M

HAPTER 13

a]

Suboptimum Decoding
of Convolutional Codes

The primary difficulty with Viterbi and BCJR decoding of convoluiional codes is
that, even though they are opitmum decoding methods, the arbitrarily low error
probabilities promised by the random coding bound of (1.14) are not achievable in
practice at rates close to capacity. This is because the decoding cffort is fixed and
grows exponentially with constraint length, and thus only short constraint length
codes can be used. In this chapier we introduce two suboptimum decoding methods,
sequential decoding and majority-logic or threshold decoding, that can be used to
decode large constraint iength convolutional codes.

We begin by noting that the fixed amount of compuitation required by the
Viterbi and BCIR algorithms 1s not always needed, particularly when the noise is
Light. For example, assume that an encoded sequence of length N is transmitied
without error over a BSC; that is, r = v. The Viterbi and BCIR algorithms still
perform on the order of 2V compuiations per decoded information block, all of
which is wasied effort in this case. In other words, it is sometimes desirable to
have a decoding procedure whose effort is adaptable to the noise level. Sequential
decoding is such a procedure. As we shall see, the decoding effort of sequential
decoding is essentially independent of v, so that large constraint lengths can be used.
The number of computations per decoded information block is a random variable,
however. This asynchronous naiure of sequential decoding reguires the use of
buifers to store incoming data. Although most encoded sequences are decoded very
quickly, some undergo long searches, which can lead to buffer overflow, causing
information to be lost or erased. This problem limits the application of sequential
decoding to rates strictly less than capacity.

An algebraic approach can also be taken to the decoding of convolutional
codes. In particular, majority-logic decoding, first introduced in Chapter 8 for block
codes, is applicable io convolutional codes. (In the soft-decision case, we use
the more general term threshold decoding.) Majority-logic decoding differs from
Viterbi, BCJR, and sequential decoding in that the final decision made on a given
information block is based on only (m + 1) received blocks rather than on the
entire received sequence. Also, the codes used with majority-logic decoding must
be orthogonalizable, a constraint that yields codes with relatively poor distance
properties. The result is inferior performance when compared with Viterbi, BCIR,
or sequential decoding, but the implementation of the decoder is much simpler.

Historically, sequential decoding was introduced by Wozencraft [1, 2] in 1957
as the first practical decoding method for convolutional codes. In 1963 Fano [3]
mtroduced a new version of sequential decoding, subsequently referred to as the
Fano algorithm. A few years later another version of sequential decoding, called
the ZJ or stack algorithm, was discovered independently by Zigangirov [4] in 1966

605

606 Chapter 13 Suboptimum Decoding of Convolutional Codes

and Jelinek [5] in 1969. Majority-logic or threshold decoding of convolutional codes,
both the hard-decision and soft-decision {APP) versions, was introduced by Massey
[6] in 1963.

13.1 THE ZJ (STACK) SEQUENTIAL DECODING ALGORITHM

In discussing sequential decoding, it is convenient to represent the 2 codewords
of length N = n(h + m) for a rate R = k/n encoder with memory order m and an
information sequence of length K* = kh as paths through a code tree containing
h+m + 1 time units or levels. The code tree is just an expanded version of the trellis
diagram in which every path is distinct from every other path. The code tree for the
(3,1, 2) feedforward encoder with

GD)=[1+D 1+D*> 1+ D+ D? (13.1)

is shown in Figure 13.1 for an information sequence of length & = 5. The trellis
diagram for this encoder was shown in Figure 12.1. The 4 +m + 1 tree levels are
labeled from 0 to & + m in Figure 13.1. The leftmost node in the tree is called the
origin node and represents the starting state Sg of the encoder. For a rate R = k/n
encoder, there are 2¢ branches leaving each node in the first 4 levels of the tree.
This region is called the dividing part of the tree. In Figure 13.1 the upper branch
leaving each node in the dividing part of the tree represents the input bit u; = 1,
and the lower branch represents u; = 0. After & time units there is only one branch
leaving each node, which represents the inputs u; (= 0, for feedforward encoders),
forl =h,h+1,---, h+m—1,and corresponds to the encoder’s return to the all-zero
state So. Hence, it is called the tail part of the tree, and the 2" rightmost nodes are
called terminal nodes. Each branch is labeled with the »n outputs v; corresponding
to the input sequence, and each of the 2¢ codewords of length N is represented by
a totally distinct path through the tree. For example, the codeword corresponding
to the input sequence u = (1 1 1 0 1 0 0) is shown boldfaced in Figure 13.1. It is
important to realize that the code tree contains exactly the same information about
the code as the trellis diagram or state diagram. As we shall see, however, the tree
is better suited to explaining the operation of a sequential decoder.

There are a variety of tree-searching algorithms that fall under the general
heading of sequential decoding. In this chapter we discuss the two most common of
these, the ZJ or stack algorithm and the Fano algorithm, in considerable detail. The
purpose of a sequential decoding algorithm is to search through the nodes of the
code tree in an efficient way, that is, without having to examine too many nodes, in
an attempt to find the maximum likelihood path. Each node examined represents a
path through part of the tree. Whether a particular path is likely to be part of the
maximum likelihood path depends on the metric value associated with that path.
The metric is a measure of the ‘“‘closeness” of a path to the received sequence.

For a binary-input, @-ary output DMC, the metrics in the Viterbi algorithm
are given by the log-likelihood function of (12.3). This function is the optimum
metric for the Viterbi algorithm, since the paths being compared at any decoding
step are all of the same length. In sequential decoding, however, the set of paths
that have been examined after any decoding step are generally of many different
lengths. If the log-likelihood metric is used for these paths, a distorted picture of the
“closeness’ of paths to the received sequence results.

Section 13.1
010
1t
101
111
000
000

The ZJ (Stack) Seguential Decoding Algorithm
001 110 011
001 g
hﬁf 110 011 000
001
1447110 100 101 011
““:==:::% 011 000 000
010 110 011
100
101 011 000
110
111 101 011
011
000 000 000
001 110 011
010
T 10 011 000
100
100 101 011
101
v o1l 000 000
010 110 011
111
101 011 000
011
111 101 011
000
000 000 000
001 110 011
001
110 011 000
010
100 101 011
110
011 000 000
010 110 011
100
101 011 000
101
| 111 101 011
011
000 000 000
001 110 011
010
111 110 011 000
100 101 011
101
f 011 000 000
010 110 011
111
101 011 000
000 |
111 101 011
000
000 000 000
2 3 4
Time Units

FIGURE 13.1: The code tree for a (3, 1, 2) encoder with i = 5.

607

608 Chapter 13 Suboptimum Decoding of Convolutional Codes

EXAMPLE 13.1 The Log-Likelihood Metric for Sequential Decoding

Consider the code tree of Figure 13.1. Assume a codeword is transmitted from this
code over a BSC, and the sequence

r=(010,010,001,110,100,101,011) (13.2)

is received. For a BSC, the log-likelihood metric for a path v in the Viterbi algorithm
is given by d(r, v), with the maximum likelihood path being the one with the smallest
metric. Now, consider comparing the partial path metrics for two paths of different
lengths, for example, the truncated codewords [v]s = (111, 010, 001, 110, 100, 101)
and [v']p = (000). The partial path metrics are d([r]s, {vls) =2 and d([r']o, [v']0) = 1,
indicating that [v']g is the “better” of the two paths; however, our intuition tells
us that the path [v]s is more likely to be part of the maximum likelihood path
than [v']g, since to complete a path beginning with [v']g requires 18 additional bits
compared with only 3 additional bits required to complete the path beginning with
[¥]5. In other words, a path beginning with [v']o is much more likely to accumulate
additional distance from r than the path beginning with {vls.

It is necessary, therefore, to adjust the metric used in sequential decoding to
take into account the lengths of the different paths being compared. For a binary-
input, Q-ary output DMC, Massey [7] has shown that the best bit metric to use when
comparing paths of different lengths is
Prilv)

P(r)) (13.3)
= log, P(riv) — log, P(r)) — R,

M(rjv) = log,

where P{r;|vy) is a channel transition probability, P(r;) is a channel output symbol
probability, and R is the encoder rate. The partial path metric for the first 1 branches
of a path v is given by

t—1 nr—1
Ml =y M@l = Y M(nlv), (134)
1=0 =0

where M (r;|v;), the branch metric for the /74 branch, is computed by adding the bit
metrics for the n bits on that branch. Combining (13.3) and (13.4) we have

nt—1 nt—1
M([xlv]) = D logy P(rilvr) —) logy P(r) — ntR. (13.5)
=0 =0

A binary-input, Q-ary output DMC is said to be symmetric if
PIO)=P(Q@-1-jI), j=01,---,0-1 (13.6)

(A symmetric channel model results when (1) a symmetric modulator mapping is

(N 180081

used, for exampie, 0 — —1 and 1 — +1; (2) the noise distribution is symmetric; and

Section 13.1 The ZJ {Stack) Sequential Decoding Algorithm 609

(3) the demodulator output quantization is symmeiric.} For a symmetric channel
with equally likely input symbols,! the channel output symbol probabilities satisfy
(see Problem 13.2)

Pn=)=Pn=0-1-j)<5 for0<j<Q—1landalll (13.7)
and (13.5) reduces io

nr—1 nr—1

M(r|v]) = Z log, P(rilv) — Z [ﬂogz Pl + R]
=0 1=0
nr—1 nt—1 (138)
= Z log, P(rlv) + y | |log e R
Lo il I CY
ML metric positive bias

The first term in (13.8) is the maximum likelihood (ML) metric for the Viterbi
algorithm (see (12.5)). The second term represents a positive (since log, ﬁ > 1
and R < 1) bias that increases with path length. Hence, longer paths have a larger
bias than shorter paths, indicating that they are closer to the end of the tree and
hence more likely to be part of the ML path. The bit metric of (13.3) was first
introduced by Fano [3] on intuitive grounds, and hence it is called the Fano metric.
It is the metric most commonly used for sequential decoding, although some other
metrics have been proposed. When comparing paths of different lengths, the path
with the largest Fano metric is considered the “best” path, that is, most likely to be
part of the ML path.

EXAMPLE 13.2 The Fano Metric for Sequential Decoding

For a BSC (Q = 2) with transition probability p. P(r; = 0) = P(n = 1) = % for all
I, and the Fano metrics for the truncated codewords [v]s and [v/]p in Example 13.1
are given by

M([rlv]s) = 16log, (1 — p) + 2log, p + 18(1 — 1/3)

(13.9a)
= 16log,(1 — p) +2log, p + 12
and
M([r|v']p) = 2log,y(1 — p) +1log, p +3(1 —1/3)
= 2 (13.9b)
= 2log,(1 — p) +log, p + 2.

For p = .10,

M(r|v]s) =2.92 > M{r|v']gp) = —1.63, (13.10)

indicating that [v]s is the “better” of the two paths. This result differs from that
obtained using the log-likelihood metric, since the bias term in the Fano metric
reflects the difference in the path lengths.

Because convolutional codes are linear, the set of all codewords contains an equal number of 0’s and
1’s, and hence the channel input symbols are equally likely.

610 Chapter 13 Suboptimum Decoding of Convolutional Codes

In general, for a BSC with transition probability p, P(r; =0) = P(n =1) = %
for all [, and the bit metrics are given by

1 —~log, 3 — R if
LR Bt g S e
z 22 (13.11)
|} logy2p—R ifr £y
o 10g2 2(1 — p) — R if r=uv
EXAMPLE 13.3 Bit Metric for a BSC
For R =1/3 and p = .10,
) _ —2.65 if ¥y ;ﬁ (%
M) = { 4052 ifr =y (13.12)

and we have the metric table shown in Figure 13.2(a). It is common practice to
scale the metrics by a positive constant so that they can be closely approximated as
integers for ease of computation. In this case, the scaling factor of 1/.52 yields the
integer metric table shown in Figure 13.2(b).

For the BSC of Example 13.3, any sequential decoding algorithm that uses the
Fano metric will compute the metric of a path by (1) assigning a +1 to every bit
in v that agrees with the received sequence r, and (2) assigning a —5 to every bit
in v that disagrees with r. Hence, a path with only a few errors, such as, typically,
the correct path, will tend to have a slowly increasing metric. On the other hand,
paths with many errors, such as, typically, all incorrect paths, will tend to have
a rapidly decreasing metric. Thus, incorrect paths are not extended very far into
the tree before being rejected. Therefore, typically, sequential decoding algorithms
require much less computation than the Viterbi or BCJR algorithms. Unlike those
algorithms, however, the amount of computation required by a sequential decoder
depends on the noise and is thus variable. Generally, most received sequences are
decoded very quickly, but some noisy sequences may take a long time to decode.

For any BSC, the bit-metric positive bias term in (13.8) is given by

logy —— —R=log,2~R=1-Rforalll (13.13)
Pry)
i i
0 1 0 i
; v,
0 |+.52|-2.65 0 +1 | =5
1 |[-2.65 +.52 1 =5 | +1

(a) ®)

FIGURE 13.2: Metric tables for a rate R = 1/3 encoder and a BSC with p = .10.

Section 13.1 The Z1 {Stack) Sequential Decoding Algorithm 611

FIGURE 13.3: A binary-input, quaternary-output DMC.

that is, the positive bias term is constant for every bit, and the cumulative positive
bias for a path of length nr is nr(1 — R). In this case we see that the metric bias
increases linearly with path length. On the other hand, for a DMC with @ > 2, since
not all channel output symbols have the same probability, the value of the bias term
will depend on the cutput symbol. For each ocutput symbol, however, the bias will
be positive.

EXAMPLE 13.4 Bit Metrics for a DMC

Consider the binary-input, quaternary output (@ = 4) DMC shown in Figure 13.3.
For this channel the output symbol probabilities are given by

Prp=00=Puyy=0Pr=0vy=00+2Pu=0P0r=0vy=1)

= 3(0.631) + $(0.01) = 0.3205, (13.14a)
Plri=0)=Pu=0P0 =0ly=0+ Pl =DPr=0hly=1)

= 1(0.278) + $(0.081) = 0.1795, (13.14b)
Pl =1p) = P(ry = 0p) = 0.1795, (13.14c)
P(y =1y) = P(r = 01) = 0.3205. (13.14d)

Hence, there are iwo possible positive bias terms,

log, R =164 — R, (13.15a)

i
. R=logyg—— —
P(r =01 &2 Pl =11

612 Chapter 13 Suboptimum Decoding of Convolutional Codes

and

1 1
logy ————— —R=logy ———— —R=248—-R, (13.15b
P =0 2P =1 310)

and the cumulative positive bias for a path depends on the received sequence r.

Example 13.4 illustrates that for a DMC the metric bias always increases monotoni-
cally with path length, but the increase is not necessarily linear.

For a binary-input AWGN channel with unquantized outputs, the Fano bit
metric is given by

M (rijup) = logy p(ri|vy) —logy p(r;) — R, (13.16)

where p(r|v;) is the conditional pdf of the received symbol r; given the transmitted
symbol v;, p(r;) is the marginal pdf of r;, and R is the encoder rate. In this case the
transmitted symbols are assumed to be either +1 or —1, and since these symbols are
equally likely, the marginal pdf of the received symbol r; is calculated as

prilyy = +1) + p(rilvyy = ~1)
7 :

plr) = (13.17)
where p(r;lv; = +1) and p(r;lv; = —1) are given in (12.13). Finally, the branch
metrics and path metrics for an AWGN channel are computed from the bit metrics
in the same way as for a DMC.

In the ZJ or stack algorithm, an ordered list or stack of previously examined
paths of different lengths is kept in storage. Each stack entry contains a path along
with its metric, the path with the largest metric is placed on top, and the others are
listed in order of decreasing metric. Each decoding step consists of extending the
top path in the stack by computing the branch metrics of its 2% succeeding branches
and then adding these to the metric of the top path to form 2% new paths, called
the successors of the top path. The top path is then deleted from the stack, its 2
successors are inserted, and the stack is rearranged in order of decreasing metric
values. When the top path in the stack is at the end of the tree, the algorithm
terminates.

The ZJ Algorithm

Step 1. Load the stack with the origin node in the tree, whose metric is taken
to be zero.

Step 2. Compute the metrics of the successors of the top path in the stack.

Step 3. Delete the top path from the stack.

Step 4. Insert the new paths in the stack and rearrange the stack in order of
decreasing metric values.

Step 5. 1If the top path in the stack ends at a terminal node in the tree, stop.
Otherwise, return to step 2.

When the algorithm terminates, the top path in the stack is taken as the
decoded path. A complete flowchart for the ZJ algorithm is shown in Figure 13.4.

Section 13.1 The ZJ (Stack) Sequential Decoding Algorithm 613

LOAD STACK WITH
ORIGIN NODE

COMPUTE METRICS
OF SUCCESSORS OF
TOP PATH

DELETE TOP PATH
FROM STACK

REORDER STACK
ACCORDING TG
METRIC VALURES

TOP PATH AT
END OF TREE?

STOP AND OUTPUT TOP
PATH

FIGURE 13.4: Flowchart for the ZJ algorithm.

614 Chapter 13 Suboptimum Decoding of Convolutional Codes

In the dividing part of the tree, there are 2¢ new metrics to be computed at
step 2. In the tail of the tree, only one new metric is computed. Note that for (n, 1, v)
codes, the size of the stack increases by one for each decoding step in the dividing
part of the tree, but does not increase at all when the decoder is in the tail of the
tree. Because the dividing part of the tree is typically much longer than the tail
(h >> m), the size of the stack is roughly equal to the number of decoding steps
when the algorithm terminates.

EXAMPLE 13.5 The ZJ Algorithm

Consider the application of the ZJ algorithm to the code tree of Figure 13.1. Assume
a codeword is transmitted from this code over a BSC with p = .10, and the sequence
r=(010,010,001,110,100,101,011) (13.18)
is received. Using the integer metric table of Figure 13.2(b), we show the contents of
the stack after each step of the algorithm in Figure 13.5 and illustrate the decoding
process in Figure 13.6. The algorithm terminates after 10 decoding steps, and the
final decoded path is
v=1(111,010,001,110,100,101,011), (13.19)
corresponding to the information sequence @ = (1 11 0 1). In this example, ties in
the metric values were resolved by placing the longest path on top, which had the
effect of slightly reducing the total number of decoding steps. In general, however,

the resolution of ties is arbitrary and does not affect the error probability of the
decoder.

Step 1 Step 2 Step 3 Step 4 Step 5
0(-3) 00(—6) 000(~9) 1(—-9) 11(—6)
1(-9) 1(—9) 1(—9) 0001(-12) 0001(-12)
01(-12) 01(-12) 01(~12) 01(-12)
001(—15) 001(—15) 001(—-15)
0000(—18) 0000(—-18)
10(—24)

Step 6 Step 7 Step 8 Step 9 Step 10
111(=3) 1110(0) 11101(+3) 111010(+6) 1110100(+9)
0001(—12) 0001(—-12) 0001(-12) 0001(~12) 0001(-12)
01(—-12) 01(—12) 01(—12) 01(—12) 01(—12)
001(—15) 001(—15) 11100(—15) 11100(—15) 11100(—15)
0000(—18) 1111(—18) 001(-15) 001(—15) 001(—15)
110(-21) 0000(—18) 1111(—18) 1111(—18) 1111(—18)
10(—24) 110(—-21) 0000(—-18) 0000(—18) 0000(—18)
10(—24) 1106(—21) 110(—21) 110(-21)
10(—24) 10(—24) 10(—24)

FIGURE 13.5: Stack contents in Example 13.5.

Section 13.1 The ZJ (Stack) Sequential Decoding Algorithm 615
It is interesting to compare the number of decoding steps required by the
ZJ algorithm with the number required by the Viterbi algorithm. A decoding step
or computation for the Viterbi algorithm is the ACS operation performed for
cach state in the trellis diagram beyond time unit m. Hence, the Viferbi algorithm
would require 15 computations to decode the received sequence in Example 13.5
(see the trellis diagram of Figure 12.6). In the ZJ algorithm, a single execution of
steps 2—4 is counted as a computation.” Thus, the ZJ algorithm requires only 10

=
————0

111 @
———————0

o ()
I 0
000 @ 000 @
L2 LY

(a) Step 1 (b) Step 2
P

e

(3
111
—©° 000
e
000
111 @ 000 111 @
—_— ——C

000 000

000 @ 000
D L——0o

(c) Step 3 (d) Step 4

FIGURE 13.6: The decoding process in Example 13.5.

2 A computation in the ZJ algorithm is somewhat more complicated than the ACS operation in the
Viterbi algorithm, since the stack must be reordered after each path is extended; however, this reordering
problem is eliminated, with very little loss in performance. in the stack-bucket algorithm [5]. to be
discussed later in this section.

