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THE VITERB] DECODING ALGORITHM

Decoding linear block codes with the Viterbi algorithm is quite straightforward. If
an n-section bit-level trellis T for an (s, k) lhinear code is used for decoding, the
decoding process is exactly the same as that fo demdmg a terminated convolutional
code. The decoder processes the ‘i"mw is f,, o the initial state to the final state serially,
section by section. The survivors ai e the code trellis are extended to the
tween the iwo levels. The paths that

next level through the connecting t 1E5 7
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enter a state at the next level are compared, and the most probable path (or the path
with the largest correlation metric) is chosen as the survivor. This process continues
until the end of the trellis is reached. At the end of the trellis, there is only one state,
the final state s, and there is only one survivor, which is the most likely codeword.
Decoding is then completed and the decoder is ready to process the next incoming
received sequence.

The number of computations required to decode a received sequence can be
enumerated easily. In a bit-level trellis, each branch represents one code bit, and
hence a branch metric is simply a bit metric. The total number of additions required
to extend the survivors from level to level is simply equal to the total number of
branches in the trellis, which is given by (9.46). Let N, denote the total number of
additions required to process the trellis 7. Then,

n—1

Ng=) 27 L(a%) (14.1)
=0

where 27 is number of states at the ith level of the code trellis T, a* is the current
input information bit at time-i, and [;(a*) is defined by (9.45), which is either 1
or 2. If there is an oldest information bit a® to be shifted out from the encoder
memory at time-i, then there are two branches entering each state s, 1 of the trellis
at time-( + 1). This says that there are two paths entering each state s;; at the
(i + 1)th level of the bit-level trellis 7. Otherwise, there is only one branch entering
each state 5,4 at time-i. Define

0, ifa® ¢ Al

1, ifa® e A (142)

Am%:g
where A7 is the state-defining information set at time-i. Let N, denote the total

number of comparisons required to determine the survivors in the decoding process.
Then,

n—1
Ne =% 2°+t . Jia". (14.3)
i=0
Therefore, the total number of computations (additions and comparisons) required

to decode a received sequence based on the bit-level trellis T using the Viterbi
decoding algorithm is N, + N,.

EXAMPLE 14.9

Consider the (8, 4) RM code whose 8-section bit-level trellis is shown in Figure 9.6.
From Table 9.2, we find that

Io(@™) = I{(a™) = L™ = Ii(a*) =2,
I(a*) = Is(a*) = Ig(a®) = Ih(a*) =1,
Jo@®) = 11" = K@% = 1@ =0,

0y 1
Y= 1.
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The state-space dimension profile of the irellis is (0, 1, 2, 3,2, 3, 2, 1, 0). Then, from
(14.1) and (14.3), we find that

Nyo=2% 242 0422 043 1422428 1422 14201

Therefore, Viterbi decoding of the (8, 4) RM code requires 44 additions and 11
COMDATISOIS.

Suppose the bit-level trellis T is sectionalized into v sections with section
boundaiy locations in A = {fg.7{, - .0}, where 0 = 79 <1, < ---1, = n. This
sectionalization results in a v-section trellis 7(A). At boundary location 1;, the state
space is Z;, (C). The ith section of T(A) consists of the state space Z;,_, (C), the state
space Z; (C), and the branches that connect the states in Z,_ (C) to the states in
Z, (C). A branch in this section represents #; — t;_1 code biis. Two adjacent states
may be connected by multiple branches, called parallel branches. For convenience.,
we say that these parallel branches form a composite branch.

Viterbi decoding based on the v-section trellis T(A) is carried out as follows.
Suppose the decoder has processed i trelits sections up to time-7. There are |2, (C)]
survivors, one for each state in %, (C). These survivors together with their path
metrics are stored in the decoder memory. To process the (i + 1)th section, the
decoder executes the following steps:

1. Each survivor is extended through the composite branches diverging from it
to the next level at time-7; 4.

o

For each composite branch entering a state in %, , (C), the single branch with
the largest (correlation) metric is found. This metric is the branch metric.
Each composiie branch is replaced by the branch with the largest meiric.

FESCH
s

The metric of a branch is added to the metiic of the survivor from which the
branch diverges. [F'or each state s € 2, (C), the metrics of paths entering it
are compared, and the path with the largest metric is selected as the survivor
terminating at state s.

The decoder executes these steps repeatedly until it reaches the final state sy, The
sole survivor is the deceded codeword.

The iotal number of computations (additions and comparisons) required to
process a sectionalized trellis T(A) depends on the choice of the section boundary
location set A = {rg, 7.+ .1,}). A sectionalization of a code trellis that gives the
smallest total number of computations (addition and comparison are considered to
have the same complexity) is calied an optimal sectionalization for the code. An
algorithm for finding an optimal sectionalization has been devised by Lafourcade
and Vardy [3]. This algorithm is based on a simple structure: for any two integers
x and y with 0 < x < y < n, the section from time-v {o time-v in any sectionalized
trellis T(A) with x, v e Aand x + 1, x4+ 2,--- ,y —1 & A is identical. Let p(x. v)
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denote the number of computations required in steps 1 to 4 of the Viterbi decoding
algorithm to process the trellis section from time-x to time-y. This sumber ¢(x, y)
is determined solely by the choices of x and y. Let i (x, y) denote the smallest
number of computations required in decoding steps 1 to 4 to process the trellis
section(s) from time-x to time-y in any sectionalized trellis 7(A) with x, y € A. The
value ¢nin (0, 1) gives the total number of computations of the Viterbi algorithm
for processing the code trellis with an optimum sectionalization. It follows from the
definitions of ¢(x, y) and @, (x, y) that

. —_ mln{¢(0 )'), min0<x<y{§0min(0- x) + go(-xa J’)}}: for 1 <Yy S n
@mm(oy y) = { (p(o, 1), for y = 1. (144)

For every y € {1,2, -+, n}, ¢min(0, y) can be computed as follows. The values of
@(x,y) for 0 < x < y < n are computed using the structure of the trellis section
from time-x to time-y. First, ¢;n(0, 1) is computed. The value ¢, (0, y) can be
computed from ¢,,;,(0, x) and ¢(x, y) with 0 < x < y using {(14.4). By storing the
information when the minimum value occurs in the right-hand side of (14.4), we find
an optimum sectionalization from the computation of ¢, (0, n).

In general, optimum sectionalization of a code trellis results in a computa-
tional complexity less than that of the bit-level trellis. For example, consider the
second-order RM code of length 64 that is a (64, 22) code with minimum Hamming
distance 16. Using the Lafourcade~Vardy algorithm, we find that the boundary loca-
tion set A = {0, 8, 16, 32, 48, 56, 61, 63, 64} results in an optimum sectionalization.
The resultant trellis is an eight-section trellis. With this optimum sectionalization,
©min (0, 64) is 101,786. If the 64-section bit-level trellis is used for decoding, the total
number of computations required is 425,209. Therefore, optimum sectionalization
results in a significant reduction in computational complexity.

In general, optimum sectionalization results in a nonuniformly sectional-
ized trellis in which the section lengths vary from one section to another. This
nonuniformity may not be desirable in IC hardware implementation of a Viterbi
decoder {6, 8, 9]. Suppose the bit-level trellis 7 for the (64, 22) RM code is uni-
formly sectionalized into an 8&-section trellis with the section boundary location
set A = {0, 8,16, 24, 32, 40, 48, 56, 64}. Each section consists of 8 code bits. Viterbi
decoding based on this uniform 8-section trellis requires a total of 119,935 computa-
tions, which is larger than that based on the foregoing optimum sectionalization but
18 still much smaller than that based on the bit-level trellis.

If a code trellis consists of paraliel and structurally identical subtrellises
without cross connections between them, then it is possible to devise identical, less
complex Viterbi decoders to process these subtrellises in paraliel. At the end, there
is one survivor from each subtrellis. The survivors from these subtrellises are then
compared, and the one with the largest metric is chosen as the final survivor. This
parallel processing of subtrellises not only simplifies the decoding complexity but
also speeds up the decoding process. For example, the 4-section trellis for the (8, 4)
RM code shown in Figure 9.17 has two 2-state parallel and structurally identical
subtrellises; hence, two identical 2-state Viterbi decoders can be devised to process
these two subtrellises in parallel. For a large code trellis, parallel decomposition.
presented in Section 9.7, can be carried out to decompose the trellis into a desired
number of parallel and structurally identical subtrellises.
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Because the trellis for a block code terminates, decoding can be bidirectional.
To facilitate the decoding, a codeword v = {wp, vy.---,v,-1) is fitst permuted
into the sequence (vg, v,_1, V2, vy_2. - - - ) before its transmission. The correspond-
ing received sequence is (rg, ry—1. 71, I'—2, - - - . From this received sequence, two
received sequences are formed, (rg, 71, - -+ , rp—1) and (7,21, r—2. - -+, ro). These iwo
received sequences are then fed into the code trellis from both ends for decoding.
Suppose two decoders are used for decoding in both directions. When two decoders
meei at the middle of the trellis, 2 decoding decision is made. The path with the
lavgest metric is chosen 2s the decoded codewoid. If the code trellis has mirror-
image symmetry, the two decoders are identical. This bidirectional decoding further
reduces the decoding delay and speeds up the decoding process. A high-speed
Viterbi decoder for a (64, 40) RM subcode has been implemented based on both
parallel and mirror-image structures of the code [9, 10].

14.2 A RECURSIVE MAXIMUM LIKELIHOOD DECODING ALGORITHM

The decoding algorithm to be presented in this section is based on a divide-and-
conguer approach. An (n, k) linear block code C is {irst divided into short sections.
The distinct vectors in each section form a linear code. These vectors are processed
based on the corresponding section of the received sequence. For cach section,
we eliminate the less probable vectors and save the surviving vectors and their
meirics in a fable. Then, we combine the metric iables of two neighbor sections
to form a meiric table for a longer section of the code. In the combining process,
we eliminate the less probable vectors. The resultant table contains the surviving
vectors and their metrics for the combined sections. Continue the combining
process until the full length the code is reached. The final table obtained contains
only one survivor and its metric. This final survivor is the most likely codeword
with respect to the received vector and hence the decoded codeword. Because the
table combining process is carried out recursively, such a MLD algorithm is called a
recursive MLD (RMLD) algorithm. The first such decoding algorithm was devised
in {14, 15].

Metric Tables for Trellis Sections

Let T be the minimal n-section trellis diagram for an (s, k) binary linear block code
C. Consider the trellis section from time-x to time-y with 0 < x < y < n, denoted
by 7, . For two states s, and s, with 5, € Z;(C) and 5, € £,(C), i s, and s, are
connected, the set of paths connecting state s, 1o state s,, denoted by L(s,. sy), is
a coset in the partition p, (C)/CY . For convenience, L(sy, sy) is regarded as a
single path, called a composite path. Because each composite path L(sy, sy) in Ty y

is a coset in py ,(C)/ C_’X_"‘_\,a the number of distinct composite paths in T , is

Ry A (CN=R(C ) (14.5)

Based on the trellis struciures developed in Section 9.4, it is possible to show that
each cosetin p, ,(C)/CY, appears as a composite path in 7,

2k7k(Co..\-)—k(C\;n)—k(P\-.y(C)) (14.6)

times |8, 11].
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For each distinct composite path L(sx,s,) in Ty ,. we find the path with the
largest metric with respect to the corresponding section of the received sequence,
(rx, Feg1s -+, ry—1). Let I(L(sy, 5,)) and m(L(sy, s,)) denote this path and its path
metric, respectively. For convenience, we call I[(L(sy, s,)) and m(L(sy,s,)) the
label and metric of L{s,,s,), respectively. We form a table that stores the label
and metric for each distinct composite path L{s.,sy) in Ty, (or a coset in
px,y(C)/CY ). This table is called the composite path metric table, denoted by
CPMT, ,. for the trellis section T, (or for the partition p, ,(C)/CY ). Because
the partition pp,(C)/Co, = C/C consists of C only, CPMTy, contains only
the codeword in C that has the largest metric. This is the most likely code-
word with respect to the received sequence r = (rg, 1y, - -+ , 7,,—1). When CPMTy ,,
is constructed, the decoding is completed, and CPMTy, contains the decoded
codeword.

A straightforward method for constructing CPMT, , is to compute the metrics
of all vectors in the punctured code p, ,(C) and then to find the vector with the
largest metric for every coset in p, ,(C)/CY by comparing the metrics of vectors
in the coset. This direct construction method is efficient only when y -- x is small
and should be used at the beginning of the recursion process. When y — x is large,
CPMT,,, is constructed from CPMT;, ; and CPMT. , for a properly chosen integer
zwithx <z < y.

