-error event generated by a weight-2 input follows the state sequence
So — 81 — 83 — 8 — Sy and has parity weight 4. All other single-error evenis
with input weight 2 are generated by adding one or more cycles around the lcop
Sy — 81 — S5 — 5 to the foregoing shortest state sequence. Because each of these
cycles adds parity weight 2,
74

In general, for any (n, 1, v) systematic feedback encoder, the input sequence
u = 1000--- will produce a cycle in the state diagram with input weight 0 that
starts in state §; = (10---0), arrives in state Sy-1 = (0---01) after at most 2 — 2
steps, and then returns to state S in one step (see Problem 16.18). Let z, be
the parity weight generated by this cycle. Also, it is easy to show that a 1 input
from state S,.—1 = (0---01) terminates the encoder (see Problem 16.19). Further,
as in Example 16.12, if each of the n — 1 numerator polynomials has the form
14 ...+ DV, that is, they are monic polynomials of degree v, then the zero-input
branch connecting state S,,.1 = (0---01) to state $; = (10---0) has zero parity
weight. In this case, if z, is the total parity weight of the two input weight-1 branches
that connect the initial and final states to the zero-input weight cycle, the total parity
wéight associated with any input weight-2 single-error event is jz. + z;, where j is
the number of zero-input weight cycles included in the error event, and

Zmin = Zc + 2t (1691)
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is the minimum parity weight associated with a weight-2 input. (If the preceding
condition on the numerator polynomials is not satisfied, the branch connecting state
Syo-1 = (0---01) to state §; = (10---0) may have nonzero parity weight. In this
case, since this branch is not included in the path that achieves minimum parity
weight, its parity weight must be subtracted from the right side of (16.91).) Thus the
parity weight enumerator for single-error events with input weight 2 is given by

7, Zmin

(1) — 7 Zmin Qzmin—21) Bzmin—22:) e —
AV (z) = z#mn 4 7 +Z to= ey (1692)

EXAMPLE 16.12 {Continued)

For the encoder shown in Figure 16.10, z, = 2, 7z, = 2, and zjin = 4.

Using (16.86), we can now state the approximate bit-error probability bound for
large K for recursive PCCCs with (1, 1, v) systematic feedback constituent encoders
as follows:

2w Lerr2 7 cmin 2w
Pb(E)% Z 2w< w )K_ w wI:]__Z(Zmin*Zl)]

(1=w=<|K/2))

W=Z=e"REn/Ng

[Y C+2zin) ] v

1— Y(Zm,',7—21)]2w
y—e—REp/Ng

We see that, unlike (16.88) for feedforward encoders, (16.93) contains the term
K !, indicating the presence of interleaver gain for feedback encoders. Also, the
exponential behavior of the most significant term in the bound is determined by
Zmin, the minimum parity weight associated with weight-2 input sequences. Thus, to
guarantee good performance for large K, z,,;, should be as large as possible. Finally,
since zmin depends primarily on z., the parity weight in the zero-input weight cycle
should be as large as possible. This implies that the cycle length should be as large
as possible, which means that a primitive denominator polynomial should be chosen
to achieve a large z,,;, (see Problem 16.20).

Because the weight 2 4 2z, is the coefficient of RE, /Ny in the most signi-
ficant term of the bound, we define the effective minimum free distance of a rate
R =1/(2n — 1) PCCC with an (n, 1, v) constituent encoder as

deff =2+ 2Zmin- (16.94)

- ¥ Zw( 2 )K‘l[ (16.93)

(A<w=|K/2])

EXAMPLE 16.12 (Continued)
For the rate R = 1/3 PCCC based on the encoder shown in Figure 16.10, d¢r = 10.

EXAMPLE 16.13 Calculating deog for PCCCs

Consider the rate R = 1/3 recursive PCCCs generated by the following (2, 1, 3)
systematic feedback encoders:

G,D)y=[1 A+D+D>*+D3)/1+D+D% ] (16.95a)
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and
GupDY=[1 (+D+D%/A+D+D*+D% ], (16.95b)

where (5, has a primitive feedback polynomial, and G, has a nonprimitive feedback
polynomial. The rate R = 1/2 convolutional codes generated by these two encoders
are identical. Both have free distance dp., = 6. For the primitive encoder, the
shortest terminating weight-2 input sequence is w(D) = 1 + D7, which generates
the parily sequence vA(D) = 1+ D? + D* + p* + D% + D7. Thus, znin = 6.
and depr = 14 for the primitive PCCC. For the nonprimitive encoder, the shortest
terminating weight-2 inpui sequence is w(D) = 1 + D*, which generates the pariiy
sequence vI(D) =1+ D?+ D3+ D*, and for the nonprimitive PCCC z,,i, = 4, and
degr = 10.

In Example 16.13, as expected, def is larger for the PCCC based on a primitive
feedback polynomial. Because the input sequence (D) = 1+D?+ D3+ D* generates
the parity sequence v\? (D) = 1+ D* for the primitive encoder, the actual minimum
free distance of the corresponding PCCC, assuming the uniform interleaver analysis,
is dpee = 8, smaller than for the nonprimitive encoder; however, since this input
sequence has weight 4 and produces a single-error event, the multiplicity associated
with the weight-8 codewords decreases with K2, and thus the probability thai a
particular interleaver will result in a weight-8 codeword in the corresponding PCCC
is very small for large K.

TueoreEM 16.1  [12] For an (a, 1, v) systematic feedback encoder with gene-
rator matrix

GD)=[1 ay(D)/d(D) - n,_(D)/d(D) |, (16.96)

such that the denominator polynomial d(D) is a primitive polynomial of degree
v, and the numerator polynomials n; (D) # d(D), 1 < j < n—1, the minimum
parity weight associated with weight-2 input sequences satisfies

amin =92 T+ D+ (n—s5 — 1) (2“—1) < (-1t 2. (16.97)

where s, 0 < s < n —1, is the number of numerator polynomials that are
monic and of degree v.

Proof. We begin by noting that since d(D) is primitive, it is the generator
polynomial of a cyclic (2¥ — 1, 2” — v — 1) Hamming code. Also, the miniruim-
degree binomial that has d(D) as a factor is D?'=1 4+ 1, and the quotient
polynomial ¢(D) = (D¥ 1 4 1)/d(D) is the generator polynomial of a cyclic
2V — 1, v) maximum-length block code.

Next, we consider numerator polynomials n(D) such that deg[n(D)] < v.
In this case, the weight-2 input sequence D? ~! + 1 generates the parity
sequence n(D)q (D), which has a weight of exactly 2v~1 since it is a nonzero
codeword in a (2 — 1, v) maximum-length code. Also, if n(D) has degree v
but is not monic, it can be expressed as n(D) = D'v(D), 1 <r < v, where
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v(D) is monic and has degree less than v. In this case, the parity sequence
n(D)q(D) = D v(D)q(D) again has weight 2" 1.

Now, consider numerator polynomials n(D) that are monic and of degree
v; thatis, n(D) =1+ .-- + DV. In this case, we can write

n(D) = DnV(D) + n'P (D), (16.98)

where n0(D) = DY~ and n® (D) = n(D) — DY both have degree less than
v. Thus, cV(D) 2 #D(D)g(D) and @ (D) £ n@ (D)q(D) are both nonzero
codewordsin a (2¥ —1, v) maximum-length code and have weight 2~ We note
that ¢V (D) has the maximum degree of 2’ — 2 for any code polynomial and
v —1 leading zeros; that is, c(py=Dp" 1+ cl(,l) DY+ ~+c§{.)_3D2U_3 +D¥2,
and ¢ (D) has a nonzero constant term. We can now write the cyclic shift
XD (D) of ¢ V(D) as

XDD) =14 D"+ P 4o p* 2
. (16.99)
= DcD(D)+1+ D",

Because XV (D) and ¢@ (D) are both codewords, Y1 (D) + ¢@ (D) is also a
codeword, has a zero constant term, and has weight 2'~1 Now, we can write
the parity sequence as

n(D)q(D) = DcV(D) + P (D) (16.100)
=xDD) + @ D) +1+D¥ . '

Because XM (D) + ¢@ (D) has weight 2°~1, a zero constant term, and degree
of at most 2¥ — 2, the parity sequence n(D)q(D) has a weight of exactly
2v~1 4+ 2. The theorem now follows by defining s as the number of numerator
polynomials that are monic and of degree v. Q.E.D.

In Problem 16.21 it is shown that the upper bound in (16.97) also holds for
nonprimitive feedback polynomials. Thus, since for primitive feedback polynomials
Theorem 16.1 gnarantees that the upper bound can be achieved by properly selecting
the numerator polynomials, we can achieve the best performance for large K, that is,
the largest effective free distance d.f, by choosing constituent codes with primitive
feedback polynomials and monic numerator polynomials of degree v. Selecting
constituent codes that result in large values of d.s guarantees good high-SNR
performance. For lower SNRs, however, codeword multiplicities, additional terms
in the weight spectrum, and the dynamics of iterative decoding must be considered.

