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FIGURE 15.1: Communication system using a concatenated code.

Usually, an RS code is used for €. Encoding consists of two steps, as shown in
Figure 15.1. First, the kjk; binary information digits are divided into &y bytes of k;
information digits each. These ky bytes are encoded according to the rules for C; to
form an nz-byte codeword. Second, each k{-digit byte is encoded into a codeword in
(1, resulting in a string of ny codewords of Cy, a total of npn digits. These digits are
then transmitted, one Cy codeword at a time, in succession. Thus, the resultant code
is an (n1ny, k1k2) binary linear code. The component codes C| and C; are called the
inner and outer codes, respectively. If the minimum distances of the inner and outer
codes are dy and d;, respectively, the minimum distance of their concatenation is at
least djdy (see Problem 15.1). This type of concatenation of two codes is known as
one-level concatenation.

The concatenated code of {| and (; is also decoded in two steps, as shown
in Figure 15.1. First, each C; codeword is decoded as it arrives, and the check digits
are removed, leaving a sequence of ny ky-digit bytes. These bytes are then decoded
according to the decoding method for C;, to leave the final corrected message.
Decoding implementation is the straightforward combination of the implementa-
tions for codes €1 and 3, and the amount of hardware required is roughly that
required by both codes.

Concatenated codes are effective against a mixture of random errors and
bursts, and the pattern of bytes not correctable by the C; code must form a
correctable error pattern for C; if the concatenated code is to correct the error
pattern. Scattered random errors are corrected by Cy. Burst errors may affect
relatively few bytes, but probably so badly that C; cannot correct them. These few
bytes can then be corrected by Cs.

EXAMPLE 15.1

Consider the concatenation of the (15, 11) RS code with symbols from GF(2*) and
the (7, 4) binary Hamming code. Each code symbol of the RS code is represented
by a byte of four binary digiis, as in Table 2.8. Then, each 4-bit byte is encoded inio
a codeword in the (7, 4) Hamming code. The resultant concatenated code is a (105,
44) binary code. Because the minimum distance of the (7. 4) Hamming code is 3,
and the minirnum distance of the {15, 11) RS code is 5, the concatenated code has a
minimum distance of at least 15. If the code is decoded in two steps, first the inner
code and then the outer code, the decoder is capable of correcting any error pattern

such that the number of inner codewords with more than a single error is less than 3.
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FIGURE 15.2: An interleaved code array.

GF(2™), and the inner code €1 be an (nq, k1) binary linear code with ky = Am, where
A is a positive integer. A message of ky m-bit bytes (or kym bits) is first encoded
into an ny-byte codeword in Cy. This codeword is then temporarily siored in a
buffer as a row in an array, as shown in Figure 15.2. After & outer codewords have
been formed, the buifer stores a A x np array. Each column of the array consists
of & (m-bit) bytes (or Jm bits) and is encoded into an n;-bit codeword in C;. Each
encoded column is transmitted serially. Therefore, the outer code is interleaved by
a depth of L. When an inner codeword with possible errors is received, it is decoded
and the parity bits are removed. The decoded A bytes (or Am bits) are stored in a
receiver bufier as a column in a A x ny array. After n; inner code decodings, the
receiver contains a A X 5y decoded array. Then, each row of this array is decoded
based on the outer code C;. Therefore, there are a total of & outer code decodings.
The overall interleaved concatenated coding system is shown in Figure 15.3.

It is possible to construct a concatenated code from a single outer code and
multiple inner codes. For example, one may use an (xy, ko) code C; with symbols from
GF(2%) as the outer code and 15 (11, k1) binary codes, C{, Ciz), ce Ci”z), as inner
codes. Again, the encoding consists of two steps. First, the kiky information digits
are divided into ky-bytes of ki-digits each. These ky-bytes are encoded according to
the rules for C; to form an ny-byte codeword, (ag, a1, - - - , d,,-1), Where each byte
a; is regraded as an element in GF(QM). Second, the ith byte ¢ for 0 < i < mp
is encoded into a codeword in the ith inner code C{'). The overall encoding again
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FIGURE 15.3: An interleaved concatenated coding system.

results in an (nyny, k1ky) concatenated code. By concatenating one outer code with
multiple inner codes, Justesen [2] was able to construct a class of asymptotically
good concatenated codes.

Concatenated coding has been widely used in digital communication and
storage systems to achieve high reliability (low bit-error probability) with reduced
decoding complexity. The inner code is usually short and is decoded with soft-
decision decoding. An RS code is commonly used as the outer code and is
decoded with hard-decision decoding using an algorithm presented in Chapter 7
(the Euclidean algorithm is the most popular one).

9
8
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o
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FIGURE 15.5: The bit-error performances of the (64, 40, 8) RM subcode and the
concatenated coding scheme with the (64, 40, 8) RM subcode as the inner code and
the NASA standard (255, 223, 33) RS code as the outer code.

As an example, we consider a concatenated error-control scheme in which
the outer code is the (255, 223, 33) RS code with symbols from GF2%, and the
inner code is a binary (64, 40) linear code with a minimum distance of 8. The outer
code has a minimum distance of 33 and is capable of correcting 16 symbol errors.
The generator matrix of the inner code is obtained by removing two rows from
the generator mairiz of the (64, 42, 8) RM code. The trellis of this inner code
consists of 32 parallel and structurally identical subtrellises, each with 64 states. One
such subtrellis is shown in Figure 15.4. The parallel structure allows us to devise 32
identical subdecoders to process the subtrellises in parallel to achieve high decoding
speed. In concatenation with this (64, 40) inner code, the (255, 223) RS outer code
is interleaved to a depth of 5. The overall rate of the concatenated coding system is
0.545, and iis bit-error performance is shown in Figure 15.5. It achieves a BER of
1070 at 3.1 dB SNR.

15.2 MULTILEVEL CONCATENATED CODES

Single-level concatenation can be generalized to multilevel concatenation [5, 6].
In a multilevel concatenated coding system, multiple inner and outer codes are
used to form multiple concatenated codes, and these concatenated codes are
then combined to form an overall concatenated code. Multilevel concatenation
provides an even more powerful coding technique for error control than single-level
concatenation and offers more flexibility in designing error-control systems for
various communication environments. Furthermore, the multilevel structure allows
the use of multistage decoding to reduce decoding complexity.
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FIGURE 15.6: An encoder for an m-level concatenated code.