Table combining is based on the trellis connectivity structure developed in
Section 9.4 and shown in Figure 9.11. Consider two states s, and s, in the code
trellis 7 with s, € £,(C) and s, € £,(C) that are connected by the composite path
L(sc,sy). Let

EZ(S,\’y S_v) é {Sz(l)» 55(2>, T S;(_M)} (147)

denote the subset of states in %,(C) through which the paths in L(s,, s,) connect
state s, to state §,, as shown in Figure 14.1. Then, it foliows from (9.28) and (9.29)

Time-y

Time-x

Time-z

FIGURE 14.1: Connection between two states.
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Lo = || Llsnsf oL s, (14.8)

59 and L(s(') )
(’7) and L(s"
weu/ It follows flOl’H
ath that

where L{s,, s
is the compome "oaﬂﬁ
are coseis in partitions p
14.8) and the

~~

{m{Lis,, ;’)“ i (sﬁ”n sy N} (14.9)

) =
S- € {88y

and

L5y, 5,)) = [ (s, sma))) o T(L(sUma) 5y, (14.10)
where i {14,9} akes its maximum
Because il Hlabels I(L(sy. s"7*)) and
I(L (“””“-“l 5y ‘vely (14.9) and (14.10)

show that th
and CPMT

onstmwed from CPMT, -

1 ises for block codes developed in
ection 9 4 we can readi ; ) = set 2-(sc. 5y) is given by

o= By 0y = 2N G T HO =G, (14.11)

Therefore, compuiation of the meiric m(L(s,. 5,)) from (14.9) using CPMT, . and
CPMT. ,, requires p addiii ons 2 ‘ one. It follows from (14.5) that
PMT, y from CPMT, . and

the lowi mmlbfﬂ of computa
CPMT-

(2'/“ ~1)- 2/1'(]7m (CN=K(Cy ). (14.12)
however, if the m m{L{s,.5.)) is computed dir Pc’d/ rom the paths in L(s,. sy),
we need (o compuie |C'\,’ || = 2MCeo) path metrics and perform |C7 | —1 comparisons.

uives )' — x — 1 additions, the total
e mi{L (5. 5¢)) 18

Because computation of each path meiri
number of real operations required {0 Comp

(y —x — D2FCe) L oREC) oy o 2R g (14.13)

which is much larger than Zp — 1 (see {1

V) for large vy — x. Hence, constructing
the meiric table CPMT, , from CPMT, . and CPMT. , requires many fewer
computations than direct construction of CPMT, . from vectors in p, ,(C) and
cosets in py (C)/CY .

In principle, we can construct the CPMT, , using the trellis section T, , as
follows:
For each coset D e p, (C)/C \’\, ideniify a state pair (s..s,) such that

L(sy,sy) =D
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2. Determine the state set 2.(s,, 5
3. Compute the metricm (” -8y and label I(L(

Lo il jio2

respectlvely.

This process requires constructing the entire code trellis and examining the section
from time-x to time-y. For a long code, it is difficult to construct a large trellis T
and examine the section 7 y. Furthermore, the total number of composite paths
in T, , can be very large, with only a small fraction of distinct composite paths.
Examining T, , to execute steps 1 to 3 can be very time-consuming and inefficient.
Consequently, decoding implementation will be complex and costly.

To overcome the complexity problem and to facilitate the computation of
(14.9), we construct a much simpler special two-section trellis for the punctured
code p, ,(C) with section boundary locations at x, z, and v that has multiple “final”
states at time-y, one for each coset in p, ,(C)/ C;’ v This special two-section trellis
contains only the needed information for constructing the metric table CPMT, .
from CPMT, . and CPMT._ ,. Let T ({x, z. y}) denote this special trellis. Let . and
%, denote the state spaces of T({x, z, y}) at time-z and time-y. respectively. We
require that T ({x, z, y}) have the following structural properties:

4. It has an initial state, s, g, at time-x.

2. There is a one-to-one correspondence between the states in ). and the cosets
in p,(C)/CY.. Let D. denote a coset in p, .(C)/CY_, and s(D.) denote its
corresponding state at time-z. Then, the composite path connecting s, g to
s(D-)is L{s,p, s(D.)) = D-.

3. There is a one-to-one correspondence between the states in the state space I,
and cosets in p, ,(C)/CY . Let D, denote a coset in p, ,(C)/CY ¥ and s(D,)
denote its corresponding state at time-y. Then, the composite path connecting
the initial state s, o to state s(D,) is L(s,9.5(D;)) = Dy. If a state s(D.) at
time-z and a state s(D,) at time-y are connected, then the composite path
L(s(D:),s(Dy))isacosetin p. (C)/CY . Every cosetin p. ,(C)/C!" appears
as a composite path between a staie in X and a state in X,..

4. For every state s(D,) at time-y, there is set of p states in X that connect the
initial state s, o to state s(D,). Let

B (50,0, 5(D) = {s(DD), s(DP), - s(DI)) (14.14)
denote this set of states. Then,

Dy = L{sy 0, s(Dy))

Il

= 9§ L(sy.0.5(D)) o Lis (D), s(Dy)). (14.15)
S(DENEY (505D D)

From the structural properties of the special two-section trellis for the punctured
code p, ,(C) we see that (1) for every state s(D.) € Z., its state meiric (or
composite path metric) m(L(s, o, s(D-))) and label I(L(s, .s(D-))) are given in
meiric table (‘PMT - and (2) for each composite path between a

8
tato (D \ ot i 1t waatein el F (a/ Y
-y,

¥ o T
e Ll Saaryy an a8V, 6 TGCUINT Ml lasy
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label I{L(s(D.).s(D,))) are given in CPMT. ,. It follows from (14.15) and the
structural propertics of the special two-section trellis T ({x, z, v}) that for each coset
Dy e p. (O CYF \ﬁ’rhe metric m(L(s; g, s(D,))) is given by
m(L (5. 5(Dy)) = max {(m(L(sy.0. s(DD))
: PN v
o A5y 03DV P
VE 2 (S0 v) “4.j,6)

s{5-
4+ m(L(’S(Dg)% s{(DIN}.

Eguation (14.16) is simply equivalent to (14.9). Therefore, the metric table CPMT,
can be consiructed from CPMT, - and bPMJ -y by using the special two- ectmm
trellis T({x. z, V} ) for the punciured code p, ,(C). For each state s(Dy) € L,, the
state set X_(s,9.5(D,)) can be easily identified from the trellis T({x,z, y}). In
general, this special trellis T({x, z, ¥}) is much simpler than ihe section T, , of the
entire code trellis 7 from time-x to time-v. As a resuli, the construction of CP PMT
is much simpler.

The special two-section irellis 7 ({x, z, ¥} for the pummred code py () is
constructed as follows [8, 15]. We choose a basis {g]. g, - gup\ (o) of pu ()
such that the first k(C” 3 = k(C, ) vectors form a basis of C7' . Let

iuyéy—x+MmJW»—kw“¢ (14.17)

We form the following k(p, (C)) x i, matrix:

&1
: 0
g/\'(C\.\‘) :
G(-YMV) — , (14]_8)
Bi(C. o+t
7
- g/\'(ﬁ_\ﬁ\'(c)‘) : -

where 0 denotes the k(C, ) x (k(py +(C)) — k(C, ,)) all-zero matrix, and / denotes
the identity matrix of dimension k(p, ,(C)) — k(C, ). Let C(x, y) be the binary
linear code of length n, , generated by G(x. v). We consiruct a three-section irellis
T{{x.z,v.x +n.}) for C(x,y) with seciion boundary locations at x, z,y. and
X +n, y, as shown in Figure 14.2. Then, the first two sections of T({x, z, y. x + #, })
give the desired two-section trellis T({x, z, y}) for p, ,(C). In constructicn, we do
not need to complete the trellis T'({x, z, v. x + 1, ,}). We need only construct the
first two sections from time-x o time-y.

In fact, from (14.16) and the structural properties of T'({x, z, y}), we need only
the second section of 7T({x, z, ¥}) to carry out the computations of (14.16) and to
torm the metric table CPMT, ,. For convenience, we denote this one-section trellis
T (z, ). We assign each state s(D.) of T, (z, v) at time-z a metric m(L (s, . (D))
and alabel (L (s, g. s(D:))) based on CPMT, .. Table CPMT. , gives the composite
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Time-z Time-y

2/{(/{\“_((')) 7/\’((1\,:) states

N

AN

Initial state
Sv0

2Klp JEN=KE, D states

—

"
E:(S\.Hv ‘S(D\))

\ A cosetof Cinp. (C)

( )

L A coset of Clinp, (C)

FIGURE 14.2: Structure of the trellis diagram T ({x. z, v, x 4+ ny ).

path metrics of T.(z, y) between time-z and time-y. With all this information, we
can easily construct CPMT, , by carrying out the computations of (14.16).

EXAMPLE 14.2

Let C be the RM(2, 4) code, a (16, 11) code, whose trellis structure we studied in
Example 9.10. Set x = 4.y = 12, and z = 8. Then, py12(C) = RM(2,3), C}y, =
RM(1,3), C{g = C¢'\, = RM(0,2), and ny 1 = 12. C(4,12) is the (11, 9) linear
block code generated by

f1 1 1 1 1 1 1t 140 0 07
61 0 1 0 1 0 1 | 0 0 O
661 1 06 0 1 1] 0 0 O
Gaam=| SV 0O 310
6 0 6 1 0 0 0 1 ] 1 00
000 0 0 1 0 1] 0 10

. 00 0 0 0 0 1 1 | 0 0 1 ]

By simple row operations, we can put G(4.12) in trellis-oriented form. The one-
section trellis 74(8, 12) consists of two 4-state parallel and structurally identical

subtrellises. called parallel components. One of the components is depicted in
Figure 14,3, The aother can he obtained by adding (0001) to each branch label From
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Time y = 12

s(DL") &

P, 4 {0000, 1111}, P,
P 2 {0101.1010). P,

[

{0011.1100}
{0110.1001)

FIGURE 14.3: A parallel component of Tu(8, 12) for the RM (2, 4) code.

Figure 14.3 we can readily identify the state set ) z(s4.0. s(D))) for each state s(Dy»)
at time-12. Each set consists of 4 states at time-8.

An RMLD Algorithm

Based on the foregeing method for constructing composite path metric tables,
a RMLD algorithm can be formulated [15]. Let RMLD(x. y) denote the recur-
sive algorithm for consiructing the composite path meiric table CPMT, , for
px(C)/CY .. This algorithm uses itwo procedures, denoted by MakeCPMT(x, y)
and CombCPMT{(x, v: ), to construct CPMT, . The MakeCPMT(x, v) procedure
constructs CPMT, , directly from vectors in p, ,(C). The CombCPMT(x. y: z)
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procedure constructs CPMT, , by combining tables CPMT, ; and CPMT. , using
(14.9) (or (14.16)) and (14.10), where x < z < y. Because tables CPMT, . and
CPMT;,, are constructed by executing RMLD(x, z) and RMLD(z, y), we can
express the procedure CombCPMT(x, y; z) in recursive form:

CombCPMT(RMLD(x, z), RMLD(z, y)).

Algorithm RMED(x, y) is used as follows:
Construct CPMT, , using the less complex one of the following two options:

1. Execute MakeCPMT(x, y).

2. Execute CombCPMT(RMLD(x, z),RMLD(z, y)), where z with x < z < y is
selected to minimize computational complexity.

Decoding is accomplished by executing RMLD(0, n).

To start the RMLD algorithm to decode a code, we first divide the code into
short sections. The metric table for each of these short sections is constructed by
executing the MakeCPMT procedure. This forms the bortom (or the beginning)
of the recursion process. Then, we execute the RMLD(x, y) algorithm repeatedly
to form metric tables for longer sections of the code until the table CPMTj,
is obtained. Figure 14.4 depicts such a recursion process. We see that the RMLD
algorithm allows parallel/pipeline processing of received words. This speeds decoding
process.

As pointed out earlier, the simplest and most straightforward way to construct
the CPMT, , directly is to compute the metrics of all the vectors in the punctured
code p, ,(C) independently and then find the vector with the largest metric for each
cosetin py ,(C)/CY, by comparing the metrics of vectors in the coset. Each surviving
vector and its metric are stored in the CPMT, ,. Let MakeCPMT-I(x, y) denote
this make-table procedure. The computational complexity of this procedure can be
easily evaluated. There are 2¢Pxx(©)=kK(Cey) cogets. The number of computations
required to determine the metric of each coset is given by (14.13). Then, the total
number of computations required by the MakeCPMT-I(x, y) procedure is

\pz(v][) (x,y) = 2k (pe  (CN—k(Ciriy) | [(y— x)2K(Car) 1]. (14.19)

[ CombCPMT(0, N; z)) |

[ CombCPMT(0, z;; 25) | [CombCPMT(z), N; z3) |

! CombCPMT(0, z; z4) | . L7 LCombCPMT(z;,,N; zﬁ)l

~ -

MakeCPMT(0, zy) || MakeCPMT(zy, zo) | [CombCPMT(zs, z5: 24)

| MakeCPMT(z; N) |

[CombCPMT(z3, z¢; 27) | hS

| MakeCPMT(z3,z7) | [CombCPMT (27, 24 24) |

- ~

FIGURE 14.4: Illustration of the recursion process of the RMLD algorithm.
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The CombCPMT(x, ¥; 7) procedure simply performs the computation of (14.9) (or
(14.16)) and finds the label L the one-section trellis Ty (z, y). A
straightforward procedure ic 5 i v the conventional add-compare-

select (ACS) procedure that is used in t.‘ orithim. For each coset Dy in
[),\-,'\V(C)/C” :)(I)

X,y 2
) = m{L(sy 0. (D)) is found by
-edure is called the CombCPMT-

[h@meuwwm m{L{sc 9,8 ). s(Dy))) is computed
for every state S(D: e 2o-(s0.005(Dy

comparing all the computed me

V{(x, y: 7) procedure. The ioi f ons required by this procedure
to construct CPMT, |\ is given by (1412
N vy 7) = 2/\’(/?,\_;»(O)*/\'(C\‘_\») L R(Ce )= y=h (O )1 1] (14 20)
< e Vo L) — 4 14 . .

The RMLD algorithm that
V(2. v z) procedurestoc ms‘uum i
Because both Makef Pl/ ) -I(,

AT-1{x. v} and CombCPMT-
alied the RMI.D-(1V) algorithm.