In searching for PCCCs with systematic feedback constituent encoders that
offer good performance over the entire SNR range, it is important to maximize
Zmin, and thus the effective free distance dop of the PCCC, and to minimize
the multiplicities of the minimum-weight codewords produced by each of the
lowest-weight input sequences, that is, input weights w = 2, 3,4, ---. We denote
the minimum weight of codewords produced by weight-w input sequences in
an encoder by d,,, and the number of such codewords by A, 4,, the coefficient
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TABLE 16.7: Systematic feedback convolutional encoders with optimum-weight
spectrum.

(a) LOW RATE ENCODERS
kfn | v | g® | g@ | g® | g0 | dy, Ay g, | ds, As,uy | das Aga, | d5, As g
174 |1 2 3 1 3 6,1 00 co oo
1/4 |12 6 7 5 7 10,1 10,1 142 16,1
V4 13 11 17 15 13 20,1 12,1 14,1 182
1/4 |4 27 37 35 23 321 16,1 141 18,3
174 15 71 45 51 67 56,1 23,1 20,3 15,1
1/3 11| — 2 3 3 51 o0 00 00
173 12| — 5 7 7 8.1 8,1 10,1 121
173 |3 | — 17 15 13 14,1 19,2 10,1 14,6
173 | 4| — 33 37 23 221 12,1 10,1 12,1
73 15| — 45 51 67 38,1 172 16,6 1,1
173 16| — | 101 | 131 | 163 70,1 23,1 14,1 11,1
172 |1 — | — 2 3 3,1 %) o0 o0
172 12| — | — 5 7 6,1 51 6,1 7,1
172 13| — | — 17 13 8,1 7,3 6,1 9.9
172 14, — | — 37 23 121 8,3 6,1 10,14
172 15 — | — 45 67 20,1 10,2 8,1 8,2
12 16 ] — | — | 101 | 147 36,1 13,1 8,2 7.1
12 | 6% — | — | 115 | 147 36,1 133 10,2 9,2

(b) HIGH RATE ENCODERS
kin | v | h® | h® | h® | h® | a5, Az g, | d3, As,a, | day Ag,g, | d5, As,as
w1 — | 2] 2| 3| 21 o0 6,4 %
2 12 — | 6| 5| 7| 43 31 41 51
23 |3 — | 15 17| 13] 51 41 51 6,6
w3 |4 — | 27] 35| 23| 82 53 6,9 7,29
w3 5| — | 73| 51 75| 122 6,3 6,3 6,5
23 | 6| — 135|133 | 147 | 202 8,4 6,3 6,2
34 |1 2 2 2 3 23 [ole) 5,6 00
314 |2 6 2 7 5 33 33 47 5,15
3/4 |13} 17 13 15 11 4.1 43 4.1 55
3/4 | 4| 33 31 27 25 6,2 41 5,8 54
3/4 | 5| 63 51 71 45 92 52 55 52

Adapted from [34].

of the lowest-order term in the conditional IOWEF A, (X). (Note that in this
case defr = 2dp — 2.) Table 16.7 lists optimum-weight spectrum (n, k, v) systematic
feedback convolutional encoders for rates R = 1/4,1/3, 1/2, 2/3, and 3/4. The
optimization was performed by first maximizing d,, and then minimizing A, 4,,
successively, for increasing values of w. For each encoder, we list the rate R = k/n,
the constraint length v, the (right-justified) octal generator sequences g®, g, @,
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and g® in Table 16.7(a) for rates R = 1/4, 1/3, and 1/2 and the (right-justified)
octal parity-check sequences h®, ™, h®, and h® in Table 16.7(b) for rates
R = 2/3 and 3/4, and the pair (dy, Aw,q,) for w = 2, 3, 4, and 5. In the table,
g represents the denominator (feedback) polynomial of a systematic feedback
encoder generator matrix G(D), and gV, g?, and g® represent the numerator
polynomials. For example, for the rate R = 1/3, 8-state (3, 1, 3) encoder, g(o) = 13,
g =15,g® =17, and we have

GOy=[1 gVw)/g® > g? D) /g? D) ]
=[1 1+D2+D»/A+D+D* (1+D+D*+D>/(1+D+D% ].
(16.101)

Similarly, in Table 16.7(b), h©® represents the denominator (feedback) polynomial
of a systematic feedback encoder parity-check matrix H(D) and h™, h®, and h®
represent the numerator polynomials. For example, for the rate R = 2/3, 8-state (3,
2,3) encoder, h® = 13, h® =17, h® = 15 and we have

H(D) = h®(D)/m® D) n(D)/m® (D) 1]
=D +D*+1)/(D*+D+1) D +D*+D+1/D*+D+1) 1]
(16.102)

The bold entries in the table denote the minimum free distance df. of the code, the
symbol oo indicates that there are no codewords corresponding to that input weight
(only single-error events are considered), and the * entry indicates the existence of
an encoder with the same d and a larger dfe..

The following remarks pertain to these optimum-weight spectrum encoders.

e Many of the encoders in Table 16.7 do not give optimum df,., codes, as can be
seen by comparison with the code lists in Chapter 12; however, the encoders in
Table 16.7 are optimum in the sense of minimizing the number of low-weight
codewords corresponding to low-weight input sequences.

o The encoders in Table 16.7 can be used to produce a variety of PCCC code
rates, as seen in Table 16.8. Other code rates can be achieved by puncturing,

TABLE 16.8: PCCCcoderates
for different constituent en-
coder rates.

Constituent PCCC
encoder rate | cede rate

1/4 1/7
1/3 1/5
172 1/3
2/3 2/4

3/4 3/5
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by using constituent encoders of different rates, or by employing multiple
interleavers (see Figure 16.2).

It is important to note that in examining the weight spectrum of PCCCs, the
values of interest are given by the lowest-order coefficients in the conditional
IOWEFs A, (X) for small values of w. This contrasts with the case for normal
convolutional codes and block codes, in which the low-order coefficients in the
standard WEF A(X) are the values of interest. This is because the interleaver
in PCCCs has a diiferent effect on input sequences of different weights, thus
accentuating the importance of the codewords produced by low-weight input
SeqUEnces.

We now summarize the major points to remember in designing good PCCCs

for high SNRs:

[¢]

o]

The bit multiplicities in a PCCC include a factor of K17%, where K is the
interleaver size, w is the weight of an input sequence that produces a ierminated
codeword, and w > wy,, the minimum-weight input sequence that produces
a terminated codeword.

All feedback encoders have wyy, = 2, resulting in an interleaver gain factor of
1/K for the associated PCCCs. In contrast, wy,;,, = 1 for feedforward encoders
and for repeaied block codes, so there is no interleaver gain in these cases,
although some spectral thinning does occur.

For large values of X and high SNRs, the performance of a PCCC is optimized
by maximizing its effective free distance degr = 2 + 2z, Where zyn is the
minimum parity weight corresponding to a weight-2 input sequence in the
constituent encoder.

For (n,1,v) sysiematic feedback convolutional encoders, it is possible to
achieve zpin = (n — 121 +2) by choosing a primitive denominator polyno-
mial and monic numerator polynomials of degree v.

For SNRs closer to the cutoff rate limit, good performance is achicved by
optimizing the low-input weight terms in the IOWEF of the constituent
encoder.

These PCCC design rules are based on an average (uniform interleaver)
analysis, and performance can vary in a particular case depending on the
choice of an interleaver. Thus, it is important to support a code design with
appropriate computer simulations.

In addition, although pseudorandom interleavers such as the ones discussed

earlier in this chapter give very good performance on average, it is possible to design
the interleaver to improve the value of deg and thus the high-SNR performance of
the code. A codeword of weight dof is produced when a weight-2 input sequence
that generates the weight-z,,;, parity sequence in the first constituent code is
interleaved in such a way that the interleaved input sequence maintains the same
spacing between 1’s, thus also generating the weight-z,,;, parity sequence in the
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second constituent code. If we refer to a weight-2 input sequence that generates
the weight-z;,;, parity sequence in the first constituent code as a “bad” input
sequence, interleaver designs that “‘break up” all bad input sequences, that is, they
change the spacing between 1’s, result in a larger value of d.g; however, putting
too much structure in the interleaver can result in low-weight codewords owing to
higher-weight input sequences; that is, the ability of a pseudorandom interleaver to
reduce the influence of higher-weight input sequences is mitigated when structure
is added. Interleaver designs that attempt to improve d.g by breaking up the bad
input sequences while also maintaining most of the characteristics of pseudorandom
interleavers are referred to as semirandom (or S-random) interleavers [35]. For
example, in an S-random interleaver, integers i in the range 1 < i < K are chosen
randomly (without replacement) to denote the interleaved positions of successive
bits in the input sequence. If a selected integer is within a distance +S of any of
the S previous selections, it is rejected and another integer is selected. Choosing
S equal to the cycle length of the denominator polynomial guarantees that all bad
weight-2 input sequences are broken up: however, the algorithm is not guaranteed
to successfully assign all K integers, so that the final permutation may have to be
altered further to satisly the spreading condition.

The preceding rules for designing good PCCCs implicitly assume the use
of (optimum) maximum likelihood decoding. Iterative decoding, in contrast, is
suboptimum, and different code design rules apply in this case. At moderate-to-high
SNRs, iterative decoding is essentially maximum likelihood, and the preceding
design rules will give the best codes. At low SNRs, below the channel cutoff rate,
however, the dynamics of iterative decoding are more important in determining the
performance of PCCCs than the weight spectrum of the code.