616 Chapter 13

111

010

000

101

111

000

——0

—(
—®

@
(I

000

(e)Step S

111

010

—

001

000

101

111

000

— @
- @
—0

()
()

111

0

111

—

000

(9
)

(g) Step 7

Suboptimum Decoding of Convolutional Codes

—Q)
e | 3

010

110
111 —®

111
—o

000

000

000

L—o

111

—o

—e(®
—0

(f) Step 6

001

010

Lo

001
LN

100 @
[——0
110

110

111 —

111
——6

000

111

000

000

(h) Step 8

FIGURE 13.6: (continued)

L—o

G W

"G
G

L—e

Section 13.1 The ZJ (Stack) Sequential Decoding Algorithm 617

001 001 @
o o
001 001

il 100 101 — 100 101 o011
e G0 e G D o
010 1,1£| 010 110
| 011 | 011
i 110 o (~15 110 0@

R, A

101 101
o (—24 o
_ -

111 ‘ 11

!‘ ——
000 000

111
}—J— ——o(—15
_ L 000 111 @
’ —0
ooo 000
L ¢

ooo 000 @
o(-18 —

(i) Step 9 (i) Step 10

FIGURE 13.6: (continued)

compuiations to decode the received sequence in Example 13.5. This computational
advaniage of sequential decoding over the Viterbi algorithm is typical when ihe
received sequence is not too noisy, that is, when it contains a fraction of errors
not icc much greater than the channel transition probability p. Note that ¥ in
l’jmm‘o]e 13.5 disagrees with r in only 2 positions and agrees with r in the other 19
positions. Assuming that ¥ was actually transmitied, the fraction of errors in r is
= 0 095, which is roughly equal to the channel iransition probability of p = .10
in this case.

The situation is somewhat different when the received sequence ris very noeisy,
however, as illustrated in Example 13.6.

Lj\io gl

EXAMPLE 13.6 The ZJ Algorithim Revisited

For the same code, channel, and metric table as in Example 13.5, assume that the
sequence
r=(110,110,110.111,010,101,101) (13.20)

is received. The contents of the stack after each step of the algorithm are shown in
Figure 13.7. The algorithm terminates after 20 decoding steps, and the final decoded
path is

$=(111,010,1106,011,111,101,011), (13.21)

corresponding to the information sequence @t = (1100 1).

618 Chapter 13 Suboptimum Decoding of Convolutional Codes

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7
1(-3) 11(-6) 110(-3) 1100(—6) 11000(-9) 0(-9) 1101(-12)
0(=9) 0(-9) 0(-9) 0(-9) 0(-9) 1101(-12) 01(—12)
10(-12) 10(-12) 1101(-12) 1101(-12) 10(—12) 10(-12)
111(-21) 10(~12) 10(-12) 11001(—15) 11001(-15)
111(=21) 11001(—15) 110000(—18) 110000(—18)
111(-21) 111(~21) 00(—18)
111(-21)

Step 8 Step 9 Step 10 Step 11 Step 12 Step 13 Step 14
11011(-9) 01(-12) 10(-12) 11001(-15) 110010(-12) 101(—15) 011(-15)
01(-12) 10(—-12) 11001(—-15) 101(—-15) 101(-15) 011(—15) 110110(—18)

10(-12) 11001(=15) O11(=15) 011(-15) 011(~15) 110110(—18) 110000(~18)
11001(—15) 110110(~18) 110110(~18) 110010(~18) 110110(—18) 110000(—18) 1010(~18)
110000(—18) 110000(~18) 110000(~18) 110000(~18) 110000(—18) 00(—18) 00(—18)

00(-18) 00(~18) 00(-18) 00(-18) 00(—18) 1100100(—21) 1100100(-21)

111(-21) 11(=21) 010(=21) 100(—21) 100(-21) 100(-21) 100(-21)
11010(-27) 11010(-27) 111(-21) 010(-=21) 010(-21) 010(-21) 010(-21)

11010(-27) 111(-21) 111(-21) 11(-21) 111(-21)
11010(~27) 11010(=27) 11010(=27) 1011(—24)

11010(—27)
Step 15 Step 16 Step 17 Step 18 Step 19 Step 20
110110(—18) 110000(—18) 0110(—18) 1010(~18) 00(-18) 1100100(—21)
110000(-18) 0110(—18) 1010(—-18) 00(—18) 1100100(-21) 10100(-21)
0110(—18) 1010(-18) 00(-18) 1100100(-21) 10100(-21) 01100(—21)
1010(~18) 00(—18) 1100100(—21) 01100(-21) 01100(-21) 001(—-21)

00(—18) 1100100(—21) 100(-21) 100(—21) 100(—21) 100(—21)
1100100(~21) 100(-21) 010(-21) 010(-21) 010(-21) 010(-21)
100(-21) 010(-21) 111(-21) 11(-21) 111(-21) 111(~-21)
010(-21) 111(-21) O111(-24) OIL1(—24) OLI11(-24) 01L1(—24)
111(-21) 0111(-24) 1011(—24) 1011(—24) 1011(-24) 1011(—24)
0111(—24) 1011(-24) 1100000(—27) 1100000(—27) 1100000(—27) 1100000(—27)
1011(—24) 1101100(-27) 1101100(—27) 1101100(—27) 1101100(~27) 1101100(—27)
11010(-27) 11010(-27) 11010(=27) 01101(-27) 10101(-27) 10101(—27)
11010(-27) 01101(~27) 01101(—27)

11010(=27) 11010(-27)

000(—27)

FIGURE 13.7: Stack contents in Example 13.6.

In this example the sequential decoder performs 20 computations, whereas
the Viterbi algorithm would again require only 15 computations. This points out
one of the most important differences between sequential decoding and Viterbi
decoding, that is, the number of computations performed by a sequential decoder
is a random variable, whereas the computational load of the Viterbi algorithm is
fixed. If we assume that ¥ was actually transmitted in Example 13.6, the fraction
of errors in the received sequence r is 27—1 = 0.333, which is much greater than
the channel transition probability of p = .10 in this case. This illustrates that very
noisy received sequences typically require a large number of computations with
a sequential decoder, sometimes more than the fixed number of computations
required by the Viterbi algorithm; however, since very noisy received sequences
do not occur very often, the average number of computations performed by a

Section 13.1 The Z) (Stack) Sequential Decoding Algorithm 679

sequential decoder is normally much less than the fixed number performed by the
Viterbi algorithm.

The received sequence in Example 13.6 was also decoded using the Viterbi
algorithm in Section 12.1. The final decoded path was the same in both cases. (It
is easy to verify thai this is also irue for Example 13.5.}) This result illustrates the
important fact that a sequential decoder almost always produces the ML path,
even when the received sequence is very noisy. Hence, for a given code, the error
probability of sequential decoding, even though it is suboptimum, is essentially the
same as for Viterbi decoding.

There are some problems associated with the implementation of the stack
sequential decoding algorithm, however, that limit its overall performance. First,
since the decoder traces a somewhat random path back and forth through the code
tree, jumping from node to node, the decoder must have an input bufier io store
incoming blocks of the received sequence while they are waiting to be processed.
Depending on the speed factor of the decoder, that is, the ratio of the speed ai
which computations are performed to the speed of the incoming data (in branches
received per second), long searches can cause the input buffer to overfiow, resulting
inn a loss of data, or an erasure. The buffer accepts data at the fixed rate of 1/nT
branches per second, where T is the time interval allotted for each transmitied
bit, and ouiputs these branches to the decoder asynchronously as demanded by
the algorithm. Normally, the information is divided into frames of h branches,
each terminated by a sequence of m << h input blocks to return the encoder
to the all-zero state. Even if the input buffer is one or two orders of magnitude
larger than 4, there is some probability that it will fill up during the decoding of
a given frame and that the next branch received from the channel will then cause
an undecoded branch from the frame being processed to be shifted out of the
buffer. This data is then lost, and the frame must be erased. Erasure probabilities of
around 1073 are not unusual in sequential decoding, which means that a particular
frame has a probability of 1073 of not being decoded owing to an overflow of the
input buffer.

The number of computaiions performed by a sequential decoder, and also its
erasure probability, are essentially independent of the encoder consiraint length
v. Therefore, codes with large values of v,> and hence large free distance, can
be selected for use with sequential decoding. Undetected errors (complete but
incorrect decoding) then become extremely unlikely, and the major limitation on
performance is the erasure probability due to buffer overflow.

Even though an erasure probability of around 1073 can be rather troublesome
in some systems, it may actually be beneficial in others. Because erasures usually
occur when the received sequence is very noisy, if decoding is completed, and even
if the ML path is obtained, there is a fairly high probability that the estimate will be
incorrect. In many systems it is more desirable to erase such a frame than to decode
it incorrectly. In other words, a complete decoder, such as the Viterbi algorithm,

3y & km cannot be made too large for fixed &, since then the fractional rate loss (see (11.92)) would
be significant; however, values of v up to about 50 are certainly feasible for sequential decoders with
i1 = 1000.

620 Chapter 13 Suboptimum Decoding of Convolutional Codes

would always decode such a frame, even though it is likely to be decoded incorrectly,
whereas a sequential decoder trades errors for erasures by “sensing’ noisy frames
and then erasing them. This property of sequential decoding can be used in an ARQ
retransmission scheme (see Chapter 22) as an indicator of when a frame should be
retransmitted.

A second problem in any practical implementation of the stack algorithm
is that the size of the stack must be finite. In other words, there is always some
probability that the stack will fill up before decoding is completed (or the buffer
overflows) on a given frame. The most common way of handling this problem
is simply to allow the path at the bottom of the stack to be pushed out of
the stack on the next decoding step. This path is then “lost” and can never
return to the stack. For typical stack sizes on the order of 1000 entries, the
probability that a path on the bottom of the stack will ever recover to reach
the top of the stack and be extended is so small that the loss in performance is
negligible.

A related problem has to do with the reordering of the stack after each
decoding step. This can become quite time-consuming as the number of entries
in the stack becomes large and places severe limitations on the decoding speed
that can be achieved with the basic algorithm. Jelinek [5] has proposed a modified
algorithm, calied the stack-bucket algorithm, in which the contents of the stack do
not have to be reordered after each decoding step. In the stack-bucket algorithm,
the range of possible metric values (from +21 to —110 in the preceding examples)
is quantized into a fixed number of intervals. Each metric interval is assigned a
certain number of locations in storage, called a bucket. When a path is extended,
it is deleted from storage and each new path is inserted as the top entry in the
bucket that includes its metric value. No reordering of paths within buckets is
required. The top path in the top nonempty bucket is chosen to be extended. A
computation now involves only finding the correct bucket in which to place each
new path, which is independent of the number of previously extended paths, and
is therefore faster than reordering an increasingly large stack. The disadvantage
of the stack-bucket algorithm is that it is not always the best path that gets
extended but only a “‘very good” path, that is, a path in the top nonempty
bucket, or the “‘best” bucket. Typically, though, if the quantization of metric values
is not too coarse and the received sequence is not {00 noisy, the best bucket
contains only the best path, and the degradation in performance from the basic
algorithm is very slight. The speed savings of the bucket algorithm is considerable,
though, and all practical implementations of the ZJ algorithm have used this
approach.

13.2 THE FANO SEQUENTIAL DECODING ALGORITHM

Another approach to sequential decoding, the Fano algorithm, sacrifices some
speed compared with the ZJ algorithm but requires essentially no storage. The
speed disadvantage of the Fano algorithm is due to the fact that it generally extends
more nodes than the ZJ algorithm, although this is mitigated somewhat by the fact

that no stack reordering is necessary. In the Fano algorithm the decoder examines
a sequence of nodes in the tree, startin

QUONCo OO s 11 talllil

g with the origin node and Pn(‘]ing with

VR0 QIIgl OGO alit gilvll

Section 13.2 The Fano Sequential Decoding Algorithm 621

one of the terminal nodes. The decoder never jumps from node to node, as in
the ZJ algorithm, but always moves to an adjacent node, either forward to one
of the 2* nodes leaving the present node, or backward to the node leading to the
present node. The metric of the next node to be examined can then be computed
by adding (or subtracting) the metric of the connecting branch to the metric of the
present node. This process climinates the need for storing the metrics of previously
examined nodes, as required by the stack algorithm; however, some nodes are
visited more than once, and in this case their meiric values must be recomputed.
The decoder moves forward through the tree as long as the meiric value along
the path being examined continues to increase. When the metric value dips below
a threshold the decoder backs up and begins to examine other paths. If no path
can be found whose metric value stays above the threshold, the threshold is then
lowered, and the decoder attemnpis io move forward again with a lower threshold.
Fach time a given node is visited in the forward direction, the threshold is lower
than on the previous visit to that node. This prevents looping in the algorithm, and
the decoder eventually must reach the end of the iree, at which point the algorithm
terminates. When this occurs, ihe path that reached the end of the tree is taken as
the decoded path.

A complete flowchart of the Fano algorithm is shown in Figure 13.8. The
decoder starts at the origin node with the threshold T = 0 and the metric value
M = 0. It then looks forward to the best of the 2 succeeding nodes, that is, the one
with the largest metric. If Mr is the metric of the forward node being examined,
and if My > T, then the decoder moves to this node. After checking whether the
end of the tree has been reached, the decoder performs a “‘threshold tightening™ if
this node is being examined for the first time; that 1s, T s increased by the largest
multiple of a threshold increment A so that the new threshold does not exceed the
current metric. If this node has been examined previously, no threshold tightening
is performed. Then, the decoder again looks forward io the best succeeding node. If
Mp < T, the decoder looks backward io the preceding node. If Mp is the metric of
the backward node being examined, and if Mp < T, then T is lowered by A and the
look forward to the best node step is repeated. If Mp > T, the decoder moves back
to the preceding node. Call this node P. If this backward move was from the worst
of the 2¥ nodes succeeding node P, then the decoder again looks back to the node
preceding node P. If not, the decoder looks forward to the next best of the 2% nodes
succeeding node P and checks if Mr > T If the decoder ever looks backward from
the origin node, we assume that the preceding node has a metric value of —oo, so
that the threshold is always lowered by 4 in this case. Ties in metric values can be
resolved arbitrarily without affecting average decoder performance.

We now repeat an example worked earlier for the ZJ algorithm, this time
using the Fano algorithm.

XAMPLE 13.7 The Fano Algorithm

For the same code, metric table, and received sequence decoded by the ZJ algorithin
in Example 13.5, the steps of the Fano algorithm are shown in Figure 13.9 for a value
of A = 1, and the set of nodes examined is shown in Figure 13.10. The algorithim
terminates after 40 decoding steps, and the final decoded path is the same one found

622 Chapter 13 Suboptimum Decoding of Convolutional Codes

T = Threshold value
START M = Metric value
T=0 M=0 R NSO C
7 Mp = Metric of forward node

M = Metric of backward node
A = Threshold increment

LOOK FORWARD
TO BEST NODE
LOOK FORWARD
TO NEXT
BEST NODE
NO
Mpz=T?
YES
MOVE
FORWARD
STOP
NO
<< FIRST VISIT?
NO
YES
YES FROM
LOOK BACK |=——<WORST NODE?
TIGHTEN
THRESHOLD
NO YES

T <t T-A 4—==\MBZT°/——> MOVE BACK

FIGURE 13.8: Flowchart for the Fano algorithm.

by both the ZJ algorithm and the Viterbi algorithm. In Figure 13.9, LFB means
“look forward to best node”, LFNB means “look forward to next best node”, and
X denotes the origin node.

A computation in the Fano algorithm is usually counted each time the look-
forward step is performed. Hence, in Example 13.7 the Fano algorithm requires
40 computations, compared with only 10 for the ZJ algorithm. Note that some
nodes are visited several times. In fact, the origin node is visited 8 times, the path
0 node 11 times, the path 00 node 5 times, and the nodes representing the paths
000, 1,11, 111, 1110, 11101, 111010, and 1110100 one time ecach, for a total of 32

Section 13.2 The Fano Sequential Decoding Algorithm 623

Step Look M My Node Meftric T
0 — — — X 0 0
1 LFB -3 —oo X 0 -1
2 LFB -3 - X 0 -2
3 L¥B -3 —% X 0 -3
4 LFB -3 — 0 -3 -3
5 LFB -6 0 X 0 -3
) LENB -9 —% X 0 —4
7 LFB -3 — 0 -3 —4
8 LFB -6 0 X 0 —4
9 LFNB -9 — X 0 =5

10 LFB -3 — 0 -3 -5
11 LFB -6 0 X 0 -5
12 LFNB -9 —oe X 0 =6
13 LFB -3 — 0 -3 -6
14 LFB -6 — 00 -6 -6
15 LFB -9 -3 0 -3 -6
16 LFMNB —12 0 X 0 -6
17 LFNB -9 —o X 0 -7
18 LFB -3 — 0 -3 -7
19 LEB -6 — 00 -6 =7
20 LFB -9 -3 0 -3 =7
21 LFMB -12 0 X 0 =7
22 LFNB -9 - X 0 -8
23 LFB -3 — 0 -3 -8
24 LFB -6 — 00 -6 -8
25 LFB -9 =3 0 -3 -8
26 LEMNB —12 0 2 0 -8
27 LFNB -9 —% > 0 -9
28 LFB -3 — 0 -3 -9
29 LFB -6 — 00 -6 -9
30 LFB -9 — 000 -9 -9
31 LFB -12 -6 00 -6 -9
32 LENE =15 -3 0 -3 -9
33 LEFNB -12 0 > 0 -9
34 LFNB -9 — 1 -9 -9
35 LFB -6 — 11 -6 -6
36 LFB -3 — 111 =3 -3
37 LFB 0 — 1110 0 0
38 LFB +3 — 11101 +3 +3
39 LFB +6 — 111010 +6 +6
40 LFB +9 — 1110100 +9 Stop

FIGURE 12.9: Decoding steps for the Fano algorithm with A = 1.

nodes visited. This is fewer than the 40 computations, since not every forward lock
resulis in a move to a different node but sometimes only in a threshold lowering. In
this example the threshold was lowered 8 times. It is also interesting to note that the
Fano algorithm examined the same set of nodes as the ZJ algorithm in this case, as
can be seen by comparing Figures 13.6(j) and 13.10.

The number of computations performed by the Fano algorithm depends on
how the threshold increment A is selected. In general, if A is too small, a large

624 Chapter 13 Suboptimum Decoding of Convolutional Codes

001

LN

001 @ 100 101 011
ol ~®

011
111 ®
ST
L—o
L— o

= @
— o
111 @
— %

RO
=
L—— o

FIGURE 13.10: Set of nodes examined in Example 13.7.

number of computations results, as in the preceding example. Making A larger
usually reduces the number of computations.

EXAMPLE 13.8 The Fano Algorithm Revisited

The Fano algorithm is repeated for the same code, metric table, and received
sequence decoded in Example 13.7 and for a value of A = 3. The results are shown
in Figure 13.11. Twenty-two computations are required, 20 nodes are visited, and
the same path is decoded. Hence, in this case raising A to 3 reduced the number of
computations by almost a factor of 2.

The threshold increment A cannot be raised indefinitely, however, without
affecting the error probability. For the algorithm to find the ML path, 7 must at
some point be lowered below the minimum metric along the ML path. If A is too

Section 13.2 The Fano Sequential Decoding Algorithm 625

Step Look Mr Mp Node Metric T
0 — — — X 0 0
1 LFB -3 —o X 0 -3
2 LFB -3 — 0 -3 -3
3 LFB -6 0 X 0 -3
4 LFNB -9 —% X 0 -6
5 LFB -3 - 0 -3 -6
6 LFB —6 — 00 -6 —6
7 LFB -9 =3 0 =3 -6
8 LENB -12 0 X 0 -6
9 LFNB -9 —% X 0 -9

10 LFB -3 — 0 =3 -9
11 LFB -6 — 00 -6 -9
12 LFB -9 — 000 -9 -9
13 LFB -12 -6 00 -0 -9
14 LFNB -15 -3 0 -3 -9
15 LFNB -12 0 X 0 -9
16 LENB -9 — 1 -9 -9
17 LFB -6 — 11 -6 -6
18 LFB -3 — 111 -3 =3
19 LFB 0 — 1110 0 0
20 LFB +3 — 11101 +3 +3
21 LFB +6 — 111010 +6 +6
22 LFB +9 — 1110100 +9 Stop

FIGURE 13.11: Decoding steps for the Fano algorithm with A = 3.

large, when T is lowered below the minimum metric of the ML path it may also
be lowered below the minimum metric of several other paths, thereby making it
possible for any of these to be decoded before the ML path. Making A too large
also can cause the number of computations to increase again, since more “bad”™
paths can be followed further into the tree if 7 is lowered too much. Experience
has shown that if unscaled metrics are used, A should be chosen between 2 and 8.
If the metrics are scaled, A should be scaled by the same factor. In the preceding
example the scaling factor was é, indicating that A should be chosen beiween 3.85
and 15.38. A choice of A between 5 and 10 would be a good compromise in this case
(sce Problem 13.8).