An m-level concatenated code is formed from a set of m inner codes and a set
of m outer codes, as shown in Figure 15.6. The m inner codes are coset codes formed
from a binary (n, k) linear block code A; and a sequence of m linear subcodes of Ay,
denoted by Az, Az, ..., Ajp+1 = {0}, such that

AL DA D ... D A D Apsr = {0}, (15.1)
where A,, 1 contains only the all-zero codeword 0. For 1 <i <m, let

1. k; and dg4, be the dimension and minimum distance of A;, respectively.
2. [A;/A;11] denote the set of representatives of cosets in the partition A;/A; 1.

[A;/A;1] is a linear code with 2 —ki+1 codewords, and hence its dimension is
ki — k;11. This code is called a coset code.
Forl<i<m,let

g = [Ai/Aip]| = 25Fs, (152)
and
[Ai/Ain]=1a 11 <) <q). (15.3)
Then, a cosetin A;/A; 4 is given by

@)

{a

+a:ac A},

and

i
A =J@" + 410
i (15.4)

=[Ai/Ai1] ® Ajyr.
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e 1 coset codes are used as

s shown in Figure 15.6.
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where g; is defined by (15.2).

am i Figure 15.6, the ith level

[Ai/A;41] as the inner code. We

During each encoding interval, a messa
into a codeword

e of &; syimbols over GF(g;) is encoded

(i _ nl 0 ()
0 (!,O by, QN_l)

in the ith outer code & for 1 </ < m. Then, each symbol b(].’) of b is encoded

[A;i/A;11]. where f;(-) denotes the
I're output of the ith inner code

nto a codeword /,([/ )) in the ith inner ¢
encoding mapping of Ibe ith inner cods
encoder is the {ollowing sequence

' penlidy oo () ()
= (fi b)) F B filhy ).
which is a codeword in @h& ith level concaienated code B; o [A;/A;41] and is
a sequence of coset representatives from {A;/A;41]. Consequently, the output
sequence of the overall enco d r of the m-level concatenated coding system shown

in Figure 15.6 is the following suim:

=

€= {0y, 01, ... Ty 1)

— oy '.E(‘?‘} S 43<m) (156)
where for 0 < j < M,
a :
o= HGY. (15.7)

From (15.7) we readily see that each componeni of ¢ is a codeword in Aq. Therefore,
cis a sequence of N codewords in Aj.
The following collection of sequences,

. (i)
= {(e0, 1. ... Oy} T by ) € B

for 1<i<m and 0 < j < N}, (15.8)



746 Chapter 15 Concatenated Coding, Code Decomposition

forms an m-level concatenated code. For simplicity, we denote this concatenated
code with

C2(B, By ..., Bu)olA1 Ao ... Anh. (15.9)

Note that for 1 < i.j < m, and i # j, [A;/A;+1] and [A;/A;11] have only the
all-zero codeword 0 in common; that is,

[4i/Ai1) [ VA /A 4] = (0}, (15.10)

It follows from (15.6), (15.8), and (15.10) that the m-level concatenated code C is
the direct-sum of m-component concatenated codes; that s,

C=B1o[A1/A)D Bro[A2/A3)® ... ® By o[4n/Anv1] (15.11)
The minimum distance of C is lower bounded as follows:
Anin(C) > minf{dy,dp, 11 <i < m} (15.12)
(see Problem 17.2). The dimension of C is

i

K = z Ki(ki —kiip).

i=1

EXAMPLE 15.2

Letn =8 and N = 8. We choose A; and its subcodes as the {ollowing RM codes of
length 23 = 8: Ay = RM(3,3), Ay = RM(2,3), Az = RM(1,3), Ay = RM(0, 3), and
As = {0}. Ay is simply the (8, 8) universal code with minimum distance ds, = 1; A
is the (8, 7) even parity-check code with minimum distance d4, = 2; A3 is the (8. 4)
first-order RM code with minimum distance du, = 4; and A4 is the (8, 1) repetition
code with minimum distance d4, = 8. Because

RM(3,3) D RM(2,3) > RM(1,3) D RM(0.3) > {0},

we can form the following coset codes:

[41/42] = [(8.8)/8. ],
[42/43] = [8,7)/(8. 4],
[A3/A4] = [(8,4)/(8. D],
[44/{0}] = [, D/{0}].

The dimensions of these four coset codes are 1, 3, 3, and 1, respectively. Therefore,
g1 =2,q2 =2% g3 = 2°, and q4 = 2. In the construction of a 4-level concatenated
code with the preceding coset codes as the inner codes, the four outer codes By,
By, By, and By must be codes over GF(2), GF(2%). GF(2%), and GF(2), respectively.
Suppose we choose the following four outer codes:

1. By is the binary (8, 1) repetition code with minimum distance dp, = §;
2. By is the extended (8, 5) RS code over GF(23) with de, =4
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I
~

3 tended (8, 7) RS code over GF(2%) with dp, = 2; and
4, Byisthe (8, 8) inary universal code with dp, = 1.

The 4-level concaienated code constructed from the foregoing inner and outer

C=B1o[A1/A2]® By oA/ A3] @ B30 [A3/A4} © Byo [Ay/{D}].

which is a (64, 45) binary lnear block code. From (15.12) the minimum distance
Amin(CY of C is lower bounded by

i (Cy > min{l x 8. 2 x4, 4 x2, 8x 1} =8.

In fact, it can be shown thai diyy;, = 8. This code has the same code parameiers as
the (64, 45) extended primitive BCH code omamed by adding an overall parity bit
to the (63, 45) BCH code.

EXAMPLE 15.2

Suppose we choose the following codes as the coset inner codes in the construction
of a 3-level concatenated code:

Ay) = [RM(2.3)/RM (L, 3)] = [(&. 7 /(8, 4],
{ Az] = [RM(1,3)/RM(0.3)] = [(8.4)/(8, 1],
{0}] = [RM(0.2)/{B}] = [(8. D/{0}].

I |

[
[

=

Then, the outer codes By, By, and B3 must have symbols from GF(2®), GF(2%), and
GF(2), respectively. Suppose we choose the following as the outer codes: (1) B is
the (8, 1) extended RS code over GF(2*) with a minimum distance of 8" (2) By is
the (8. 5) extended RS code over GF(2%) with a minimum distance of 4; and (3) B3
is the (8, 7) binary even parity-check code with a minimum distance of 2. Then, the
3-level concatenated code

C =B o[RMQ2.3)/RM(1.3)]® By o [RM(1,3)/RM(0.3)] @ B3 o [RM(0, 3)/{0}]

is a (64, 25) binary linear block code with a minimum distance of 16. This code has
one information bit more than the (64, 24} extended BCH obtained by adding an
overall parity bit to the (63, 24) primitive BCH code.