To explain the dynamics of iterative decoding, it is helpful to introduce the
extrinsic information transfer chart, or EXIT chart [36], based on the techniques
of density evolution [37, 38] and threshold analysis [39]. These techniques relate a
parameter of the input to a constituent decoder, either the signal-to-noise ratio of the
a priori L-value L, (u;) or the mutual information between an information bit u; and
its a priori L-value L, (u;), to a parameter of the decoder output, the signal-to-noise
ratio of the a posteriori extrinsic L-value L,(u;) or the mutual information between
u; and its a posteriori extrinsic L-value L.(u;), respectively. Following the mutual-
information approach, we first model the a priori L-value inputs to a constituent
decoder as independent Gaussian random variables with variance o2 and mean
e = :taa2 /2, where the sign of u, depends on the transmitted value of ;. This
Gaussian approximation is based on two facts: (1) the input channel L-values to a
constituent decoder (the terms Lcrl(o) in (16.17)) are independent Gaussian random
variables with variance 2L, and mean L. (see Problem 16.23), and (2) extensive
simulations of the a posteriori extrinsic L-values L.(u;) for a constituent decoder
with very large block lengths support this assumption [40]. Thus, we can express
the mutual information I,{u;; L, (1;)] between an information bit u; and its a priori
L-value L,(u;) as (see [41])

‘ _1 e 2P, (5lur)
ol Latwl=35 2, [, rrmton 5 e

(16.103a)
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where the conditional probability density function Pr (£ i) of L, (u;) is given by

1 R o .
Pp (Eluy) = ————e E- M 200 (16.103b)
2no?

Nezxt, histograms of the conditional pdf’s Py, (§u; = —1) and Py, (§li; = +1) asso-
ciaied with the a posteriori extrinsic L-values L,(u;) are determined by simulating
the BCJIR algorithm with independent Gaussian-distributed a priori L-value inputs
for a particular constituent code and a large block length K. We then determine the
mutual information I,[u;; L.(1;)] between the information bit i1; and its a posteriori
extrinsic L-value L, () using (16.103a).

We can now generaie a decoder input-output transfer curve by running a
series of simulations of the BCJR algorithm for one constituent code and different
values of I,[u;; L, (11)] (completely determined by 62). for a fixed channel signal-to-
noise ratio E, /Ny and ploiting the resulting values of 7,[u;; L.(u)]. Note that each
point on the curve is obtained by simulating the BCIR algorithm just once for a
constituent code and does not require iterative decoding. A set of transfer curves is
obtained by repeating this procedure for different values of the channel SNR, E}, / Ny.
An example is shown in Figure 16.16 for the original turbo code of Figure 16.1(b),
with alternate parity bits punctured to produce a code rate of R = 1/2, and various
values of the channel SNR. Note that a value of [, = 0 corresponds to the first
iteration of decoding when all a priori L-values are equal to 0 and that more positive
values of 7, correspond to more reliable a priori estimates. A key observation is that
if a transfer curve cuts below the straight line representing 7, = 7., this corresponds

\ ]
Ey/Ny = 025 dB e

0.9 |-E,/N, = 0.50 dB —se—
E[,/]V() = 075 dB ==
0.8 HE,/Ny = 1.00 dB —=—

y =y —

Mutual Information /, at output of decoder

| \ | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutual Information I, at input of decoder

FIGURE 16.16: Decoder input—output transfer curves.
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to a situation in which an iteration results in an [, at the decoder output below the
I, at the decoder inpui; that s, the extrinsic estimates are getting less reliable. In
this case iterative decoding fails to converge to a reliable solution, resulting in a
high probability of decoding errors. In contrast, if the transfer curve stays above the
I, = I, line, the extrinsic estimates are getting more reliable, and iterative decoding
converges to a reliable solution. We now define the SNR threshold of iterative
decoding for a particular constituent code as the smallest value of the channel SNR,
Ey/ Ny, for which the transfer curve stays above the I, = I, line. For example, in
Figure 16.16 we see that the iterative decoding threshold for the original rate R =
1/2 turbo code is approximately (.5 dB. This threshold corresponds to the value of
the channel SNR, E;, /Ny, at which the bit-error probability curve of a PCCC begins
its characteristic sharp drop, referred to as the waterfall region of the BER curve
(see Figure 16.3).

An EXIT chart for a particular channel SNR Ej /Ny can be formed by plotting
a transfer curve and its mirror image (about the line I, = I.) on the same set
of axes, as shown in Figure 16.17(a) for E,/Ny = 0.75dB. The two curves can
be interpreted as representing the input—output transfer characteristics of the two
constituent decoders in an iterative turbo decoder. The chart can then be used to
trace the trajectory of iterative decoding as follows. For a given E,/Nj, assume
initially that 1, = 0, corresponding to the first iteration of decoder 1, and determine
the resulting 7, (vertically) using the transfer curve for decoder 1. Because the a
posteriori extrinsic L-value of decoder 1 becomes the a priori L-value of decoder 2,
the value of I, from decoder 1 becomes I, for the first iteration of decoder 2, and
the resulting I, for decoder 2 is determined (horizontally) using the transfer curve
for decoder 2. This procedure is repeated and traces the ‘“‘staircase’ trajectory of
iterative decoding, as shown in Figure 16.17(a). If a tunnel exists between the two
transfer curves, as shown in Figure 16.17(a) for E;/Ng = 0.75 dB, iterative decoding
converges as I, approaches a value of 1. As the channel SNR is lowered, the two
transfer curves come closer together, and the smallest SNR for which the two curves
do not touch, that is, for which a tunnel exists, is the SNR threshold. If no tunnel
exists, that is, the two transfer curves cross each other, as shown in Figure 16.17(b)
for E, /Ny = 0.25 dB, a decoder fixed point exists, I, becomes stuck at a value less
than 1, and iterative decoding does not converge.

The EXIT chart is particularly useful for visualizing the dynamics of iterative
decoding. For example, we see from Figures 16.16 and 16.17 that as the channel
SNR is lowered the tunnel narrows, and more iterations are needed before the
mutual information becomes large enough for the decoder to converge to a reliable
solution. We also note that the EXIT chart technique can be used to determine the
threshold of a turbo code with asymmetric constituent codes simply by plotting the
transfer curves of the two (different) constituent codes, which will no longer be the
mirror image of each other.

The foregoing discussion indicates that determining the transfer curves and
EXIT charts of various constituent codes is a useful tool in designing PCCCs with
good low-SNR performance, that is, good performance in the waterfall region
of the BER curve. The design rules to follow in a particular case, that is, the
high-SNR uniform interleaver analysis or the low-SNR threshold analysis, depend
on the application. In communication systems designed to achieve very low bit
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FIGURE 16.17: Extrinsic information transfer (EXIT) charts for (a) £,/ Ny = 0.75 dB
and (b) E,/No = 0.25 dB.
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error probabilities at moderate SNRs, the uniform interleaver analysis is preferred,
whereas in systems designed to achieve moderate BERs at very low SNRs close to
capacity, the threshold analysis is best.

The usefulness of the SNR threshold analysis discussed here depends on two
factors: the accuracies of the Gaussian approximation for the a priori L-values, and
the simulated estimates of the conditional pdf’s for L.. Both these factors depend on
the length of the input block K used in the simulations. Experience with threshold
analysis has shown that, in general, the constituent codes with the lowest SNR
thresholds have denominator polynomials with short cycle lengths, in contrast with
the long cycle lengths needed to achieve large values of dg. (See, for example,
the list of SNR thresholds given in [39] for 8- and 16-state constituent codes.)
Asymmetric code designs for PCCCs attempt to exploit these dual requirements by
choosing different constituent codes, one with a short cycle length and the other
with a long cycle length [30].

16.5 [TERATIVE DECODING OF TURBO CODES

A brief summary of turbo decoding was given in Section 16.1. As noted there, the
best performance is achieved when the individual SISO decoders make use of the
MAP, or APP, decoding algorithm. The details of this algorithm were presented
earlier, both as an optimum bit-by-bit decoding algorithm for convoiutional codes
in Chapter 12 and as an optimum method for trellis-based decoding of block codes
in Chapter 14. Thus, in this section, we emphasize the use of this algorithm as an
iterative decoder of PCCs. Other SISO decoders that are simpler to implement, such
as the SOVA or Max-log-MAP algorithms, also can be used to iteratively decode
PCCs, but their performance is not as good.