MT-{x, y; z) are very simple, the
ement in either software or hardware.
A comput afuop wise more efficient Combl T{x, y: z) procedure can be devised if
detail structure of the one- 1 »)is med Such a procedure has been
proposed in [15].

From (14.19) al M) if y — x > 2, then for any
choice of z with x < z v: z) procedure reguires fewer
computations to form the CPI \ﬂ” than the MakeCPMT-I(x, y) procedure; and (2)
if y — x = 2, the compuiational comg of CombCPMT-V{x, y; x + 1) and that
Of MakeCPMT (x v) are me same. This simply says that the MakeCPMT-I(x, y)

i cily Wﬂeu used at the begioning to form

CE0S 1y — x is large, the CombCPMT-
v (,\:, ¥ 7) proce dure sho d be us =d) 1o comsiruct metric tables. At the beginning
of the recursion process, y — x is small and few computations are done by the

MakeCPMT-I{x, v) procedure d

1 lecoding process. Therefore, the
major com’pmamon is carried oul by th

{x., v, z) procedure.

Opitimum Sectionalization

The overall computational complexity of the RMLD algorithm depends on the
sectionalization of a code trellis (or the choices of 7’s). A sectionalization that
results in the smallest overall computational coraplexity is called an optimum
sectionalization [15).

Let Wyin(x, vy denote ihe smallesi number of computations (additions and
comparisons) required to construct the CPMT, ;. An addition operation and a
comparison operation are assumed to have equal weight (same complexity). It
follows from the RMLD(x, vy} algorithin given in the previous section that

I .
A \L‘( )(,;,y) if y=x+1,

W) 2 ) 14.21
min v) i mm{“’ ()C ), mii <- <y {Tp min{x, v:2)}, otherwise, ( )

where

A
Wrmin(x. ¥12) = Wy (x. ) -+ Wiinlz, ) + Ly((-V)(xa v 2). (1422)
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TABLE 14.1: Computational complexities of the RMLD(I,V) algorithm and the
Viterbi algorithm for decoding some BM codes,

=

Viterbi based on Viterbi based om
Code 6d-section trellis | RMLD-(,V) | Lafourcade-Vardy algorithim

RM(2,6) 425,209 78,209 101,786

(64,22)
RM(3,6) 773,881 326,017 538,799

(64, 42)
RM (4, 6) 7,529 5,281 6,507

(64, 57)

Then, the total number of computations required to decode a received word is given
by Wipin (0, n).

Using (14.19) through (14.22) we can compute W, (x, y) for every (x, y) with
0 < x < v < n as follows: We compute the values of W (x, x + D for0 <x <n
using (14.19). For an integer { with0 < x < x +{ < »n, we can compute Wy, (x, x i)
from Wi, (x', y) with y' —x" < 1, (14.19), and (14.20). By keeping track of the values
of z thus selected we can find an optimum sectionalization.

The RMLD-(I,V) algorithm with optimum sectionalization is more efficient
than the Viterbi algorithm based on the Lafourcade—Vardy’s optimum sectional-
ization [3]. A few examples are given in Table 14.1.

From Table 14.1 we see that both the RMLD-(1.V) and Viterbi-Lafour-
cade—Vardy algorithms are more efficient than the Viterbi algorithm based on the
bit-level trellis. The RMLD-(1,V) algorithm not only is more efficient than the
Viterbi-Lafourcade—Vardy algorithm but it also allows parallel/pipeline processing
to speed up decoding, which is important in high-speed communications.

14.3 A SUBOPTIMUM ITERATIVE DECODING ALGORITHM BASED
ON A LOW-WEIGHT SUBTRELLIS

Trellises for long block codes have very large state and branch complexities.
These complexities grow exponentially with code length. Consequently, maximum
likelihood decoding of long codes based on full-code trellises would be very difficult
if not impossible to implement. For this reason it is very desirable to devise trellis-
based suboptimum decoding algorithms to provide an efficient trade-off between
error performance and decoding complexity.

This section presents a suboptimum iterative decoding algorithm based on
low-weight subtrellis searches that was proposed in [17]. This algorithm consists
of three simple steps. First, a simple method 1s used to generate a sequence of
candidate codewords, one at a time, based on the reliability information of the
received symbols. When a candidate codeword is generated, it is tested based on an
optimality condition. If it satisfies the optimality condition, then it is the most likely
codeword, and decoding stops. If the optimality test fails, then the smallest region
centered on the tested candidate codeword that contains the most likely codeword
is determined. If this region is small, a search is conducted through a low-weight
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subtrellis for the given code using a trellis-based decoding algorithm such as Viterbi
or RMLD. If ihe search region is too large, a new candidate codeword is generated,
and the optimality test and search are renewed. This process continues until either
the most likely codeword is found or candidate codewords are exhausted (or a
stopping criterion is met}, and the decoding process is then terminated.

Generation of Candidate Codewords

=

et C be a bmary (n,k) linear code with minimum distance dy, to be
deaﬂed v = (ro.r.--- .ry—1) be the soft-decision received sequence and
7 z . Zn—1) be its corresponding hard-decision binary vector. A simple

1etho enerating candidate codewords is to use a set of iest error patierns (o
modny the barﬂ decision received vector z and then decode each modified vector
with an algebraic decoder. The choice of the tesi error patierns determines the
performance and effectiveness of the decoding algorithm. Obviously, only the most
probable error patterns should be used as the test error patierns. and they should
be used in likelihood order to generaie the candidaie codewords for test. Let p be
a positive integer no greater than n, and @, denote the set of the p least reliable
positions of the soft-decision received sequence r as discussed in Section 10.2. Let
E denote the set of 27 binary error patterns of length # with errors confined to
the positions in Q,. The eiror patierns in this set are more likely to occur than
the other error patterns. In Chase decoding algorithm-2 [18], as presented in 10.4.2,
p is chosen to be |dy/2]. and E consists of 2Min/2) test error patterns. In the
following section, Chase algorithm-2 is used to generate candidate codewords for
ihe optimality test.

=

&3
I
—

QA =
-

)—‘,—, ~N

Optimality Test and Search Region

The optimality conditions presented in Section 10.3 are used to test the candidate
codewords. Let wy be the kth nonzero weight in the weight profile W = {wg =
0.wi....,wn) of code C. Let v be a candidate codeword for test. We define

pr 2 o — Dy (14.23)
Gerop = 3 il (14.24)
ieny™ (v
and
R¥.op) 2 (v € C1d(¥,7) < wpl, (14.25)

where seis D (v) and D(()p”(v) are defined in Section 10.3 ((10.23) and (10.29)), and
d(v',v) denotes the Hamming distance between v’ and v. Then, we can restate the
condition given by {10.33) (Theorem 10.1) as follows: for a candidate codeword
v € C and a nonzero weight w; € W, if the correlation discrepancy A(r, v) between
v and the received sequence r satisfies the condition

Alr, v) < G(v: wp). {14.26)

then the most likely codeword vy, 1s in the region R(v, wy). The condition given
by (14.26) simply defines a region in which the most likely codeword vy, can be
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found. It says that v, is among those codewords in C that are at distance w1 or
less from the candidate codeword v; that is,

d{v, ¥pL) < wp-1. (14.27)

If wi—1 is small, we can search in the region R(v, wy) to find vysr. If i is too large,
then it is better to generate another candidate codeword v’ for testing in the hope
that the search region R(v/, wy) is small.

From (14.26) we readily see that

1. If k =1, the candidate codeword v is the most likely codeword vy

2. If k = 2, the most likely codeword vy, is cither the candidate codeword v or
a nearest neighbor of v.

Therefore, we have the following two optimality conditions:

1L A v) < G(v,w ). thenv = vy

2. HG(v.w1) < A(r,v) < G(v, wy), then vy 1s at a distance no greater than the
minimum distance dy,i, = w; from v.

The first condition is a sufficient condition for optimality of a candidate codeword.
The second condition is a sufficient condition for vy to be a nearest neighbor
of a tested candidate codeword. We call G(v, w1) and G(v, @) the optimality and
nearest-neighbor test thresholds, respectively. They are used for testing a candidate
codeword to determine whether it is the most likely codeword or a search for the
most likely codeword among its nearest neighbors is needed.

An iterative Decoding Algorithm Based on a Minimum-Weight Trellis Search

Suppose a candidate codeword v is tested, and the most likely codeword vy is
found in the region R(v, w;). Then, vy can be found by searching through the
minimum-weight subtrellis T (v) centered on v using either the Viterbi or the
RMLD algorithm [17].

The decoding algorithm is iterative in nature and consists of the following
key steps:

1. A candidate codeword v is generated by using a test error pattern e in the
set E.

2. The optimality test or the nearest-neighbor testis performed for each generated
candidate codeword v.

3. If the optimality test succeeds, decoding stops. If the optimality fails, but the
nearest-neighbor test succeeds, a search in the region R(v, w;) is initiated to
find the most likely codeword vy, .

4. If both tests fail, a new candidate codeword is generated.

Suppose the most likelihood vy has not been found at the end of the (j — 1)th
decoding iteration. Then, the jth decoding iteration is initiated. Let vy and
A(E, ¥posr) denote the best codeword and its correlation discrepancy that have been
found so far and are stored in the decoder memory. The jth decoding iteration
consists of the following steps:
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Step 1. Fetch e; from E and decode e; + z into a codeword v € C. If the
decoding succeeds, go o siep 2; otherwise, go o step 1.

Step 2. If A(r.v) < G(v.w1), vy = v, siop the decoding process. Otherwise,
go to step 3.

Step 3. If A(r, v) < G(v. an), search Ty (v) to find vy ;. and stop the decoding
process; otherwise, go to step 4.

Step 4. If A(r. v) < A, Vpess). TEPIACE Vppgy With v and A(r. vpe,) by A(r. ¥):
otherwise, go to step 5.

Step 5. If j < |E], go to step 1; otherwise, search 7, (vpes) and output the
codeword with the least correlation discrepancy. Stop.

The decoding process is depicied by the flowchart shown in Figure 14.5. It
requires at mosi one minimum-weight trellis search. The only case for which the
decoded codeword is not the most likely codeword vy is the ouiput from the
search of the minimum-weight trellis centered at vp,s,. For this decoding algorithm,
the main cause of a decoding ervor is that the number of errors in the n — [y, /2]
most reliable positions of z is larger than [(dmin — 1)/2].

z = hard decision on received vector r

compute syndrome s of z, A, = %
i
v =
{Issequal to® >=-r}— = >¥ VL =L \m>l StopJ

3

[ Generate first test pattern e in £ |
- =

i
| Algebraically decc])de (z+e)togety |

4

— Decodh‘}o fails ?
[Compute index sets Dy(v). D,(v)—)
I,

y

ISort elements of DU(V)|

A
)Compute Alr, v), G(v, w)), G(v; wﬂ

"

yes

Is A(r, v) = G(v; w)) — > —

X

¥es |Search T, (v) centered around v _J
N = n _ . min \ . e
Is AMx. v) = G(v; wy) - to obtain optimum vy,

i
If A(E, v) < Ap,,,. then set
Yhey = ¥ 20d Apey = AT ¥}
Search T, (vy.s) centered at
1t 9 yes min \Vhest. *
H?TE be:xit&ltctie‘f ns P ¥y, and return codeword having mﬁ>
I 773\@ - minimum discrepancy with r

Generate next test
pattern e from E

FIGURE 14.5: Flowchart for the iterative decoding algorithm.
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FIGURE 14.6: Error performances of the iterative decoding (wy-, wy-weight trellis
search) for the (64, 42, 8) RM code.

Because this iterative decoding algorithm uses the Chase algorithm-2 to
generate candidate codewords for the optimality test and minimum-weight trellis
search, it may be regarded as an improved Chase algorithm-2 and hence achieves
asymptotically optimal (MLD) error performance with a faster rate.

Consider the (64, 42) RM code with a minimum distance of 8. This code can
be decoded with majority-logic decoding. Therefore, with the iterative decoding
described here, the algebraic decoder is very simple. The error performances of this
code with various decoding algorithms are shown in Figure 14.6. We see that it has
a 0.5-dB loss in coding gain at BER of 107% compared with the optimum MLD. but
it outperforms the Chase algorithm-2 by more than 1 dB from 10~* BER down.

Computational Complexity

Assume that the computational complexity of the algebraic decoding to generate
the candidate codewords is small compared with the computational complexity
required to process the minimum-weight trellis. The computational complexity of
the decoding algorithm can be analyzed easily from the flowchart shown in
Figure 14.5.