The preceding twe examples show that the multilevel construction of concate-
nated codes resulis in good codes. Good multilevel concatenated codes and their
trellis complexities can be found in [9].

An m-level concatenated code can be decoded in m stages. The first-level
concatenated code By o [41/A;] is decoded first, and the mth level concatenated
code B, o[ A,;/{0}] is decoded at the last stage. Suppose a codeword ¢ corresponding
0 m outer codewords b, b, ... b is transmitted. Letr = (rg. 1y, ..., ry_;) be
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the received sequence, where each received component r; is the sum of a transmitted

codeword in A; and an error vector. At the first decoding stage, vV 2 ¢is decoded
into a codeword b)) = (bm L ﬁl), . bﬁ)_l) in the first-level outer code B;. Then, a
modified received sequence is formed:
@) _ (2 () 2
=(ry .1 ,...,rrN_l)
(15.13)

=D — (aEM, A, A ).

@ ;

H there are no errors in ) = r, each component r; is a codeword in A;; otherwise,

2 of 1 is the sum of a codeword in A3 and an error vector. At the second decoding

stage r® is decoded into a codeword b® = ([t»(z), lh)f) e Ibgél)) in the second-level
outer code B;. Then, another modified received sequence is formed:
3 3 (3 (3)
) = (rg .r7 ry )
2 @y 2 (15.14)
=1 — (). L) b ).

Again, if there are no errors in r'!) = r, each component tr(f)

otherwise E"(]-3)

is a codeword in As;
is the vector sum of a codeword in As and an error vector. At the
third-stage decoding. r® is decoded into a codeword in the third-level outer code Bj.
This decoding process continues until ") is formed and decoded into a codeword
b in the mth level outer code B,,.

Each decoding stage consists of two steps, the inner and outer decodings. At
the ith decoding stage, the modified received sequence

(i) (1)
=(ry ..., Iy_p)

is first formed based on the decoding results of previous decoding stages. The inner
code decoder decodes each component H‘() into a codeword in A; and identifies

the coset in A;/A;4; that contains the decoded codeword. Let f,(b(’)) denote the

representative of this coset. By inverse mapping, we obtain b( ) from fiC b( )) After
N inner code decodings, we obiain a vector over GF(g;):

E?)(' (, (i) [(I ..... (1) )

This vector is then decoded based on the ith level outer code B; into a codeword
b in B;. This completes the ith decoding stage. The decoder proceeds to the next
decoding stage.

In the foregoing multistage (ecoding, the decoded estimate at one stage is
passed to the next stage for decoding the next component concatenated code. If a
decoding error is committed at a stage before the last stage, error propagation is
likely to occur.

15.3 A SOFT-DECISION MULTISTAGE DECODING

The multistage decoding presented in the previous section can be modified for
soft-decision decoding of multilevel concatenated codes and decomposable codes
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[10-19]. To reduce computational complexity, each level is decoded with a treflis-
based decoding algorithm.

Consider the multilevel concatenated system shown in Figure 15.6. For conve-
nience we reiniroduce scime notations that were defined in the previous section:

1. r = (rg, 71, ..., ry—1) is the sofi-decision received sequence at the output of

the matched filter, where for 0 < j < N,r; = (r0,7j1. ..., Fj.n—1) is the jth
received n-tuple.

2 v = @ ”) ..... ;’,) | is the modified received sequence for the ith stage
_ ] . @) () D) (i
decoding, whew for0<j <N, m(. = (r. j0 T ..,,,1]1”_1).

3 B = (00 b(’ ..... m ;) is the decoded Podewmd in outer code B; at the ith
decoding SKEWP

i) 1”’ o N 1) is the decoded codeword in the ith level concate-

nated code Bio{Ai/A; ). where for0 < j < N,

4. D = (g

A ) @) (I
T = ( P RERERE C./-‘”_l)
= £,
Suppose the (i — 1)th siage of decoding has been completed. Then, the received
sequence 1! = (v(’ (1” ..... P vy for the ith stage of decoding is obtained from
eV and -1 a5 follows: for 0 <!l <nand0 < j < N, ihe /th symbol of the jth
section rr( D of 1) is given by
A0 (i—1) (N .
rog=ry (=200 (15.15)

{(assuming BPSK signaling).
Each stage of decoding consists of two steps, the inner and outer decodings.
At the ith decoding stage, the inner decoder processes the N sections of the
received sequence r') independently and forms N metric tables for the outer code
decoding. Let {a'} L@ iaac Air1) be a coset in A;/A;.1 with ') as the
coset representaiive. The metric of {a')}) with respect to Tf’(]-i) is defined as the largest
correlation metric between T(]i) and the vectors in {a''}, denoted by M ({a'"}). Let
a') + a* be the vector in {a“ } with the largest metric. This vector is called the label
of {a} with respect io Ir . A metric table, denoted by I\/T( " is formed that for
earh coset {2} € 4, /A,H, gmmes us metric M({a’"}) and wts label a“? 4+ a*. This
table is called the metric table for ]I“ ' The inner decoding at the ith stage is to form

N metric tables, one for cach secuoq of the received sequence r'). These N meiric
tables are then passed io the outer decoder. For a codeword b") in the ith ouier
code B;, the metric of b is defined as the following sum:

N-1
MO = S ML, (15.16)
j=0 '
where M({f; (b;”)}) is the metric of the coset {ﬁ(b(].i))} with f; (b(ll"") as the coset
leader that is siored in table MT(]." ). The outer code decoding is to find the codeword
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b’ e B; that has the largest metric among all the codewords in B;, by using a
trellis-based decoding algorithm, such as the Viterbi algorithm or RMLD, io search
through the trellis for B;.

Owing to possible error propagation from one decoding stage to the nexi, the
foregoing multistage decoding is not optimum (i.e., it does not achieve MLD perfor-
mance), even though each stage of decoding is MLD. It is a suboptimum decoding
algorithm; however, it provides an efficient trade-off between error performance
and decoding complexity for multilevel concatenated codes and decomposable
codes.