The basic idea behind iterative decoding is to divide the decoding of a PCC,
for which optimum decoding would be prohibitively complex, inte a suboptimum
iterative process involving only the relatively simple APP decoders for the con-
stituent codes. After each iteration, the extrinsic L-values, representing reliability
information about the bits to be decoded, are passed from one decoder to the other,
ensuring that very little information is lost relative to optimal decoding. The basic
structure of an iterative turbo decoder was shown in Figure 16.6. In the first iteration
of decoder 1, the inputs are the channel L-values Lcrl(o) and Lcrl(l) for each received
symbol (information and parity) of constituent code 1 and the a priori L-values
L, (u;) of each information bit, which all equal 0 for equally likely inputs. In the
first iteration of decoder 2, the inputs are the channel L-values Lcr[(o) and L(wrl(z)
for each received symbol (information and parity) of constituent code 2 and the
extrinsic a posteriori L-values Lgl)(ul) of each information bit received from the
output of decoder 1. These extrinsic L-values, along with the L-values of the received
information symbois, must be interieaved according to the same patiern used at
the encoder before entering decoder 2. In all subsequent iterations of decoder 1,
the a priori L-values Lf,l)(u;) are replaced by the extrinsic a posteriori L-values
Léz)(u[) received, after proper deinterleaving, from the output of decoder 2, and all
subsequent iterations of decoder 2 are identical to the first iteration, except that the
a priori inputs will be different. Finally, after a sufficient number of iterations, the
decoded output can be derived from the a posteriori L-values of the information
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bits L& (u)), properly deinterieaved, at the output of decoder 2. Positive L-values
are decoded as +1 and negative L-values as —1.

We now present a simple example, using the log-MAP algorithm first presented
in Chapter 12, to illustrate the principle of iterative decoding.

EXAMPLE 16.14 lterative Decoding Using the log-MAP Algorithm

Consider the PCCC formed by using the Z-state (2,1.1) SRCC with generator
matrix
GDYy=[1 1/A+D) | (16.104)

as the constituent code. A block diagram of the encoder is shown in Figure 16.18(a).
Also consider an inpui sequence of length K = 4, including one termination
bit, along with a 2 x 2 block (row—column) interleaver, resulting in a (12, 3)
PCCC with overall rate R = 1/4. (Recall that the termination bit is not an
information bit.) The length K = 4 decoding trellis for the constituent code
is shown in Figure 16.18(b), where the branches are labeled using the mapping
0 - —land 1 — +1. The input block is given by the vector uw = [ug, uy, u2, u3],
the interleaved input block is w' = {ug, w). uh. ui] = [uo, uz, u1, u3). the parity

vector for the first constituent code is given by p¥ = [p(()l), pi“, péh. péh], and

the parity vector for the second constituent code is p@ = [p(()z), pf), pg), péz)].

We can represent the 12 transmitted bits in a rectangular array, as shown in
Figure 16.19(a), where the input vector u determines the parity vector p'» in the
first two rows, and the interleaved input vector w determines the parity vector p@

u 3O
—
—Or

o )
=l

So)
N YR

5, Sy -
-1, -1 Y —u—n 1 oY -1, -1
(b)

FIGURE 16.18: {(a) A Z-state turbo encoder and (b) the decoding trellis for the (2, 1,
1) constituent code with K = 4.
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Approximate extrinsic
L-values after
second row decoding

(m)

FIGURE 16.15: Itera
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tive decoding exampie for a (12, 3) PCCC.
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Again for purposes of illusiration, a set of particular 2T .
given in Figure 16.19(c). . s M = log-
In ihe first iteration of decoder 1 (row decodinz. *_ _ -~ mc F
is applied to the trellis of the Z-state (2,1.1) code s>~ -~ — = oW
compute the a posteriori L-values L (i) for each '\5/// o o pa
the corresponding extrinsic a posteriori L-values LY~ -2 = codet
(the columu decoder).? Similarly, in the first iteration 5//: = = ————jved !
algorithim uses the exirinsic a posteriori L-values { £ W B “\/am@.ﬁ
the a priori L-values, Lﬁ,z) (1) to compute the a posteric f:’; = — ‘:eﬁom
of the four input bits and the corresponding exirinsic & = - T — — T vely 1

to pass back to decoder 1. Further decoding proceeds iii/i;ﬁ«
P =ral ©

P —

Before returning to Example 16.14, we develop % ; — tj— L-va
a posteriori L-values L(i) and the extrinsic a p@s“* /; T ogM
(2.1,1) constituent code in Figure 16.18(b) using +=— — " = (v
simplify notation, we denote the transmiited vecior & = = parity
v = (ug, pr). [ =0,1,2,3, 4 is an input bit, and p; 1= e = (.’”m
received vector is denoted as v = (rg. 1y, 2, 13), where = B — ?d g
ry1 is the received symbol corresponding to the transm— —— =t ——— ity 0
the received symbol corresponding to the transmitied =
posteriori L-value is given by (see (12.106) and (12.117 _ -
L) = in L=+
POy=-1]r)

e - §Iep
where s’ represents a state at time [ (denoted by s” € o / state
I 4+ 1 {denoted by s € 6),1). and the sums are over / o =y in th
up = +1 or —1, respectively. (Recall that every ‘braw/ of the
state at time [ to a state at time [ + 1 is included in one P
can write the joint probabilities p(s’, s.r) in (16.106) as = ©

"
p(s".5,8) = % OB ()8 o
,/;/—-———-—' ”
2For iterative decoding, extrinsic a posteriori L-values are comp™ ~ — - Adéco.
bits as well as information bits. (Note that for feedback encoders, th — a priot

=

of the terminating bits.) Before the first iteration of decoding. the &
bits are assumed to be zero.
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-
¥ (57, 5), and B}, (s) are the familiar log-domain «’s, y’s, and B’s fé”m

orithm (see (12.129)). (Recall that the three terms in (16.107), of (s7 =" ’

-

B ", 1 (¢ repiesent the influence of the received sequence before tinz_ E—
d after time / on the estimate of the jnput bit at time /, respectively.)

ntinuous-output AWGN channel with an SNR of E /N, followin ===
128c¢), and (12.128e), we can write the MAP decoding equations as

. |
%ﬂ FSeew, 1=0,1,2.3, (16.108s)

netric: ¥, (s’,s) =
metric: o, (s) = maxy ., [1/"(s, ) + o7 (N, 1=0.1,2,3,

(16.108b)

rd metric: f'(s) = max(,,, [1" (", ) + B/ 1 (D], (16.108¢)

* function is defined in (12.127), and the initial conditions are
= 0, and a5 (S1) = B (51) = —oo. (Note that for iterative decoding,
).107a)) is used to compute the branch metrics corresponding to
1s well as information bits.) Further simplifying the branch metric,

w L, (Ll[)
1) = T‘ (Mliul + pivpr)

(16.109)

. .
= E[La (up) + Lcrul] + _Lcrph 1=0,1,2,3

2

serve from Figure 16.18(b) that to determine the a posteriori
1ere is only one term in each of the sums in {16.106), because at
ily one +1 transition and one —1 transition in the trellis diagram.
ss the a posteriori L-value of ug as

=S, 5 = 81.1) —In p{s' = Sp.s = So, 1)
F 5" = Sp. s = S+ BF(SD] -
Fyg(s' = So.s = So) + BF (So)]

u0) + Leruol + $Lerpo + B1(SD| -
1) + Leryol = 4 Lerpo + ﬁl*(So)}
0) + L(-I‘uo]} - {"%[La(uo) + Lc-l’uo]} +
+ B1(S0 + S Lerpo = BES0) | = Leruo + La(uo) + Lo(uo),

(16.110a)
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where
Le{ug) = L('rp() + 181'(81) - 181,(50) (16.110t)

represents the exirinsic a posieriori (output) L-value of irg. The final form of
(16.110a) illusirates clearly the three componenis of the a posteriori L-value of iy
computed at the ouiput of a log-MAF decoder:

o Lcryp: the received channel L-value corresponding to bit g, which was part of
the decoder input.

o L.(up): the a priori L-value of ug, which was also part of the decoder input.
Except for the first iteration of decoder 1, this term equals the extrinsic a
posteriori L-value of ig received from the output of the other decoder. (For
the first iteration of decoder 1, L,{ug) = 0 for equally likely input bits.)

G

Le(12p): the extrinsic part of the a posteriori L-value of uy, which does not
depend on L1, or L,(ip). This term is then sent {0 the other decoder as its a
priori input.