In the preceding examples of the application of the Fano algorithm, the same
path chosen by the ZJ algorithm was decoded in both cases. The Fano algorithm
almost always examines the same set of nodes and decodes the same path as
the ZJ algorithm (this depends somewhat on the choice of A [8]); however, in
the Fano algorithm, some nodes are examined several times, whereas in the ZJ
algorithm, nodes are examined no more than once. Thus, the Fano algorithm
requires more computations than the ZJ algorithm. Because the Fano algorithm
is not slowed down by stack conirol problems, however, it sometimes decodes
faster than the ZJ algorithm. On noisier channels, though, when the Fano algorithm
must do significant backsearching, the ZJ algorithm is faster [9]. Because it does
not require any storage and suffers a speed disadvantage only on very noisy

626 Chapter 13 Suboptimum Decoding of Convolutional Codes

channels, the Fano algorithm is usually selected in practical implementations of
sequential decoding.

13.3 PERFORMANCE CHARACTERISTICS OF SEQUENTIAL DECODING

The performance of sequential decoding is not as easy to characterize as Viterbi
decoding because of the interplay between errors and erasures and the need to
assess computational behavior. Because the number of computations performed in
decoding a frame of data is a random variable, its probability distribution must
be computed to determine computational performance. A great deal of work has
gone into a random coding analysis of this probability distribution. Only a brief
summary of these results is given here. Readers interested in more detail are referred
to [10, 11, 12, and 13].
The performance of sequential decoding is determined by three quantities:

1. the computational distribution Pr(C; > 5],

o

the erasure probability Peig5re, and
3. the undetected bit-error probability Py(E).

Let the Ith incorrect subset of the code tree be the set of all nodes branching
from the Ith node on the correct path, 0 </ < h — 1, as shown in Figure 13.12, where
h represents the length of the information sequence in branches. If C;, 0 <! < h —1,
represents the number of computations performed in the /th incorrect subset, then
the computational distribution averaged over the ensemble of all convolutional
codes satisfies

PriCi=n]l~An ", O0<p<oo, 0<I<h-1, (13.22)

where A is a constant depending on the particular version of sequential decoding
used. Experimental studies indicate that A is typically between 1 and 10 [14, 15].
The parameter p is related to the encoder rate R by the parametric equation

r=E0) o _r_c (13.23)

p

where C is the channel capacity in bits per transmitted symbol. The function Ey(p)
is called the Gallager function, and for any binary-input symmetric DMC it is
given by

1
Eo(p) = p —logy 5 3 _[PGIONYHH 4 PGl /a+op+e, (13.24)

J

where the P(j|i)’s are the channel transition probabilities. For the special case of a
BSC,
Eo(p) = p = logy[p!/ 1+ 4 (1 — pyl/HP]i+e, (13.25)

where p is the channel transition probability. It is important to note here that the
probability distribution of (13.22) depends only on the encoder rate and the channel,

Section 13.3 Performance Characteristics of Sequential Dacoding 627

Correct path

™

3rd
 ——— === incorrect
subset

2nd
incorrect
subset

w A [T)
incorrect / ‘

subset
I O 0
— s i ™
» O
R J ,
! .
——E :
;
oth | o
incorrect — | |—% /
subset \\

FIGURE 13.12: Incorrect subsets for a code tree with h = 5.

and hence the computational behavior of sequential decoding is independent of the
code constraint length v.

The distribution of (13.22) is a Pareto distribution, and p is called the Pareto
exponent. p is an extremely important parameter for sequential decoding, since it
determines how rapidly Pt[C; > 5] decreases as a function of ». For example, for a
fixed rate R and a BSC, p can be calculated by solving (13.23) using the expression

628 Chapter 13 Suboptimum Decoding of Convolutional Codes

4 A

15+

4 4.5 5 55 6 6.5 7 7.5 8 8.5 9
E,/Ny(dB)

FIGURE 13.13: The Pareto exponent as a function of £y /Ny for a BSC.

of (13.25) for Eg(p). Results are shown in Figure 13.13 for R = 1/4,1/3,1/2,2/3,
and 3/4, where p is plotted as a function of the SNR E,/Ny = E;/RNy, and
p = QG/2E;/Npy) = O(/2REp/Np). Note that p increases with increasing SNR
Ep/Ng and with decreasing rate R.

For the case when p = 1,

1 2
R = Eo(h) = 1-logy 5 3~ [VP(I0) +VPUID |, (13.26)
J
and for a BSC
2
R=Ep(h)=1-log, [Vp+1-p]
(13.27)

:1—1og2[1+2m]

The significance of Eg(1) for sequential decoding is related to the moments of the
computational distribution. To compute E[C;}], the ith moment of C;, we first form

Fo,(X)=PriC;<X]=1-Pr[C; > X]=1— AX ", (13.28)

Section 13.3 Performance Characteristics of Sequential Decoding 629

the cumnulative distribution function of C;. Differentiating this expression we obtain
the probability density function

- dFc,(X) e)
Fo (X)) = 2 = pax 7L (13.29)
Now. we can compuie {]

. /‘OO ;
Bl = | X'fa0dx

o0 .
/ pAXI TPl gx
1

Il

(13.30)
_ FA XH’|
i—p 1
. A i
= lim - (X'7P = 1).
X—=>00l — 0
For the ith moment to be finite, that is,
.) A .
E[C]]= lim 22 (X" P ~1) < oo, (13.31)

X—ool —p

we require that p > i. In other words, if p < 1, the average number of computations
per decoded branch in the /th incorrect subset is unbounded. It can be shown
from (13.23) and (13.24) that p — co as R — 0, and p — 0 as R — C; that is,
R = E“T(m and p are inversely related (see Problem 13.10). Hence, the requirement
that p > 1 to guarantee a bounded average number of computations is equivalent
to requiring that

_ Eo(p)

R < Eo(1) £ Ry, (13.32)

where Ry is called the computational cutoff rate of the channel. In other words, R
must be less than Ry for the average computational load of sequential decoding to
be finite, independent of the code constraint length, For example, for a BSC, (13.27)
implies that Ry = Eo(1) = 1/2 when p = .045, and thus for a rate R = 1/2 encoder,
p < .045 ensures that R < Ry and the average computational load is finite. Thus,
Ry is called the computational cutoff rate because sequential decoding becomes
computationally intensive for rates above Ry. Because the cutoff rate Ry is always
strictly less tham the channel capacity C (see Problem 13.11), sequential decoding is
suboptimum at rates between Ry and C; however, since it can decode large constraint
length codes efficiently, sequential decoding achieves excellent performance ai rates
below Ry.

The probability distribution of (13.22) can also be used to calculaie the
probability of buffer overflow, or the erasure probability Persure. Let B be the
size of the input buffer in branches (nB bits), and let u be the speed factor of
the decoder; that is, the decoder can perform p branch computations in the time

630 Chapter 13 Suboptimum Decoding of Convolutional Codes

required to receive one branch. Then, if more than uB computations are required
in the Ith incorrect subset, the buffer will overflow before the I/th received branch
can be discarded, even if the buffer was initially empty before the Ith branch
was received. From (13.22) this probability is approximately A(uB) °. Because
there are & information branches in a frame, the erasure probability for a frame is
approximated by

Perasure = hA(uB)™", (13.33)

where p must satisfy (13.23). Note that (13.33) is independent of the code constraint
length v.

EXAMPLE 13.9 Estimating the Erasure Probability

Assume h = 1000, A = 3, u = 10,and B = 10*. For a BSC with transition probability
p = .08, (13.27) implies that Ry = 3/8. Choosing R = 1/3 < Ry = 3/8, and solving
for p from (13.23) and (13.25) gives us p = 1.31. Substituting these values into
(13.33) we obtain an erasure probability of Pergsyre ~ 8.5 X 1074,

The undetected bit-error probability P,(E), that is, the bit-error probability
excluding erasures, of sequential decoding has also been analyzed using random
coding arguments [13]. The results indicate that for rates R < Ry, the undetected bit-
error probability of sequential decoding (1) decreases exponentially with df., the
free distance, (2) increases linearly with Bd»/.,v[/[,, the number of nonzero information
bits on all paths of weight dp.., and (3) is slightly suboptimum compared with
ML decoding. (We note here that, in principle, erasures can be eliminated by
increasing the buffer size B and/or the decoder speed factor p.) Because ML
decoding is practical only for small values of v, and the computational behavior of
sequential decoding is independent of v, the suboptimum performance of sequential
decoding can be compensated for by using codes with larger values of v. Thus,
the practical limitation of ML decoding to small values of v means that for rates
R < Ry, sequential decoding can achieve lower undetected error probabilities than
ML decoding.

The overall performance of sequential decoding can be judged only by consid-
ering the undetected bit-error probability, the erasure probability, and the average
computational load. It is possible to obtain trade-offs among these three factors
by adjusting various parameters. For example, reducing the threshold increment A
in the Fano algorithm (or the bucket quantization interval in the stack algorithm)
increases E[Cr] and Py but reduces P, (E), whereas increasing the size B of the
input buffer reduces Pyq5.. but increases E[C;] and Py (E).

The choice of metric can also affect the overall performance of sequential
decoding. Although the Fano metric of (13.3) is normally selected, it is not always
necessary to do so. The bias term —R is chosen to achieve a reasonable balance
among Py (E), Perasure, and E[C;]. For example, according to the integer metric table
of Figure 13.2(b) for a rate R = 1/3 code and a BSC with p = .10, a path of length
12 that is a distance of 2 from the received sequence r would have a metric value

Section 13.3 Performance Characteristics of Sequential Decoding 631

¥ Fi
0 1 0 1
V; v;
0 +1 | =3 0 +1 | =8
1 -3 | +1 1 -8 | +1
(a) (©)

FIGURE 13.14: Effect of the bias term on the integer metric table.

of 0, the same as a path of length 6 thai is a distance of 1 from r. This is inivitively
satisfying, since both paths contain the same percentage of transmission errors, and
leads to a certain balance among errors, erasures, and decoding speed; however, if
no bias term were used in the definition of M (r7|v;), the integer metric table shown
in Figure 13.14(a) would result. In this case the length-12 path would have a metric
of +4, and the length-6 path a metric of +2. This “bias” in favor of the longer
path would result in less searching for the ML path and hence faster decoding and
fewer erasures at the expense of more errors. On the other hand, if a larger bias
term, say —1/2, were used, the integer metric table of Figure 13.14(b) would result.
The length-12 path would then have a metric of —6, and the length-6 path a metric
of —3. This ““bias” in favor of the shorter path would result in more searching for
the ML path and hence fewer errors at the expense of more erasures and slower
decoding. Therefore, although the Fano metric is optimum in the restricted sense
of identifying the one path of all those examined up to some point in the algorithm
that is most likely to be part of the ML path, it is not necessarily the best metric o
use in all cases.

The performance results for sequential decoding mentioned so far have all been
random coding results; that is, they are representative of the average performance
over the ensemble of all codes. Bounds on computational behavior and error
probability for specific codes have also been obtained [16]. These bounds relate
code performance to specific code parameters and indicate how codes should be
selected to provide the best possible performance. As such, they are analogous to
the performance bounds for specific codes given in Chapter 12 for ML decoding.
For a BSC with transition probability p and an (n. k, v) code with column distance
function (CDF) 4;,

Pr(C > n] < onge Hht Pl (13.34)

where o, i, and ¢ are functions of p and R only, /y 2 [logyx i, x| denotes the
integer part of x,ny, is the number of codewords of length ly + 1 branches with
weight dj,, and R satisfies

R <1+42plog, p+d—2p)log,(1 — p) 2 Ryax. (13.35)

The bound of (13.35) indicates a maximum rate R,y for which (13.34) is known to
hold. The significance of (13.34) is that it shows the dependence of the distribution of

632 Chapter 13 Suboptimum Decoding of Convolutional Codes

computation on the code’s CDF. Fast decoding speeds and low erasure probabilities
require that Pr{C; > n] decrease rapidly as 2 function of n. From (13.34) this implies
that the CDF should increase rapidly. The logarithm in the CDF’s index has the
effect of enhancing the significance of the initial portion of the CDF, as illustrated
in Figure 13.15. The CDFs of two (2, 1, 16) codes (Code 1: g@ = (220547), g =
(357231); Code 2: gV = (346411), g = (357231)) are shown in Figure 13.15(a).

20 —

15

0 10 20 30 40 50 60 70
l
(a)
1.0
=
Al
g 0.1 :*
i L
01k : - S N N
10° 10° 10* 10°
i
(b)

FIGURE 13.15: (a) The CDF and (b) Pr[C; = 5] for two (2. 1, 16) codes.

Section 13.3 Performance Characterisiics of Sequential Decoding 633

Their computational distribuiions obtained using extensive computer simulations
[17] are shown in Figure 13.15(b). Note that the code with the faster column distance
growth has a much better computational distribution. In fact, E{C;] = 3.14 for code
1, and E[C;] = 7.24 for code 2, a difference in average decoding speed of more than
a factor of 2.*

The event- and bit-error probabilities of a specific code when used with sequen-
tial decoding are bounded by functions thai decrease exponentially with dje., the
free distance, and increase linearly with Ay, ihe number of codewords with weight
dfree, and By, the total information weight of those codewords, respectively[16].
This is the same general performance established in Section 12.2 for a specific code
with ML decoding. In other words, the undetected bit-error probability of a code
used with sequential decoding will differ little from that obtained with ML decoding,
as noted previously in our discussion of random coding results.

The performance of a (2. 1. 46) systematic code (g1 = (2521746407671547))
on a hard-decision Fano sequential deccder has been thoroughly tested in hard-
ware by Forney and Bower [14]. The results of some of these tests are shown in
Figure 13.16. Three of the figures are for an incoming data rate of I Mbps: the
other three are for a 5 Mbps data rate. The computational rate of the decoder was
13.3 MHz, corresponding to decoder speed factors of 13.3 and 2.66, respectively.
The BSC transition probability was varied between p = .016 and p = .059, rep-
resenting an Ej/Ng range from 3.9 dB to 6.65 dB (see {(12.32) and (12.35}) and an
Ro range from .44 to .68 (see (13.27)). Rather than continuously vary the metric
values with p, the authors chose two sets of bit metrics, -1/ — 9 and +1/ — 11.
Input buffer sizes ranging from 219 = 1024 to 216 = 65536 branches were tested.
Erasures were eliminated by a technique called backsearch fimiting, in which the
decoder is never allowed to move more than some maximumn number J levels
back from its farthest penetration into the tree. Whenever a forward move is
made to a new level, the k information bits J branches back are decoded. When
the backsearch limit is reached. the decoder is resynchronized by jumping for-
ward to the most recently received branch and (for systematic encoders) accepting
the received information bits on the intervening branches as decoded informa-
tion. This resynchronization of the decoder typically intreduces errors into the
decoded sequence as the price to be paid for eliminating long scarches leading
to erasures.

The performance curves of Figure 13.16(a) plot bit-error probability P, (E) as
a function of Ej/Ng, with buffer size as a parameter. The bit metrics were +1/ — 11,
the data rate was 1 Mbps, and the backsearch limit was J = 240. Identical conditions
held for Figure 13.16(b). except that the data rate was increased to 5 Mbps. Note
thai performance at a bii-eiror probability of 107 is as much as 0.8 dB worse in
this case, indicating that the higher incoming data rate means that the decoder must
jump farther ahead during a resynchronization period to catch up with the received
sequence, thereby introducing additional errors. In Figures 13.16(¢) and 13.16(d),
the backsearch limit J is a parameter, the buffer size is 2! branches, and the data
rates are 1 Mbps and 5 Mbps. respectively. Note that in this case the lower data

4As an interesting comparison, the Viterbi algorithm would require a fixed number 2" = 65536
computations per decoded information bit to decode a (2. 1. 16) code.
p p

634 Chapter 13

1072

107%

1074

Ph (E)

107°

1076

Pb (E)

Ph (E)

107°

107"

Suboptimum Decoding of Convolutional Codes

A T

Ey/N, (dB)
(@)

| B

T

5 6
E/Ny (dB)
(c)

107

A A

2000 % Y
I
4 5 6

Eb/N() (dB)
(e)

Pb (E)

Pb (E)

Py(E)

1072

107

107°

107¢
4

1077

107*

1073

107°

1072

1077

07

107°

107°

o gd T

| A T

T

Ey/N, (dB)
(b)

5 6

(LR BB R
®

(d)

TRNUN N W

4 5 6

E}/N, (dB)
®

FIGURE 13.16: Test results for a (2, 1, 46) systematic code.

Section 13.3 Performance Characteristics of Sequential Decoding 635

rate gives as much as 0.6 dB betier performance if J is large enough; however, if
is too small, little improvement is obtained, indicating that the basic limitation
on decoder performance is now J rather than the data rate. Figures 13.16(e)
and 13. Wo(”\ repeat the test conditions of Figures 13.16(c} and 13.16(d) with bit
metiics of +1/ — 9 insiead of +-1/ — 11. Performance is about the same for large
J but as much as 1.1 dB worse for small J. This indicates that the +1/ — 9 bit
meirics generate more searching before an incorrect path is eliminated, thereby
causing increased reliance on the backsearch limit to force the decoder forward.

:N

" "'C‘)

I

Note that values @'f Ey/ Mg below 4.6 dB correspond ic Ry < R = 1/2 and that
performance does not degrade catastrophically in this range. In other words, the
‘ Umh rate Ry is obtained from an ensemble average upper bound,
and although it generaily indicates the maximuin rate at which good performance
can be obtained, it does not mean that sequential decoders can be operated only at

o
o]
=
=
]
[}
p=s
a5}
=
o]
)
[
=
fel

It is 1 wmﬁ y mmos ible to directly compare the performance of sequential
] VW rbi decoding because of the interplay between errors
and erasures in a sea:-*uemla decoder; however, the elimination of erasures in
sequential decoding by backsearch limiting makes a rudimentary comparison pos-
sible. Figure 12.17(b) shows the performance of a hard-decision Viiterbi decoder
for opiimum nonsystematic rate R = 1/2 codes with v = 2 through 7. To obtain
Py(E) = 107 reguires Ep/Ng to be in the range 5.4 dB to 7.0 dB. The decoder
in this case must perform 2" computations per received branch, which implies a
decoder speed factor ranging from 4 to 128 (in the absence of parallel decoding).
The decoder must also be capable of storing 2" 32-bit paths. Figure 13.16(a) shows
the performance of a hard- decision Fano sequential decoder for a suboptimum
systematic rate R = 1/2 code® with v = 46 and buffer sizes from 20 through 216
branches. To obtain Py(E) = 10~ requires Ep/Np in the range 4.4 dB to 5.3 dB,
.0-dB to 1.7-dB improvement over the Viterbi decoder. The speed factor of
he sequential decoder is 13.3, comparable to that of the Viterbi decoder. The
quential decoder memory requirement of from 2'! to 217 bits somewhat exceeds
e Viterbi decoder’s requirement of from 27 to 212 bits. To pick a specific point
f comparison, consider v = 5 for the Viterbi decoder and B = 2!! branches
for the sequential decoder. At P,(E) = 107%, the sequential decoder requires
Ep/No = 5.0 dB compared with the Viterbi algorithm’s requirement of £, /Ng = 6.0
dB, a 1.0-dB advantage for the sequential decoder. The Viterbi decoder requires
speed factor of 32, roughly 2.5 times that of the sequential decoder, whereas
the sequeniial decoder’s memory requirement of 2'2 bits is four times that of the
Viterbi decoder. 1t is well to note here that this comparison ignores the different
hardware needed to perform a “computation” in the two algorithms, as well as
the diifering amounts of control logic required. In addition, when parallel decoding
architectures are considered, the balance tends to shift toward Viterbi decoding. A
thomuoh discussion of the comparison between sequential and Viterbi decoding is
en in [18].

o
- !‘\

o=

:ﬂ

&

SOptimum codes of this length are unknown. Because the computational behavior of sequential
decoding is independent of v, systematic codes with large v are preferred to simplify decoder resynchro-
nization. Nonsystematic codes with the same dp;.., and smaller values of v would perform approximately
the same. '

636 Chapter 13 Suboptimum Decoding of Convolutional Codes

Similar to backsearch limiting, an alternative version of sequential decoding,
he mmultinle ctock aleorithrm introduced]'\y Chevillat and Costello 1101 eliminates

the multiple stack algorithm, introduced b nd Costello [19], eliminates
erasures entirely, and thus its performance can be compared directly with that of
the Viterbi algorithm. The multiple stack algorithm begins exactly like the ordinary
stack algorithm, except that the stack size is limited to a fixed number of entries
Z,. Starting with the origin node, the top node in the stack is extended. After its
elimination from the stack, the successors are inserted and the stack is ordered
in the usual way. If decoding is completed before the stack fills up, the multiple
stack algorithm outputs exactly the same decoding decision as the ordinary stack
algorithm; however, if the received sequence is one of those few that requires
extended searches, that is, a potential erasure, the stack fills up. In this case, the best
T paths in the stack are transferred to a smaller second stack with Z << Z; entries.
Decoding then proceeds in the second stack using only these T transferred nodes. If
the best path in the second stack reaches the end of the tree before the stack fills up,
this path is stored as a tentative decision. The decoder then deletes the remaining
paths in the second stack and returns to the first stack, where decoding continues.
If the decoder reaches the end of the tree before the first stack fills up again, the
metric of this path is compared with that of the tentative decision. The path with
the better metric is retained and becomes the final decoding decision; however, if
the first stack fills up again, a new second stack is formed by again transferring the
best 7 paths from the first stack. If the second stack fills up also, a third stack of
size Z is formed by transferring the best T’ paths from the second stack. Additional
stacks of the same size are formed in a similar manner until a tentative decision is
made. The decoder always compares each new tentative decision with the previous
one and retains the path with the best metric. The rest of the paths in the current
stack are then deleted and decoding proceeds in the previous stack. The algorithm
terminates decoding if it reaches the end of the tree in the first stack. The only other
way decoding can be completed is by exceeding a computational limit Cyp,. In this
case the best tentative decision becomes the final decoding decision. A complete
flowchart of the multiple stack algorithm is shown in Figure 13.17.