The performance of multistage decoding can be improved by passing a list of
L best estimates from one stage to another and then choosing the estimate with
the largest metric at the last decoding stage as the final decoded codeword, as with
the list Viterbi algorithm [20] at each stage. The improvement and the additional
decoding complexity is determined by the size of the list.

15.4 DECOMPOSITION OF CODES

The opposite of multilevel construction of concatenated codes presented in the
previous section is decomposition of codes into compenent codes. A code is
said to be u-level decomposable if it can be expressed as a u-level concate-
nated code. Such a decomposable code can be decoded in multiple stages, as
described in the previous section. Multistage decoding of long decomposable codes
reduces decoding complexity significantly. because after decomposition, component
codes are shorter in length and smaller in dimension, and require less decoding
complexity.

The most well known class of decomposable codes is the class of RM codes. In
Section 4.4, it was shown that a RM code can be decomposed in many ways using
squaring construction: however, a RM code also can be decomposed as a multilevel
concatenated code [10, 11, 14—17]. Consider the rth-order RM code of length 2,
RM(r, m). Let k(r, m) and g(r, m) denote the dimensions of the RM(r, m) code and
the coset code, [RM(r, m)/RM(r —1, m)], respectively. (Note that RM (—1, m) = {8}}.
From Section 4.2 we find that

k(r,m) = Z (71)
[

i=0 i
and
Gir,m) = (m) (1517
r
For 0 </ < r, we can readily show that
-1
kiry,m)=k(r —1,m) + Zq(r —i,m). (15.18)
i=0

Let (i, k)* denote the linear block code over GF(2}) obtained by interleaving the
binary (n, k) code to a depth of 1 with each group of % interleaved bits regarded as a
symbol in GF(2*). Then, from (4.71), it is possible to decompose the RM(r, m) code
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as a (i -+ D-level concatenated code ag follows [14]:

RM(r, m) = [RM0. )00 =) 211 p)#0 1070 L R (o, )k O sem=)

of RM{r.m — vy, RM(r — Lom—v), - . EM(r—u,m—v)}, (15.19)

wherel<v<m—-1l.u=vicrr >

Expression (15.19) shows thai
concatenated code in many ways
decomposif[ion of a RM code, all i
codes {or interleaved RM o

nd 1 == r oiherwise

i code can L;P m"\ecaﬂposed as a mutltilevel
. We also note that in any

r an 1d outer codes are also RM

maller dimensions.

EXAMPL

’\ g

ode that is a (64, 42) code with a
a, it follows from (15.19) that the
concatenated code as follows:

Letin = 6 and r = 3. Consider the PM (3,
minimim dnsmﬂce of 8. Set 4 = 3 and v = 3. The
RM(3. 6) code can be decomposed into a 4-les

RM(3.6) = [RMO. 373 ,,;?;/‘4541,“:3)("2-3’, BIE 3)‘7(1‘3>,RM(3,3)‘/<0‘3>}

(2. 3), EM(1,3), RM(0,3)}.

We find that ¢(3,3) = 1, (2. 3) = <> Gg(1,3y =3, q(b 3) = 1; RM(0, 3) is the (8, 1)
repetition code; RM(1, j) is the (8 1 msmnce of 4; RM(2, 3)
is the (8.7) even parity-check code; universal code. Hence,

2

RM@(3.6) = {(8.1). 3. 47 (2. 7). (8.8} 0 {8.8). (8, 7). (8.4)., (8, 1)}
= (8. 1)0[(88)/@ N]® 1.4 o [(8.7/(8, 4)
(8, 7)%;8 5768, D1 (8.8 0 [(8, D/{0Y]. (15.20)

A trellis diagram can be
(8.1) code has a trivial 2-siate 8 5€ f
code (8, 1) o [(8,8)/(8,7)] has a /
long. The (8, 4) code has a 4-siat
Cartesian product, the (8, 4)% in
that consists of 8 parailel and
Consequently, the second-level ¢ i
section 64-state trellis, each S@CL 13 16 bits |

level of concatenated code. The
P}foreq tke first-level concatenated
non irellis, and each section is 8 bits
trellis, as shown in Figure 9.17. By
has a 4-section trellis with 64-states
subireflises, and each has 8 states.
code (8.4 o [(8,7)/(8.5)] has a 4-

t Ro g, and the 16 bits of a branch label
represent two codewords in the inner code [(8,7)/(8. 4)]. If the 8-section bit-level
?u elhs as shown in ﬂgum 9 6is wed for ‘ﬂna (8 4) code, then the (8, 4)° code has an

comcaienated code (8. 4—)° [(o 7) / ( 8 f".-}} 5 an 8—secﬁon trellis, each section is 8
bits long. and sach branch label is a f*orie*vord inn [(8,7)/(8.4H]. Now, consider the
third-level concatenated code. The {8, 7) even pariiy-check code has an 8-section
Z-state trellis, as shown in Figure 15. 7 Then, the (&.7)° interleaved code has an
8-section &-state trellis. The third- 1 tenated code (8, 7)3 o [(8,4)/(8, 1)] has
an 8-section 8-state trellis, each sec its long, and each 8-bit branch label is
a codeword in the inner code {(8,4)/(3. 1)]. ‘Hmain v, the fourth-level concatenated
code (8.8) o {[(8.1)/{0}] has a trivial i-siate 8-section trellis. each section is 8 bits
1ong, and each 8-bit branch label is a codeword in the (8, 1) code.
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FIGURE 15.7: The 8-section bit-level trellis for the (8, 7) even parity-check code.

The preceding example shows that when we decompose a code into an m-level
concatenated code, we also decompose its trellis into m trellises, one for each level of
concatenaied code. The treliis for each level of concatenated code has much smaller
state and branch complexities than those of the original code. In multistage decoding
of a decomposable code, each level can be decoded by using a trellis-based decoding
algorithm, which reduces decoding computational complexity significantly.