Let N, denote the fixed number of computations required in sorting the
components of the received sequence r in increasing order of reliability, and let
Nioop denote the number of computations required in

1, computing the index sets Dq(v) and Dg(v);
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Y Y

2. computing the correlaiion discrepancy A(r, v), the optimality test thireshold
G{v, wy), and the nearest-neighbor test threshold G(v, wy); and

3. comparing A(r, v) with G(v, w1), G(v, w7), and A(x, Vpesr)-

Let N{Tnin) denote the number of compuiations required o process the minimum-
weight trellis T (V) (o Thin (pesr ) ). The number of decoding iterations required to
decode a received sequence depends on SNR. The maximum number of decoding
iterations is limited by 2Wmin/2] Therefore, the worst-case maximum number of
computations required to decode a received sequence with the minimum-weight
ireilis-based iterative algorithim is

Miax = Ny -+ phdmin/2] 5 Nivop + N (Tin) - (14.28

g

Again, consider the (64, 42) RM code with d;, = 8 The uniform eight-
section full trellis for this code has state complexity profile (1,128, 1024, 8192,
1024, 8192, 1024, 128, 1). The state complexity profile for the eight-section minimum-
weight trellis is (1,45, 157, 717. 157,717,157, 45, 1). To process this eighi-seciion
minimum-weight trellis requires 8111 compuiations. The maximum number of
iterations required to decode a received sequence of 64 symbols with the iterative
deccding algorithm is 16. From (14.28) we find that Ny, = 16,495, In fact, the
average number of computations required can be much smaller than this worsi-case
computational complexity, as shown in Figure 14.7. For example, at SNR = 5 dB,
the average number of computations needed is aboui 400, and the average number of

10 \ =
5 N 1
© 10! = o N =
g F \\ AN :
g 100 . _
(] - :
= E -
;ﬂ—j i ]
—D i -
& N \
e AN E
() - \ ;
2 i AN
> awy-weight search % i
< T w»-weight search \\ |
| N :
10" ‘ | | [ |

E,/N,.dB

FIGURE 14.7: Average number of computaiions for the iterative decoding (w-,
wy-weight trellis search) of the (64, 42, 8) RM code.
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FIGURE 14.8: Average number of decoding iterations for the iterative decoding (w1-,
wy-weight trellis search) of the (64, 42, 8) RM code.

iterations required to complete the decoding is 1, as shown in Figure 14.8; however,
to decode this code with the Viterbi algorithm based on the uniform eight-section
full trellis requires 554, 640 computations. With optimum sectionalization of the full-
code trellis the number of computations required is 538, 799. We see that the iterative
decoding algorithm results in a significant reduction in computational complexity,
and the performance degradation is only 0.5 dB at BER of 107 compared with the
optimum MLD.

Improvements

The error performance of the iterative decoding algorithm can be improved by
using a larger search region. For example, we may use the region R(v, ws), which
consists of all the codewords at distances w; (minimum distance) and w; (next to
the minimum distance) from the current tested candidate codeword for searching
for the most likely codeword vy . In the case that

G(v,wy) < A(r,v) < G(v, w3),

the decoder searches the purged trellis 7,,, (v) centered on v for finding vy, where
T,,(v) consists of v and all the paths of the overall trellis of the code that are at
distances w1 and w; from v. We call this search a w;-weight trellis search. It is clear
that the improvement in error performance with a larger search region is achieved
at the expense of additional computational complexity.

The error performance of the (64, 42) RM code and the computational
complexity with a wy-weight trellis search are shown in Figures 14.6, 14.7, and 14.8,
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respectively. The wa-weight treilis search achieves a 0.25-dB coding gain over the
wi-weight Lrelh seaich with some additional computations.

In the foregoing iterative decoding algorithm an algebraic decoder is used
to generate candidate codewords. The algebraic decoder may fail to decode the
modified received sequence and hence resulis in a decoding failure. This decoding
failure can be prevented by using the first-order decoding based on the ordered
statistics presented in Section 10.8.3 to generate candxdate codewords. This decoding
is very S]I’lplp and it never fails ic decode. Furthermore, this decoding resulis
in better candidate codewords {(i.e., smaller comelauom discrepancies) than the
algebraic decoding in many cases. As a result, the decoding ilieration process
converges at a faster rate. With first-order staiistic decoding, the maximum number
of candidate codewords to be generaied is & for an (n, k) binary linear code.

Amnother possible improvement is to use multiple candidate codewords, the
current one and several previously tested ones, to determine the optimality and the
search region. One such improvement can be found in [19], which provides significant
’mpmvemem in error perfm‘mance for long codes Of course, this improvement is

THE MAP DECODING ALGORITHM

Maximum likelihood decoding minimizes the block (or sequence) error probability;
however, it does not necessarily minimize the bit (or symbol) error probability.
MLD delivers only hard-decoded bits (called hard outputs) without providing their
reliability values (or measures). In many error-control coding schemes it is desirable
to provide both decoded bits and their reliability values (called soft outputs) for
further decoding processing to improve the system’s error performance and to
reduce the information loss. For example, in iterative decoding {sec Chapters 16
and 17), the soft outputs of one decoder can be used as the soft inputs to another
decoder, and the two decoders process the received sequence iteratively until the
performance limit of the code is achieved.

A decoding algorithm that processes soft-decision inputs and produces soft-
decision outputs is called a soft-in/soft-out (SI1SO) decoding algorithm. The most well
known SISO decoding algorithm is the MAP (maximum a posteriori probability)
decoding algorithm that was devised by Bahl, Cocke, Jelinek, and Raviv in 1974
[28]. This algorithm, called the BCJR algorithm, is devised to minimize the bit-error
probability and to provide reliability values of the decoded bits. The MAP algorithm
(or its suboptimum version) is the heart of turbo or iterative decoding [29, 30].

The MAP Algorithm Based on a Bit-Level Trellis

Again, assume BPSK transmission. Let v = (vp, v1. -, v,~1) be a codeword and
¢ = {cg.c1, - .¢,—1) be its corresponding bipolar signal sequence, where for
O<i<nc=2v —1=21.Letr = (rp. 1.+, 1,—1) be the soft-decision received

sequence. In decoding, the MAP algorithm estimates each transmitted code bit v
by computing its log-likelihood raiio (LLR), which is defined as

plv; = 1jr)

A
L(U,‘ = lo s
=g —om

(14.29)
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where p(v;|r) is the a posteriori probability of v; given the received sequence r. The
estimated code bit v; is then given by the sign of its LLR as follows:

” :{ 1, if L(v) >0, (14.30)

0, if L(v;) =<0

From (14.29) we see that |L(v;)| is a measure of the reliability of the estimated
code bit v;: the larger the |L(v;)|, the more reliable the hard decision of (14.30).
Therefore, L(v;) represents the soft information associated with the decision on v;.

Computation of L(v;) is facilitated by using the trellis for the code C to be
decoded. In the n-section bit-level trellis T for C, let B;(C) denote the set of all
branches (s;, ;1) that connect the states in state space X; (C) at time { and the states
in state space Z;1(C) at time-(i + 1). Each branch (s;, s;11) € B;(C) represents a
single code bit v;. Let B,.O(C) and Bi1 (C) denote the two disjoint subsets of B; (C) that
correspond to code bits v; = 0 and v; = 1, respectively. Clearly,

B:(C) = BX(C) U BHO)

for 0 < i < n. Also, based on the structure of linear codes, IBIQ(C)! = IB}(C)|. For
(s, s) € B;(C), we define the joint probabilities

Ai(s’,s) 2 pisi =5, 811 =5,1) (14.31)

for 0 <i < n. Then, the joint probabilities p(v;, r) for v; = 0 and v; = 1 are given by

poi=0m= > N9, (14.32)
(",9)eBYO)

poi=1n= > N, (14.33)
(s.5)eBH(C)

The MAP algorithm computes the probabilities A;(s’, s)’s, which are then used to
evaluate p(v; = Olr) and p(v; = 1ir) in (14.29) from (14.32) and (14.33). In fact, the
LLR of v; can be computed directly from the joint probabilities p(v; = 0,r) and
p(v; = 1, 1), as follows:

pvi =1,1)

L{v;) = .
@) logp(viZO,E‘)

(14.34)

For 0 < j <1 = n, let rj; denote the following section of the received
sequence r:

A
Big = rjgt, 5 r—=1)

where for [ = j, r; ; denotes the null sequence. For any state s € X;(C), we define
the probabilities

1l

psi =$,10.), (14.35)

a;(s)

I

Bi(s) = pr;ylsi =5). (14.36)
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Tt follows from the definitions of ¢; (s) and B; (s) that
O!()(S()) = )811(5]") =1 (1437)

For any two adjacent states s’ and s with s’ € Z;(C) and s € £;11(C), we define the
orobability

.
plsipr = s.rilsi =87

i

. -/ o
r) (14.38)

B . IN ol 11 RV
= plsipr = sls; = ) plrilsi, sip) = (57, ).
For a memoryless channel, it follows from the definitions of A, (s, 5), ;i (s), Bi(s),
and y; (s, s) that for 0 < < a,

2i(s' ) = (s (8T, ) Big1(s). (14.39)

Then, it follows from {14.32}, (14.33), and (14.39) that we can express (14.34) as
follows:
2 wre) € % (8Vis' $)Biga(s)

L(vy) = log = |
st 4 5) B (5)

(14.40)

For a state s € Z,(C), let Q,(.C_)l(s) and Qf.i)l (s) denote the sets of states in
Zi~1(C) and in T; 41 (C), respectively, that are adjacent to s, as shown in Figure 14.9.
Then ¢, (s) and B;(s) can be expressed as follows:

1. For0<i<n,

T—'\
ai(s) = ) plsicy =551 =51 1,10,-1)
s’eQ;:)‘(s)
(14.41)
= D0 a6y
= / i—-1 Vi—1\$8 . 8);
se”, ()
T (O Z(C) 2:(0)
@ © @]
) (dy
Q(,’L—)l(u“) Oi1{s)

FIGURE 14.9: States connected to state s € 2;(C).
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2. ForO0<i <n,
)
PR, AN il < M
Bilsy= ) Pt B Sivl = 518, = §)
s'el? (s)

= Z vi(s, ) Bir1(s").

7 )
s eQ’vH (s}

(14.42)

From (14.41) we see that probabilities «;(s)’s,0 < i < n,canbe computed recursively
from the initial state sy to the final state s of the n-section bit-level trellis 7 with
initial condition ap(sg) = 1 once the state transition (or branch) probabilities
vi(s’, s)’s are computed. This computation process is called the forward recursion.
The probabilities B;(s)’s. 0 < i < n, can be computed from (14.42) recursively from
the final state s; to the initial state sp of T with initial condition g,(s) = 1. This
computation process is called the backward recursion.

The state transition probability y; (s7, s) depends on the probability distribution
of the information bits and the channel. Assume that each information bit is equally
likely to be 0 or 1. Then, all the states in %;(C) are equiprobable, and the transition
probability .

1217, ()]
For an AWGN channel with zero mean and two-sided power spectral density Ng/2,
the conditional probability p(r;|(s;, s;y1) = (s". 5)) is given by

plsic1 =slsi =5) =

p(ril(si, sip1) = (s',5)) = exp{—(ri — ¢1)%/No}, (14.43)

1
7T Ny
where ¢; = 2v; — 1, and v; is the code bit on the branch (s', 5). Because in (14.29)
(or (14.34)) we are interested only in the ratio of p(y; = 1) to p(v; = Ojr)
(or p(v; = 1,1) to p(v; = 0,1)), it follows from (14.32) and (14.33) that we can
scale A;(s’, s) by any factor without changing the LLR of each estimated code bit.
Consequently, we can use

wi(s',s) 2 exp{~(i — )2/ No) (14.44)

to replace y; (s', s) in computing «; (s), Bi(s), A (s',s), p(v; = 1, 1), and p(v; = 0,71).
We call w; (s', s) the weight of the branch (s, s).

To carry out the forward recursion set ag(sg) = 1 to initiate the recursion
process.

1. Assume that the probabilities «; (s')’s have been computed for all states s’ in
i (O).

2. In the trellis section from time-i to time-(i + 1), assign the weight w; (s, s) to
each branch (s', s) € B;(C).

3. For each state s € 3; 1(C) compute and store

ai1(s) = Z a; (sHw; (s, ). (14.45)
vea )
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To carry out the backward recursion from the state sy to the inifial state sy as
follows, set B, spy=110 initiate the recursion.

1, Assume that the probabilities 8;.11(s") for all states s’ € Z,,1(C) have been
compuied,

2, In the trellis section from time-/ to time-(i + 1), assign the weight w; (s, s") to
each branch (5, 5") € B(O).

3. Yor each state s € Z;(C) compute and store

Bi(s) = Z w; (s, s Biy1(s)). (14.46)
EQ,“Ql(s)
4. Repeat the process until Sp(sp) is computed.

Then, to carry out the MAP decoding algorithm, use the following three steps:

1. Perform the forward recursion process to compute the forward state probabil-
ities, o; (s)’s, for 0 < i < n.

2. Perform the backward recursion process to compuie the backward siate
probabilities, §;(s)’s, for 0 <i < n.

3. Decoding is also performed during the backward recursion. As soon as the
probabilities 8;11(s)’s for all states s € 2;,1(C) have been computed, evaluate
the probabilities A;(s’, s)’s for all branches (s',5) € B;(C). From (14.32) and
(14.33) compute the joint probabilities p(v; = 0.1) and p(v; = 1. r). Then,
compute the LLR of v; from (14.34) and decode v; based on the decision rule
given by (14.30).

Bidirectional and Parallel MAPR Decoding

Because the forward and backward tecursions are independent of each other,
they can be executed simultaneously from both directions of the code irellis. This
bidirectional process reduces the decoding delay. To achieve bidirectional decod-
ing, we permute the codeword v = (vg, vi. -, vy~1) 0 (vg, vy_t, V1, V=2, - 7)
before its transmission. Letr = (rg, 1,1, r{. F'n—2, - - - ) be its corresponding received
sequence. Before decoding. we permuie r o obtain two received sequences,
'Y = (g, 1, 1) and v? = (r,_y, 2. -, 7o), which are called forward
and backward received sequences. respectively. Then, we shift ' and r'® into the
code trellis from the initial state 5o and the final state s, respectively, to perform
forward and backward recursions simultancously for computing « and g probabili-
ties in opposite divections [33, 34]. When the recursions meet at the middle of the
trellis, the decoding begins. As soon as both o (s") and B;41(s), with ' € Z;(C) and
5 € Z;4+1(C), have been computed, the LLR of the estimated code bit v; is evaluated
from (14.39), (14.32), (14.33), and (14.34).