The general philosophy of the multiple stack algorithm emerges from its use
of additional stacks. The first stack is made large enough so that only very noisy
codewords, that is, potential erasures, force the use of additional stacks. Rather than
follow the strategy of the ordinary stack algorithm, which advances slowly in these
noisy cases because it is forced to explore many incorrect subsets before extending
the correct path, the multiple stack algorithm advances quickly through the tree and
finds a reasonably good tentative decision. Only then does it explore in detail all
the alternatives in search of the ML path; that is, previous stacks are revisited. This
change in priorities is achieved by making the additional stacks substantially smaller
than the first one (Z << Z1). Because the T paths at the top of a full stack are
almost always farther into the tree than the T paths used to initialize the stack, the
creation of each new stack forces the decoder farther ahead until the end of the tree
is reached. Hence, if Cj;y, is not too small, at least one tentative decision is always
made, and erasures are eliminated. Once a tentative decision is made, the decoder
returns to previous stacks trying to improve its final decision.

Section 13.3 Performance Characteristics of Sequential Decoding 637

START

|
|

PLACE ORIGIN
NODE IN FIRST

STACK
EXTENDTOP | _
NODE IN STACK
NO BEST NO ~_ NO
METRIC? FULL STACK? ey
oy
STORE TRANSFER TOP
TENTATIVE T NODESTO
DECISION NEW STACK
INFIRST >, N0 I ppy v sTACK GOTONEW
STACK? : STACK
YES
4
RETURNTO
PREVIOUS |———> EXCEED
STACK Chin?

YES

e OUTPUT <%

FIGURE 13.17: Flowchart of the multiple stack algorithm.

638 Chapter 13 Suboptimum Decoding of Convolutional Codes

The performance of the multiple stack algorithm can be compared directly to
the Viterbi algorithm, since it is erasure-free. As with ordinary sequential decoding,
the multiple stack algorithm’s computational effort is independent of code constraint
length, and hence it can be used with longer codes than can the Viterbi algorithm.
The performance comparison is thus made by comparing decoding speed and
implementation complexity at comparable error probabilities rather than for equal
constraint lengths. The performance of the Viterbi algorithm on a BSC with the
best (2, 1, 7) code (curve 1) is compared with that of the multiple stack algorithm
with four different sets of parameters (curves 2, 3, 4, and 5) in Figure 13.18. Curve
2isfora (2,1, 12) code with Z; = 1365, Z =11, T = 3, and Cy; = 6144. Note that
at E,/Ny = 5.5 dB both decoders achieve a bit-error probability of approximately
7 x 1073; however, the Viterbi algorithm requires 128 computations per decoded

1077 —
1074 —
@ L
= |
1077 —
10*6 ! | 1 1 1
4 5 6 7
Eh/N() (dB)

FIGURE 13.18: Performance comparison of the Viterbi algorithm and the multiple
stack algorithm on a BSC.

Section 13.3 Performance Characteristics of Sequential Decoding 639

information bit, almost two orders of magnitude larger than the average number
of computations E[C} = 1.37 per decoded bit for the multiple stack algorithm.
Because L = 60 bit information sequences were used in the simulations, even the
computational limit Ciy, = 6144 of the multiple stack algorithm is smaller than
the constant number of almost 60 x 128 = 7680 computations that the Viterbi
algorithm executes per received sequence. The multiple stack algorithm’s stack
requires approximately 1640 entries, compared with 128 for the Viterbi algorithum.
Increasing the size of the first stack to Z; = 2048 (curve 3) lowers the bit-error
probability to about 3.5 x 107> at 5.5 dB with no change in compuiational effort and a
stack storage requirement of about 2400 entries. Use of the multiple stack algorithm
(curve 4y with a (2,1, 15) code, Z1 = 3413, Z = 11, T = 3, and Cjjp, = 8192 achieves
Py(E) = 1.5 x 107> at 5.5 dB with E[C;] = 1.41 and a total siack storage of about
3700. Increasing the first stack size to Z; = 4778 (curve 5) yields P,(E) = 7 x 1075 at
5.5dB with £[C;] = 1.42 and a total siorage of about 5000. In this last example the
multiple stack algorithm’s bit-error probability is 10 times smaller, and its average
computational load about 90 times smaller than that of a Viterbi decoder for the
2,1,7) code.

Whether the large differences in computational load noted result in an equally
pronounced decoding speed advantage for the multiple stack algorithm depends
primarily on the execution time per computation. A trellis node extension for the
Viterbi algorithm is usually somewhat faster, since the ordering of the stacks in the
multipie stack algorithm is time-consuming with conventionally addressed stacks;
however, ordering time can be substantially reduced by using the stack-bucket
technique. In view of the large differences in computational load, it thus scems
justified to conclude that the multiple stack algorithm decodes considerably faster
than the Viterbi algorithm, at least in the absence of parallel processing. The multiple
stack algorithm’s speed advantage is achieved at the expense of considerable stack
and buffer storage, but this seems to be tolerable in view of the rapid progress in
large-scale storage devices. The multiple stack algorithm is therefore an attractive
alternative to Viierbi decoding when low error probabilities are required at high
decoding speeds.

In an effort to extend the decoder cutoff rate, that is, the rate at which
the average computational load of the decoder becomes infinite, to rates above
Ro, Falconer [20] and Jelinek and Cocke [21] have introduced hybrid sequential
and algebraic decoding schemes. The idea is to place algebraic constraints across
several frames of convolutionally encoded data. In Falconer’s scheme, a certain
number of frames are sequentially decoded, with the remainder being determined
by the algebraic constraints. This increases overall decoding speed and raises the
“effective Ry of the channel. In the Jelinek and Cocke scheme, each successfully
decoded frame is used along with the algebraic constraints in a bootstrapping
approach to provide updated estimates of the channel transition probabilities used
to compute the bit metrics for the sequential decoder. For the BSC this means that
the effective transition probabilities of the channel are altered after each successful
decoding. Upper and lower bounds obtained on the “effective Ry” of this bootstrap
hybrid decoder indicate further gains over Falconer’s scheme, indicating that less

640 Chapter 13 Suboptimum Decoding of Convolutional Codes

information about the state of the channel is wasted. These schemes offer an
improvement in the performance of sequential decoding at the cost of some increase
in the complexity of implementation.

Haccoun and Ferguson [22] have attempted to close the gap between Viterbi
and sequential decoding by considering them as special cases of a more general
decoding algorithm called the generalized stack algorithm. In this algorithm, paths in
an ordered stack are extended as in the stack algorithm, but more than one path can
be extended at the same time, and remergers are exploited as in the Viterbi algorithm
to eliminate redundant paths from the stack. Analysis and simulation have shown
that the variability of the computational distribution is reduced compared with
the ordinary stack algorithm, at a cost of a larger average number of computations.
The error probability also more closely approaches that of the Viterbi algorithm. The
complexity of implementation is somewhat increased, however, over the ordinary
stack algorithm.

Another approach to improving the computational performance of sequential
decoding has been proposed by de Paepe, Vinck, and Schalkwijk [23]. They have
identified a special subclass of rate R = 1/2 codes for which a modified stack
decoder can achieve a considerable savings in computation and storage by exploiting
symmetries in the code. Because these codes are suboptimal, longer constraint
lengths are needed to obtain the free distance required for a certain error probability,
but this does not affect the computational behavior of the decoder.

13.4 CODE CONSTRUCTION FOR SEQUENTIAL DECODING

The performance results of the previous section can be used to select good codes for
use with sequential decoding. In particular, good sequential decoding performance
requires rapid initial column distance growth for fast decoding and a low erasure
probability, and a large free distance df, and a small number of nearest neighbors
Ady,, for alow undetected error probability. The distance profile of a code is defined
as its CDF over only the first constraint length, that is, dg, dq, - - , d,. Because
the distance profile determines the initial column distance growth and is easier to
compute than the entire CDF, it is often used instead of the CDF as a criterion for
selecting codes for use with sequential decoding.

A code is said to have a distance profile dy, dy, - - - , d,, superior to the distance
profile dy, d{, - -+ , d;, of another code of the same constraint length v if for some
t,0<tr=<v,

=d, 1=01,--,1-1

d
N >a, 1=1

(13.36)

In other words, the initial portion of the CDF determines which code has the
superior distance profile. A code is said to have an optimum distance profile (ODP)
if its distance profile is superior to that of any other code of the same rate and
constraint length.

Because an ODP guarantees fast initial column distance growth, ODP codes
with large dpe and small Ay, , make excellent choices for sequential decoding. A
list of ODP codes with rates R = 1/3, 1/2, and 2/3, generated by both systematic
and nonsystematic feedforward encoders, is given in Table 13.1, along with the
corresponding values of dpe. and Agy,,,. The computer search algorithms used to

Section 13.4 Code Construction for Sequential Decoding 641

construct these codes are described in references [24-30]. Note that dp., for the
systemaiic encoders considerably lags dg., for the nonsystematic encoders, since, as
noted in Chapter 12, more free distance is available with nonsystematic feedforward
encoders of a given rate and constraint length than with systematic feedforward
encoders. Systematic feedforward encoders are listed, since, as noted previously,
they have desirable decoder synchronization properties. This advantage is obtained
with essentially no penalty in sequential decoding, since computational behavior is
independent of v, and the deficiency in dp.. can be overcome simply by choosing
codes with larger values of v. This is not possible with Viterbi or BCJR decoding,
where a severe penalty in reduced dpe. o1 increased v (and hence increased
computation) is paid for using systematic feediorward encoders.

TABLE 13.1(a): Rate R = 1/3 systematic codes
with an optimum distance profile.

v g(m gQ) dfree Aa,’f,.w
1 3 3 5 1
2 5 7 6 1
3 13 17 3 2
4 35 27 9 1
5 75 67 10 1
6 135 157 12 4
7 345 373 12 1
8 465 373 13 1
9 1465 1373 15 3
10 2465 3373 16 4
11 7465 7373 16 1
12 10653 17247 17 1
13 30653 37247 18 1
i4 50653 67247 19 2
15 137653 143247 20 2
16 302465 273373 20 1
17 550653 767247 22 2
18 1751145 1545267 24 6
19 3750653 3067247 24 2
20 7150653 5767247 26 4
21 14437653 15043247 26 3
22 36051145 33245267 26 1
23 77150653 65767247 28 3
24 142651145 164645267 28 1
25 2774437653 335043247 30 2
26 636051145 573245267 31 2
27 1033437653 1323043247 32 10
28 3033437653 1323043247 33 5
29 7064702465 4275673373 33 3
30 15602651145 13564645267 34 1

Adapted from [30].

642 Chapter 13 Suboptimum Decoding of Convolutional Codes

TABLE 13.1(b): Rate R = 1/3 nonsystematic codes

RS

itk o PR S M PR ol |
with an optimum distance profile.

v g(0) g(l) g(Z) d free A dfree
1 1 3 3 5 1
2 5 7 7 8 2
3 15 13 17 10 3
4 25 33 37 12 5
5 71 65 57 13 1
6 175 133 117 14 1
7 365 353 227 16 1
8 561 325 747 17 1
9 1735 1063 1257 20 7
10 3645 2133 3347 21 4
11 6531 5615 7523 22 3
12 13471 15275 10637 24 2
13 32671 27643 22617 26 7
14 47371 51255 74263 27 6
15 151711 167263 134337 28 1
16 166255 321143 227277 30 3
17 764255 473143 662277 32 7
18 1070551 1663123 1274677 34 28
19 3624655 2754543 1274677 35 8

Adapted from [30].

TABLE 13.1(c): Rate R = 1/2 systematic
codes with an optimum distance profile.

v g(l) dfree Adf,.ee
1 3 3 1
2 7 4 2
3 13 4 1
4 33 5 2
5 67 6 3
6 173 6 1
7 147 6 2
8 473 7 1
9 1547 8 4
10 2547 8 3
11 6547 9 3
12 14473 9 1
13 34473 10 5
14 71147 10 4
15 174473 10 1

Section 13.4 Code Construction for Sequential Decoding 643

TABLE 13.1(¢): (continued)

v g(l) dfree A\dfme
16 334473 12 13
17 334473 12 13
18 1514473 12 4
19 3431147 12 3
20 4371147 i2 1
21 14371147 12 1
22 33431147 14 6
23 61454473 14 2
24 153431147 15 5
25 366514473 15 3
26 650371147 16 8
27 1250371147 16 7
28 3353431147 16 3
29 5650371147 18 22
30 13061514473 16 1
31 33061514473 18 11

Adapted from [30].

TABLE 13.1{d): Rate R = 1/2 nonsystematic
codes with an optimum disiance profile.

v g(@) g(l) dfree Adf,.ce
1 3 1 3 1
2 7 5 5 1
3 17 15 6 1
4 23 35 7 2
5 77 51 8 2
6 163 135 10 12
7 323 275 10 1
8 457 755 12 10
9 1337 1475 12 1
10 2457 2355 14 19
11 6133 5745 14 1
12 17663 11271 15 2
13 26651 36477 16 5
14 46253 77361 17 3
15 114727 176121 18 5
16 330747 207225 19 9
17 507517 654315 20 6
18 1342063 1551635 21 13

(continued overleaf)

644 Chapter 13 Suboptimum Decoding of Convolutional Codes

TABLE 13.1(d): (continued)
) g gD

dfree Adfrcc

19 2132245 3235467 22 26
20 7015767 5106461 22 1
21 15302573 11147605 24 40
22 23065513 36766521 24 4
23 75437055 45640557 26 65
24 116765117 143303271 26 10
25 344410533 277032345 27 24

Adapted from [30}.

TABLE 13.1(e): Rate R = 2/3 systematic codes
with an optimum distance profile.

v h® h® diree Adjr
1 3 3 2 1
2 5 7 3 2
3 15 13 4 7
4 35 23 4 2
5 75 63 5 6
6 155 107 5 2
7 133 217 6 24
8 533 617 6 5
9 1055 1307 6 1
10 3675 2263 7 8
11 3675 6263 8 44
12 14133 16617 8 16
13 27675 32263 8 3
14 57455 62207 8 2
15 170133 116617 8 1

16 270133 316617 10
17 647675 552263 10
18 1504133 1344617 10
19 2631455 3276207 10
20 6631455 5276207 11

Adapted from [30].

-
oML D

We conclude our discussion of sequential decoding by noting that a sequential
decoder can be used to find the distance properties of a code. For example, For-
ney [31] describes how the Fano algorithm can be modified to compute the CDF
of a code, and Chevillat [32] gives a version of the ZJ algorithm that can be nsed
to compute the CDF. More recently, Cedervail and Johannesson [28] introduced
an algorithm called FAST, also based on the ZJ algorithm, for computing the free
distance dy,., and the first several low-weight terms Ay, , Agy 115 Aaf/,wﬁv <. inthe
IOWEF A(W, X) of an encoder. These methods are usually feasible for computing

Section 13.5 Majority-Logic Decoding 645

TABLE 13.1(f): Rate R = 2/3 nonsystematic codes with an
optimum distance profile.

v @ @ h® dpree Adpy,,
2 3 5 7 3 1
3 17 15 13 4 1
4 05 23 27 5 7
5 53 51 65 6 9
6 121 113 137 6 1
7 271 257 265 7 6
8 563 601 475 8 8
9 1405 1631 1333 8 1
10 1347 3641 3415 9 g
11 5575 7377 4033 10 29
12 14107 13125 11203 10 4
13 20535 31637 27773 11 9
14 66147 41265 57443 12 58
15 100033 167575 155377 12 25
16 353431 360007 267063 12 7
17 631115 405661 352543 13 18
18 1111441 1516615 1202547 14 50
19 2454743 3525715 2004061 14 24

[,
(7

20 4200057 7262173 5122341 14

21 15213427 12632451 14223343 15 14
22 34122155 26656021 30523603 16 50
23 72634151 53760245 44400637 16 10

Adapted from [30].

the distance properties of codes with consiraint lengths v on the order of 30 or less.
For larger values of v, compuiationally efficient algorithms are still lacking.

13.5 MAJORITY-LOGIC DECODING

We begin our discussion of majority-logic decoding by considering a (2,1, m)
systematic feedforward encoder with generator sequences g@ = (100--.) and

g = (g(()l), gil)? gél), gDy and generator matrix
1 1 1 1
lgi’ 0g” 0g5" - Ogp
1 1 1 1
lgg Oz’ -+ 0gy), Og
G = 1,0 W ,M M (13.37)
8o i Ogm—Z Emn—1 Og’”
For an information sequence u, the encoding equations are given by
v =peg® =u (13.38a)

~u®gh, (13.38b)

646 Chapter 13 Suboptimum Decoding of Convolutional Codes

and the transmitted codeword is v = uG. Next, we develop a version of syndrome
decoding, first introduced in Chapter 3 for block codes, that is appropriate for
convolutional codes. If v is sent over a binary symmetric channel (BSC), the binary
received sequence r can be written as

r= (r(()o)r(()l), 7';0);’{1), réo)rél), e y=v+e, (13.39)
where the binary sequence e = (e(()o)eél), eio)eil), eéo)eél), -+-) is called the channel
error sequence. An error bit ez(j) = lifand onlyif rz(]) v\, thatis, an error occurred

during transmission. A simple model for the BSC is illustrated in Figure 13.19. The
received sequence r can be divided into a received information sequence

r® — (réo), rl(o), rém,) = v 1@ = 1@ (13.40a)

and a received parity sequence
D = (rél), r{“, rél),)= v e —pe g('l) + b (13.40b)

where ¢©@ = (e(()o), eim,eéo)

(e(()l), eil), eén, -+ -) is the parity error sequence.

The syndrome sequence s = (sg, 51, $2, - - -) is defined as

,--+) is the information error sequence, and e =

s 2 rHT, (13.41)

where the parity-check matrix H is given by

— g(()l) 1 _
1 (1
gil) 0 gol) ! 1
H = : . . . :
ey @ 1) (1
a0 S ’ b2 . A . M
8m 0 g,éxl_l 0 g%l) 0 g(()l) 1 @
gm) 0 - 87 0 81 0 8o 1
L. _
(13.42)
el
o N i
N

FIGURE 13.19: A simplified model for the BSC.

Section 13.5 Majority-Logic Decoding 647

As is the case with block codes, GHY = 0, and v is a codeword if and only if
vIHT = 0; however, unlike with block codes, G and H are semi-infinite matrices,
indicating that for convolutional codes the information sequences and codewords
are of arbitrary length.

Because r = v + e, we can wrlie the syndrome sequernce 5 as

s= (v +e)H! = vH 4+ el =eHT. (13.43)

and we see that s depends only on the channel error sequence and not on the
particular codeword transmitted. For decoding purposes, knowing s is equivalent to
knowing r, and hence the decoder can be designed to operate on s rather than on r.
Such a decoder is called a syndrome decoder.