As an example, consider the fourth-order RM code of length 128, RM(4, 7).
This code is a (128, 99) code with a minimum distance of 8. This code has a uniform
16-section trellis with maximum state complexity of 219 states. Implementation of any
decoding algorithm based on this full-code trellis is practically impossible; however,
this code can be decomposed into a 3-level concatenated code as follows [17]:

RM(4,7) = {(16, 5)(16, 11). (16. 11)2, (16, 15)3(16, 16)} o {(8, 8), (8, 6), (8, 4))

where (16, 5) and (16, 11) are first- and second-order RM codes of length 16. Both
(16, 5) and (16, 11) RM codes have 16-section bit-level trellises with maximum
state complexity of 16 states (see Figures 9.7 and 9.8). The first-level outer code
By = (16, 5)(16,11) is an interleaved code aund is regarded as a code of length 16
over GF(2%). This code has a 16-section trellis with maximum state complexity of 256
states. The second-level outer code B, = (16, 11)2 has a 16-section trellis with maxi-
mum state complexity of 256 states. The third-level outer code By = (16, 15)3(16, 16)
has a 16-section trellis with 8 states. The binary (8, 6) code is a subcode of the (8, 7)
RM code. The preceding decomposition results in relatively small trellis state com-
plexity compared with the 21 states of the original undecomposed code. Therefore,
three-stage decoding of this code requires relatively little decoding complexity. The
bit-error performance of this code with the 3-stage soft-decision decoding presented
in the previous section is shown in Figure 15.8. Performance is degraded by 0.9 dB
compared with optimum MLD at BER of 107>, but there is a 1.7-dB coding gain
over the majority-logic decoding of the code.

As another example, consider the third-order RM code of length 128, RM(3,
7), which is a (128, 64) code with a minimum distance of 16. The 16-section trellis
for this code has a maximum state complexity of 220 states! This code can be
decomposed into a 3-level concatenated code as follows [17]:

RM(3,7) = {(16, 1)(16, 5)%, (16, 5)(16. 11), (16, 11)%(16, 15)} o {(8. 8). (8., 5). (8, 3)}.

With this decomposition, the third-level outer code Bz = (16, 11)2(16. 5) has the
largest trellis complexity. 512 states, which is very small compared with 220, The

bit-error performance of this code with 3-stage decoding is shown in Figure 15.9.
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There is a 1.3-dB loss in coding gain compared with the optimum MILD; however
the reduction in decoding complexity is enormous. If a list of five best estimates is
passed from one decoding stage to the next stage, a 0.8-dB coding gain loss versus
the optimum MILD can be recovered, as shown in Figure 15.9.

15.5 AN ITERATIVE MULTISTAGE MLD ALGORITHM

Infact, MLD can be achieved with the multistage decoding presented in Section 15.3
in conjunction with decoding iterations between stages and an optimality test at
each stage. Iteration is initiated only when the optimality test fails. In the following
an iterative multistage MLD (IMS-MLD) algorithm [17-19]. For simplicity, we first
describe this algorithm using a two-level concatenated code, then we generalize it
to m-level codes.

Let bV = (bil), bél), . ,bg\})) be the decoded codeword at the first stage.
Then, b has the best metric with respect to the received sequence r'¥’ = r. The
metric of bV is given by (15.16):

N
MBD)Y = S MAHGDD.

j=1

where M({f1(b\"")}) is the metric of the coset {f1(55)} € A1/Ay. Let fi(b}") + a?
be the label of coset { f; (bj.”)} with respect to the jth section rr(jl) of r'Y. Then,

N
MAAGP) = M(AGY) +a), and MBY) = 5 MAG) +a).  (1521)
j=1

If we replace each component b(/l} of the decoded codeword b’ with its corre-

sponding coset label f} (b;h) + a*, we obtain the following coset label sequence:

Le") 2 (k) +af A0 a3 ) FaR). (1522)

From (15.21) and (15.22) we see that the metric of b is the metric of its corre-
sponding coset label sequence.

If the coset label sequence L(bD) is a codeword in the overall concatenated
code C = {By, By} o {A1, A2}, then it is the codeword in C that has the best metric
and hence is the most likely codeword. In this case the decoding is completed and
the sequence a* = (a].aj. - .a}) is a codeword in the second-level concatenated
code C» = B o Ay. The second outer codeword b? = (b?), b;m. N ,bj(é)) can
be recovered from a* as follows: b® = (fzfl(af), f{](afg), ,fz'l(a}kv)), where
fz_l( -} is the inverse mapping of f>(-). Alternatively. for systematic encoding, the
information bits are obtained directly from the coset label sequence. If the coset
label sequence L(F@m) is not a codeword in C, then it is the sum of a codeword
(fi (bil)), fi (bél)), N (1)5\}))) in C1 = By o [A]/A;] and a sequence of codewords
in A; that is not a codeword in Co = Bj o A;. In this case, decoding continues.
Therefore, the condition that L (b)) is a codeword in C is an optimality condition.
which will be used in the IMS-MLD algorithm.
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At the second stage of decoding, the received sequence r?) = (r(IZ), rr(22), ceey

n‘j\?)) for decoding is obtained by removing the effect of the decoded codeword b
at the first stage from r'V) = r, as given by (15.15). The inner decoder forms N metric
tables, one for each section of '@, These iables are then passed o the outer decoder.
The outer decoder finds the codeword b? = (bgz) , b;z), e, bf&’) in By that has the
best metric with respect to 1@, The metric of b® is given by

N
M®B®) =5 MAHGDY). (15.23)
i=1
Forl <j<N.letp {ZJ?)) = 21;2), which is a codeword in A;. Then, 2@ 2 (af),
aéz), e aﬁ)) is a codeword in Cy = By o A, and
N
M®B?) = Ma@®) =5 Ma@?), (15.24)
j=1

where M(a(iz)) is the meiric of 31(72) with respect to n’?.

Now, we compare meiric (b1 and metric M (). Recall that
M(f10) + %) = ma M/, ) +a)).
Then, for any a; € Ay,
M6 +a%) = M(A &) + ). (15.25)
Because aﬁzk’ € Ao, it follows from (15.25) that
MH®D) +ah) = MABD) +aP). (15.26)

Let corr(-, -) denote the correlation function (any other metric can be used as well).
It is easy to show that

corr( fi (b;l)) +aj, rrgl)) = corr(a;, rr;z)) (15.27)

for any a; € Ay. Then, it follows from (15.21), (15.24), (15.26), and (15.27) that
M®Y) > MDdD), (15.28)
where equality holds if and only if the sequence a* = (811‘, a5y, -, ay) is a codeword

in ).