Even though the same number of computations is required, the bidirectional
process roughly reduces the decoding time by half. If the code trellis has mirror-image
symmelry, we can devise two identical circuiis to compuie o’s and s,

If the code trellis T for a code is too large for praciical IC implementation, we
can decompose the trellis into parallel and structurally identical subtrellises without
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exceeding the maximum state complexity of 7. Each of these subtrellises has much
smaller state and branch complexities than the full-code trellis 7. This parallel
decomposition allows us to devise identical smaller MAP decoders to process the
subtrellises in parallel independently without communications between them, which
simplifies the IC implementation and speeds up the decoding process.

In Chapter 9 it was shown that it is possible to decompose a trellis T into
parallel and structurally identical subtrellises without exceeding the maximum state
complexity of T. Suppose T can be decomposed into u subtrellises, denoted by
7MW 7@ ... T® Based on each of these subtrellises TV, we compute

0= 3 o w08,

(s'.5)€B}(C);

and

R (O S G AR RO A TO

(s".9)eBY(CY;

where B,Q(C)_,- and B}(C)l,- denote the sets of branches labeled with 0 and 1,
respectively, in subtrellis 7¢)), Then, the LLR L(v;) of v; is given by [33, 34]

Z_/;:l Q('”(l)

e =loe S 550)

(14.47)

forO0<i <n.

From the standpoint of decoding speed, the effective computational complexity
of decoding a received sequence is defined as the computational complexity of a
single parallel subtrellis plus the number of computations required to compute the
LLR of each estimated code bit from (14.47). The time required to compute L(v;)
from (14.47) is relatively small compared with the time required for processing a
subtrellis. Because all the subtrellises are processed in parallel, the speed of decoding
is therefore limited only by the time required to process one subtrellis.

Computational Complexity

The computational complexity of the MAP algorithm can be analyzed by enumer-
ating the numbers of real operations required to compute v;, «;. fi, A;, p(v;, 1), and
L(v;) for each trellis section. We assume that exp(-) and log(-) are computed by
using a read-only memory (ROM) (i.e., table lookup).

Because w; (s, s) is used to replace y; (s, s) in all computations, this value can
be read out from ROM for each received symbol r;. Consider the trellis section T;
between time-i and time-(i 4+ 1) for 0 <i < n. For any state s € L; 1 1(C), \Ql@ ()] is
simply the number of branches entering s (or incoming degree), which is the same
for all states in ¥;1(C). The term |Qf") (s)| is either 1 or 2 depending on whether
there is an oldest information bit a® to be shifted out from the encoder memory.
Then, the total number of branches in 7; is

Y (©,. (1A AON
B = 2712 (). (14.48)
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where p;11 is the dimension of the state space Z;11(C) at time-(/ + 1). For any state
(d) . . L ~ . . " .

s € Zi(0), 19/, ()] is simply the number of branches leaving s (ouigoing degree),

which is the same for all states in Z;(C). The term [Q;j[:l ($)} s either 1 or Z depending

on whether there is a current input information bit «* at time-i. It is clear that the

total number of branches in 7; is

1B:(C)] = 2719\ . (14.49)

where p; is the cimension of the siate space Z;(C) at time-i.

It follows from (14.45) and {14.48) that to compute a;1(s) for all states in
Zi+1(C) requires | B; (C)] multiplications and | B;(C)| — 27+t additions. Similarly, it
follows from (14.46) and (14.49) that to compute §; (s) for all states in Z; (C) requires
| B;{C)| multiplications aad {B; ()| — 27 additions. It follows from (14.32), (14.33),
and (14.39) that computation of p(v; = 0,1) and p(v; = 1, 1) requires 2|B;(C)]
multiphcations and |B;(C)| — 2 additions. Taking the ratioc p(v; = L, v)/py; =
0, 7) requires one division. A division operation is equivaleni to a multiplication
operation. Based on the preceding analysis, we find that MAP decoding of a recetved
sequence r requires

Ny =48 +n (14.50)
multiplications and
Ny =3 -2V =2(n =1 (14.51)
additions, where
n—1
£ = L |B; (Ch], (14.52)
i=0
and
i
V=" 27 (14.53)
i=0

Note that £ and V are simply the iotal number of branches and states in
the trellis 7, respectively. From (14.50) and (14.51) we see that the major
factor in the computational complexity of the MAP algorithm is the number of
multiplications.

Because for each trellis section, y;(5’, s) for the distinct branch, «; (s) or 8;(5)
for all (s’.s) € B;, and LLRs for all code bits must be stored, the MAF decoder
requires a memory {o store

M=2n4+(V-D+n=3n+V-1

real numbers.

As an example, counsider the (32, 16) RM code with a minimum distance of 8.
The bit-error performances of this code based on MAP and Viterbi decodings are
shown in Figure 14.10. We see that the MAP algorithm performs just slightly better
than the Viterbi algorithm. The 3Z-section bit-level trellis for this code has a toial
of 4798 states and a total of 6396 edges. MAP decoding of this code requires 25,616
multiplications, 9530 additions and 4893 storage units.
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FIGURE 14.10: Bit-error performances of the (32, 16) RM code with MAP and Viterbi
decoding algorithms.

145 MAP DECODING BASED ON A SECTIONALIZED TRELUS

14.5.1

The MAP decoding algorithm can be carried out based on a sectionalized trellis
{33. 34]. Proper sectionalization of a code trellis may result in a significant reduction
in computational complexity and storage requirements.

The Algorithm

Let T(A) denote a v-section trellis for an (#, k) linear code C with section boundary
locations in A = {f. 1, ---,t,}, where 0 =1y <11 < --- < t, = n. For itwo
adjacent states s" € £,(C) and s € Xy, (C), let L(s', s) denote the set of parallel
branches connecting state s’ to state s, called a composite branch. Each branch
b(s’.s) € L(s’, s) consists of r;;; — 1; code bits,

(UI,'» (7S P vf,_)_]fl)'

For each branch b(s’. s) in L(s’, 5). we define the following probability:
A
v (s’ ) = pls,, =s8.b(s" 8), 1, 18, =)
= p(sf,',H =95, h(slv S)lsf,' = S/) : P(E‘I,-,/,-_‘_l |(ST,'» Si,_‘_[) = (S/, S)v Eb(slv S))v
(14.54)

which is called a branch probability connecting state s’ tostate s. Then, the probability
of the composite branch L(s’, 5) connecting state s’ to state s is given by

v (LG5, 5)) 2 ST n b, (14.55)

B(s',s)el(s’,s)
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For the MAP algorithm based on the sectionalized trellis 7(A), the forward
and backward recursions are to compute the following probabilities:

o, (s) = Z oy (D, (LGS, 5)), (14.56)
5 en"’  (5)

B = 3 y(Lls.sMNB,,, (s, (14.57)
s'eQ (5)

IJ‘]

where 5 is a state in I, (C), SZ(‘” (s) denotes the set of states in X,,_,(C) that are

adjacent to s, and Q;f ) NE) deqotes the set of states in %y, (C) that are adjacent to s.
The initial conditions fm the recursions are ag(sg) = 1 and 8, (sy) = L.

For computing the LLR of an estimated code bit v with ; </ < f;41, we
define

O 2 S b ), (14.58)
b(s'.s)eL(s',s)
vy =0
oA /
v (LGN = DT (s s)). (14.59)

b(s'.s)eL(s’.$)
v=1

it follows from (14.55), (14.58), and (14.59) that

Vi (LG 5)) = v, (LD ) + v, (LD, 90) (14.60)

£

for every code bit vy with 1; <[ < ;1. Then, the LI.R of v; is given by

Z(\ $) 01.'[, (‘5 )y,l (L v (‘S S) ﬁfH,[ )

L(v) = log —= 2 @ , (14.61)
R T (LY, SNBr, (8)
v;=0

where the summations are over all the adjacent state pairs (s, 5) with ' € 2, (C)
and s € 2y (O,

To carry out the decoding process we must first compute the composite
branch probabilities, y;, (L(s'. $))'s. In a sectionalized trellis a section may consist of
many composite branches; however, the number of distinct composite branches is
relatively small. In computing o, (s), B, (s), and L(v;), we need the probabilities of
only the distinct composite branches. Thus, we may perform a preprocessing step to

ompute y;, (L(s', 5)), v (L@O)(s 5)), and y, (L;})(s’, 5)) for each distinct composite
bmnch L(s'.5) and each code bit v; and store them in a table called the y; -table.
From (14.56) we see that ¢, (s)’s can be computed along with y;, (L{(s', 5))’s.

The MAP algorithm based on a sectionalized trellis T(A) can be carried out
in two stages. At the first stage, the parallel branches of each distinct composite
branch are preprocessed to obtain the probabilities y;, (L(s, ). v, (Li), (s’,s)), and
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Vi (ij}) (5", 5)). Then, the MAP decoding is performed with parallel branches viewed
as a single branch.

Bidirectional and parallel MAP decoding based on a sectionalized trellis can
be performed in exactly the same manner as that based on the bit-level trellis 7. In
bidirectional decoding, «;, (s)’s and f; (s)’s can be computed simultaneously along
with y;, (L(s, 5))’s.

Consider the computation of a branch probability y;, (b(s’, 5)) given by (14.54).
If all the states at any section boundary location are equiprobable, then

1
IAYAYE
E e (1) [L{s’, s}
+1

4

plsi,, =8, b, sy, =5) =

It has been proved that ]Q}fi)l {(s")] and |L(s’, s")] remain the same for all states

5" € %;,(C). Therefore, p(s,,,, = s,b(s’, 5)|s;, = ') is constant in the trellis section T;
from time-4; to time-1; ;1. Because we are interested only in the ratio given by (14.61),
we can scale the branch probability y;, (Ib(s'. 5)) by any factor without changing the
LLR of an estimated code bit. Therefore, in computing ¢, 8, and L(v;), we can use

P, NG5, = (57.8),b(s", 8)) (14.62)

to replace y;, (b(s’, 5)) to simplify computations. For an AWGN channel with zero
mean and variance Ny/2,

p(lrl/.[,'_u ,(Sf,' ’ SI,'Jr]) = (S/- S)' b(s/» S))

mi—1

1
P{— D (i — Qugsj — 1) /Not,  (14.63)
j=0

= (ﬂ’N())m"/Z ex

where m; = ;41 — ;. Because 1/(n N,)"i/2 is constant in 7, we can use

mi—1

, 2
wy, (b(s', 5)) = exp ﬁo Z i) Vgt (14.64)
j=0

to replace y, (b(s’, 5)) in computing L(v;) of (14.61).
To construct the y, -table for the trellis section 7; from time-#; to time-; 1 with
0 < i < v, we can use the following procedure-y to save computations:

1. Compute wy, (b(s’, 5)) using (14.64) for all distinct branches in 7;.

2. Compute v, (LY (s, 5)) and y, (LY (s, 5)) from (14.58) and (14.59) with
v, (b(s’, 5)) replaced by w,, (b(s’, s)) for each code bit v; with 1; <! < ;1.

3. Compute y;, (L(s’, s)) for all distinct composite branches from {14.60).

From (14.56) we see that «;, (s)’s can be computed along with the construction
of y-tables from the initial state sp to the final state s; of the code trellis in the
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forward direction. If bidirectional decoding is performed, it follows from (14.57)
that g8, (s)’s can be computed along with the construction of y-tables from the final
state sy to the initial state sg of the code trellis in the backward direction. As soon as
oy, (s)'s and By, (s)’s at the boundaries of the trellis section 7; have been computed,
the LLRs of the code bits vy with ; <1 < ;1) are evaiuated from {14.61).

Computational Complexity and Storage Requirement

&

To analyze the computational complexity of the MAP algorithin based on 2
sectionalized code treflis T(A), we need to use some trellis siructural properties
developed in Chapter 9. Cousider the section T; of T(A) from iime-s; to time-
fi+1. Bvery composite branch Z(s’,s) in this section is a coset in the partition
Pi, (C)/CY, - and consisis of

iy
BY =24 Cay) (14.65)
paraliel branches. There are
B,-d — Zk([]’i~’i+| (C))*/f(cl,u/,l‘l ) (14
distinct composite branches. The total number of composite branches in 7; is
B¢ = MOk Coy )= k(Cyy )=k Cryp ) (14.67)
; .
Therefore, the total number of branches in 7T; is
. RC 14 @
B; =B/ - B}. (14.68)

The number of composite branches entering a state s € I, (C) {called the incoming
degree of s) is given by

d@g(é’)m . 2/\’(0),1,')—/((6‘04[_] J=k(Cy ) ) (1469)
Then, it follows from the definitions of Qﬁf_’l (s) and deg(s);, that
194 ()] = deg(s)in. (14.70)

The number of composite branches leaving a state s € %, (C) (called the outgoing
degiee of 5} is given by

deg(s)om — Z/C(C’:-”)ik‘c’;—u-”)_]"(C’:"’;’Jr( ). (1471)
Then, it follows from the definitions of 52}1)1 (s) and deg(s),, that

[Q([]> (S)[ = deg(_ﬁ)ozlr‘ {1472)

i)
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Again, we assume that exp(-) and log(-) are computed by using table lookup.
To form the y;, -table for the ith trellis section 7; based on the procedure-y presented
in the previous subsection, the computations required at each step are listed:

1. Step 1 requires Bid . Bip - (m; — 1) additions and m; multiplications.
2. Steps 2 and 3 require B¢ - (B ~2) - m; and B;’I additions, respectively.