Using ihe polynomial notation introduced in Chapter 11, we can write

vO(D) = w(D)g®(D) = u(D) (13.443)
V(D(D) — M(D)g(l)(D), (];3.4470)

and
1@ (D) = vO (D) + e (D) = w(D) + (D) (13.45a)
r (D) = v(D) + e (D) = u(D)g® (D) + e (D). (13.45b)

At the receiver, the syndroine sequence is formed as
s(D) = vy (D) + V(D). (13.46)

Because v(D) = a(D)gV (D) = vO(D)gV (D), forming the syndrome is equiv-
alent to “encoding” (D) and then adding it to r™V(D). A block diagram of
a syndrome former for a (2,1, m) systematic feedforward encoder is shown in
Figure 13.20. Using (13.45) in (13.46) we obtain

s(D) = [u(D) +eP(D)ig™ (D) + w(D)gV(D) + eV (D) 1347
(13.4
=V (D) (D) +M (D),

and we again see that s(D) depends only on the channel error sequence and not on
the particular codeword transmitted.

Majority-logic decoding of convolutional codes as a BSC is based on the
concept of orthogonal parity-check sums, first introduced in Chapter 8. From
(13.43) and (13.47) we see that any syndrome bit, or any sum of syndrome bits,
represents a known sum of channel error bits and thus is called a parity-check sum,
or simply a check-sum. If the received sequence is a codeword, then the channel
error sequence is also a codeword, and all syndrome bits, and hence all check-sums,
must be zero; however, if the received sequence is not a codeword, some check-sums
will not be zero. An error bit ¢ 1s said to be checked by a check-sum if ¢; is included
in the sum. A set of J check-sums is orthogonal on ¢; if each check-sum checks ¢;,
but no other ervor bit is checked by more than one check-sum. Given a set of J
orthogonal check-sums on an error bit ¢;, the majority-logic decoding rule can be
used to estimate the value of ¢;.

648 Chapter 13 Suboptimum Decoding of Convolutional Codes

"I(U) (0)
¢ 7 P> 0 6 @ ===

T m

f/(l) St

N

= multiply input by g

FIGURE 13.20: Syndrome forming circuit for a (2, 1, m) systematic feedforward
encoder.

Majority-Logic Decoding Rule (BSC) Define 1y, 2 [J/2]. Choose the
estimate & = 1 if and only if more than 3, of the J check-sums orthogonal on ¢
have value 1.

TreoreEM 131 If the error bits checked by the J orthogonal check-sums
contain ty7, or fewer channel errors, the majority-logic decoding rule correctly
estimates ¢;.

Proof. If ¢, = 0, the at most 137, errors can cause at most 747 of the J
check-sums to have a value of 1. Hence, ¢; = 0, which is correct. On the other
hand, if ¢; = 1, the at most ¢37; — 1 other errors can cause no more thanty; — 1
of the J check-sums to have value 0, so that at least 7377 + 1 will have a value
of 1. Hence, ¢; = 1, which is again correct. Q.E.D.

As a consequence of Theorem 13.1, for a systematic code with J orthogonal
check-sums on each information error bit, ¢y, is called the majority-logic error-
correcting capability of the code.

EXAMPLE 13.10 A Rate R = 1/2 Self-Orthogonal Code

Consider finding a set of orthogonal check-sums on e(()o), the first information error
bit, for the (2, 1, 6) systematic code with g(l) (D) = 1+ D+ D* + DO, First, note from
(13.43) and (13.47) that ¢} can affect only syndrome bits so through s, that is, the
first (m + 1) syndrome bits. Letting [s]s = (s0, 51, - - - , s5) and using the notation for

Section 13.5 Majority-Logic Decoding 649

truncated sequences and matrices iniroduced in Section 11.3, we obtain

1
1

et O
D=, OO

EEEGIEN

[sle = [el6[H 1 = [els

[l

(13.48)

—__O RO 00

bt et O = OO0 OO

_ P, O, OO OO
== O R OO0 DO OO0 0o

Taking the transpose of both sides of (13.48). we have

[s7)s = [Ells[e" 16 = [e" 6.

—_ O = OO
SO O D D

[R e Sl o S S G Y
OO O O -
OO OO
DD =
OO O =

[e
OO

U SN

O

—

—_

(13.49)

Note that the even-numbered columns of [H]g, that is, those columns corresponding
to the parity error sequence, form an identity matrix. Hence, we can rewrite
(13.49) as

o e [e]
][AN

(D] (I

52 0 1 1 ¢ €

Tls=1] s3 |=] 6 0 1 1 A 1+ Y | (1350)

54 1001 1 RO Re)

55 01 0011 fo) ?1)

| s] 1010011]| 5 es
e’ 1 Lo

The matrix in (13.50) that multiplies the information error sequence is called the
parity triangle of the code. Note that the first column of the parity triangle is
the generator sequence g1, which is shifted down by one and truncated in each
succeeding column.

650 Chapter 13 Suboptimum Decoding of Convolutional Codes

We can now use the parity triangle of the code to select a set of orthogonal

(+ to that e kit he 1 -
heck sums on ¢, . First, note that no syndrome can used in more

one orthogonal check-sum, since then a parity error bit would be checked more

than once. Because there are only four syndrome bits that check e , it is not

possible to obtain more than J = 4 orthogonal check-sums on e(()) in this example.

We can illustrate the orthogonal check-sums selected using the parity triangle as
follows:

thooe
SRV Lwg Ull Can 0C Used il moie Lll&ll

- 1
91
0o 0 1
0 0 1 1
- 1 0 o [1] [1]
01 0 o0 1 1
-1 0 [1] o o [1] [1].

The arrows indicate the syndrome bits, or sums of syndrome bits, that are selected
as orthogonal check sums on e(()())’ and the boxes indicate which information error
bits, other than e(()o), are checked. Clearly, at most one arrow can point to each row,
and at most one box can appear in each column. The equations for the orthogonal

check-sums are

(0) 1)

So = +eg
— (0) (U 1)
s1=¢5 +e +e; (13.51)
54 = (0) +e) + 6(0) —]—e(l)
S6 = e(()o) —}—eéo) +e§0) + eé()) —I—eél).

Note that e(()o) appears in each check-sum, but no other error bit appears more
than once. Because each check-sum is a single syndrome bit, and not a sum of
syndrome bits, this is called a self-orthogonal code. These codes are discussed in
detail in Section 13.7. Because a total of 11 different channel error bits are checked
by the J = 4 orthogonal check-sums of (13.51), the majority-logic decoding rule
will correctly estimate eéo) whenever t3,; = 2 or fewer of these 11 error bits are 1’s
(channel errors). The total number of channel error bits checked by the orthogonal
check-sum equations is called the effective decoding length ng of the code. Hence,
ng = 11 for this (2, 1, 6) code.

EXAMPLE 13.11 A Rate R = 1/2 Orthogonalizable Code

Consider the (2, 1, 5) systematic code with g(D) = 1 + D? + D* + D°. We can
construct a set of J = 4 orthogonal check-sums on e(()o) from the parity triangle as
follows:

Section 13.5 Majority-Logic Decoding 651

— 1

> 0 1

0 0 1

— 1t 0 o0 [1
— 1 1 o o [1]
L— 1 1 [1] o ¢ [1

The syndrome bits s; and ss must be added to eliminate the effect of eio), which
is already checked by 54, and hence the code is not self-orthogonal. The J = 4
check-sums s, 53, 54, and s5 4+ s1 form an orthogonal set on eéo), however, so this is
called an orthogonalizable code. Methods for constructing orthogonalizable codes
are discussed in Section 13.7. The effective decoding length ng = 11 for this code,
and the majority-logic decoding rule correctly estimates e(()o)
fewer of these 11 error bits are 1’s.

whenever 7y, = 2 o1

A majority-logic decoder must be capable of estimating not only e(()o) but
all the other information error bits also. Here, 660) 1s estimated from the first

(m + 1) syndrome bits sg through s,,. After e(()()) is estimated, it is subtracted (added

modulo-2) from each syndrome equation it affects to form a modified syndrome

set s, 537 -+, s).. The modified syndrome bits si, sy, -+ . 5, along with the newly

*Ym
calculated syndrome bit 5,41 are then used to estimate ei{». Assuming e(()o) was

correctly estimaied, that is, é(()o) = e(()())’ a set of orthogonal check sums can be formed

on €§0) that is identical to those used to estimate e(()o)ﬁ and the same decoding rule can

therefore be applied. Each successive information error bit is estimated in the same
way. The most recent estimate is used to modify the syndrome, one new syndrome
bit is calculated, the set of orthogonal check-sums is formed, and the majority-logic
decoding rule is applied.

EXAMPLE 13.10 (Continued)

Assume e(()o) has been correctly estimated; that is, ééo) = e(()o). 1f it is subtracted from

each syndrome equation it affects, then the modified syndrome equations for the
self-orthogonal code of Example 13.10 become

s = So— 680) = e(()l)
5p = s1— eéo) = eio) + eil)
55 = 8 = eg()) -+ eéo) -+ 6(21)
55 = 83 = eéo) + egO) + eél)
sy = s4— e(()o) = eg()) + ego) + eil)
55 = 55 = egO) —+ ef;m + eéo) -+ egl)
Sg = 56— e(()o) = eéo) + egO) + eéo) + eél).

(13.52)

652 Chapter 13 Suboptimum Decoding of Convoiutional Codes

Because s;, no longer checks any information error bits, it is of no use in estimating

e§0>, The syndrome bit 57, however, checks ¢ Hence, the modified syndrome bits

INAUONC UL 1340 N 3 L pLwi 31

s through s; along with s7 can be used to estimate eio). The equations are

0 T r M7
i 1] e%m e%l)
Sé 1 1))

; 0))
S3 01 1 €3 €3
s; =100 11 PR A (13.53)
5! 100 11 © <1>
M 010011 B s

6 (1
§ 1010011 660 %

7 - e 0

- - L 67 B L 67 i

Because the parity triangle is unchanged from (13.50), the syndrome bits s}, 57, s5,

and s7 form a set of J = 4 orthogonal check-sums on 650) as follows:
r_ 0 O @D
S =e +e +e; (13.54)
P 6(0) +e(0) + 6(0) +e(l) ’
s T 4 5 s
§7 = eio) +e§0) —I—eéo) + eéo) —l—e§1).

From this orthogonal set, eio) will be correctly estimated if there are 7y, = 2 or
fewer errors among the ng = 11 error bits checked by (13.54). In other words, the

majority-logic error-correcting capability of the code is the same for 650) as for e(()O),

assuming that eéo) was estimated correctly. Moreover, exactly the same decoding

rule can be used to estimate eiO) as was used for e(()O), since the check-sum equations

(13.54) are identical to (13.51), except that different error bits are checked. This

means that after estimating e(()O), the implementation of the decoding circuitry need

not be changed to estimate eio)‘
In general, after an information error bit is estimated, it is subtracted from

cach syndrome equation it affects. Assuming the estimate is correct, the syndrome
equations

5 =e ey
’ ()] ()] €8]
SH—I =¢ +el-H +el+1 (13 55)
/) 1@ 4O e :
Sied TG €143 T €yy €14
® ©) [V} ® (€8}
Si+6 =€ te te s tels T

0)
!

form a set of J = 4 orthogonal check-sums on ¢; ’, and the same decoding rule

can be used to estimate e,(o), [=0,1,-... Hence, e,(O) will be correctly estimated if
there are 7377, = 2 or fewer errors among the ng = 11 error bits checked by (13.55),

=01, .-

Section 13.5 Majority-Logic Decoding 653

A complete encoder/decoder block diagram for the (2,1, 6) self-orthogonal
code of Example 13.10 with majority-logic decoding is showr in Figure 13.21. The
decoder operates as follows:

Step 1. The first (m + 1) syndrome biis sq, 51, -+ . 5¢ are calculated.
. .o - , 0 .. ¢ .
Step 2 set of J = 4 orthogonal check-sums on e<0> is formed irom the

A

syndrome bits calculated in step 1.

Step 3. The ifour check-sums are fed into a majority gate that produces
an output of 1 if and only if three or four (imore than half) of its
mputs are 1's. If its ouiput is 0 (é(()o) = 0),;’50) is assumed to be
correct. If its output is 1 (ééo) = 1),1'80’ is assumed to be incor-
rect, and hence it must be corrected. The correction is performed
by adding the output of the majority gate (é(()o)) to réo). The out-
put of the threshold gate (é(()O)) is also fed back and subtracted
from each syndrome bit it affects. (It is not necessary to subtract
ég)) from sg, since this syndrome bit is not used in any future
estimates.)

Step 4. The estimated information bit &y = }4(()0) + é(()o) is shifted out of the
decoder. The syndrome register is shifted once to the right, the next
block of received bits (ré0> and rél)) is shifted into the decoder, and
the next syndrome bit s7 15 calculated and shifted into the lefimost
stage of the syndrome register.

Step 5. The syndrome register now contains the modified syndrome bits

§1.55. - . 5¢ along with s7. The decoder repeats steps 2, 3, and 4 and

estimates eio). All successive information error bits are then estimated
in the same way.

Because each estimaie must be fed back to modify the syndrome register
before the next estimate can be made, this is called a feedback decoder. The process
is analogous to the feedback of each estimate in a Meggiit decoder for cyclic
codes. Note that each estimate made by a feedback majority-logic decoder depends
on only (m + 1) error blocks, the effect of previously estimated error bits having
been removed by the feedback. As will be seen in Section 13.6, this fact leads
to inferior perforimance compared with optimum decoding methods. The small
(m + 1 time unifs) decoding delay and the simplicity of the decoder, however, make
majority-logic decoding preferable to Viterbi, BCJR, or sequential decoding in some
applications.

In the general case of an (n, k, m) systematic feedforward encoder, the (time-
domain) generator matrix G is given by (11.42) and (11.43), and the (time-domain)
parity-check matrix H is given by (11.45). The (n — k) syndrome sequences, one
corresponding to each parity sequence, are given by

G = (sék) . ~S(()”\1). Sik) . .Sin—l)‘ Sé/\') .. .S§n—1)7)= H‘HT — @HT. (1356)

654 Chapter 13 Suboptimum Decoding of Convolutional Codes

©

Majority gate

Decoder

BSC
61@6

);\

_/

Encoder

FIGURE 13.21: Complete system block diagram for a (2, 1, 6) self-orthogonal code
with majority-logic decoding.

Section 13.5 Majority-Logic Decoding 655

In polynomial notation, for j =k, -+ ,n — 1,

k
sU(Dy =3 N (D)g (D) + 1 (D)
i=1

/ (13.57)
= D (D) + eV (D),
i=1
and forming the syndrome vector s(D) = [sV(D).--- ,s" (D)) is equivalent to

“encoding” the received information sequences and then adding each resulting
parity sequence to the corresponding received parity sequence. A block diagram
of a syndrome former for an (n, k, m) systematic feedforward encoder is shown in
Figure 13.22. We can put (13.57) in matrix form as follows:

s(D) = r(DYHL (D) = e(DYH (D), (13.58)
where r(D) = [rOD), eV (D). .- r" 1 (D)] is the n-tuple of received sequences,
e(D) = [(D), eD(D), " D(D)] is the n-tuple of error sequences, and the

(n — k) x n (transform domain) parity-check matrix is given by (11.46a).
In this case, there are n — k new syndrome bits to be formed and k information
error bits to be estimated at each time unit, and there are a total of k(n — k) parity

() I ——
I S S T > T lm
A1) I
Iz e T) —)m
° o
° o
° Systematic °
o feedforward P
,,/(3 | J— encoder [——— "I(L ")

AR

<]

&)

,,I(n -1

sl(n -1

Y

FIGURE 13.22: Syndrome forming circuil for an (n, k, m) systematic feedforward
encoder.

656 Chapter 13 Suboptimum Decoding of Convolutional Codes

triangles, one corresponding to each generator polynomial. The general structure of
the parity triangles used to form orthogonal parity checks is as follows:

- - = () (k) (k) "3 ~ — —_ —
(%) g g 8 (0) (*)
Sy 1.0 2.0 &0 € €
i G W m W wm ' "
S,(;f) gl.m e gl‘O gZ.m T g2‘0 : gA.m e g/\’.O e,(,(,)) e,(,i\)
(k+1) (k+1) (k+1) (k+1) o8} (k+1)
o 810 &0) € €
rh |TLoweh e b g kb || o [T e
Sm T 810 Sm 80 T &k T 8r0 €m em
<(U*U . (n—-1) ‘(n—l) ‘(nfl) ‘(/\'—'H .(1171)
%o 810 8.0 850 € €
'(”_1) . n—1; . (n—1 . (n—1) . (n—1) ' (n—1 ‘ (n—1) .(/"—l) .(”‘l)
L Sm L8t 810 S 820 0 & U 8k - “m - L €m
(13.59)

The first set of m -+ 1 rows corresponds to syndrome sequence s, the second
set of m + 1 rows corresponds to syndrome sequence s+ and so on. Syndrome
bits, or sums of syndrome bits, are then used to form orthogonal check-sums on
the information error bits e(()o) , e(()l) S, eg‘fl). If at least J orthogonal check-sums
can be formed on each of these information error bits, then 3, = |J/2] is the
majority-logic error-correcting capability of the code; that is, any pattern of 1y, or
fewer errors within the ng error bits checked by the & sets of orthogonal check-sums
will be corrected by the majority-logic decoding rule. A feedback majority-logic

decoder for a 1y, -error-correcting (n, k, m) systematic code operates as follows:

Step 1. The first (m + 1)(n — k) syndrome bits are calculated.

Step 2. A set of J orthogonal check-sums are formed on each of the k
information error bits from the syndrome bits calculated in step 1.

Step 3. Each set of J check-sums is fed into a majority gate that produces
an output of 1 if and only if more than half of its inputs are 1's. If

its output is 0 (é(()j) — 0), réj) is assumed to be correct. If the output

of the jth gate is 1 (éé’) = 1), ré”) is assumed to be incorrect, and
hence it must be corrected. The corrections are performed by adding
the output of each majority gate to the corresponding received bit.
The output of each majority gate is also fed back and subtracted from
each syndrome it affects. (It is not necessary to modify the time unit
0 syndrome bits.)

Step 4. The estimated information bits ﬁé’ﬂ) = r(()J) + é(()“, i=0,1-,
k — 1, are shifted out of the decoder. The syndrome registers are
shifted once to the right, the next block of n received bits is shifted
into the decoder, and the next set of n — k syndrome bits is calculated
and shifted into the leftmost stages of the n — k syndrome registers.

Step 5. The syndrome registers now contain the modified syndrome bits
along with the new set of syndrome bits. The decoder repeats ste

Section 13.5 Majority-Logic Decoding 657

2, 3, and 4 and estimates the next block of information error bits
e§0>, e§1), ,egk_l). All successive blocks of information error biis

are then estimated in the same way.

As noted earlier, if all previous sets of k estimates are correct, their effect is
removed by the feedback, and the next set of k estimates depends on only (m + 1)
error blocks. A block diagram of a general majority-logic feedback decoder for an
(n, k, m) systemaiic code is shown in Figure 13.23.

000
+ Tt
(=]
Q
/]
/
(+\<‘;\ (<

I
@
S;(Il‘ 1)
v
ooco |
\HZ)
Majority
gate
é(m
[«
(s}
o

Systematic
feedforward
encoder

]
Q
n e

+ o

. (0)
Ty m
- (K)
Frim
L=
’[<+m)

7'1(k

FIGURE 13.23: Complete majority-logic decoder for an (n, k, m) systematic code.

658 Chapter 13 Suboptimum Decoding of Convolutional Codes

EXAMPLE 13.12 A Rate R = 2/3 Self-Orthogonat Code

Consider the (3,2, 13) systematic code with gf)(D) =1+ D8+ D%+ D2 and

g (D) = 1+ Db + D' 4 DB, Following the procedure of Example 13.10, we can
write the first (m + 1) = 14 syndrome bits as

.—e(()o)_.
~ L _ |
s0 ! ©
§9 0 1)
9 00 1 e
5 000 1 o0
54 00001)
55 000001 e
STl | % || 0000001 e
B=V s {7]000000 01 RO
58 100000001 o
59 1100000001 ‘s
510 01100000001 e
511 001100000CO0 1 0
512 1001100000001 o
s] LO1T 001100000001 Y
6102

L efy |

e] e
- _] e e?
0 1 &’ | | &
00 1 ey e’
000 1 &b 2
00001 0 s
00000 1 5 5
1000001 e e
lo1000001 | T
001000001) s
0001000O0O0TO01 8 €8
00001000001 P e
100001000001 0 el
0100001000001 R)
1010000100000 1]|°u 1
' A ARE:

oy]

ICER IR E

(13.60)

Section 13.5 Majority-Logic Decoding 659

There are two parity triangles in this case, one corresponding to each generator
polynomial. We can use these to form a set of J = 4 orthogonal check-sums on the
information error bit e(()()) as follows:

— 1

01 0 1

00 1 0 0 1

0001 0 0 0 1

0000 I 0 0 0 01

0000 01 0 0 0 001

0000 001 1 0 0 0001
00000001. 0 1 0 0000 1
~1000 00001 0 ofi] o000 oft]
~1[t]o 0o 0000 0 [1] 0 0o of1]oo 00 o [1]
0110 00000 01 00 0 010000 01
0011 00000 001 1 00 001000 001
~1 0 o[1][t]ooo o 0o o0o0f[1] ot]o oooft]oo o 00t
0100 11000 000011 0 1 0060010 0000 1.