We now proceed in a similar manner to compute the a posteriori L-value of
bit 11. We see from Figure 16.18(b) that in this case there are two terms in each of
the sums in {16.106), because at this time there are two +1 and two —1 transitions
in the trellis diagram. Thus,

L =In[p(s'=Sp.s=51.1) +p(s' = S1.5 = So.1)] -

In{p(s' = Sp.s = So.1)+ p(s' = 51.5 = 5.1)]
= max” o (So) + ¥} (5 = So.s = S1) + B (51)]
(oS + 7 (5" = 81,5 = S0) -+ B (S0)]}
— max’ g[amo) s = So, s = So) + BE(SO).
[F (50 + 777 = 5105 = 5) + B (S]]
= max* {(—i—%[/ﬁu (1) + Leryg] + $Lerp1 +a7(S0) + B3 (S,
(L) + Lera] = $Lerpt +af (SD) + B3 (500}
= max” { (=4[ Larn) + Lora] = HLorps + 1 (S) + B3 (o).
(=4 Ean) + Lora] + $Lerp1 + e (5D + B3 (51}
= [+ lLatwn) + Lor]] ~ [=HZatun + L]
+ max* {[4—%&-1‘1,1 + o] (So) + B3 (SN [—%L(rr,,l + ol (S + ﬂf(&))]}

— max” {[“%Lci‘pl + a7 (So) + B85 (S0)]. [‘|‘%L(‘r1]1 +af(8) + ,Bf(Sl)]E

= Lergr + Lauy) + Le(uy), (161113)



832 Chapter 16 Turbo Coding
where

. . -
Le(u1) = max™ {[FaLlerpr + o (S0) + B3 (SD] [=5Lerpr +af(S) + ﬁz(bo)Ji

—max* {[=3Lerys +a](S0) + B0 [+5Lerpt + a1 (S0 + B (5D}
(16.111b)

and we have made use of the identity (see Problem 16.24) max™(w + x, w + y) =
w + max*(x, y). Continuing, we can use the same procedure to compute the a
posteriori L-values of bits u; and u3 as

L (up) =Lcrya+ Lo (u2) + L, (u2), (161123)

where

Le (u2) = max” {[+3Lerpa +a3(S0) + B3 (SD], [~ 3 Lerpz + a3 (S0) + B3 (S]]

—max* { [~ Loy + i (50) + B3SO [+3 Loy +o5(SD) + B3 (SDI}

(16.112b)
and
L (#3) = Leryz + Lo (u3) + Lo (u3) (16.113a)
where
L (u3) = [=3Lerps + a3 (1) + BE(S0)] — [~ 3 Lerps + @5 (S0) + B (S0))
= a(S) — & (So). (16.113b)

(Note that in this example, the value of the received parity symbol r,3 does not
affect L (u3), since, for the trellis of Figure 16.18(b), p3 = 0 for both branches at
time / = 3, and thus r,3 conveys no information useful for decoding.)

We now need expressions for the terms o (So), o] (51), a5 (So), &3 (1), @5 (S0),
a3 (S1), By (So), B{(S1), B5(S0), B5(S1). By(So), and B3(S71) that are used to calculate
the extrinsic a posteriori L-values L,(u7), [ = 0,1, 2, 3. Using (16.108) and (16.109)
and Figure 16.18(b) and adopting the shorthand notation L,; = L.rg + Ly (u7)
and Ly = Lery, [ =0,1,2,3, for intrinsic information bit L-values and parity bit
L-values, respectively, we obtain (see Problem 16.25)

af (So) = =4 (Luo + L o) (16.114a)
o ($1) = — % (Luo + L po) (16.114b)

03 (S = max” {[~5(Lu1 + Lp0) + @} (S0 [+ (L = Ly + oS0} (16.114c)

Olz ($1) = max”* + (Lul + Lpl) + al (SO)] [ %(Lul - Lpl) + OZ-T(SI

i )
Ol3 (So) = max”* { (Lu2 + Lp2) + 052(50)] [+%(LL12 - L[JZ) + 015(51)} (161146)

IT

it

3
oz (81) = max

(Liz + Ly2) + 03 (S0} =5 (Luz = Lp2) + a5 (5]

[\)1 —

[+ (16.114f)

W %

|
]} (16.114d)
|
|
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(16.114g)
(16.114h)
b L)+ B0 [+ 3Lz + L) + 85 (SM (16.1141)

Lp2) + B5(S0)]. [-5(Luz — Lp2) wﬁg(&)]} (16.114j)
i

(16.114k)

B (50) = max” {[+4 (Lt = Lpn) + B3 (S0)]. [~ (Lt = L) + B350} . (16:114)

We note here thai the a priorl L-value of a parity bit L, () = O for all/, since for a
linear code with equally hkely information biis, the parity biis are also eqgually likely.
Also, unlike the information bits, the L-values of the parity bits are not updated
by the wﬁut ve decoding algorithm, and the parity bit L-values remain constant
inconghout decoding. Thus, we can write L,y = Lorp + L, (p1) = Loy that is, the
shorthand notation for the intrinsic L-values of information bits L,; and parity biis
L ;1 is consistent. Finally, we can write the extrinsic a posteriori L-values in terms of
Ly and Ly as

Le (10) = Lo + BT (51 — B{(S0). (16.115a)

Lo (1) = max* (4410 + ] (S0) + BISD] [ 3L + (S0 + B3 (So)] | -

m:ﬁtﬂ{ﬁﬂpl F ot (50) + B3 (S0, [+ L1+ (S1) + BSD] } (16.115b)
L i) = max* [+ L0 + 03(50) + BSSDL [-4 Lyo + 03050 + B3] -
mazg*%[ﬁélpg + a5 (S0) + B3 (So)]. [ .L% Lpy+o5(51) + B3(S } (16.115¢)
and
Lo (i13) = 03(S1) — (o). (16.115d)

We note that in the expressions for the extrinsic L-values L, (i), the intrinsic
L-value L,; does not appear in any of the terms; that is, the extrinsic L-value of bit
u; does not depemd directly on either the received or g priori L-values of u;.

M\WPLP 16.1 (Continued)

We can now evaluate the extrinsic a posteriori L-values using (16.114) and (16.115}
and the received channel L-values in Figure 16.19(c). Beginning with the first
iteration of decoder 1 (row decoding) for the bits ug, u, 12, and w3, and recalling
that the initial a priori Z-values in the expressions for L,o. £,1, L2, and L3 are
equal to 0, we obtain from (16.114)

o} (5p) = —1(0.8 4 0.1) = ~0.45 (16.116a)
af(51) = +3(0.8 +0.1) = +0.45 (16.116b)
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o (Sp) = max* {[—%(1.0 —0.5) — 0.45], [+1(1.0+0.5) + 0.45]}

%

=max" {—0.70,+1.20} =1.34 (16.116¢)

o3 (S) = max* [[+1(1.0 — 0.5) — 0.45], [-%(1.0+0.5)+0.45]}

*

=max {—0.20, -0.30} = 0.44 (16.116d)

{—
{—
o (So) = max* [[——< 1.8 1.1) + 134}, [+4(=1.8 — 1.1) +o.44]}
“{1.69, —1.01} = 1.76 (16.116¢)

o (S1) = max* {[+1(~1.8 + 1.1) +1.34], [—%(—1.8—1.1)4—0.44]}

= max* {0.99, 1.89} = 2.23 (16.116f)
Bi(So) = —2(1.6 —1.6) =0 (16.116g)
Bi(S)) = +1(1.6 +1.6) = 1.60 (16.116h)

B3(Sp) = max* {[_%H.g +1.D) +0), [+5 (=184 1.1) + 1.60]}
X" {0.35,1.25} = 1.59 (16.116)
B3(5p) = max* [[+1(~1.8 = 1.1) + 0], [~} (-1.8 = 1.1) + 1,601}

*

= max* {-1.45,3.05} = 3.06 (16.116j)

{
{—
B (Sp) = max* { 1(1.0 - 0.5) +1.59], [+1(1.0— 0.5) + 3.06]}
= max* {1.34,3.31} = 3.44 (16.116k)
BF(S1) = max* { +1(1.040.5) + 159, [-1(1.0+0.5) + 3.06]}
= max" {2.34,2.31} = 3.02. (16.1161)
Then, from (16.115) we obtain
LO(ug) = 0.1 +3.02 - 3.44 = —0.32, (16.117a)

LY () = max* {[—0.25 —0.45 +3.06]. [0.25 + 0.45 + 1.59]}

— max* {[0.25 —0.45 + 1.59]. [<0.25 + 0.45 + 3.06]}
= max* {2.36,2.29} — max* {1.39, 3.26} = 3.02 — 3.40 = —0.38, (16.117b)

and, using similar calculations, we have Lf,l)(uz) = +0.77 and Lgl)(u3) = +0.47,
These extrinsic values after the first iteration of row decoding are listed in
Figure 16.19(d). Now, using these extrinsic a posteriori L-values as the a priori
inputs for decoder 2 (column decoding), so that L,; = L.y + Lf,1> (u), we obtain
from (16.114)

J
.
)

<D
~
]
e
~~
[y
(@)
s
—
co
<]
~—

PPN 1.0
ai(Sp) = —5(0.8 —
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o (51 = +3(0.8 - 032 - 1.2) = —0.36 (16.118b)
3 (8p) = max® {[—%(—1.8 +0.77 + 1.2) + 0.36], [+3(=1.8 4+ 0.77 = 1.2) ~ 0.36]}
= max* {0.275, —1.475) = 0.44 (16.118¢)
@} (5)) = max* {H%H.S +0.77 +1.2) +0.36], [~ 1 (- 1.8+ 077 - 1.2) — 0.36]}
= max* {0.445,0.755} = 1.31 (16.1184)
o (Sp) = max’ g[, L(1.0 = 0.38 4 0.2) +0.44], [+1(1.0 ~ 0.38 = 0.2) + 1.31]3
=max* {0.03,1.52} =1.72 (16.118¢e)
ok (S1) = max® { (1.0~ 0384+ 02) +0.44], [~ 5(1.0 - 038 — 02) + 1.31]}
<O

85.1.1) = 1.68 {16.118f)
,3;»{((50) — _% 6+047 —-1.1) = —-0485 (16.118g)
BI(5) = +5(1.6 4047+ 1.1) = 1.58 (16.118h)