For the case of B = 1, since there is only one branch in each composite branch, we
need to compute only wy, (b(s’, 5)) for all distinct branches. Therefore, construction
of the y, -table for trellis section T; requires a total of

i« | B BY-(mi— 1)+ B! (Bf —2)-m; + B¢, for B >1,
No(y) = { Bi{] -(m; — 1), for Bip =1, (14.73)
additions and a total of
N (y) =m; (14.74)

multiplications.
~ Computation of «’s and g’s from (14.56) and (14.57) requires a total of
Nl (a) + N, (p) additions and V,, («) + N,,(B) multiplications, where

Nj(@) = (deg(s;)in — 1) -2 = BE | — 271, (14.75)
Ny(B) = (deg(s;)our — 1) - 2% = Bf — 21, (14.76)
Ny () = Bf_,, (14.77)
N, (B) = B (14.78)

The last step of MAP decoding is to compute the LLRs of the estimated code
bits vy for 4, <1 < ;41 with 0 <i < v. We define

§® é ZOlf[(s/))/;[(L(S/,S));Bt,-ﬂ(s)v (14.79)
(s".8)

S(Si)(vl) = Z &y, (S/)Vli (LE)(/)) (S/’ S))IBIH-I (S)’ (1480)
5

ST =) Oy (LG DBy ). (14.81)
(S/‘Sl)
y=

It follows from (14.60) and (14.79) through (14.81) that
5D = 80w + 57 wp) (14.82)
for any I, with t; < < t;41. To compute the LLR L(v;)’s from (14.61), we need

to compute Sg)(vl)’s and Sl(")(vz)’sA The Sé”(v;)’s and Sii)(m)’s can be computed
efficiently by using the following procedure-S:
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1. Compute S from (14.79), which requires Bf — 1 additions and 28¢ multipli-
cations.
2. Compute S( '(up)’s from (14.81) for 1

1, which requires (B — 1) - ¢
additions and Bf - m; multiplicat ms{ tia

<< f1+

ing partial results from step 1).

3. Compute Sé’)(v;)‘s from (14.82) by taking the differences 5@ — Si”(w), for
f; <1 < 1;41. This step requires m; subtractions {(equivalent to additions).

Once Sé” (vr)’s and § “?< )(Jz s have been computed, the LLRs of estimated code biis
v for i <1 < figq (‘au be evaluated, which requires m; divisions (equivalent to
multiplications). Therefore, computation of the LLRs of estimated code bits in the
iih trellis section T; requires a total of

Ni(L)y=Bf —1+ B -my (14.83)

1
additions and a iotal of
M m\!;) =2Bf + (B + 1) m; (14.84)

multiplications (including m; divisions).
In summary, execution of the MAP algorithm based on the sectionalized trellis
T(A) requires a total of

v=—-1
Na(A) = 5 {NY(y) + NI(L) + N + Ny(B) (14.85)
i=0
additions and a total of
v—1
Ny (M) —> N9 ) + ML (LY + N (@) + M (8)) (14.36)
i=0

multiplications. The numbers ¥, (A) and N, (A) together give a measure of compu-
tational complexity of the MAP algorithm based on the sectionalized trellis 7(A).

During the decoding process the y-tables must be stored for the computation
of a’s, B’s, and LLRs of the estimated code bits, which require

v—1
My) = Z B Cmi + 1) (14.87)
=0

storage locations (or units). The «’s and §’s for the computation of LLRs of the
estimated code bits also need to be stored. Thus, for bidirectional decoding,

M(e) + M(B)

Mo, B) 2 . (14.88)
storage locations are required. where
v—1
M@)=M@B) =) |5,(O]=V~1 (14.89)

i=0
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If the LLRs of estimated code bits are to be used for further decoding process, they
must also be stored, which requires another

ML) =n (14.90)

storage locations. Therefore, the total storage requirement for MAP decoding based
on the sectionalized trellis T(A) is

M(A) = M(y) + M(a, B) + M(L). (14.91)

The computational complexity and storage requirement of MAP decoding
of a linear block code very much depend on the sectionalization of the code
trellis. A sectionalization that minimizes both is desirable; however, in general,
such a sectionalization does not exist. If there is no severe constraint on the
size of memory storage, we may choose a sectionalization that minimizes the
computational complexity. Based on the foregoing analysis, decoding computation
of the MAP algorithm involves two kinds of real-number operations, additions
and multiplications, in every decoding step. A multiplication operation is more
complex than an addition operation, and the operations cannot be treated the
same (have the same weight) in the minimization of computational complexity.
This makes it difficult (if not impossible) to find a sectionalization that minimizes
both the number of additions and the number of multiplications. Because the
number of multiplications required in decoding is much larger than the number
of additions required, and a multiplication operation is much more complex than
an addition operation, we may just find a trellis sectionalization to minimize the
total number of multiplications with a constraint that the number of additions may
not exceed a times the number of additions based on the bit-level trellis; or we
can weight an addition operation as a fraction of a multiplication operation, say,
1/b of a multiplication. Then, we find a trellis sectionalization to minimize the
total number of multiplications and weighted additions. The Lafourcade—Vardy
algorithm [3] presented in Section 14.1 can be used to find such an optimum
trellis sectionalization to minimize the total number of multiplications and weighted
additions. Optimum trellis sectionalizations (in terms of minimizing the number
of multiplication operations with constraint ¢ = 1.2) of some RM codes and the
(24, 12) Golay code for MAP decoding are given in Table 14.2. For comparison,
the computational complexity based on the bit-level trellis for each code is also
included. From this table we see that a bit-level trellis requires much greater
computational complexity than an optimum sectionalized trellis. We also see that the
optimum trellis sectionalization in terms of minimizing the number of multiplication
operations may not reduce the number of addition operations. Thus, there is a trade-
off between the number of multiplications and the number of additions. Optimum
trellis sectionalizations (in terms of minimizing the total number of multiplications
and weighted additions with 1/5 (b = 5)) of some block codes for MAP decoding
are given in Table 14.3.



TABLE 14.2: Optimum trellis sectionalizations of some block codes for MAP decoding with consiraint ¢ =

1.2.

Bit-level trellis

Optimum sectionalization

Caode Multiplication Addition Memaory Boundary location Multiplication Addiiion Memory
RM(8,4) 192 50 57 {0.1,2,4.6.7.8} 128 58 41
RM(16,5) 720 186 197 10.1,2.4,7.8, 10, 12, 14, 15, 16} 400 218 119
RM(16, 11) 1.040 426 197 (0.2,4,6.7.8,10,12, 13, 808 504 139
14, 15,16}
RM(32,06) 2,800 714 733 {0.2, 4,8, 16, 20, 24. 26, 872 856 251
28.30, 31. 32}
RM(32,16) 25.648 9,530 4.893 {0, 4,8,9,12.16, 17,20, 23, 11,128 04 1,295
24,27, 28,29, 30, 31, 32}
RM(32,26) 4,784 2,202 733 {0.4,6,7,8.10,12,13. 14 4,088 2,639 591
16,18, 19,20.21.22,24.25
26,28, 29,30, 31, 32}
RM(64,7) 11,056 2,794 2,829 {0,2,4,8,12.16, 24, 32, 2,216 3,344 627
44,48, 52, 58. 60, 62, 63. 64}
RM(64,22) 1,500,272 475,258 325,053 {0, 8, 16, 24, 28, 31,32, 34, 348,536 569,812 37,795
40, 46, 47, 48, 54, 55, 56, 59,
60, 61, 62, 63, 64}
RM(64,42) 2,197,616 998,266 325,053 {0.1,8,12, 14,16,17.20, 22, 1,454,720 1,196,690 139,453
24, 26, 28 30 32,34, 36,38,
40, 42, 44, 46. 48, 50, 52. 54
56, 58, 59, 60, 61, 62, 63, 64}
RM(64,57) 20,464 9,850 2,829 {0,4,6,7.8,9,11,12, 13,15 19,128 11,811 2,303
16,18, 19,20. 21, 23, 24,25
26.27,28.29, 30, 32, 34, 36,
37.38,39,40,42, 43, 44, 45,
46, 48, 49, 50, 51, 52, 53, 56,
57.58, 60,61, 62, 63, 64}
Golay(24, 12) 14,368 57322 2,757 {0.3,8,9,12. 15, 16, 19. 20, 6,742 6,372 813
24,22,23,24)

Sij1941 POZIjRUCISE 2 U0 paseq Bulposaqg dvii
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decoding with b = 5
Bit-level ireliis Optimum sectionalization
Code operations Boundary location Operations
RM(8,4) 202 {0, 8} 74
RM(16,5) 757 {0. 16} 247
RM(16,11) 1,125 {0.4,6.8,10, 12, 16} 796
RM(32,6) 2,942 {0, 8.16, 24,32} 697
RM(32, 16) 27,554 {0,3.8.12. 16,20, 24,29, 32} 11,970
RM(32.26) 5224 {0,4,6.7.8,10,11,12,13,14, 16,18, 19 4532
20,21, 22,24, 25.26.28, 32)
RM(64,7) 11,614 {0, 8,16, 32, 48, 56, 64} 1,881
RM(64,22) 1,595,323 {0.3,8.16.24, 32, 40. 56, 61. 64} 412,598
RM(64,42) 2,397,269 {0,1.4,8,12,14,16.20. 22,24, 26, 28, 32, 1,652,378
36, 38, 40, 42, 44, 48. 50, 52, 56, 60, 63, 64}
RM(64,57) 22,434 {0,4.6.7.8,10,11, 12,13, 14, 15, 16,18, 21,013
19,20, 21,22, 23,24, 25, 26,27, 28,29, 30, 32
34,35, 36,37, 38. 39, 40, 41, 42, 43, 44, 45, 46
48,49, 50, 51, 52,53, 54, 56, 57, 58, 60, 64}
Golay(24, 12) 15,432 {0.3.8.12, 16, 21. 24) 6,742

14.6 MAX-LOG-MAP DECODING ALGORITHM

14.6.1

To achieve optimum bit-error performance, the MAP decoding algorithm requires
a very large number of real computations, especially multiplications. For long codes
with large trellises, this large computational complexity makes implementation of
this decoding algorithm very difficult and impractical. If we do not insist on attaining
optimum error performance, a suboptimum MAP decoding algorithm can be devised
to provide a very efficient trade-off between error performance and decoding com-
putational complexity. This suboptimum algorithm is known as the Max-log-MAP
algorithm and is based on a very simple approximation for the logarithm of a sum
of real numbers [30]-[32].

Max-log-MAP Decoding Based on a Bit-Level Trellis

For a finite set of real numbers {81, 6, - - - ., §,} the following approximation holds:
/a0
lo 4} ~ (max (8:)). 14.92
e ‘;e ) (max [5,) (14.92)

This approximation is called the maximum logarithm {(max-log) approximation.
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Wiih the max-log approzimaiion, we can approximaie the LLR of an estimated

code bit given by (14.40) by

Lv) = ( X?aﬁ(o{l@g o (") +logyi (', s) +log By ()}
s'.5)eB; (C

—  max {logo;(s) +logy(s'. s) +log iy 1(s)} (14.93)
(s.5)eB(C)

From (14.41), (14.42). and (14.42), we have

loga(s) = max {loge; 1(s") +logy_1(s. 53}, (14.94)
5'/652:.1'](5)

fog fi(s) = max {logyi(s, s") +1log B (s}, (14.95)
S’GQ;QI(S)

log y; (s', 8y = —(ry — ). (14.96)

where ¢; = 2v; — 1. (Noie that since Ny and 1/./7 Ny are constanis, we simply
use —(; — ¢;)? as the branch metric.) The meirics logai(s) and logBi(s) are
simply the forward and backward metrics of state s, respeciively, and they can be
computed recursively with initial conditions fogog(sg) = 0 and log B,(ss) = 0. The
metric log y; (s, &) is simply the branch metric. The sum loga;(s) + log yi(s’. s) +
log 6;.1.1(s) is simply the path metric corresponding to the code bit v; on the branch
(s". $).

The Max-log-MAP decoding algorithm is to compute the LLR L(v;) for each
code bit based on (14.93). First, the forward and backward recursions are carried
out to compuie the metrics log o; (s) and log B; (s) for all the states in the code trellis.
The L(v;) is then computed by executing the add-compare-select-subtract (ACSS)
process (similar to the Viterbi algorithm). Bidirectional decoding can be applied to
reduce the decoding time.

Again, assume that log(.) is done by table lookup. Then, the Max-log-
MAP decoding requires mainly additions (including subtraction) and comparisons.
Because a comparison operation is as complex as an addition operation, it is
regarded as an addition-equivaleni operation. Computational complexity analysis
of the Max-log-MAP is quite straightforward, based simply on (14.93) through
(14.96).

For each trellis section, logyi(s’, s) has only two values, corresponding to
¢; = 1 {or v; = 1 or 0). Computing log y; (s, s)’s in the entire decoding process
requires only 2a additions and Zn multiplications. Computing «’s and §8’s, requires

N(I (0[) = ANva(;@) =£ (1497)
additions each and

N@)=N(P)=E-V+1 (14.98)
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comparisons. To compute Lv)forO<i<n requires a total of

No(L) =2& (14.99)
additions, a total of
NAL) =& —2n (14.100)
comparisons, and
Ny(L) =n (14.101)
subtractions. Therefore, the Max-log-MAP decoding requires a total of
N, =76 =2V +n+2 (14.102)

addition-equivalent operations and 4n multiplications. Because £ > n, the number
of multiplications required in the decoding is very small compared with the number of
addition-equivalent operations and hence can be ignored in measuring complexity.