. 1
Similarly, we can form a set of J = 4 orthogonal check-sums on e(()) as follows:

—> 1
0 1 01
0 0 1 00 1
0 0 0 1 00 0 1
00 0 0 1 000 01
00 0 0 0 1 00000 1
-~ 0 0 0 0 0 0 [1] 10000 0 [1]
0 0 00 0 0 01 010000 0 1
10 00 00 001 001000 0 01
1100 00 0001 000100 0 001
0 1 1.0 0 0 00001 000010 0 0001
~ 0 o [1][t]o o o o00o00][t] 1o000[1] 0 0o000[1]
100 1 1 00000001 010000 1 000001
— o0 [1] o o [1][1]ooo000 0 of[t]to[t]oo o o [i]ooo 0 o1

Because all check-sums are formed from syndrome bits alone, and not sums of
syndrome bits, this is a self-orthogonal code. A total of 31 different channel eiror
bits (24 information error bits and 7 parity error bits) are checked by the two
orthogonal sets, and the effective decoding length is ng = 31. Hence, the majority-
logic decoding rule will correctly estimate both e(()o) and eéD whenever 7y, = 2 or
fewer of these ng = 31 error bits are 1’s. A block diagram of the decoder is shown
in Figure 13.24.°

SIn the remainder of this chapter the labeling of Figure 11.5 is used to describe rate R = (n — 1)/n
systematic feedforward encoders.

660 Chapter 13 Suboptimum Decoding of Convolutional Codes

2
!

<3

>

Ny \+

(+

si

—

0)

(
!
(1
!

«
o1ed

ale
Aol Auolep

i b

Systematic
feedforward
encoder

()
Fryas

FIGURE 13.24: Complete majority-logic decoder for a (3, 2, 13) self-orthogonal code.

Section 13.5 Majority-Logic Decoding 661

The total number of channel error bits that appear in the syndrome equations

(13.59) is ny 2 n(m + 1), called the actual decoding length. In Example 13.12,
ng = 3(14) = 42 channel error bits appear in the syndrome equatiocns (13.60).
Hence, 11 channel error bits have no effect on the estimates of eéo) and e(()l’n As
decoding proceeds, however, these 11 error bits will affect the estimates of successive
information error bits. Also note that there are many patterns of more thanryy =2
channel errors that are corrected by this code; however, there are some patterns of

3 channel errors that cannot be corrected.

EXAMPLE 13.13 A Rate R = 1/3 Orthoegonalizable Code

Now, consider a (3, 1, 4) systematic code with g (D) = 1+ Dand g? (D) = 1+ D?+

D3 + D* In this case, there are two syndrome sequences, sl = (sé“, S;]), sgl}.)

7 . ~ ; -
and s@ = (sé", sz), séZ), .Y, and we can write the first (m + 1) = 5 blocks of
syndrome bits as

- () - (D
S(<)1> 1 7 6?1
)
51 €
1) 11 (0
S 0 1 1 m O 7)
s(1> 0 (1
3 0 0 1 1 (0) €3
; e 0001 1]|| % e
[s']a = ‘(‘2) =1 e - ?’2) . (13.61
0 0 1 6(0) 607
2) 3 @
S%ﬂ 1ol 30) e%2>
S2; 11 0 1 - - 622
sy 11101 %
L sfﬁ) A L eff) i

As in the case of the (3, 2, 13) code of Example 13.12, there are two parity triangles.
In Example 13.12 we used the two parity triangles to form two separate sets of
orthogonal check-sums on two different information error bits. In this example,
there is only one information error bit per unit time, and we use the two parity
triangles to form a single set of orthogonal check-sums on the information error bit

e(()()) as follows:
— 1
— 1
> 0 1 1

60 ¢ 1 1
0 0 0 1 1

— 1

— 0 1

— 1 0

L— 1 1 ¢

—— 1 1 1 0

662 Chapter 13 Suboptimum Decoding of Convolutional Codes

o) (0)
iva ¥

ST

! (1)
’/“4 % Si+4

1 50

é[(“)

Majority gate

S[/(Z)

FIGURE 13.25: Complete majority-logic decoder for a (3, 1, 4) orthogonalizable code.

The check-sums s(()l),séz), sil), S§2) @) + sgz), and sél) + sf) form asetof J = 6

orthogonal check-sums on e(O) The effective decoding length ng = 13 for this
orthogonalizable code, and the majority-logic decoding rule correctly estimates e()

whenever 1y, = 3 or fewer of these 13 error bits are 1’s. A block diagram of the
decoder is shown in Figure 13.25.

In the foregoing discussion of feedback majority-logic decoding, it was assumed
that the past estimates subtracted (added modulo-2) from the syndrome were all
correct. This is of course not always true. When an incorrect estimate is fed back
to the syndrome, it has the same effect as an additional transmission error and can
cause further decoding errors that would not occur otherwise. This difficulty is called
the error propagation effect of feedback decoders [33].

EXAMPLE 13.10 (Continued)

For the (2, 1, 6) self-orthogonal code of Example 13.10, let é,(o) ,(O) + A,(O) be the
result of adding the estimate 6(0) to a syndrome in

o
>
EN
=
73
)
>
2
n
i3

eauatio
quaty

¥
¢
»
o

. x2Clausy

Section 13.5 Majority-Logic Decoding 663

& is formed after ¢! has been decoded, it is called a postdecoding error. If all
past estimates are assumed to be correci, the postdecoding errors are all equal to
0. and the modified syndrome eguations are given by (13.55). If this is not the case,
however, the unmodified syndrome equations are given by

BEE IRt DRI
S = Els 45 e +elty +es)
Sy = e e el el el
S1+6 = g tefts 5 el s el
(13.62)

Clearly, (13.62) reduces to (13.55)if 6% = 0,4 =1 ~6,-.-, 1 — 1. Ifany &° =1,
however, it has the same effect as a transmission error in the preceding equations
and can cause error propagation.

Several approaches have been taken to reducing the effects of error prop-
agation. One is to periodically resynchronize the decoder by inserting a string of
km zeros into the information sequence after every k/ information bits. When the
resynchronization sequence is received, the decoder is instructed to decode a string
of km consecutive zeros. During this m time unit span of correct decoding, all
postdecoding errors must be zero, and the effect of the past is removed from the
syndrome. This periodic resynchronization of the decoder limits error propagation
to at most & + m time units; however, for the fractional rate loss m/(h + m) to be
small, 7 must be much larger than m, and the effects of error propagation can still
be quite long.

Another approach to limiting error propagation is to select codes with an
automatic resynchronization property. Certain codes have the property that if the
channel is error-free over a limited span of time units, the effect of pasi errors
on the syndrome is automatically removed, thus halting error propagation. For
example, it will be shown in Section 13.7 that self-orthogonal codes possess this
property. Also, uniform codes, an orthogonalizable class of low-rate codes with
large majority-logic error-correcting capability (similar to maximum-length block
codes) introduced by Massey [34], have been shown by Sullivan [35] to possess an
automatic resynchronization property.

Error propagation can be completiely eliminated simply by not using feedback
in the decoder; that is, past estimates are not fed back to modify the syndrome.
This approach, first suggested by Robinson [36], is called definite decoding. Because
the effects of previously estimated error bits are not removed from the syndrome
in a definite decoder, however, these error bits can continue to influence future
decoding estimates, thus possibly causing decoding errors that would not be made
by a feedback decoder. On the other hand, error propagation due to erroneots
decoding estimates is eliminated in definite decoding. An analysis by Morrissey
[37] comparing the effect of error propagation with feedback to the reduced error-
correcting capability without feedback concludes that feedback decoders outperform
definite decoders unless the channel is very noisy.

664 Chapter 13 Suboptimum Decoding of Convolutional Codes

Systematic feedforward encoders are preferred over nonsystematic feedfor-
ward encoders for majority-logic decoding applications because, with systematic
encoders, orthogonal parity checks must be formed only on the information error
bits. With nonsystematic encoders, orthogonal checks must be formed on all the
error bits, and the estimated information sequence must be recovered from the
estimated codeword using an encoder inverse. This recovery process can cause
error amplification, as noted previously in Section 12.3. (Recall that for catastrophic
encoders, the lack of a feedforward encoder inverse results in an infinite error
amplification factor.) In addition, syndrome bits typically check more error bits for a
nonsystematic encoder than for a systematic encoder with the same memory order,
thus making it more difficult to find the same number of orthogonal parity checks.
For example, we can view the construction of orthogonal parity checks for rate
R = 1/2 nonsystematic feedforward encoders as being essentially equivalent to the
construction of orthogonal parity checks for rate R = 2/3 systematic feedforward
encoders.

As an illustration, consider the rate R = 2/3 systematic code of Example 13.12.
If the two generator polynomials are used instead to construct a rate R = 1/2
nonsystematic code, exactly the same procedure can be used to form sets of

= 4 orthogonal parity checks on the error bits 6(0) and e(()l). (The effective
decodmg length of the rate R = 1/2 nonsystematlc code is only np = 24 in
this case, compared with ng = 31 for the rate R = 2/3 systematic code.) It
follows that for a given memory order m, we can form the same number of
orthogonal parity checks on a rate R = 2/3 systematic code as on a rate R =
1/2 nonsystematic code, although the nonsystematic code will have a smaller
effective decoding length. Also, this nonsystematic, rate R = 1/2, J = 4 self-
orthogonal code has memory order m = 13 and effective decoding length np = 24,
whereas the systematic, rate R = 1/2, J = 4 self-orthogonal code of Example
13.10 has m = 6 and ng = 11. Thus, the systematic feedforward encoder results
in a more efficient realization of a rate R = 1/2 code with majority-logic error-
correcting capability tj7; = 2 than the nonsystematic feedforward encoder. In other
words, although nonsystematic feedforward encoders have larger free distances
than systematic feedforward encoders with the same memory order, this does
not imply that they have larger majority-logic error-correcting capabilities (see
Problem 13.23).

We now give an example showing that it is also possible to use systematic
feedback encoders in majority-logic decoding applications.

EXAMPLE 13.14 A Rate R = 1/2 Self-Orthogonal Code (Feedback Encoder)

Consider the (2,1,4) systematic feedback encoder with generator matrix
GD)=[1 (A+D%/A+D+D*+D*+D" |. (13.63)

The parity generator sequence of this encoder is given by g’ = (1100101001
010010- - -), where the 5-bit sequence (10010) repeats periodically after an initial 1.
This semi-infinite parity generator sequence results in the following semi-infinite
parity triangle:

Section 13.5 Majority-Logic Decoding 665

—>-1

0 1 1

o 0 1 1

—>1®®

01t 0 0 1 1

- 1 0 [1] o o [1] [1]

o 1 0 1 0 o6 1 1

6 0 1 0 1 0 0 11

10 0 1 0 1 0 011

61 6 0 1 0 1 0011

i 0 1 0 0 1 0 10011
61 0 1 6 6 1 010011
60 1 0 1 0 0 1010011
10 0 1 0 1 0 01010011
o 1 0 ¢ 1 0 1 001010011

We see that it is possible to form J = 4 orthogonal parity checks on the
information error bit eéo) and that the etfective decoding length is ny = 11. Because
each orthogonal check-sum is a single syndrome bit, the code is self-orthogonal.
This (2, 1, 4) self-orthogonal code with J = 4,1y, = 2, and ng = 11 is obtained with
a memory order m = 4 systematic feedback encoder. In Example 13.10, the same
parameters were obtained with an m = 6 systematic feedforward encoder. Thus, in
this case, a feedback encoder gives a more efficient realization of a self-orthogonal
code with majority-logic error-correcting capability 7377, = 2 than a feedforward
encoder. It is interesiing to note that if the preceding semi-infinite generator
seguence g”’ = (1100101001610010 - - -) 1s truncated after 7 bits, we obtain the same
finite sequence g = (1100101) used to generate the m = 6 self-orthogonal code in
Example 13.10.

For systematic codes with J orthogonal check-sums on each information
error bit, a generalized form of the majority-logic decoding rule can be applied
to DMCs and the unquantized AWGN channel. In these cases. the decoding rule
takes the form of estimating an error bit ¢; = 1 if and only if a weighted sum of
the orthogomal parity checks (formed, as on a BSC, from the hard-decision channel
outpuis) exceeds some (real-number) threshold. Thus, this generalized form of
majority-logic decoding is referred to as threshold decoding.

For an ungquantized AWGN channel, the (real-number) received sequence
r= (réo)rél) e r(g"‘l), rfo)rlm e r;"_l), réo)rél) _ ré”_l), .-+ corresponding to the
(normalized by ./E;) transmitter mapping 1 — +1 and 0 — —1 can be quantized
into a hard-cutput sequence by using the mapping r’ b 1if r[(’) > 0; otherwise,
r](‘/ ' — 0 (see Figure 13.26). Then, these hard-decision outputs can be used to form
the (binary) syndrome sequence s. Now, let {A; } represent a set of orthogonal check-
sums (syndrome biis or sums of syndrome bits) on an error bit ¢, i = 1,2,.--, J.

666 Chapter 13 Suboptimum Decoding of Convolutional Codes

Threshold decoding is designed to produce an estimate ¢; of the error bit ¢; such
that the a posteriori probability P(e; = ¢/|{4;}) is maximized. On a DMC, hard-
decision outputs and orthogonal check-sums are formed in an analogous manner.
For this reason, on DMCs or an unquantized AWGN channel, the term a posteriori
probability threshold decoding, or APP threshold decoding, is used to refer to the
generalized majority-logic decoding rule.

We now proceed to develop the APP threshold decoding rule for an unquan-
tized AWGN channel. First, we let p; be the probability that check-sum A; contains
an odd number of 1’s, excluding error bit ¢; , and we let ¢; = 1 — p;. (Clearly,
¢; is the probability that check-sum A; contains an even number of 1’s, excluding
error bit ¢;.) Then, if »n; is the number of error bits included in check-sum A;,
excluding error bit ¢;, we let ¢;; be the jth error bit in check-sum A;, r;; be the
corresponding soft received value, and y;; be the conditional probability that ¢;; = 1

givenr;;, j=1,2,---, n;. In other words,
vij = Pleij=1Urip), i=12,---,J, j=12,--,n. (13.64)
Assuming BPSK modulation, soft received values /Esrij, i =1,2,---,J, j =
1,2,---,n;, and an unquantized AWGN channel with one-sided noise power
spectral density Ny, we can show that (see Problem 13.24)
e Lelrijl

where L. = 4E;/Ny is the channel reliability factor. For DMCs, the APP threshold
decoding rule also quantizes the received sequence r into hard decisions and then
uses the channel transition probabilities to calculate the conditional probabilities y;;
in (13.64).

We now establish the relationship between p; and the y;;’s by making use of a

well-known result from discrete probability theory, expressed here as a lemma (see
Problem 13.25).

Lemma 131 Let {¢;} be a set of n independent binary random variables, let
yj = Ple; =1), j=1,2,--.,n, and let p be the probability that an odd
number of the e;’s are 1’s. Then,

1 n
p=5|1- [Ta-2v»|. (13.66)
j=1
Using (13.66) we can write
pi =3 1—ﬂ1(1—2y,;,-) . i=1,2.--] (13.67)
J=

Finally, we let pg = P(e; = 1|r;) (computed using (13.65)) and ¢9 = 1 — pg and
define the weighting factors w; = log(g;/pi), i =0,1,---, J. We can now state the
APP threshold decoding rule for an unquantized AWGN channel.

APP Threshold Decoding Rule (AWGN Channel) We define the threshold
T =3 (g<; <y, wi. and we choose the estimate &, = 1if and only if

La{UZi <

Section 13.5 Majority-Logic Decoding 667

J
> Aiw; > T/2. (13.68)
Note that if we choose all the weighting factors w; =1, i = 0,1, -, J, the
APP threshold decoding rule becomes
J
> A= +1)2, (13.69)
i=1

which is equivalent to the majority-logic decoding rule for the BSC. It is interesting to
note, however, that if we calculate the weighting facior using (13.64) and (13.67) for
a BSC with crossover probability p, the APP threshold decoding vule is equivalent
to the majority-logic decoding rule only if all J orthogonal check-sums inchide the
same number of error bits, that is, only if n; = ny = -+ - = 5y (see Problem 13.26).

TurorEM 13.2 The APP threshold decoding rule maximizes the APP value
Ple; = ¢;|{A;) of error bit ¢;.

Proof. Using Bayes’ rule, we can express the APP value P(e; = ¢|{A;}) of
error bit ¢; as
. . Ple=¢ép)
-) = ey = &) —t — 1 3.70)
Ple = el{Ai}) = P({Ai}les = ep) PUAY (13.70)
where P({Aj}le; = é) represents the joint probability of the J check-sum
values, given that ¢; = ¢;. A decoding rule that maximizes the APP value will
therefore choose ¢; = 1 if and only if

P({AiYleg =D P(e=1) = P({Ai}les = 0)Pe = 0). (13.71)

Now, note that the check-sums A;, i = 1,2, .-, J, given a particular value of
the error bii ¢/, are independent random variables. This observation follows
from the orthogonality property of the check-sums. Hence, we can write

J
P{AMer =) =] | P(4iler = &), (13.72)
i=1
and a decoding rule that maximizes the APP value will choose ¢ = 1 if and
only if
J J
Pleg=D]]PAle =12 Pler=0]]PAly =0 (13.73)
i=1 =1
Taking logs of both sides and rearranging terms, we can rewrite (13.73) as
J
P(Ajlee=1) P(ep =0)
lo >log———. 13.74
Z EPAile=0) ~ B P =1 (13.74)
Next, we note that
P(A,’ = 016[= 0) = P(A,‘ = 1{61 = 1) = (13.753)

and
P(A; = 1leg =0) = P(4; =0lgg = 1) = p;. (13.75b)

668 Chapter 13 Suboptimum Decoding of Convolutional Codes

We can now write inequality (13.74} as

J
S -24)log 2 > 10g 2. (13.76)
1 4i Po
Hence, a decoding rule that maximizes the APP value will choose ¢; = 1 if and
only if
-2 Z A;log P > — Z log &, (13.77a)
i=1 4 = @
J . 1 J .
S Alog L= 23 10g L (13.77b)
, pi 24 Di
i=1 i=0
or
J
> Anw; = T)2. (13.77¢)
i=1
Q.E.ID.

It is interesting to compare the APP threshold decoding rule with the MAP
decoding algorithm developed in Section 12.6. In APP threshold decoding, the a
posteriori probability of an error bit ¢; is maximized given the values of a set of J
orthogonal check-sums on ¢;, whereas in MAP decoding the a posteriori probability
of an information bit «; is maximized given the entire received sequence r. Thus,
each decision made by a MAP decoder is optimum, since it is based on the entire
received sequence, whereas APP threshold decoding is suboptimum, because each
decision is based on only a portion of the received sequence. Also, APP threshold
decoding produces its estimates of the information bits indirectly by first estimating
whether a hard-decision received bit was “correct’” or ““incorrect,” whereas MAP
decoding directly estimates the information bits based on their APP values. The
APP threshold decoding rule is considerably simpler to implement than the MAP
decoding algorithm, however.

To implement the APP threshold decoding rule for an unquantized AWGN
channel, hard decisions must be made on the received symbols to compute the
syndrome and the orthogonal check-sums as described earlier in this section. The
soft received symbols must also be fed into a computation module, where, using
(13.65) and (13.67), the weighting factors w;, i = 0,1, ---, J,and the threshold T are
computed for each information error bit ef" ' t0 be estimated, I = 0,1,2, -+, j=
0,1,---,k — 1. (Note that using (13.65) requires that the receiver maintain an
estimate of the channel SNR E,/Ng, just as in MAP decoding.) Because the
threshold T is, in general, different for each error bit to be estimated, decisions are
made by comparing the (variable) weighted statistic) ;<) Ajw; — T /2 with the

fixed value 0; that is, we choose the estimate e,(j)~ 1ifand only if

J
> Aw —T/2>0. (13.78)
i=1
A block diagram of an APP threshold decoder for the (2, 1, 6) self-orthogonal code
of Example 13.10 and an unguantized AWGN channel is shown in Figure 13.26.