For the iterative two-stage MLD algorithm, decoding iterations are based
on the generation of a sequence of estimates at the first stage. The estimates are
generated in decreasing order of metrics, one at a time, as by using the list Viterbi
algorithm [20]. At the ith iteration, the first-stage decoder generates the ith best
estimate, denoted by bW = (bil)‘i, bg)’i. . bﬁ\})"'). Let b@- denocte the decoded
codeword at the second stage based on b™" and r®. The algorithm is based on the
following two theorems. Theorem 15.1 is a direct consequence of (15.28).
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TueoreM 151 Fori > 0, M(bD1) > M®BP-), where equality holds if and

. - Vil A ; ;
only if the coset label sequence for bW L1y = l\f«l(bil)")+a’{‘, fi(bg)")%—

ay, - ,fl(bf\})") + a}), is a codeword in C; that is, (a],a5,---,a}) is a
codeword in Cy = B o As.

Let ig be the integer such that 1 < iy < i and

1<j<i

Then, b is the best decoded codeword at the second decoding stage during the
first i — 1 iterations. Theoyem 15.2 follows from Theorem 15.1 and the fact that for
i< j, MBDT) = MBI,

TueorREM 15.2 For i > ig. if M(B@0) > MBL), then the codeword in C
that corresponds to bV and b is the most likely codeword with respect to
the received sequence r. If M(B®0) < M(BD) and the coset label sequence
L(®D) is a codeword in €, then L(bM) is the most likely codeword in C
with respect to r.

Infact, the optimality conditions of Theorem 15.2 arc also necessary conditions
for the iterative decoding algorithm.

Decoding Algorithm

Step 1. Compute the first (best) estimate b(V:1 of the first decoding stage and
its metric M (bV-1). Check whether the coset label sequence L(b1-1)
is a codeword in C. If it is, L(b™-1) is the most likely codeword and
the decoding stops; otherwise, go to step 2.

Step 2. Perform second-stage decoding and obtain the estimate L(b®-1) with
metric M(b®1). Set ip = 1, and store b1 and b®-1, Go to step 3.

Step 3. For i > ig, b0 and b®0 are currently stored in a buffer register
together with the metric M(b®-0), Determine the ith best estimate
b of the outer code By, and its metric M (bV1). If MB@-0) >
M®D), then bV and b3+ together give the most likely code in
C, and decoding is finished; otherwise, go to step 4.

Step 4. Check if the coset label sequence L(b+) is a codeword in C. If it
is, L(b) is the most likely codeword in C and decoding is finished:;
otherwise, go to step 5.

Step 5. Generate b+, Update ig, b1, 5@, and M (B>0). Go to siep 3.

The decoding process iterates until the most likely codeword is found. There-
fore, the maximurn number of iterations is qlK '. This is the extreme case. In general,
the number of iterations required to obtain the most likely codeword is very small
compared with ¢ f '. We may limit the number of iterations to keep decoding com-
putational complexity down and decoding delay small. In this case, the decoding
algorithm achieves near-optimal error performance.

Theorems 15.1and 15.2, and the two-stage iterative MLD decoding can be
generalized to m stages. In m-stage decoding, new decoding iteration can be initiated
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at any stage above the final stage. Decoding iteration begins with the generation of
a new estimate at the starting stage, say stage [. If all the qlK’ estimates at stage /
(resulting from a particular sequence of codewords from stages above stage /) have
already been generated and tested, the decoder moves up to the (I — 1)th stage and
starts a new iteration with a new estimate. Decoding iterations coniinue until the
ML codeword is found. Just as in iwo-stage decoding, the final decoding decision is
made at the first stage.

Suppose the decoding process is at the ith decoding stage of the jth iteration.
Let B/ denote the decoded codeword in the outer code B;. Let L{bY)7) denote
the coset label sequence corresponding to b/, The metric of L(b"7) or b/ is
denocted by M (b)), Let bU0)/o denote the codeword whose metric M (bU0)-7) is
the best (largest) among the codewcrds that have been generated before the ith
decoding stage of the jth iteration and whose coset label sequence L(b10)-/0) is
a codeword in the overall m-level code C. Then, the buffer contains M (b0)70),
L(bl0)-Joy the estimates of the stages 1,2,---, (i — 1) from whichk the esiimate
plo)ljo resulted. and the estimates of the stages 1.2, .-, (i — 1) from which the
estimate b/ resulted.

At the completion of the ith decoding stage of the jth iteration, the decoder
makes one of the following three moves:

1. If M(BD7y < M (B 10), the decoder moves up to stage (i — 1) and siarts a
new iteration with a new estimate.

2. Otherwise,if M (b)) > M (b)), the coset label sequence L(b")/) is tested.
If it is a codeword in C, then the buffer is updated (M B0y = M B,
etc.). The decoder moves up to siage (i — 1) and starts a new iieration with a
new estimate.

3. IF MDYy > M®U-0), and the coset label sequence L(b/) is not a
codeword in C, then the decoder moves down o the (i+1)th stage of the jih
iteration.

When the decoder reaches the last (mth) stage, it must move up to the {m — 1)th
stage and stari a new iteration (since the label sequence of the estimate b/ is
always a codeword in C).

Whenever the decoder reaches the first stage at the beginning of an iteration, a
decision is made at the completion of the first-stage decoding whether the decoding
is to be terminated or to continue. Suppose the decoder has reached and completed
the first stage decoding at the jth iteration. The decoder makes one of the following
MOVes:

1. It MBWD7y < p(Y)-70), then the decoding is finished. The ML codeword is
formed from bU0)-/0 and the codewords above igth stage that resulted in the
generation of b0)-Jo,

2. Otherwise, if M(BD7) > MU0y, and the coset label sequence L/} is

a codeword in C, then L(bV+/) is the ML codeword. Decoding stops.

it M®dBP7y > b)), and LMY is not a codeword in C, then the

decoder moves down to the second stage and continues the decoding for the

Jjthiteration.

1=
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Thus, the tests performed at the first decoding stage are actually the optimality
conditions.

In m-stage decoding, a new decoding iteration can be initiated at any stage
above the final stage. Decoding iteration begins with the generation of a new estimate
at the starting stage, say stage /. From there, the decoder can either move down to the
next stage, or if the coset label sequence is a codeword in C;, move up and start a new
iteration at stage (I — 1). If all the qlK’ estimates at stage [ (resulting from a particular
sequence of codewords from stages above stage /) have already been generated and
tested, the decoder moves up to the (/ — 1)th stage and starts a new iteration with a
new estimate. Decoding iterations continue until the ML codeword is found. Just as
in two-stage decoding, the final decoding decision is made at the first stage.