To store y’s, a’s, B’s, and L’s requires 2V + 3n — 2 storage locations.

The error performance of Max-log-MAP decoding is very close to that of MAP
decoding while reducing the computational complexity significantly. Figure 14.11
depicis the error performances of the (32, 16) RM code using both MAP and
Max-log-MAP decodings. We see that Max-log-MAP decoding results in only a
very small performance degradation, less than 0.1 dB. The Max-log-MAP decoding
algorithm is actually equivalent to the soft-output Viterbi decoding algorithm
(SOVA) [35, 36].
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FIGURE 14.11: The bit-error performances of the (32, 16) RM code using MAP and
Max-log-MAP decodings.
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Max-log-MAP Decoding Based on a Sectionalized Trellis

Using a max-log approximation, we can approximate the LLR of an estimated code
bit given by (14.61) based on a sectionalized trellis T(A) by [34]:

L(v) = max,  {logay, (s") +log v, (L (s', 5)) + 1og By, (5))
vy=1

—max ;. {loga, (') +log v, (LY (s, 5)) + log B, ()}, (14.103)
v =0

for1; <1 < tj41. It follows from (14.55) through (14.59) that the state and composite
branch metrics are given by

loga;(s) = max {logoy, (s +logy, [ (L(s'. s}, (14.104)
s 69 ( )

logfi(s) = max {logy; (L(s,s) +logfy, (N}, (14.105)

cesz,i]()

logy, (L(s',s) =  max {logy, (b(s', )}, (14.106)
bis'.syel{s' s}

logy, (LY (s, s) =  max  {logy, (b(s', )}, (14.107)
b(s',s)éLO(s/,s)
vy =

log v, (L}, (1) (s, = max {logy, (', )}, (14.108)
b(s'.s)el(s’,s)
=1
fory;, <1 < fig1.

To carry out the decoding based on T(A), we preprocess the parailel
branches of each distinct composite branch L(s/, 5) to obtain the composite branch
metric logy, (L(s',s)) and the composite branch metrics logy, (Lg,)) (s’,s)) and
log v, (Li,,l)(s’ .$)) corresponding to code bit v for 1, <1 < 1;,4. These metrics are
stored in a branch metric table. The branch metric tables are then used to compute
state mefrics log oy, (s) and log B, (s), and LLR L(v), for all the states in T(A) and all
the code bits. In the decoding process each composite branch L(s', s} isregarded as a
sjngle bn anch, which is assigned a branch metric, y, (L(s', 5)), and m; pairs of metrics,
(s, (L by (9 ), (v (Lv, (s, ")), corresponding to m; code bits on the branch where
m; = t;41 — t;. Computations of state metrics are based on (14.104) and (14.105).
Computations of the LLRs of code bits are based on (14.103) using the ACSS
process. If bidirectional decoding is performed, the forward and backward state
metrics are computed along with the branch metrics in both directions. When the
forward and backward state metrics at the two boundary locations of a trellis section
have been computed, computations of the LLRs of the code bits corresponding to
the trellis section begin.

For AWGN and BPSK signaling, we can use (14.63) to compute log y,, (b(s', 5)).

m;/2 . . .
Because Ny and (%NU> are constant in the trellis section T;, we can use
tiv1—1

logy, (b(s". N = 5 r-Qu—1) (14.109)

I=t;
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as the metric of branch b(s’, s) in computing log v, (L(s', 5))’s, log y, (L,(J(,» (s, 5))’s,
and log y;, (LS (s', 5))’s.

Letb*(s’, s) = (v, ”?:+1’ cee, v;’;H _,) be the branch that has the largest branch
metric among the parallel branches in L(s’, s). From (14.106) we find that

log v, (L(s', 5)) = log y;, (" (s', 5)). (14.110)
Then, it follows from (14.106) through (14.108), and (14.110), that
log v, (L(s', )) = max{log y;, (LY (5", ), log v, (LG (s, )

log v, (LS/)) (s',5)), ifvf =0,
- (14.111)
log v, (LY (5", ), ifvf =1,

fory; <1 < ;4. Based on (14.111), we can construct the branch metric table for the
trellis section 7; using the following procedure-B:

1. We compute log v, (L(s', s)) from (14.106) for each distinct composite branch
inT;.
2. For each code bit v; in T, based on b*(s’, s) and from (14.111), we first check

whether v/ = 0 or 1 (a logic operation) to determine which of log y;, (Lz()(,)) (s, )

and log y;, (LS)(S’, $)) is equal to log v, (L(s', 5)). Then, we need to compute

only the one between log yy, (Lf)(,)) (', 5)) and log y;, (Lf,}) (s’, 5)) that is not equal
to log v, (L(s’, $)).

At the second stage of the Max-log-M AP decoding, the state metrics log a, (s)’s
and log B; (s)’s are computed from (14.104) and (14.105) recursively with initial
conditions log a;, (so) = 0, and log 8;, (s ¢) = 0. For bidirectional decoding, log o, (s)’s
and log B;, (s)’s are computed simultaneously from both directions of the trellis T(A)
while the branch metric tables are being constructed, section by section. Once the
state metrics log«;, (s")’s and log B;, +(s)’s at the section boundary locations # and
t;+1 have been computed and the branch metric table for trellis section 7; has been
constructed, we can compute the LLRs of the estimated code bits vy for; <7 < t,44
from (14.103) by executing the ACSS process.

To compute the LLR L(v)) efficiently, we define

RO 2 max({logar, () +log v, (L' ) +1og . (). (14.112)

Ry’ () = maxfloga, () +log v, (L', ) +log B, ()}, (14.113)
e

R () £ max{logay,(s) +log v, (LG (s', $)) + log By, ()} (14.114)

(s7,8)
v=1

for 0 < i < v. From (14.60), (14.112) through (14.114), and by using the max-log
approximation, we readily see that ; <! < t;11,

[C0 IO () DANNENEE N (5 DN (1A 11
n o= 111(11(11\0 W), 8 W)y (LT
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It follows from (14.111) through (14.114) that

Rg>(v/), if vy =0,

RD = A
RV, ifvF =1.

(14.116)

Then, an efficient procedure for computing R(()i)(v;), Ri”(v;% and L(v)), called
procedure-R, follows:

1. We compute R') based on (14.112).

2. For each code bit v; in 7;, based on b* (s, 5) and from (14.116), we first check
whether v} = 0 or 1 to determine which of Rg )(v) and Rii) (v;) is equal to R,
Then, we compute the one that is not equal to R,

&

We compute L(v) by taking the difference Ri”(w) — Rg)(vg)ﬁ forty; <1 <tiyg.

The compuiational complexity for constructing the branch metric tables for
the trellis sections can be analyzed by procedure-B. We readily find that construction
of the branch metric table for the trellis section 7; requires a total of

Niy) =B (BY — 14+ (B /2~ 1) -m;) (14.117)
comparisons and a total of
Ni(yy= B¢ BP - (n; — 1) (14.118)
additions.
From (14.104) and {14.105) we find that the computation of metrics of states at

the boundaries of T; requires a total of N (a) + NI (B) additions and N (a) + N(8)
comparisons, where

Ni(a) = NL(B) = BY, (14.119)
Nie) = Bf | — 2P, (14.120)
NI(B) = BS — 2. (14.121)

To analyze the complexity of computing the LLRs given by (14.103), we follow
procedure-R and find that a total of

NI(LYy = (Bf — 1) - (m; +1) (14.122)
comparisons and a total of

N(i(i) = (m; +2)- Bf +m; (14.123)
additions (including subtractions) are required to compute the LLRs of the estimated
code bits in T;.

Because a comparison operation has the same complexity as an addition, it
is regarded as an addition-equivalent operation. Therefore, to decode a received
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sequence, the Max-log-MAP algorithm based on the sectionalized trellis 7'(A)

e cn b f
requires a total ot

v—1

Nae(A) = ) INL(¥) + NL(v) + Ny(L) + NU(L) + Nj(@) + Ni(«) + Ny(B) + Ni(B)}
i=0

(14.124)

addition-equivalent operations. N,.(A) is used as a measure of the computational
complexity of the Max-log-MAP decoding algorithm based on a sectionalized trellis.

The storage requirement for the Max-log-MAP algorithm is the same as that
for the MAP algorithm.

The computational complexity N,.(A) depends on the sectionalization A of
the code trellis 7. The sectionalization that minimized N,.(A) is called an optimum
sectionalization. 'The Lafourcade—Vardy algorithm presented in Section 14.1 can
be used to find such a sectionalization. Table 14.4 gives optimum sectionalizations
of trellises for some RM codes with the Max-log-MAP decoding. For comparison,
the computational complexities of these codes based on bit-level trellises are also
included. We see that proper sectionalization reduces computational complexity
significantly.

TABLE 14.4: Optimum trellis sectionalizations of some RM codes for Max-log-MAP
decoding.

Bit-level trellis Optimum sectionalization
RM(r, m) | Operations | Memory Boundary location Operations | Memory
RM(1,3) 230 55 1 {0,.4,8} 156 81
RM(1,4) 886 195 | {0,2,4,8,12, 14, 16} 486 77
RM(2,4) 1,446 195 | {0.2,4,6,8,10.12, 14, 16} 1,222 109
RM(1,5) 3,478 731 1 {0,2.4.8,16,24,28,30,32) 1,510 165
RM(2,5) 35,142 4891 | {0,1,3.5,8,12,16,20,24,.27,29. 22,078 919
31, 32}
RM(3,5) 6,950 731 | {0,2,4,6.7,8,10,11, 12,13, 14, 16, 6.446 549
18,19, 20, 21, 22, 24, 25, 26, 28, 30, 32}
RM(1.0) 13,782 2,827 | {0,2,4.8, 16,24, 32, 40. 48, 56, 60, 5,094 469
62, 64}
RM(2,6) 1975462 | 325,051 | {0.1,3,5,8.10, 16, 18, 24, 30, 905,974 37,839
32,34, 40, 46, 48, 54, 56, 59, 61, 63, 64}
RM(3,6) 3,195,814 | 325,051 | {0,2,4,8,10,12, 14,16, 18, 20, 22, 24, 2,646,566 141,925
26, 28, 30, 32, 34, 36, 38, 40, 42, 44,
46, 48, 50, 52, 54, 56, 58, 60, 62, 64}
RM(4,6) 30,246 2,827 | {0.2.4,6,7.8,10,11, 12,13, 14,15, 16, 29.174 2,453
18,19, 20, 21. 22, 23, 24, 25. 26, 27, 28.
29,30, 32. 34, 35, 36. 37, 38, 39. 40, 41,
42,43, 44,45, 46, 48, 49.50, 51, 52.
53.54,56,57, 58, 60. 62, 64}
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log-MAP Algorithm

The Max-log-MAP algorithra
Even though it gives an error
as shown in Figure 14.11,
qﬁomumm @wm@ to the
log-MAP algoriihm in t
(the soft output of the I
compared with the opﬂmu
To overcome ik

realization of the MAFP algorithm.
e to that of the MAP algorithm,
inferior to those of the MAP

the inferior reliability value
is in performance degradation

log(e® + &%) = max{8;, &) -+ 1

where f.(-) is a correction functio
we can compuie 1o 3(65‘ +
iwo terms given by {14.125

~

TABLE 14.5: Optimum treliis sectionalizations of some RM codes for log-MAP
decoding.
Rig-level trellis mum sectionalization
RM (r, m) | Operations | Memory Operations | Memory
RM(1,3) 330 55 | {0.4.8) 244 81
RM(1.4) 1.258 195 [ (0.1.2,4,8.12. 14, 15. 15} 866 83
RM(2,4) 2,298 185 | (0.1.2,3.4,6,8, 10,12, 13. 14.15. 16} 2,242 115
RM(1,5) 4.906 731 | {0.1.2,4.6.16.24.28,30.31, 32} 2,946 171
RM(2,5) 54.202 4891 | {0,1,2.3,5.8.9.12. 15, 16, 17, 43,906 1,415
20.23.24,27,20,30. 31, 32}
RM(3.5) 11.354 730 ({01 2.3.-406.7.8. 101112, 13, 14, 16. 11.210 355
13.19,20.21,22.24. 25,26, 28, 29, 30
31,32}
RM(1,6) 19,370 2.827 | {0.1,2,4.8,16,24.32.40.48. 56. 60, 10.690 475
62, 63. 64}
RM(2,6) 2925978 | 325,051 [{0.1.2.3.5.8.9.12.16.17.20.24. 28, 1.933.682 63.819
31, 32.33,36. 40, 44, 47, 43, 52, 55. 56
59,61, 02.63. 64}
RM(3, 6) 5.192.346 325051 | (0,1.2.3.4.6.8.10.12, 14,16, 18,20 5,009,346 141,931
22.24.26.28,30. 32,34, 36, 38, 40. 42,
44, 46, 48, 50,52, 54, 56, 58, 60, 61. 62,
03, 64}
RM(4,6) 45 946 2.827 | {0. 8 10, 1L 12,13, 14,15 49,618 2,459
16, .22.23.24,25. 26, 27.
28. .35, 36.37. 38, 39. 40.
41. . 46,48, 49,50, 51. 52,
53. .60, 61, 62. 63, 64}
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known. Hence,

log(e®t + -+ 4 &%) = log(A + )
(14.126)
=max{log A, §;} + f.(llog A — &),

with A = e + ... 4 ¢%-1. Based on this recursion, we modify the Max-log-MAP
algorithm by using simple correction functions. This algorithm, called the log-MAP
algorithm [31], gives the same error performance as the MAP algorithm but is easier
to implement. Each correction term needs an additional one-dimensional lookup
table and two additions based on (14.125). Consequently, the Jog-MAP algorithm
requires only additions and comparisons to compute the LLRs.