B3 (Sp) = max’ {[—%(1.0 —0.38 + 0.2) — 0.485], [+5(1.0 - 038 + 0.2) + 1.585]}
% {—0.895, 1.995} = 2.05 (16.118i)
B1(S1) = max” {[ 1(1.0-038 —02) — 0.485], [-1(1.0 - 0.38 — 0.2) + 1.585]}

|

— max* {—0.275, 1375} = 1.5 (16.118))

B} (Sp) = max” g[ L—1840.77 4 1.2) +2.05], [+ 31— 1.8+ 077+ 1.2) + 1.55]}
— max* {1965, 1.635) = 2.51 (16.118k)

B1(S1) = max {[+5(~184 0.7 = 1.2) +2.05], [-5(-1.8 4+ 077 - 12) + 1.55]}
= max* {0.935,2.665) = 2.83. (16.1181)

where we note that the roles of iy and s in (16. 118) are reversed compared with
(16.116), because, after interleaving, v| = 12 and ), = v;. We now use (16.115) to
obtain, for the bits ug, 12, 11, and us,

LPwg) = -1.2+2.83-251=—088 (16.119a)
L@ (1) = max* { [0.6 4+ 0.36 + 1.55], [-0.6 — 0.36 + 2.05]}
— max* E [~0.6 +0.36 + 2.05], [0.6 — 0.36 -+ 1.55]}
= max” (2.51,1.09) — max” {1.81, 1.79) = 2.72 — 2.49 = +0.23, (16.119b)

and, using similar calculations, we have L‘ez)(ul) = —0.69 and ng) (u3) = —0.04.
(Again note that in using (16.115) to evaluate the expressions for L (u7), the roles
of uy and uy are reversed.) These extrinsic values after the first iteration of column
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decoding are listed in Figure 16.19(¢). Finally, the a posteriori L-values of the four
information bits after the first completie iteration of decoding are given by

L@ (ug) = Leryo + LP (ug) + LP (ug) = 0.8 —0.32 — 0.88 = —0.40  (16.120a)
L) = Lera + LP () + LP () = 1.8+ 0.77 + 0.23 = —0.80 (16.120b)
LPWwy) = Lergg + LP ) + LP ) =1.0 - 0.38 — 0.69 = —0.07  (16.120c)
LP(u3) = Lerys + LP(u3) + LP (u3) = 1.6 +0.47 —0.04 =2.03  (16.120d)

and shown in Figure 16.19(f), where the a priori L-values for decoder 2. quZ)(u;).
are equal to the extrinsic a posteriori L-values, Lﬁ.h(ug), 1 =01, 2,3, after the first
iteration of decoder 1. Thus, if a final decoding decision was made after just one
iteration, the three information bits would be decoded as

~ ~

ngp=-1, fr=-1, 1y =-1, (16.121)

and bit u; would be incorrectly decoded in this case.

A second iteration of decoding would use the extrinsic a posteriori L-values
Lf,z)(u;) from the first iteration of decoder 2 as a priori L-values Lc(,l)(ul), [ =
0,1,2,3, for decoder 1, thus producing a new set of extrinsic a posteriori L-
values Lgl)(ul) at the output of decoder 1. These would then be used as a priorl
inputs to decoder 2, and so on. In Figure 16.19(g), (h), and (i), we give the L-
values L ), L)), and L (u)), respectively, [ = 0,1, 2,3, for the second
iteration of decoding (see Problem 16.26). Note that in this case, if a final decoding
decision was made after two iterations of decoding, all information bits would be
correctly decoded.

Note that for iterative decoding, although i3 is not an information bit and
does not need to be decoded, its extrinsic L-values must be updated throughout
decoding. Also, for this example, all input sequences that terminate encoder 1, when
interleaved, also terminate encoder 2. Thus, the operation of the log-MAP algorithm
is exactly the same for both decoders. In general, however, the interleaved input
sequence will not terminate encoder 2. In this case, the log-MAP algorithm must
specify initial values for the f*’s at each state; that is, S5 (§;),1 =0,1.---,2" — 1,
must be specified. These can be set either to all zeros or to the final values of the
o®’s at time K.

The most difficult calculations in the preceding example are the evaluations
of the exponential terms needed in the computation of the max* operation. These
calculations can be simplified by using the Max-log-MAP algorithm discussed
previously in Chapter 12. We now use this simplified algorithm to revisit the above
example.

EXAMPLE 16.15 iterative Decoding Using the Max-log-MAP Algorithm

When the approximation max*(x, y) ~ max(x, y) i1s applied to the forward and

4 AN

backward recursions in (16.114) and the exirinsic a posteriori L-valie calciilations
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in (16.115), we obtain for the first iteration of decoder 1

o (Sp) ~ max {~0.70, 1.20} = 1.20 (16.1222)
o (S1) ~ max (—0.20. —0.30} = ~0.20 (16.122b)
o (50) ~ max ﬂ‘l[ L84+ 1.0 + 1.20], [+4(-1.8 = 1.1) @.2@]}
= max {1.55, —1.65} = 1.55 (16.122¢)

o3 (S1) & max {[+5 (=184 1.1) + 120]. [ 4(~1.8 - 1.1) - 0.20]}

=max {0.85,1.25}) = 1.25 (16.1224d)
B2 (So) ~ max {0.35. 1.25) = 1.25 (16.122¢)
BX(S1) ~ max {—1.45.3.05) = 3.05 (16.1226)
B(So) ~ max {[—%(1 )+ 1.25), [+1(1.0— 0.5) + 3. GJ]E

— max {1.00. 3.30) = 3.30 (16.122g)

BL(5) ~ max {[Jr (1.0+0.5) + 1.25], [-1(1.0 4 0.5) +3.05]§l

= max {2.00, 2.30} = 2.30. (16.122h)
£ (ug) ~ 0.1 4 2.30 — 3.30 = —0.90 (16.123a)

L) ~ max E[—o.zf — 0.45 + 3.05]. [0.25 + 0.45 + 1.25]}

~ max { [0.25 — 0.45 + 1.25]. [-0.25 + 0.45 4 3.05]

[——

= max {2.35, 1.95} — max {1.05, 3.25} = 2.35 — 3.25 = —0.90,
(16.123b)

. . .. . 1 - o
and, using similar calculations, we have LE )(uz) ~ +4+1.4 and L (zw —0.3. Using
these approximate extrinsic a posteriori L-values as a priori L-valies for decoder 2,
and recalling that the roles of u) and u are reversed for decoder 2, we obtain

aF(S0) = ~ 108 -09-12) =065 (16.1242)
af(5) = +3(0.8-09—-1.2) = —0.65 (16.124b)
a(So) ~ max %[ L 18414412 4065, [+1(-1.8+14-12) - 0,65]}

= max {0.25. —1.45) = 0.25 (16.124¢c)
o (S1) ~ max {H%(—m 4+ 14412)+0.65] [-L(—1.8+414—12) - 0.65]?,

= max {1.05,0.15) = 1.05 (16.124d)
o (So) ~ max {{—-rl 0—09+02)+025), [+1(1.0-09-02) + 1,05]}

= max {0.10, 1.00) = 1.00 (16.124e)
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@X(S1) ~ max {[+%<1.o ~0.9402) +0.25}, [-1(1.0-0.9-02) + 1.05]}

= max {0.40, 1.10} = 1.10 (16.124f)
B3(Sp) = —3(1.6 —03 —1.1) = ~0.10 (16.124g)
Bi(S1) = +4(1.6 03 +1.1) =1.20 (16.124h)

B3 (So) ~ max {[-1(1.0 = 0.9+ 0.2) — 0.10], [+1(1.0 - 0.9+ 0.2) + 1.20]}

1

max {—0.25, 1.35) = 1.35 (16.124i)

]

max {—0.15,1.25} = 1.25 (16.124j)
B3 (So) ~ max {[ %(~1.8+1.4+1.2)—|—1.35],[+—12—(—1.8+1.4—|—1.2)+1.25]}

{
B3(S1) ~ max {[+%(1.0 ~0.9-02)—0.10], [~ (1.0 - 09— 0.2) + 1.20]}
{
max {0.95, 1.65} = 1.65 (16.124k)

BH(S) ~ max i [+1(~1.8+1.4-1.2) +135], [~ (1.8 +14-12) + 125]]

I

max {0.55, 2.05} = 2.05. (16.1241)
LP(up) ~ —1.2+2.05 — 1.65 = —0.80 (16.125a)
LD (uy) ~ max {[0.6 +0.65 4+ 1.25], [~0.6 — 0.65 + 1.35]}

~ max {[—0.6 +0.65 + 1.35]. [0.6 — 0.65 + 1.25]]
= max (2.5, 0.1} — max {1.4,1.2} = 2.5 — 1.4 = 1.10, (16.125b)

and, using similar calculations, we have Léz) (u1) ~ —0.8 and L§2)(u3) ~z +0.1. These
approximate extrinsic a posteriori L-values for row and column decoding are listed
in Figure 16.19(j) and 16.19(k), respectively. Finally, we calculate the approximate
a posteriori L-value of information bit ug after the first complete iteration of
decoding as