In decoding with the IMS-MLD algorithm, the number of iterations and the
computational complexity depend on the SNR; they decrease as the SNR increases.
At a certain point the computational complexity of the IMS-MLD algorithm may
become even smaller than that of the conventional multistage decoding presented
in Section 15.3. To reduce the worst-case computational complexity, we may set a
limit on the number of iterations to be performed. Of course, this limitation results
in a suboptimum version of the IMS-MLD algorithm. If the limit on the maximum
number of iterations is chosen properly, performance degradation will be small.

Consider the third-order RM code RM(3, 7), which is a (128, 64) code
with a minimum distance of 16. Suppose this code is decoded with the IMS-
MLD algorithm based on the 3-level decomposition given in Section 15.4. Its
bit-error performance is shown in Figure 15.10. We see the performance curve of

107'g T I I ] 3
Fo== == Uncoded BPSK 1
i N - IMS-MLD ]
- Teel == Union bound for MLD
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FIGURE 15.10: Bit-error performance of the (128, 64) RM code with various multi-
stage decodings.
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the IMS-MELD algorithim: agrees with the union bound for MLD. Also mcluded
it the figure are the bit performances of the code with a suboptimum ver-
sion of the IMS-MLD and the conventional muliistage decoding presented in
Section 15.3. We see that the IME-MLD ouniperforins the conventional multi-
stage decoding by 1.35dB at the BER = 1075 For the subopiimum version,
the maximum nuinber of iterations is set 1o 7 (5 for thk, first stage and 2
for the second stage). From Figure 1510 we see that performance degradation
of the suboptimum a%g thn is 0.3dB compared with the IMS-MLD at the
BER = 10*6 Thus, IMS-MLD has a 1.05-dB coding gain over conventional
muliistage decoding.

The computational complexity for decoding the (128, 64) RM code with
various decoding algorithms is given in Table 15.1. The computational complexity
is expressed in terms of number of real operations {additions and comparisons).
We see that the suboptimum IMS-MLD provides an effective trade-off between the
performance of the IMS-MLD algorvithm and the computational complexity of the
conventional multisiage decoding.

As another example, comside“ é:he £
with a 3-level decomposition given in Secti {-error perfo;zmances of this
code with varicus decodings are chow P! '; i 1 he IMS-MLD outperforms
conventional muliistage decoding by 0.7 ; however the suboptimum IMS-MLD
decoding with a limit of 7 iterations (5 lor the first stage and 2 for the second stage)
achieves almost optimum performance. The computational complerxities of the three
decodings are given in Table 15.2.

8.99.8) RM code, RM(4,7).

TABLE 15.1: Computational complexities of various multistage decodings of the
(128, 64} RM code.

Average number of real operations at SINIR Unper
pper bound
Decoding algorithm 2.0 2.5 3.0 3.5 4.0 4.5 50 on complexity
Conventional MSD  [10%] 2.57 1.88 142 | 1.03 | 0.80 | 0.65 | 0.55 4.26
Suboptimum IMS [10*] 6.25 333 182 | 115 | 083 | — — 36.6
Optimum IMS-MLD [10%] | 45.0 12.6 100 | 40 | 260 | — — —
Viterbi 1109 93 929 | 928 | 9.23 9.3

TABLE 15.2: Computational complexities of various multistage decodings of the
(128, 99) RM code.

Average mumber of real operations at SNR

Upper boumnd
Decoding algorithm 2.5 3.0 3.5 4.0 4.5 5.0 5.5 on complexity
Conventional MSD  [10%] | 1.2 | 1.1 |09 |07 | 056 | 04 | 03 15
Suboptimum IMS [10*y | 33 |21 |13 [ 08 |05 | 04 | — 78

Optimum IMS-MLD [10%] | 220 | 79 |63 |10 | 056 | 04 | — —

Viterbi [109 462 | 461 | 456 | 444 | 420 | 382 | 3.29 4.63
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FIGURE 15.11: Bit-error performance of the (128, 99) RM code with various multi-
stage decodings.

15.6 CONCATENATED CODING SCHEMES WITH CONVOLUTIONAL INNER CODES

So far only concatenated coding schemes with block inner codes have been con-
sidered; however, convolutional codes can be used as inner codes for constructing
concatenated codes as well. Consider the interleaved concatenated coding system
shown in Figure 15.1. Suppose we replace the block inner code with an (n1, k1, v)
convolutional code. We obtain a concatenated convolutional coding system. At the
first stage of encoding, A consecutive outer codewords are formed and stored in the
interleaver butfer as a A x nj code array. At the second stage of encoding, the code
array is read out column by column in binary form (Am bits per column), and the
binary sequence, regarded as an information sequence, is then encoded by the inner
convolutional code encoder continuously. For inner code encoding, we set im = /kj.
In this case each column of the code array in the interleaver buffer is encoded
into [ ny-bit code blocks. The encoding results in a terminated convolutional code
sequence. At the receiving end, the received sequence is first decoded by a 2V-state
truncated Viterbi decoder. The decoded information bits are then grouped into
m-bit bytes as symbols in GF(2™) and stored by column as a A x np array in a
deinterleaving buffer. The array in the deinterleaving buffer is read out row by row,
and each row is decoded by the outer decoder.

In applications, a rate-1/n1 convolutional code (or its punctured version) is
often used as the inner code in a concatenated convolutional coding system. One such
concatenated convolutional coding system is the error-control coding scheme used
in the NASA Tracking Data Relay Satellite System (TDRSS). In this system, the
(255,223,33) RS code over GF(2%) is used as the outer code, and the 64-state rate-1/2
convolutional code generated by the polynomials g;(D) = 1 + D + D3 4+ D* 1 DS
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FIGURE 15.12: Error performance of the error-control coding scheme used in ihe
NASA Tracking Data Relay Satellite System.

and g(D)y =1+ D3+ D* + D’ + DY is used as the inner code. The convolutional
inner code has free distance dpe. = 10. The overall rate of the system is 0.437.
The bit-error performance of this concatenated convolutional coding systern is
shown in Figure 15.12. This system (with infinite interleaving) achieves a BER of
107% at 2.53 dB of SNR. Comparing this concatenated convolutional coding system
with the concatenated block coding system presented in Section 15.1, we see that
the concatenated convolutional coding system has a 0.57 dB coding gain over the
concatenated block coding system presented in Section 15.1; however, it has a lower
rate, 0.437 compared with 0.545. If finite interleaving is used in the concatenated
convolutional coding system, then the coding gain over the concatenated block
coding system presented in Section 15.1 will be reduced.