The storage requirement for the log-MAFP algorithm is the same as those for
the MAP and Max-log-MAP algorithms, assuming the storage of the lookup tables
is negligible.

Consider the computational complexity of the log-MAP algorithm. Because
two extra additions are required per comparison to calculate f.(-) in (14.125), a
total of NI (y) + 3N/ (y), Ni(a) + 3N/ (e), N.(B) + 3N/ (). and NI(L) + 3N/(L)
addition-equivalent operations are required to compute log y’s, loga’s, log 8’s, and
LLRs in T;, respectively, where N, ;()’s and N j()’s are the numbers of additions and
comparisons evaluaied for the Max-log-MAP algorithm.

Table 14.5 gives optimum sectionalizations (in terms of minimizing the number
of addition-equivalent operations) of trellises for some RM codes with the log-MAP
decoding. For comparison, the computational complexities and siorage requirements
of these codes based on bit-level trellises are also included. We also see that proper
sectionalization reduces computational complexity and storage requirements for the
log-MAP algorithm.

PROBLEMS

14.1 Suppose the (8, 4) RM code is decoded with the Viterbi algorithm. Determine the
number of real operations (additions and comparisons) required for the following
trellises:

a. The eight-section bit-level trellis.
b. The uniform four-section (two-bits per section) trellis shown in Figure 9.17.
¢, Optimum sectionalization based on the Lafourcade—Vardy algorithm.

14.2 Suppose the (8, 4) RM code is decoded with the differential Viterbi decoding
algorithm based on the uniform 4-section trellis of the code. Determine the
number of real operations required to decode the code.

14.3 The first-order RM code of length 16 is a (16, 5) linear code with a minimum
distance of 8. Decode this code with the Viterbi algorithm. Determine the
number of real operations required for the decoding based on the following trellis
sectionalizations:

a. The i6-section bit-level treilis.

Ip. The uniform eight-section trellis.

¢. The uniform four-section trellis.

d. Optimum sectionalization based on the Lafourcade—Vardy algorithm.

14.4 Decode the (16, 5) first-order RM code with the differential Viterbi decoding
algorithm based on the uniform four-section trellis. For each section, determine
the parallel components, the set of branches leaving a state at the lefl end ol a

paratiel compoient, and the sei of branches eniering a siaie at the right end of
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a component. Decompose each component into 2-state butterflies with doubly
complementary structure. Determine the total number of real operations required
to decode the code.

14.5 Decode the (8,4) RM code with the trellis-based recursive MLD algorithm. At the
beginning {or bottom} of the recursion, the code is divided into four sections, and
each section consists of 2 bits. The composite path metric table for each of these
basic sections is constructed directly. Devise a recursion procedure to combine
these metric tables to form metric tables for longer sections uatil the full length
of the code is reached (i.e., a procedure for combining raetric tables). For each
combination of two tables using the CombCPMT(x, yv; 2} procedure, construct
the two-section trellis 7' ({x, y; z}) for the punctured code p, ,(C). Determine the
number of real operations required to decode the code with the RMLD-(I,V)
algorithm.
Decode the (16, 5) RM code with the RMLD-(1,V) algoritbm using uniform
sectionalization. At the beginning, the code is divided into eight sections, of 2 bits
each. Devise a recursion procedure to combine composite path metric tables. For
each combination of two adjacent metric tables, construct the special two-section
trellis for the corresponding punctured code. Determine the total number of real
operations required to decode the code.

14.7 Repeat Problem 14.6 by dividing the code into four sections, 4 bits per section,
at the beginning of the recursion. Compare the compuiation complexity of this
recursion with that of the recursion devised in Problem 14.6.

14.8 Devise an iterative decoding algorithm based on a minimum-weight trellis search
using the ordered statistic decoding with order-1 reprocessing (presenied in
Section 10.8.30) to generate candidate codewords for optimality tests. Analyze the
computational complexity of your algorithm. To reduce decoding computational
complexity, the order i should be small, say i = 0,1, or 2. The advantage of
ordered statistic decoding over the Chase-II decoding is that it never fails to
generate candidate codewords.

14.9 Simulate the error performance of the iterative decoding algorithm devised in
Problem 14.8 for the (32, 16) RM code using order-1 reprocessing to generate 17
candidate codewords for testing and search of the ML codeword. Deterimine the
average numbers of real operations and decoding iterations required for various
SNE.

14,30 Decode the (32, 16) RM code with MAP and Max-log-IMap decoding algo-
rithims based on a uniform four-section trellis. Simulate and compare the error
performances for fwo algorithms, and compare their computational complexities.

14.11 The (32, 16) RM code can be decomposed into eight parallel and structurally
identical four-section subtrellises. Decode this code with the parallel Max-log-
MAP algorithm. Compute the number of real operations required to process a
single subtrellis and the total number of real operations required to decode the
code. Also determine the size of the storage required to store the branch metrics,
state metrics, and the likelihood ratios.

=
o,
5
an

BIBLIOGRAPHY

1. A.J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algerithm,” [EEE Trans. Inform. Theory, 13: 260-69,
April 1967.

2. G. D. Forney, Jr., “The Viterbi Algorithm.” Proc. IEEFE. 61: 268-78, March
1973.



73

6 Chapter 14 Trellis-Based Soft-Decision Deceding Algorithms

. A. Lafourcade and A. Vardy, “Optimum Sectionalization of a Trellis,” [EEE
Trans. Inform. Theory, 42: 689703, May 1996.

4. R.J. McEliece, “On the BCJR Trellis for Linear Block Codes,” [EEE Trans.
Inform. Theory, 42: 1072-92, July 1996.
5. R. J. McElece, “The Viterbi Decoding Complexity of Linear Block Codes,”

16.

11,

iz.

13.

14.

15.

16.

Proc. IEEE Intl. Symp. Inform. Theory, p. 341, Trondheim, Norway, June 1994.

. H. Thirumoorthy, “Efficient Near-Optimum Decoding Algorithms and Trellis
Structure for Linear Block Codes,” Ph.D. dissertation, Dept. of Electrical
Engineering. University of Hawai at Manoa, November 1996.

. B. Honary and G. Markarian, Trellis Decoding of Block Codes, Kluwer Aca-
demic, Boston, Mass., 1997.

- S.Lin, T. Kasami, T. Fujiwara, and M. P. C. Fossorier, Trellises and Trellis-Based
Decoding Algorithms for Linear Block Codes, Kluwer Academic, Boston, Mass.,
1998.

. H.T.Moorthy, S. Lin, and G. Uehara, “Good Trellises for IC Implementation of
Viterbi Decoders for Linear block Codes,” IEEE Trans. Commun., 45: 52-63,
January 1997.

E. Nakamura, G. Uehara, C. Chu, and S. Lin, *“A 755 Mb/s Viterbi Decoder for
RM (64,35, 8),” Proc. IEEFE Intl. Solid-State Circuit Conf., San Francisco, Calif.,
February 1999.

T. Kasami, T. Takata, T. Fujiwara, and S. Lin, “On Structural Complexity of the
L-Section Minimum Trellis Diagrams for Binary Linear Block Codes,” IEICE
Trans. Fundamentals, E76-A (no. 9): 1411-21, September 1993,

N. Deo. Graph Theory with Applications to Engineering and Computer Science,
Prentice Hall, Englewood Cliffs, N.J., 1974.

M. P. C. Fossorier, S. Lin, and D. J. Rhee, “Differential Trellis Decoding of
Convolutional Codes,” IEEE Trans. Inform. Theory, 46: 1046-53, May 2000.

T. Fujiwara, H. Yamamoto, T. Kasami, and S. Lin, “A Recursive Maximum
Likelihood Decoding Procedure for a Linear Block Code Using an Optimum
Sectionalized Trellis Diagram,” Froc. Thirty-Third Annual Allerton Conf. on
Commun. Control and Computing, pp. 700-709, October 4-6, 1995.

T. Fujiwara, H. Yamamoto, T. Kasami, and S. Lin, “A Trellis-Based Recursive
Maximum-Likelihood Decoding Algorithm for Binary Linear Block Codes,”
IEEE Trans. Inform. Theory, 44: 7114-29, March 1998.

T. Kasami, H. Tokushige, T. Fujiwara, H. Yamamoto, and S. Lin, “A Recur-
sive Maximum Likelihood Decoding Algorithm for Some Transitive Invariant
Binary Block Codes ™ IEICE Trans. Fundamentals, E81-A (no. 9): 1916-24,
Santember 1008

wopieiaves 1720,



17,

20.

21

22,

]
(8]

24,

26.

27,

29,

Bibliography 737

H. Moorthy, S. Lin, and T. Kasami, “Soft-Decision Decoding of Binary Linear
Block Codes Based on an Iierative Search Algorithm,” IEEE Trans. Inform.
Theory, 43: 1030-40, May 1997.

. D. Chase, “A Class of Algorithms for Decoding of Block Codes with Channel

Measurement Information,” IEEE Trans. Inform. Theory, 18: 170-81, January
1972.

. T. Koumoto, T. Takata, T. Kasami, and S. Lin, “A Low-Weight Trellis Based

Sofi-Decision Decoding Algorithm for Binary Linear Block Codes,” IEEE
Trans. Inform. Theory, 45: 731-41, March 1999.

A, R. Calderbank, “Multilevel Codes and Multistage Decoding,” IEEE Trans.
Commun., 37:222-29, March 1989,

T. Takata, S. Ujita, T. Kasami, and S. Lin, “Multistage Decoding of Multilevel
Block M-PSK Modulation Codes,” IEEE Trans. Inform. Theory, 39: 1024-18,
July 1993.

J. Wy, S, Lin, T. Kasami, T. Fujiwara, and T. Takata, “An Upper Bound
on the Effective Error Coefficient of Two-Stage Decoding and Good Two-
Level Decomposable Codes,” IEEE Trans. Comumnun., 42: 813-18, Febru-
ary/March/April, 1994.

. 'T. Takata, Y. Yamashita, T. Fujiwara, T. Kasami, and S. Lin, “Subopti-

mum Decoding of Decomposable Codes,” IEEE Trans. Inform. Theory, 40:
13921405, September 1994,

G. Schnabl and M. Bossert, “Soft-Decision Decoding of Reed-Muller Codes
as Generalized Concaienated Codes,” [EEE Trans. Inform. Theory, 41: 304-8,
January 1995.

D. Stojanovic, M. P. C. Fossorier, and S. Lin, “Tierative Multistage Maximum
Likelihood Decoding of Multilevel Codes,” Proc. Coding and Cryptograph, pp.
91-101. Paris, France. January 11-14, 1999.

U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel Codes: Theo-
retical Concepts and Practical Design Rules,” IEEE Trans. Inform. Theory, 45:
1361-91, July 1999.

N. Seshadri and C. W. Sundberg, “List Viterbi Decoding Algorithms with
Applications,” IEEE Trans. Commun.,42: 31322, February/March/April, 1994,

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimum Decoding of Linear
Codes for Minimizing Symbol Error Rate,” IEEE Trans. Inform. Theory, 20:
28487, March 1974.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo Codes,” Proc. IEEE Intl. Conf.
Commun., Geneva, Switzerland, pp. 1064-70, May 1993.



738 Chapter 14 Trellis-Based Soft-Decision Decoding Algorithms

30.

31.

32,

33.

34,

35.

36.

J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of Binary Block and
Convolutional Codes,” IEEFE Trans. Inform. Theory, 42: 429-45, March 1996.

P. Robinson, E. Viliebrun, and P. Hocher, “A Comparison of Optimal Subop-
timal MAP Decoding Algorithms Operating in Log Domain,” Proc. Intl Conf.
Comimun., Seattle, Wash., pp. 1009-13, 1995.

A.J. Viterbi, “An Intuitive Justification and a Simplified Implementation of the
MAP Decoder for Convolutional Codes,” IEEE J. Selected Areas Commun.,
16: 260—-64, February 1998.

Y. Liu, M. P. C. Fossorier, and S. Lin, “MAP Algorithms for Decoding Linear
Block Codes Based on Sectionalized Trellis Diagrams,” Proc. IEEE GlobeCom.
Conf., Sydney, Australia, pp. 562-66, November 1998.

Y. Liu, M. P. C. Fossorier, and S. Lin, “MAP Algorithms for Decoding Linear
Block Codes Based on Sectionalized Trellis Diagrams,” IEEE Trans. Commun. ,
48: 577-587, April 2000.

J. Hagenauer and P. Hoeher, “A Viterbi Algorithm with Soft-Decision Outputs
and Its Applications,” Proc. IEEE GlobeCom. Conf., Dallas, Tex., pp. 1680-86,
November 1989.

M. P. C. Fossorier, F. Burkert, S. Lin, and J. Hagenauer, “On the Equiva-
lence between SOV A and Max-log-MAP Decoding,” IEEE Commun. Lett., 2:
137-49, May 1998.