D o

Hard quantizer
[})
It

[oTURYY NOAY UR pUE

e e OO -0
|

Weighting
factor
computation

=

g

N

9p09 1eUOFOY1IO-][3S (9 ‘T *7) € 10] I9pordp PIoysaryl JJVv 219[dwor) 1971 3¥NDId

/ \‘" ! ,
" I Oy ®_>D_>DT{+L)“>EL‘>D“>DT@>DQI
|

Hard quantizer ‘
l E
A ki

!
< ZirenAe = T2

{3](”)

uoie

€

i

Threshold gate

Buiporag dibo-Asoleln

699

670 Chapter 13 Suboptimum Decoding of Convolutional Codes
13.6 PERFORMANCE CHARACTERISTICS OF MAJORITY-LOGIC DECODING

T
I

1

Sectior

the minimum distance of a convolutional code was defined as

W

11
11.

"

dmin = mi[ﬁ"] AV T, [1) [0 # [u"To}
ZIn} Hi (13‘79)
= r[n]in{w[v]m tug # 0,
u 0t

where v, v, and v are the codewords corresponding to the information sequences
u, Hﬂ/, and EH”, respectively. Note that in the computation of dy,;,, only the first (m + 1)
time units are considered, and only codewords that differ in the first information
block are compared. Now, consider a BSC with received sequence r and define a
feedback decoder as one that produces an estimate @iy = ug of the first information
block if and only if the codeword v = uG minimizes d([t]x, [v]n), where wy is the
first block in the information sequence w. The following theorem demonstrates that
the minimum distance of a convolutional code guarantees a certain error-correcting
capability for a feedback decoder.

TreorEM 13.3 For an (n, k, m) convolutional code with minimum distance
dmin, By 18 correctly decoded by a feedback decoder if | (dinin, — 1)/2] or fewer
channel errors occur in the first (m + 1) blocks [r],, of the received sequence.

Proof. Assume that the codeword v corresponding to the information
sequence t is transmitted over a BSC and thatr = v + e is received. Then,

d([ﬂ']nh [V]m) = w({}r]m - [W]m) = w([@]m)- (1380)

Now, let v’ be a codeword corresponding to an information sequence u with
u;) # wo. Then, the triangle inequality yields
d(thn, [V 1) = d(¥ln, [V) = d (2, [V]0)
= d([V]m’ [V/]m) - w([@]m) (1381)
> dmin — w([@]m)-

By assumption, the number of channel errors w([e]n) < (dpmin — 1)/2 and
hence,

4 dmin +1 dmin -1

d([]r]m’ [‘y]IH) 2 2 > 2 2 d([E]HT? [V]Hl)’ (13'82)

Therefore, no codeword v with 1111;) # my can be closer to r over the first
(m + 1) time units than the transmitted codeword v, and a feedback decoder
will correctly decode the first information block ug. (Note that the codeword,
say v , that minimizes d ([r]m, [W/]m) may not equal v, but it must agree with v
in the first block.) Q.E.D.

see that a feedback decoder that finds the codeword that

guence r over the firet (3 L 1) ﬁnf\p unite and then
GUCHCC ¥ OVOI 14C sl Un -+ 1, UINC ULLS, and wach

Section 13.6 Performance Characteristics of Majority-Logic Decoding 671

chooses the first information block in this codeword as its estimate of wp, guarantees
correci decoding of ug if there are [(dpin — 1)/2] or fewer channel errors in the
first (m + 1) blocks of r. Theorem 13.3 also has a converse; that is, a feedback
decoder that correctly estimates ug from [}, whenever [r}, contains | (dyun — 1)/2]
or fewer channel errors cannot correcily estimate wg from [r], for all [r],, containing
[{(dpin — 1)/2] + 1 channel errors. In other words, there is at least one received
sequence containing | (d, —1)/2] + 1 errors in iis first (m + 1) blocks that will result
in incorrect decoding of ug (see Problem 13.27). Hence, irp 2 | (dmin — 1) /2] is called
the feedfmd’: decoding error-correcting capability of a code. If the decoding decisions
at are fed back do not cause any postdecoding errors, the same errcr-correcting
amiwy applies to the decoding of each successive information block w based on
JL (m + 1) veceived blocks (v, t741, -+, Bl)-

Any feedback decoder that bases its estimate of wy on only the first (m + 1)
blocks of the received sequence thus has feedback decoding error-correcting capa-
bility ipp = [{dnin — 1)/2]. In the case of a feedback majority-logic decoder, since

the J orthogonal parity checks guavantee correct decoding of wg whenever [r]y,
contains fy;; = | J/2] or fewer channel errors, it follows that

n f,\

M

J < dpin — 1. (13.83)

If dypi — 1 orthogonal parity checks can be formed on each information error bit,
then the code is said to be completely orthogonalizable; that is, the feedback decod-
ing error-correcting capability can be achieved with majority-logic decoding (see
Example 13.15 and Probleim 13.30). If the code is not completely orthogonalizable,
however, majority-logic decoding cannoi achieve the feedback decoding error-
correcting capability (see Example 13.16 and Problem 13.31). Hence, it is desirable
when using majority-logic decoding to select codes that are completely orthogo-
nalizable. This restricts the choice of codes that can be used with majority-logic
decoding, since most codes are not completely orthogonalizable; however, as will be
seen in Section 13.7, several classes of completely orthogonalizable convolutional
codes have befm fouqd

sequemml d@mdmgw since »hese demdmg methods process the cnme lecewed
sequence r before making a final decision on wg.” The longer decoding delay of these
decoding methods is one reason for their superior performance when compared
with majority-logic decoding; however, majority-logic decoders are much simpler to
implement, since they must store only (m + 1) blocks of the received sequence at
any fime.

The minimum distance of a convolutional code can be found by computing
the CDF d; and then letting i = m (since dypin = dy). A more direct way of finding
dinin makes use of the parity-check matrix H. Because v is a codeword if and only
if vEIX = 0, the minimum number of rows of H7, or columns of H, that add to 0
corresponds to the minimum-weight nonzero codeword. Because dy;, is the weight
of the codeword with ug # 0 that has minimum weight over its first (im + 1) blocks,
it can be computed by finding the minimum number of rows of HY, or columns of

7Even a truncated Viterbi decoder, or a backsearch-limited sequential decoder, must process at least
4m or 5Sm blocks of the received sequence before making any final decisions.

672 Chapter 13 Suboptimum Decoding of Convolutional Codes

H, including at least one of the first k, that add to 0 over the first im + 1) time units.
In other words, we must find the minimum-weight codeword [v],, with wy # 0 for
which [v],,[H’],, = 0, where [H”], includes only the first (m -+ 1)(n — k) columns of
H”. This is equivalent to forming the first (m + 1)(n — k) rows of H and then finding
the minimum number of columns of this matrix, including at least one of the first &
columns, that add to 0.

EXAMPLE 13.15 Finding dpmi, Using the H Matrix

Consider the (2, 1, 6) systematic code of Example 13.10. The first (m + 1)(n — k) =
(7y(1) = 7 rows of H are

11
101 1
001011
H],=[Hs=| 00 00 1 0 1 1 (13.84)
1000001011
0010000O0CT1O0T11
1000100000101 1]

The minimum distance d,;;, is the minimum number of columns of this matrix,
including the first column, that add to zero. Because J = 4 orthogonal check-sums
can be found for this code, we know that d,;;;, > J +1 = 5. But columns 1, 2, 4, 10,
and 14 add to zero, implying that d,;;, < 5. Hence, dii, must equal 5 for this code,
and the code is compiletely orthogonalizable. The minimum-weight codeword with

ug # @ in this case is given by

[v]n = (11,01,00,00,01,00,01).

We can also obtain d,;, by finding the minimum-weight linear combination of rows
of the generator matrix [G],, that includes at least one of the first k rows, that is, the
codeword with uy # 0 that has minimum weight over the first (m + 1) time units.

EXAMPLE 13.16 Finding dmin Using the G Matrix
Consider the (2, 1, 5) systematic code with g(l)(D) =14 D + D3+ D°. Then,

1101000710001
1101000100
11010001

(Gl =[G)s = 110100 (13.85)
1101
11 |

There are several information sequences with 1y = 1 that produce codewords of

weight 5. For example, the information sequence [u],, = (11100 0) produces the
n

codeword [v],, = (11, 10, 10, 00, 01, 00); however, there are no linear combinations

Section 13.6 Performance Characteristics of Majority-Logic Decoding 673

of rows of [G],, including the first row that have weight 4. Hence, dys = 5 for this
code. The parity triangle is given by

e i S o UGS
[R s R W
—_ D e e

O =

N

The maximum number of orthogonal check-sums that can be formed in this case is
J = 3. For example, {sq, 51, 53} and {sg, s2 + 53. 55} are both seis of J = 3 orthogonal
check-sums on eéo). Thus, since J = 3 < dyuy — 1 = 4, this code is not completely
orthogonalizable; that is, its feedback decoding error-correciing capability is 2, but
its majority-logic erroi-correcting capability is only 1.

Examples 13.14 and 13.15 both consider systematic feedforward encoders. It
was shown in Section 11.1 that any (n, k, m) nonsystematic feedforward encoder,
by means of a linear transformation on the rows of its generator mairix, can be
converted to an equivalent (7, k, m') systematic feedback encoder. (Note that for
k > 1, m' may be different from m.) Truncating the (in general, semi-infinite)
generator sequences of the systematic feedback encoder to length m + 1 then resulis
in an (n, k, m) systematic feedforward encoder with the same value of dy; as the
original nonsystematic feedforward encoder. Hence, the feedback decoding error-
correcting capability cannot be improved by considering nonsystematic feedforward
encoders. This result implies that in the selection of encoders with memory order i
and large dp;, for possible use with majority-logic decoding, it suffices to consider
only systematic feedforward encoders. The situation is markedly different for dj.,
where nonsystematic feedforward encoders offer substantially larger values of dp,,
than systematic feedforward encoders with the same constraint length v, as was
noted previously in Sections 11.3 and 12.3. This advantage in dj. of nonsystematic
feedforward encoders (or equivalent systematic feedback encoders) compared with
systematic feedforward encoders with the same value of v accounts for their almosi
exclusive use in applications involving Viterbi or BCJR decoding, where decoding
complexity increases exponentially with v.

EXAMPLE 13.14 (Continued)

Consider the (2, 1, 4) systematic feedback encoder of Example 13.14 and its
equivalent (2, 1, 4) nonsystematic feedforward encoder with G(D) = [1 + D +
D?+ D>+ D* 14 D*). Then, for the nonsystematic encoder,

11 10 10 10 11
11 10 10 10

[Gls = 11 10 10 |, (13.86)
11 10
11

674 Chapter 13 Suboptimum Decoding of Convolutional Codes

and dyin 1s the minimum-weight linear combination of rows of [G]s that includes
the first row. Clearly, the sum of rows 1 and 2 is a weight-4 co‘deword, and dpiy = 4
for this code. Now, consider the semi-infinite generator matrix

11 01 00 00 01 00 01
11 01 00 00 01 00 O1
G= 11 01 00 00 01 00 01 -.. (13.87)

of the systematic feedback encoder. Truncating the semi-infinite generator sequence
g = (11001010010 - --) to length m + 1 = 5, we obtain a systematic feedforward
encoder with generator matrix G (D) = [I 1+ D + D%}, and

11 01 00 00 01
11 01 00 00

[G']s = 11 01 00 |. (13.88)
11 01
11

The minimum distance d,, of this code is the minimum-weight linear combination
of rows of [G']4 that includes the first row. In this case, row 1 by itsell is a
weight-4 codeword, and d/ = 4 = dy;,. Hence, the systematic feedforward
encoder with generator matrix G (D) has the same minimum distance as the original
nonsystematic feedforward encoder with generator matrix G (D). The free distance
of the nonsystematic encoder is 6, however, whercas the free distance of the
systematic encoder is only 4.

The performance of an (n, k, m) convolutional code with majority-logic decod-
ing on a BSC can be estimated from the distance properties of the code. First, for
a feedback decoder with error-correcting capability 1rp = | (dpun — 1)/2], it follows
from Theorem 13.3 that a decoding error can occur in estimating wy only if more
than rpp channel errors occur in the first (m + 1) blocks of the received sequence.
Hence, recalling that the total number of channel error bits that appear in the
syndrome equations (13.59) is the actual decoding length ns = n(m + 1), we see
that the bit-error probability in decoding the first information block, P, (E), can be
upper bounded by

1 - na i na—i
Ppi(E) = Z Z (;)p 1 —p)y, (13.89)
i=trp+1

where p is the channel transition probability. For small p, this bound is dominated
by its first term, so that

. — 1 / na \ fondl o s —tpn—1 1 / na \ fon 11 PR
Pou(B)~ |, g P A T e 0 A e (13.90)
" \ Py Ll / n \ D /

Section 13.6 Performance Characteristics of Majority-Logic Decoding 675

For a majority-logic decoder with error-correcting capability 1y = |J/2] and
effective decoding length ng, an analogous argument yields

1 ne
2y o () pa- e (1391)
¢ i=tpyr+1 \
and {
nE i+l
Ey~ — MLTS 13.92)
P~ ("5)y (1392)

These results strictly apply only to decoding the first information block;
however, if each estimated information error block & is subtracted from the
syndrome equations it affects, and if these estimates are correct, the modified
syndrome equations used to estimate e, are identical to those used to estimate ey,
except that different error bits are checked. This point was illusirated in Section 13.5
in connection with Example 13.10. Hence, for a feedback decoder, the bit-error
probability in decoding any information block, PL(£), equals Py (E), assuming that
previous estimates have been correct. Under this assumption, a feedback decoder
has bii-error probability upper bounded by

4

Lo~ (nay na—i
Py(E) =7 2 (; /;)p (I—=pym, (13.93)
i=trg+1
and, for small p, approximated by
1 HA 4
PyEY~ Lt 13.94
b(E) i<<fFB+I)Z) ()

Similarly, for a majority-logic decoder that uses feedback to modify the syndrome

equations,
i

1 £))
Py(E) < = 7 (”-E)p’(l—m””" (13.95)
k ?
i=typ+1
and)
ng twr+1
Pr(E) ~ — ML .
»(E) p (—)p (13.96)

As noted in Section 13.5, if previous decoding estimates are not all correct,
postdecoding errors can appear in the modified syndrome equations, thereby causing
error propagation and degrading the performance of the decoder. If the channel
transition probability p is not too large, however, and if the code contains good
resynchronization properties, such as the self-orthogonal codes to be discussed in
the next section, the effect on bit-error probability is small, and (13.93) through
(13.96) remain valid [37]. Finally, for the same code, soft-decision APP threshold
decoding will generally perform about 2 dB better than hard-decision majority-logic
decoding.

We now do a rudimentary comparison of majority-logic decoding and Viterbi
decoding on the basis of their performance, decoding speed, decoding delay, and
implementation complexity.

676 Chapter 13 Suboptimum Decoding of Convolutional Codes

Performance. Viterbi decoding is an optimum decoding procedure for
convolutional codes, and its bit-error probability on the BSC was shown in (12.36)
to be approximated by

Py(E) ~ Cye~ Rjree/2(En/No) (13.97)

when Ep, /Ny is large, where Cy is a constant associated with the code structure. For
a (suboptimum) feedback decoder, it was shown previously that for a BSC,

~ 1 A trp+1
Py(E) ~ % (trp + 1) P (13.98)
for small p. Using the approximation (see (12.33) and (12.35))
p = temEpRINg (13.99)
we obtain
1 nA LN er 1/
Py(E) ~ = (> (_> e EvRUrp+1)/Ng
k\ trp+1 /2 (13.100)

s CFBefR(dmm/Z)(Eh/No)
when E /Ny is large, where Crp is a constant associated with the code structure. If
the code is completely orthogonalizable, (13.100) also represents the performance
of majority-logic decoding. The approximations of (13.97) and (13.100) differ in
that P,(E) decreases exponentially with dg,, for Viterbi decoding, whereas P,(E)
decreases exponentially with dy,;, for feedback (majority-logic) decoding. Because
for most codes

dmm = dm < lim d[= dfme, (13.101)

=00

the asymptotic performance of feedback (majority-logic) decoding is inferior to that
of Viterbi decoding, since a Viterbi decoder delays making decisions until the entire
received sequence is processed or, in the case of a truncated decoder, until at least
4m or 5m blocks are received. It thus bases its decisions on the total (or free) distance
between sequences. A feedback (majority-logic) decoder, on the other hand, bases
its decisions on the minimum distance over only (m + 1) time units.

Random coding bounds indicate that for a given rate and memory order,
the free distance of the best nonsystematic feedforward encoders (or systematic
feedback encoders) is about twice the minimum distance of the best systematic
feedforward encoders [38]. (Recall that nonsystematic encoders cannot achieve
larger values of d,;,, than systematic encoders, however.) This gives Viterbi decoding
a roughly 3-dB advantage in performance over feedback decoding for the same rate
and memory order. In other words, the memory order for feedback decoding
must be about twice that for Viterbi decoding to achieve comparable performance.
If majority-logic decoding is being used, an even longer memory order must
be employed. This is because optimum minimum distance codes are usually not
completely orthogonalizable; that is, to achieve a given dy;, for a completely
orthogonalizable code requires a longer memory order than would otherwise

be necessary. If the code must be self-orthogonal (say, to pmfPPf against error
> st s Asrosas e 1~ ho oot wanta
propagation), the memory order must be longer yet. For cxamplc. the best rate

Section 13.7 Code Construction for Majority-Logic Decoding 677

R = 1/2 self-orthogonal code with dy;, = 7 has memory order m = 17, the
best R = 1/2 orthogonalizable code with dy, = 7 has memory order m = 11, the
best R = 1/2 systematic code wiih dy;, = 7 has memory order m = 10, and the best
R = 1/2 nonsystematic code with dye, = 7 has memory order m = 4.

-

Decoding Speed. A Viierbi decoder requires 2V computations (ACS oper-
ations) per decoded information bit, whereas a majority-logic decoder requires
on]v one compiliation (majority gate decision) per decoded bit. Although the
red (o perform a computation is somewhat different in each case, this
comparison indicaies that majority-logic decoders are capable of much higher
speed operation than Viterbi decoders. (As noted in Chapter 12, the speed of
Viterbi decoding can be increased by a factor of 2Y, making it attractive for high-
speed applications, by using a parallel implementation. This greaily increases the
implementation complexity of the decoder, however.)

gui i

7o
Yep

i)

Delay. A majority-logic decoder has a decoding d@la‘y of m time
umis; hat is, bits received at time unit [are decoded ai time unit / 4 m. Viterbi
decoding, on other hand, has a decoding delay equal to the entire frame length
h 4 m; that is, no decoding decisions are made until all 7 + m encoded blocks have
been i‘ecew@d. Because typically i >> m, the decoding delay is substantial in these

cases.® (If trancated Viterbi decoding is used, the decoding delay is reduced to 4m
or 5m time units, with a minor penalty in performance.)

e
o
Tat
Di
E

Tmplementation Complexity. Majority-logic decoders are simpler to imple-
meni than Viterbi decoders. Besides a replica of the encoder and a buifer regisier for
storing the received information bits, all that is needed is a syndrome regisier, some
modulo-2 adders (EXCLUSIVE-OR gates). and k& majority gates. These relatively
modest implementation requirements make majority-logic decoding particularly
attractive in low-cost applications; however, if large minimum distances are needed
to achieve high reliabilities at low SNRs, very large memory orders are required, and
the implemeniation complexity and decoding delay increases. In these cases, Viterbi
decoding provides a more efficient trade-off between performance and complexity.

Finally, we saw in Chapter 12 that Viterbi decoders can easily be adapted to
take advaniage of soft demodulator decisions. Soft-decision majority-logic decoders
have also been developed, but at a considerable increase in implementation com-
plexity. Massey’s [6] APP decoding, discussed in the previous section, and Rudolph’s
139] generalized majority-logic decoding are examples of such schemes.

13.7 CODE CONSTRUCTION FOR MAJORITY-LOGIC DECODING

In this section we discuss two classes of completely orthogonalizable codes for use
with majority-logic decoding: self-orthogonal codes and orthogenalizable codes.