15.7 BINARY CONCATENATION

So far we have considered only concatenation schemes in which the outer codes
are nonbinary and the inner codes are binary; however, concatenation can also
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be achieved with binary outer and inner codes. Let (n, k1) and (72, k2) be two
binary codes, denoted C; and . respectively. Suppose €, is used as the outer
code, and (7, is used as the inner code. In encoding, an information sequence kjk»
bits long is divided into k2 subsequences, each consisting of k1 information bits.
These ky subsequences are encoded into k, codewords in the outer code Cy and
are stored as a kp x ny array in an interleaver buffer. Then, each column of the
array is encoded into a codeword in the inner code C,, which is transmitted as it
is formed. In decoding, each received sequence of ny symbols is decoded based on
the inner code C,. The decoded k; information bits are stored as a column in a
deinterleaver buffer. After n; inner code decodings, a k; x nj array is formed in
the deinterleaver buffer. Then, each row of the array is decoded based on the outer
code 7. At the completion of cach outer decoding, the k; decoded information
bits are delivered to the user. Again, to achieve good error performance while
maintaining low decoding complexity, we use a short inner code and decode it with
a soft-decision decoding algorithm, and we use a long powerful binary code as the
outer code and decode it with a hard-decision algebraic decoding algorithm. The
binary concatenation scheme described here is actually the product coding scheme
presented in Section 4.7.

If the inner code has a simple trellis, it can be decoded with a soft-input and soft-
output decoding algorithm, such as the MAP algorithm (or its simplified version),
discussed in Chapters 12 and 14. The reliability information of each decoded symbol
provided by the inner code decoder can be used as soft-input information to the
outer code decoder for soft-decision decoding of the outer code. Using soft-decision
decoding for both inner and outer code decoders significantly improves the error
performance of the concatenated coding system, but the decoding complexity also
increases significantly. To reduce the decoding complexity, a simple reliability-
based algebraic soft-decision decoding algorithm presented in Chapter 10, such as
the Chase-2 algorithm or the ordered statistic decoding algorithm, can be used for
decoding the outer code.

If decoding complexity and decoding delay are not critical issues, the error
performance of a binary concatenated coding scheme can be further improved by
using soft-input and soft-output decoding for both inner and outer code decoders
and performing the inner and outer decodings iteratively. During each decoding
iteration, the inner code decoder provides the outer code decoder with reliability
information of the decoded symbols; this reliability information is then used as
the soft input for the outer code decoder. Based on this soft-input information
(together with the channel information), the outer code decoder performs soft-
output decoding. The reliability information of the decoded symbols is then fed
back to the input of the inner code decoder as a soft input to start the next
decoding iteration. Decoding iterations continue uatil a certain stopping criterion
is satisfied. To prevent successive decoding iterations from becoming correlated,
the interleaver at the encoding side pseudorandomly permutes the bits in the code
array after the outer code encoding. The permuted array is then encoded by the
inner code encoder. At the decoding side, after inner code decoding, the decoded
symbols must be permuted inversely (inverse permutation) to allow the outer code

decoder to perform outer code decoding. To start the next decoding iteration, the
decoded symbols at the end of the outer code decoding are permuted back to the
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original form for the inner code decoding. This alternate permutaiion and inverse
permuiation is performed in each decoding iteration. Binary concatenaiion with
this type of iterative decoding results inn amazingly good error performance very
close to the Shannon limit—of course, at the expense of decoding complexity and
decoding delay.

The two-dimensicnal product codes without the checks on checks present ed
in Section 4.7 are quite suitable for the described type of iterative decoding. After
the row (or column) encoding, the information bits of the information arvay are
permuted pseudorandomly before the colmmn (or row) encodings. This permutation
allows the two sets of parity bits to provide two sets of uncorrelated estimates for
the same set of informaiion bits with iterative decoding. Row and column decodings
are carried out alternately in an iterative mannes.

The binary concatenation described here is in serial form; however, it can also
be implemented in parallel form, in which the information sequence is encoded
by two encoders independently using a pseudorandom interleaver. This encoding
generates iwo independent sets of parity biis for the same information sequence.
At the decoding side, iterative decoding is performed by two decoders based on
these two sets of parity bits. Parallel concatenation is usually implemented using
two convoluiional encoders.

Binary concatenated coding schemes in paralle]l form using pseudorandom
interleaving and iterative decoding, commonly called turbo coding, is the subject of
Chapter 16.

PROBLEWMIS

18,1 Prove that the concatenation of aun (n1, ky) inner code with minimuin distance d,
and an (n12, ko) outer code with minimum distance ¢> has a minimum distance of
at least did».

15.2 Prove the lower bound of the minimum distance of an m-level concatenated code
given by 15.12.

15.3 Consider the concatenation of a RS outer code over GF(2") and the binary
(m-+1,m, 2) single parity-check inner code. Devise an error-erasure decoding for
this concatenated code. [Hint: During the inner code decoding, if parity failure
is detected in m + 1 received bits, an erasure is declared. If no parity failure is
detecied, the parity bit is removed to form a symbol in GF(2')].

15.4 Forim a 5-level concatenated code with a minimum distance of 16 using RM codes
of length 16 to form inner codes. Choose either binary or RS codes {or shorfened
RS codes) of length 16 as outer codes to maximize the overall code rate.

15.5 Decompose the RM (2, 5) code into a 3-level concatenated code, and describe the
trellis complexities of the component concaienated codes at the three levels.

15.6 Decompose the RM(2, 6) code into a 3-level concatenated code, and give the
trellis complexities of the component concatenated codes at the three levels.

15.7 Decode the RM(2, 5) code with 3-stage decoding based on the decompo-
sition obtained in Problem 17.5. Plot the bit- and block-error performances
versus SNR.

15.8 Decode the RM(2, 6) code with 3-stage decoding based on the decompo-
sition obtained in Problem 17.6. Plot the bit- and block-error performances
versus SNR.

15.9 Repeat Problem 17.7 with the IMS-MLD algorithm.

15.10 Repeat Problem 17.8 with the IMS-MLD algorithm.
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