L@ (ug) = Leryo + L (ug) + Lo (ug) = 0.8 —0.9 — 0.8 = —0.9, (16.126)

and we similarly obtain the remaining approximate a posteriori L-values as
LP(uz) =~ +0.7, LD ;) ~ —0.7, and LP(u3) ~ +1.4. These approximate a
posteriori L-values are shown in Figure 16.19(1), and we see that in this case the
Max-log-MAP algorithm would incorrectly decode both bits u) and uy if decod-
ing was stopped after one iteration. In Figure 16.19(m), (n). and (o), we give the
approximate L-values L (i), L (u)), and L? (uy), respectively, I = 0,1,2, 3, for
a second iteration of Max-log-MAP decoding (see Problem 16.26). We see from
Figure 16.19(0) that if a final decoding decision was made after two iterations of
decoding, the Max-log-MAP algorithm would decode all bits correctly, the same as
the log-MAP algorithm.
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FExamples 16.14 and 16.15 can be stated as follows:

f Turbe Decoding [16]
ration symbols using the MAFP algerithm, mfhoge
a priori L-val

B.

puts
ues obtained {rom all statistically in de
ous iteraiion of decoding.

erative decoding using the log-MAFP

ance

similar to negative feedback in control
i ation from the ouiput that is fed

FErk 1 i1
f uﬁpnumc the SR at the input, leading to

. i of Z by allowing the two decoders
el. In this case, the a prmr L-values for the first iteration of
be the same as for decoder 1 (normally equal to 0), and the
101" L-values will then be exchanged at the same time prior

MC[a tion.

o Afier a sufficient number of iterations, the final decoding decision can be

taken 1 the a posteriori L-values of either decoder, or from the average of
these values, without noticeably affecting performance.
o the L-walues of the parity bits remain constant throughout
; !,v co.qcmonmed Wﬁi ve decoding systems, however, parity
bits from the outer decoder enter the i inne decodeh and thus the L-values of
these parity bits must be updated during the iterations [25].
o The foregoing approach to iterative decoding is ineffective for nonsystematic

ot

constituent co »‘, since channel L-values for the information bits are not
av M? ble as inputs fﬂ Oder 2; however, the iterative decoder of Figure 16.6
can be modified to 3 ecode PCCCs with nonsystematic constituent codes [42].

o A row-column inierleaver was used in Examples 16.14 and 16.15 for illus-
trative purposes only. As noted previously, better performance is normally
achieved with pseudorandom interleavers, particularly for large block lengths,

and the iterative decoding procedure remains the same.

£

o Further iterations of decoding in these examples would most likely improve
the a posteriori }L -values of the input bits; that is, L@ (ug) and L®(uy)
would become more negative, and L® (1) and L@ (u3) would become more
positive (see Problem 16.27). It is possible, however, particularly on very noisy
channels, for the decoder to converge to the correct decision and then diverge
again, or even to “oscillaie” between correct and incorrect decisions.

o
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e Iterations can be stopped after some fixed number, typically in the range
10-20 for most turbo codes, or stopping rules based on reliability statistics can
be used to halt decoding.

e The Max-log-MAP algorithm is simpler to implemeni than the log-MAP
algorithm; however, it typically suffers a performance degradation of about
0.5 dB.

o It can be shown that the Max-log-MAP algorithim is equivalent to the SOVA
algorithm presented in Chapter 12 [43].

The effect of the number of decoding iterations on BER performance is
iflustrated in Figure 16.20 for the rate R = 1/2 PCCC with information block
length K = 216 = 65536 obtained by using a pseudorandom interleaver and
puncturing alternate parity bits from the encoder of Figure 16.1(b). The performance
improvement with increasing iterations, as well as the diminishing effect as the
number of iterations gets large, is clearly evident from the figure. This is the
original code proposed in the paper by Berrou, Glavieux, and Thitimajshima [2] that
Jaunched the field of turbo coding. After 18 iterations, a BER of 107> is achieved at
an SNR of E;/Ng = 0.7 dB, which is only 0.5 dB away from the Shannon limit for
channels with binary inputs.

We conclude this chapter with a brief discussion of stopping rules for iterative
decoding, that is, methods of detecting when decoding has converged. One such
method is based on the cross-entropy (CE) of the APP distributions at the outputs of

1
I | R
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L 1 iteration === |
0.1 Emgm 2 iterations === _|
e 3 iterations - ]
RN N — 6 iterations —— -
I \ N 18 iterations =——- |
0.01 |- L N — .
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\ AN N
- . N o
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FIGURE 16.20: The effect of iterations on decoding performance.
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the two decoders. The cross-entropy D(P || Q) of two joint probability distributions
P(um) and ¢(uw), assuming statistical independence of the bits in the vector u =

(o, w1, -+ cup, -+ s g1, 18 defined as (see {41])
. K-l
DN =Ep llog 20 = 5 £ L1og (“’)% (16.127)
O] A B e

where Ep {-} denotes expectation with respect t6 the probability distribution P ().
D(P || ©)is a measure of the closeness of two distributions, and

DP|O=0if Pu)=Qw), yy==x1, [ =0,1,.--- | K —1. (16.128)

Thus, when two disiributions are nearly identical, the cross-entropy D(P || Q) is
close t0 0, and the value of D(2 || Q) can be used as an indication of when iterative
decoding has converged and the decoding iterations can be stopped.

The CE stopping rule is based on the difference between the a posteriori L-
values after successive iterations at the ouiputs of the two decoders. For example, let

(1/

L) () = Lera + L, Gan) + LY, () (16.129a)

PR |

represent the a posﬂ;ei‘ion L-value at the output of decoder 1 after iteration i, and let

)+ L% @) (16.129b)

e(r)

(,) (”1) = Leryg + /L

u(l
represent the a posteri on L- ‘value at the output of decodei 2 aﬂer iteration i. Now,
using the facts that ,«’a o @ = m (w;) and [ u(,m (up)y = Le(l.) (i), that is, the
a priori L-valiue at the input of one dﬁmder is the extrinsic a posteriori L-value
at the output of the other decoder, and letting Q (¢;) and P (i) represent the a
posteriori probability distributions at the outputs of decoders 1 and 2, respectively,
we can write

(UZ) =L, eyl + L (lb[) -+ LC(, (L![) (161303)
and
L )y = Lera + L) ey + L) () (16.130b)
We can now write the difference in the two soft outputs as
A
L @y = L ) = L) Gy — LI )y = AL () (16.131)

that is, ALE( )) (u;) represents the difference in the extrinsic a posteriori L-values of
decoder 2 in two successive iterations.
We now compute the CE of the a posteriori probability distributions P (u;)

and Q (u;) as follows:

P (up ) Py =+D Py =-1

Ep log — PGy =+Dlog — T by = ~1ylog LT

b { %9 (u;)ﬁ (= +Dlog mr— gy T Y —
L(I>(”/)

(i e (r ) 1+e u~| )

log T
i -|—e (,, ) 1 4 eL“” (up) eL(,f, (un)

(Ii Py, | (Q)
o Ly n oLy ) 14+e” Ly (ur)

o 16.132
(u/) & P L(P)(l(/) e—L;g)(ul) ( )

1+e m 14e "W
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where we have used expressions for the a posteriori distributions P (u; = £1) and
Q (u; = £1) analogous to those given in (12.123). It can be shown (see Problem
16.30) that (16.132) simplifies to

(P) L@
P(ul)} Le<z>(”1) oo Lt (16.133)

Er {log Q (up)

1 ..|_ e (li (Ll/) 1 + e_L:iP))(”/) '

This expression can be simplified further under the assumption that the hard
decisions based on the signs of the a posteriori L-values of both decoders do not
change once decoding has converged; that is, the hard decisions after iteration i,

ul('), satisfy

i = sgn [LEZ)) (uz)] [L@Q)) (u,)] : (16.134)

Using (16.134) and noting that

IL(’) (u;)I = sgn [LEII;)(W)] LEIP))(M[) = ﬁ( )L(P)(u ) (16.135a)
and
|L§§>(u,)1 — sen [ng’(u,)] L) = al "L ), (16.135b)

we can show (see Problem 16.30) that (16.133) simplifies further to

Q)

P (u7) g —*Lt(l)AL(g)(u[) 1+e ‘Lm (u,)’
Q( 1) ‘L‘”(ul) 1L (“/>‘

Ep {l (16.136)

1+e

We now use the facts that once decoding has converged, the magnitudes of the
a posteriori L-values are large; that is,

L wn| >0 and || >0, (16.137)
and that when x is large, ¢ is small, and
I+e¢*~1 and log(l+e¢*)~e ™. (16.138)

Applying these approximations to (16.136), we can show that (see Problem 16.30)

P (u) E —]L‘Q’uu)

Ee {log 0 ()

_“(r) " Nt
[1_ AL H(H ()AL<(”(u;)>]. (16.139)

Noting that the magnitude of AL )(u;) will be smaller than 1 when decoding

A~ r)
—il AL(,(”(u/)

e{i
converges, we can approximate the term e
its series expansion as follows:

using the first two terms of

—A'”AL"P,’(. ) N A() (P)
e M B g 1 ! AL, ), (16.140)
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which leads to the simplified expression

oo Pl @ a0 AL® LD ALY
jgkiéa(m)%we‘ 1![1_{1 NS (141))){1—1-- B A ;)(m]

(r
R - =42 ‘ﬁ‘i (i (l’[)’
. |22 | l A\L(P)(”])J e (16.141)

e{r}

Mow, using (16.127) and (16.141) we can write the CE of the p

! robability distributions
P(m) and Q(w) at iteration i as

2
E-1IALP) i)
( P () | oy \ (i V¥
Doy (P11 02 Ep f1og 20 |~ S 120 (16.142)
Lo i ‘L'O u,>\

18]

i the statistical independence assumption does not hold exactly

2
L K-l |aL (u,))

eli)
(l) 2..4 1())

(16.143)
I=0 ‘Lm “”‘

2

5 ‘{h apmommafﬂ value of the CE at iteration i given b‘y (16.142). T(i) can

'i mputed af mu each iteration. {Note that m computing 7(1) we need to find
m (u y = L% )ux/) — é(O)(u/) where L )(0){131) is taken to be the initial a priori
L-value of the information bit u; that is, I )(0)(”1) =0,1=01,.---,K —1, for

equally likely inputs.) Experience with computer smnulau@m has shown that once
convergence is achieved, T (i) drops by a factor of 1072 to 10~ compared with its
nitial value, and thus it is reasonable to use

T(i) < 107°37(1) (16.144)

as a stopping rule for iterative decoding.

The observation that led to the asswmption of (16.134) can also be used ic
define a simpler stopping rule based only on the hard-decision outputs of each
decoder. For example, if (16.134) is satisfied for some number of consecutive
iterations {five is a reasonable choice), for all/ = 0,1, --- . K — 1, we can declare
that convergence has occurred and stop decoding. Ahhouah not quite as effective
in detecting convergence as the CE rule, this hard-decision-aided (HDA) rule is
extremely simple to implement. The CE stopping rule was discussed in [15], and two
HDA stopping rules were introduced in [44].

Another approach to stopping the iterations in turbo decoding is to concatenate
a high-rate outer cyclic code with an inner turbo code, as illustrated in Figure 16.21.
After each iteration, the hard-decision output of the turbo decoder is used to check
the syndrome of the cyclic code. If no errors are detected, decoding is assumed
correct and the iterations are stopped. It is important to choose an outer code
with a low undetected error probability, so that iterative decoding is not stopped
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wo | 'Qutf:r: Sl o)
— cyclic
Clcode

——— [DEncoder,
S ]

FIGURE 16.21: A concatenation of an outer cyclic code with an inner turbo code.

prematurely. For this reason it is usually advisable not to check the syndrome of the
outer code during the first few iterations, when the probability of undetected error
may be larger than the probability that the turbo decoder is error free. This method
of stopping the iterations is particularly effective for large block lengths, since in this
case the rate of the outer code can be made very high, thus resulting in a negligible
overall rate loss.

For large biock lengths, the foregoing idea can be extended to include outer
codes, such as BCH codes, that can correct a small number of errors and still
maintain a low undetected error probability. In this case, the iterations are stopped
once the number of hard-decision errors at the output of the turbo decoder is within
the error-correcting capability of the outer code. This method also provides a low
word-error probability for the complete system; that is, the probability that the
entire information block contains one or more decoding errors can be made very
small. The idea of combining a turbo code with a high-rate outer BCH code was
introduced in [45] and further analyzed in [46].

PROBLEMS

16.1 Prove that the general rate R = 1/3 turbo encoder shown in Figure 16.1(a), where
encoders 1 and 2 are linear convolutional encoders (not necessary identical)
separated by an arbitrary interleaver, is a linear system.

16.2 For the length K = 16 gquadratic interleaver of (16.7), determine all pairs of
indices that are interchanged by the permutation.

16.3 Consider a PCBC with two different constituent codes: the (7, 4,3) Hamming
code and the (8§, 4, 4) extended Hamming code. Find the CWEFs, IRWEFs, and
WEFs of this code assuming a uniform interleaver.

16.4 Find the IRWEFs and WEFs for Example 16.5.

16.5 Repeat Example 16.5 for the case & = 4. What is the minimum distance of the
(40,16) PCBC if a 4 x 4 row-column (block) interleaver is used?

16.6 Consider a PCBC with the (24, 12, 8) extended Golay code in systematic form as
the constituent code.

a. Find the CWEFs A, (Z), w = 1,2,--- .12, of this code by generating the
codewords of the (23, 12, 7) Golay code in systematic form and then adding
an overall parity check.

Assuming a uniform interieaver,

b. find the CWEFs A2C(Z), w =1,2, -, 12;

e. find the IRWEFs AT¢(W, Z) and BYC (W, Z); and

d. find the WEFs A”¢(X) and BP“ (X).
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e. Mow, consider a PCBC with the 12- 1epeama (24,12, 8) exiended Golay code

i Syszemamc form as the constituent code. Assume that the information bits
are arranged in a sguare array and thai a row—column interleaver is used; that
is, enco dPr 1 encodes across rows of the array, and encoder 2 encodes down
colurnns of the arvay. Find the parameters (57, &, o) of the PCBC

Pi'ovP {16. 37“

[

and WEF for the PCCC in Example 16.6.
WEFs for the P¢ C mEs 2mple 16.6.
the encoder m‘[ the reversed generators given

the encoder with the reversed generators given

o code (PCCCT) with constituent encoder

D+ 55 )1+ D))

e 1andoﬂ m’(e lewers (see Figure 16.2). Assuming a uniform

:ﬁaneCW EFs A{jC(z yand 8PC(7) forw =2,3,4,5;

ate IRWEFs APC(W. Z) and BPC(W. Z);

the ; 'mave WEFs APC(X) and 27C(X); and

b the urion bounds on PI,V(E) and ,(£) for K = 1000 and X = 10000,

1“1g a binary-input, unquantized- OU'pUi AWGN channel.

16,15 F minimum-weight codewords corresponding to input weights 2 and 3 for
the PCCCs whose generators are given in Table 16.6. Tn each case determine the

free distance dp., assuming large K.

—w
16.16 Zhow that for any (n, 1, v) systematic feedforward encoder A AT [A;D(Z)J

and that for any (n, 1, v) systematic feedback encoder A 71;’)(/) = [A(;)(Z)]u

16.17 Show that a weight-1 input sequence cannot terminate an (n, 1, v) systematic
feedback encoder, but there always exists a weight-2 input sequence, of degree
no greater than 2" — 1, that does terminate the encoder.

16.18 For an (n. 1, v) systematic feedback encoder, show that the input sequence u =
(1600 - - - ) produces a cycle with input weight zero starting in state §; = (10---0),
arriving in siate S, = (0---01) after at most 2" — Z steps, and returning to state
51 in one StPD

1619 For an (n.1, v) systematic feedback encoder, show that a 1 input from state
Syt = (O~ .- 01) terminates the encoder.

16.20 Compute 2y, and deg for the turbo codes with primitive and nonprimitive 16-staie
consti 1t codes I and E of Table 16.6.

16.21 Show i at the bound of (16.97) is also valid for nonprimitive denominator
polynomials.

16.22 Use the S-random interleaver algorithm to constructa length X = 32 permutation
that breaks up all weight-2 input sequences with a spacing of S = 4 or less
between 1's.
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16.23 Prove that the Gaussian random variable Lcrl(o) in (16.17) has variance 2L, and
mean +71..

16.24 Prove that for any real numbers w, x, and y, max*(w+x, w+y) = w+max*(x, y).

16.25 Verify the o* and g* expressions in (16.114).

16.26 Verify all entries in Figure 16.19 that were not computed in the text.

16.27 Complete two more iterations of decoding in Examples 16.14 and 16.15. Is there
any change in the decoded output?

16.28 Calculate the cross-entropy at the end of each complete iteration in Examples

16.14 and 16.15 and Problem 16.27.

16.29 [15] Consider the (8, 4, 3) PCBC formed by using & = 2 codewords from the

(3, 2, 2) systematic single parity check (SPC) code, that is, a (6, 4, 2) 2-repeated

SPC code, as the constituent code, along with a 2 x 2 block (row-column)

interleaver of overall size K = 4. The information block is given by the vector

w = [u11, 12, up1, w2z}, where u;; represents the jth information bit in the ith

row of the interleaver, i, j = 1, 2; the ith parity bit in the row code is given by

p;‘l),i = 1, 2; and the jth parity bit in the column code is given by 1)52), J =

1, 2. The arrangement is shown in Figure P-16.29(a). Assume the particular bit

values given in Figure P-16.29(b) and the set of received channel L-values given

in Figure P-16.29(c).

a. Use the trellis shown in Figure P-16.29(d) and the log-MAP algorithm to
compute the extrinsic L-values for the first iteration of row and column
decoding, and the soft-output L-values after the first complete iteration for
each of the K = 4 information bits.

b. Repeat (a) using the Max-log-MAP algorithm.

16.30 Starting from (16.132), derive the cross-entropy expressions given in (16.133),

(16.136), and (16.139).

uy | wp | pt" 1] -1] -1 —05|-15|-1.0

uy | uyp | ptY -1 +1 | +1 —4.0|-1.0{+15

21 pat? -1 +1 —2.0|+2.5

(8,4,3) PCBC Coded values Received L-values
(a) (b) (c)

+1

S )

So B
Y
Decoding trellis

(d)
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