SRecall that for any convolutional code, when data is sent in frames, an additional m time units of
“known” input bits must be fed into the encoder and the resulting encoder outputs transmitted over the
channel to allow proper decoding of the last m blocks of information bits. Thus, when m is large, short
data frames result in considerable rate loss. In the case of Viterbi decoding, the “known” bits are used to
drive the encoder back to the all-zero state. In majority-logic decoding, the “known’ bits are arbitrary.
and knowledge of these bits can be used by the decoder to improve the reliability of the last m blocks of
information bits.

13.7.1

678 Chapter 13 Suboptimum Decoding of Convolutionai Codes

The resynchronization properties of cach of these classes when used with feedback
decoding is also discussed.

Self-Orthogonal Codes

An (n, k, m) code is said to be self-orthogonal if, for each information error bit in
block wuy, the set of all syndrome bits that check it forms an orthogonal check-set
on that bit. In other words, sums of syndrome are not used to form orthogonal
check-sets in a self-orthogonal code.

Self-orthogonal codes were first constructed by Massey [6]. A more efficient
construction, based on the notion of difference sets, was introduced by Robinson
and Bernstein [40]. The positive difference set A associated with a set of nonnegative
integers {I1,0y,--- , 17}, where l{ <l < --- < lj,is defined as the set of J(J — 1)/2
positive differences I, — I,, where I;, > [,. A positive difference set A is said to be
full if all the differences in A are distinct, and two positive difference sets A; and
A are said to be disjoint if they do not contain any differences in common. Now,
consider an (n,n — 1, m) systematic convolutional code with generator polynomials

(n—1) . (n—1) (n-1) n-1)) s
g (D) =g/ 08 D+ ey, PV =01 ,n=2 (13.102)

(n—1) -1 n—1) be

where the memory order m = max(o<;<y-2) V;+1. Let &1 &j1hy ngJM

the nonzero components of g(/.’rll)(D),where li<b<-<ly, j=01,,n-2,

and let A; be the positive difference set associated with the set of integers of
oy 1) The following theorem forms the basis for the construction of
self-orthogonal convolutional codes.

TreoreEM 13.4 An (n,n — 1,m) systematic code is self-orthogonal if and
only if the positive difference sets Ag, Aq, - -+, A,_3 associated with the code
generator polynomials are full and mutually disjoint.

Proaof. The proof of this theorem consists of two parts.

First, assume the code is self-orthogonal, and suppose that a positive
difference set A; exists that is not full. Then, at least two differences in A ; are
equal, say I — I, = ly — I, where [, > [, and l; > I.. Using (13.57), we can
write the syndrome sequence as

n—=2
S(n—l)(D) — Z e(k)(D)g]((’i;ll) (D) + @(”*D(D), (13.103)
k=0

which we also can express as
n—-2
"Dy = V(D)3 (D) +) M (Dygl V(D) + TN (D)
2
n=2
= (D" + D"+ D" D)+ M (D)gl" V(D) + e V(D).

k=0
k#j

—
—
[¥S]
i_\
[l

Y

S’

Section 13.7 Code Construction for Majority-Logic Decoding 679

Because Iy, Iy, I, and Iy all belong to the set {Iy, 1, .-+ .1y}, the syndrome
bits an_l), sl(:ﬁl), sf””l) and s(" D a1l check the information error bit eé’)j) In
particular, _

sV = e + ¢, + other terms (13.1052)
and

sl(zzfl) = e(()’) + em, + other terms. (12.105b)
Because [, — I, = Iy — I, ¢, = ¢Y) | and the set of syndrome biis that

Ih—1y] li—I, y

check the information error bit e(() 7 is not orthogonal, thus contradicting the
assumption that the code is self-orthogonal.

Now, suppose that two difference sets A; and A; exist that are not
disjoint. Then, they must have at least one difference in common. Let [, —
and f; — f. be the common difference in A; and A;, respectively. Then,
Iy —l, = f4— f., and we can write the syndrome sequence as

" (D) = e (D)gf} V(D) + eV (D)g V(D)

8iv1
n—2
+ 3 WDl V(D) + V(D)
k=0
ki, j

- (DZI—FDIZ +---—{—D["i)@(i)(D)+ (Dfx) VERTTUNS D-f"/)@(-/)(D)

.
+ 5 e Dygl V(D) +e" D (D). (13.106)

k=0

k#i,
Assume, without loss of generality, that/, > fy. Then,l, > f., and since [, and
I, belong to set I, Iy, - - - , Iy, the syndrome bits 31(1271) and sl(:_l) both check

the information error bit eg); that is,

s,(:_l) = e(()’) + e(’) 4 + other terms (13.107a)
and
S[(/” D= el e(’) s, + other terms. {13.107b)

Butl, — 1, = fy — f. implies that l, — fy =1, — f¢. and hence el({,jlfl- = e](/]l ‘)

Therefore, the set of syndrome bits that check the information error bit eg’
is not orthogonal, which again contradicts the assumption that the code is
self-orthogonal. We conclude that all n — 1 positive difference sets must be full
and disjoint.

Second, assume that the positive difference sets Ag, Ay, -~ , A,_p are
full and disjoint, and suppose that the code is not self-orthogonal. Then, there
must exist at least one pair of syndrome bits for which

sl(:_]) = g(()1> + e”) . + other terms (13.108a)

680 Chapter 13 Suboptimum Decoding of Convolutionai Codes

and
S;:—D = eé’) 4 e[(/’) s, T other terms, (13.108b)

where [, — f. =1, — fu. If i = j, the difference [, — f, and [, — f; are both
in A;, and hence A; cannot be full. This contradicts the assumption that A; is
full. If i # j, then the difference [, — [, is in A;, and the difference f; — f.
isin A;. Because I, — f. = I, — fy implies that [, — I, = f; — f., in this case
the positive difference sets A; and A; cannot be disjoint. This contradicts the
assumption that A; and A; are disjoint. We conclude that the code must be
self-orthogonal. Q.E.D.

Because each of the J; nonzero components of the generator polynomial

gi.”HD(D) is used to form one of a set of orthogonal check-sums on em J;

orthogonal check-sums are formed on eo’)1 Ji=J,j=0,1,---,n—2,theneach
generator polynomial has the same weight J, and J orthogonal parity checks are
formed on each information error bit. Therefore, if u® (D) = 1 andu® (D) = ... =
u” V(D) = 0, the codeword v(D) = [1,0,0,--- .0, g(” D(D)] has weight J + 1,
and d,;;i; < J + 1. On the other hand, d,,;;;, > J + 1, since otherwise the majority-
logic error-correcting capability 731 = | J/2] would exceed the feedback decoding
correcting-capability r = | (dy, — 1)/2], which is impossible. Hence, di, = J + 1,
and the (n, n — 1, m) self-orthogonal code is completely orthogonalizable. If the J;’s
are unequal, it can also be shown that dy,;, = J + 1, where J £ ming< ;<2 J; (see
Problem 13.33). Hence, in this case also, the code is completely orthogonalizable.

Robinson and Bernstein [40] have developed a procedure based on Theo-
rem 13.4 for constructing (n, n — 1, m) self-orthogonal convolutional codes. Each of
thesccodeshas J;, = J =dyin—1, j =0,1,---, n—2,and error-correcting capabil-
ity tyr, = |J/2) = tpp = [(dmin — 1)/2]. A list of these codes forn =2,3,4, and 5
and various Values of ryr and m is given in Table 13.2. In the table, each generator
polynomial g)(D) is identified by the set of integers /1, [, - -+, [, that specifies
the positions of its nonzero components. (Note that, in this case, the octal notation
used in previous tables to specify polynomials would be quite cumbersome, since
the polynomials are sparse, and m can be very large.)

EXAMPLE 13.17 Difference Set Construction of a Rate R =1/2 Self-
Orthogonal Code

Consider the (2,1, 6) self-orthogonal code from Table 13.2(a) whose generator
polynomial g'D(D) is identified by the set of integers {0, 2, 5, 6}; that is, gV (D) =
14D+ /D5 + DS, This code has J = 4 and will correctly estimate the information
error bit eO) whenever the first n A = n{m + 1) = 14 received bits (more precisely,
the ng = 11 received bits checked by the J = 4 orthogonal check-sums) contain
trg =ty = |J/2] = 2 or fewer errors. The positive difference set associated with
this generator polynomial is A = {2, 5, 6, 3, 4, 1}. Because this positive difference set
contains all positive integers from 1 to J(J — 1)/2 = 6, it follows that the memory
order m = 6 of this code is as small as possible” for any rate R = 1/2 self-orthogonal
code with 13, = 2. (Note that the (2, 1, 6) self-orthogonal code of Example 13.10,
whose generator polynomial is the reciprocal of the generator polynomial in this

Q o .
YFor feedback encoders, however, a smaller memeory order is

y ossible, as shown in Example 13.14

pie 1214

Section 13.7

=

Code Construction Tor Majority-Logic Decoding 68

TABLE 13.2: Seif-orthogonal codes.

@

i m g
1 110,
2 6 {0, 2 5 6)
3 17 {0,2,7,13.16,17)
4 35 {0,7,10,16,18,30.31,35}
5 55 {0,2,14,21,29,32,45,49,54,55}
6 85 {0,2,6,24,29,40,43,55,68,75,76 .85}
7 127 {0,5,28.38,41,49,50,68,75.92,107,121,123,127}
8 179 {0.6,19.40,58,67,78,83,109,132,133,162,165,169,177,179}
9 216 {0,2,10,22.53,56,82,83.89,98,130,148,152,167,188,192,205,216}
10 283 {0,24,30,43,55,71,75,89,104,125,127.162.,167,189,206,215,272 275,282 283}
11 358 {0,3,16,45,50.51,65,104,125,142,182,206,210.218.228,237,289,300.326,333,356,358}
12 425 {0,22,41,57,72,93,99,139,147,153,197,200,214.253.263,265.276,283,308.367,368,372,396,425}
(a) R =1/2 CODES
tyr m %f) g¢22>
1 2 {0,2}
13 00912} {0,6,11,13}
40 {0,2,6,24,29.40} {0,3,15,28,35,36}
{0,18,23,37,58,62,75,86}

130
195
288

0,1.6,35,32,72,100,108,120,130}
0,17,46,50.52,66,88.125,150,165,168,195}

{0,
2 {
3 {
4 86 {0.1,27,30,61.73,81,83}
5 {
6 {
7 {0,2,7,42,45,117.163,185,195.216.229,246,255 279}

{0,23,39,57,60,74,101,103,112,116}

{0,26,34,47,57,58,112,121,140,181.188,193}

{0,8,12,27.28.,64,113,131,154.160,208,219,
233,288}

(b)R =2/3 CODES

(3)

3)

(3)

7 m g 8 g5
1 3 {0.1} {0.2 {0,3}
2 19 {0,3.15,19} {0.8, 17 18} {0.,6,11,13}
3 67 {0.5,15,34,35.,42} {0,31,33,44.47 .56} {0,17.21,43,49,67}
4 129 {0,9,33,37,38,97,122,129} {0,11,13,23,62,76,79,123} {0.19,35,50,71.,77.117,125}
5 202 {0,7,27,76.113.137,155.156, {0.8,38.48,59,82,111,146, {0.12,25,26.76.81,98.107.
170,202} 150,152} 143,197}
(c) R =3/4 CODES
4 4 4 4
3743 m g% : gg ! g§) i« !
1 4 {01} {0.2} {0.3} {0,4}
2 26 {0,16,20.21} {0.2,10.15} {0,14.17.26} {0,11,18.24}
3 78 {0,5,26,51,55,69} {0,6,7.41,60,72} {0.8,11,24.44,78} {0,10,32,47,49,77}
4 178 {0,19,59.68.85.88, {0,39,87,117.138.148, {0.2,13,25,96,118, {0,7,65,70,97.98,
103,141} 154.162} 168,172} 144,178}

(d) R = 4/5 CODES

Adapted from [40].

682 Chapter 13 Suboptimum Decoding of Convolutional Codes

example, also has J = 4 orthogonal parity checks and 7y, = 2. This illustrates
that mkmo the reclpromﬂ of a generator no’lvnomm] does not (‘h/mw its associated

positive difference set.)

EXAMPLE 13.18 Difference Set Construction of a Rate R =2/3 Self-
Orthogonal Code

Consider the (3,2, 13) self-orthogonal code from Table 13.2(b) whose generator
polynomials giz) (D) and géz) (D) are identified by the sets of integers {0, 8, 9, 12} and
{0, 6, 11, 13}, respectively. This code was previously shown to be self-orthogonal with
J = 4 in Example 13.12. The positive difference sets associated with gu) (D) and

F)(D) are Ag = {8,9,12,1,4,3} and Ay = {6,11,13,5,7, 2}, respectively. These
positive difference sets are full and disjoint, as required by Theorem 13.4 for any
self-orthogonal code.

We can obtain a self-orthogonal (n, 1, m) code from a self-orthogonal (n, n —
1,m) code in the following way. Consider an (n,n — 1, m) self-orthogonal code

with generator polynomials g(’l 2 gé” b .. ,gli” 11) and let J; be the weight of
(/';11)(0) j = 0,1,--- ,n — 2. Then, we obtain an (n, 1,m) code with generator

polynomials h® (D), ERQ)(D), -, h®*=D(D) from this (n,n — 1, m) self-orthogonal
code by setting

nt (D) =g VD). j=0.1,-- n-2. (13.109)

Because the positive difference sets associated with the generator polynomials

g VD), j =01, ,n =2, of the (n,n — 1,m) self-orthogonal code are full
and disjoint, the posmve difference sets associated with the generator polynomial
hUTD(D), j =0,1,---,n—2o0fthe (n, 1, m) code are also full and disjoint. It is shown
in Problem 13.35 that this condition is necessary and sufficient for the (1, 1, m) code to
be self-orthogonal. Since J; is the weight of KV T1(D), j =0,1, .-, n 2, there are
atotalof J & Jo+J1+- -+ Js orthogonal check-sums on the information error bit
e(()o), and the (n, 1, m) code has a majority-logic error-correcting capability of 1377, =
[J/2]. Because the information sequence (D) = 1 results in the codeword v(D) =

[1, kD (D), .-, h®=D(D)], which has weight J + 1, it follows that d,;, < J + 1; but

trg = | (dmin — 1)/2J >ty = |J/2] implies that dy,,;, > J + 1. Hence, dpin = J + 1,
and the (n, 1, m) self-orthogonal code must be completely orthogonalizable.

EXAMPLE 13.19 Difference Set Construction of a Rate R =1/3 Self-
Orthogonal Code

Consider the (3, 1, 13) self-orthogonal code with generator polynomials h'V (D) =
1+ D+ D% 4+ D2 and h® (D) = 1 + D% + D! + DB derived from the (3,2, 13)
self-orthogonal code of Example 13.18. This code has J=h+J =4+4=8
orthogonal check-sums on the information error bit e), and hence it has an error-
= = L’ /2j ‘Ehat is, it mrref‘ﬂy estimates ¢

COLE L [53848

~ 7
~mras e C,—." e s gae $he o A.v.ﬂn; [N 4"7 ﬂﬂﬂﬂﬂﬂﬂﬂﬂ A
OUrl Of ICWCT CITor LT (1oL ’LA — F1 \IIL ™ L) — L 1\.«\,u1vuu

Section 13.7 Code Construction for Majority-Logic Decoding 683

bits {more precisely, the ng received bits (see Problem 13.36) checked by the J =8
orthogonal check-sums). In a similar fashion, every (n,n — 1, m) self-orthogonal
code in Table 13.2 can be converted to an (n, 1, m) self-orthogonal code.

i 1

If a self-orthogonal code is used with feedback decoding, each successive
block of information error bits is estimated using the same decoding rule, and the

q

ates have all been correct. This property was illusirated in eguations (13.52)
through (13.55) for the self-orthogonal code of Example 13.10. On the other hand,
if all previous estimaies have not been correct, postdecoding errors appear in the
syndrome equations, as illusirated in (13.62) for the same self-orthogonal code. In
this case, the modified syndrome equations are still orthogonal, but postdecoding
errors as well as transmission errors can cause further decoding errors. This resulis
in the error propagation effect of feedback decoders discussed in Section 13.5.

We now demonstrate that self-orthogonal codes possess the automatic resyn-
chronization property with respect to error propagation. First, note that whenever
a decoding error is made, that is, @1('7 ' = 1, it is fed back and reduces the total
number of 1’s stored in syndrome registers. This observation follows from the
fact that more than half the syndrome bits that are used to estimate @,(")
1's in order to cause the decoding error, and hence when @f") = 1 is fed back
it changes more 1’s to O’s than O’s to 1’s, thereby reducing the total weight in
the syndrome registers. Now, assume that there are no more transmission errors
after fime unit /. Then, beginning at time unit / + m, only §’s can enter the
leftmost stages of the syndrome registers. No matter what the contenis of the
registers are al time unit / + m, they must soon clear to all 0’s since only 0’s are
shifted in, and each estimate of 1 reduces the total number of 1’s in the registers.
{Clearly, estimates of 0 have no effect on the register weights.) Once the syndrome
registers have resynchronized to all 0's, no further decoding errors are possible
unless there are additional transmission errors; that is, error propagation has been
terminated.

must be

Orthogonalizable Codes

Completely orthogonalizable convolutional codes can also be constructed using a
trial-and-error approach. In this case, some of the orthogonal parity checks are
forraed from sums of syndrome bits, and these codes are not self-orthogonal.
The (2,1,5) code of Example 13.11 contains J = 4 orthogonal parity checks
constructed by trial and error, and hence dy;;, > 5. Because the two generator
polynomials have a total weight of 5, dy;, must equal 5, and therefore the code is
completely orthogonalizable with error-correcting capability trp = ryr = |J/2] =
2. Similarly, the (3,1, 4) code of Example 13.13 contains J = 6 orthogonal parity
checks constructed by trial and error, is completely orthogonalizable, and has
error-correcting capability rrp = ty = | /2] = 3. A list of rate R = 1/2 and
1/3 orthogonalizable codes constructed by Massey [6] is given in Table 13.3. (The
generator polynormials are specified using the notation of Table 13.2. The notation
used to describe the rules for forming the orthogonal check-sums in the rate R = 1/3
case is explained in the following example.)

684 Chapter 13 Suboptimum Decoding of Convolutional Codes

TABLE 13.3: Orthogonalizable codes.

tyr m g® Orthogonalization Rules'
2 5 {0,3,4,5} €5
3 11 {0,6,7,9,10,11} (1,3,100(4,8,11)
4 21 {0,11,13,16,17,19,20,21} (2,3,6,19)(4, 14,20)(1, 5, 8, 15, 21)
5 35 {0,18,19,27,28,29,30,32,33,35} (1,9, 28)(10, 20, 29)(11, 30, 31)
(13,21, 23, 32)(14, 33, 34)(2, 3, 16, 24, 26, 35)
6 51 {0,26,27,39,40,41,42,44,45,47,48,51} (1,13, 40)(14, 28, 41)(15, 42, 43)
(17,29, 31, 44)(18, 45, 46)(2, 3, 20, 32, 34, 47)
(21, 35, 48, 49, 50) (24, 30, 33, 36, 38, 51)
(a) R = 1/2 CODES
tyr m g g@ Orthogonalization Rules
3 4o {0,234} 0H©HahHE»H23%)!4?)
4 7 {OL7) {0,23.4.6} OhH*Hah e el4?)ah)E!stele?)
50100 {019) 0123589 (OH©HAHE'2*))34 E!s's)

(12416162)(8182)(7292102)
6 17" (045679121316} {0,1,14,15.16) O al12yahysh2ehya4?yrtiot111112)
(3252916282121 1(32162172) (42102 122161)
7 22 {045679,121316, {0,1,2022) ohoHa12Hahshezelytol11l11?)
19,20,21} (325291y(192202)(22%)(6282121) (4210212216})
(3172132152191) (92131142181 201211212y
8§ 35 {045679121617, {0,1222535 (0hHoH12)@lyshZely 2227110111112
30,31} (31252)(325291 (6282121) (72141 171 181 18%)
(92161191201202) (142152352 (122212281 311321y
(102132192262292301)

(b) R = 1/3 CODES

Adapted from [6].

*The actual value of m for these codes is less than shown, and the error-correcting capability 147, listed is achieved by
adding 0’s to the generator sequences.

T(x.v. .-)indicates that the sum s, + sy +--- forms an orthogonal check sum on ‘0 Only those orthogonal equations
that require a sum of syndrome bits are listed.

EXAMPLE 13.20 Trial-and-Error Construction of a Rate R = 1/3 Orthogo-
nalizable Code

Consider the (3,1,7) code listed in Table 11.3(b) whose generator polynomials
gD (D) and g? (D) are specified by sets of integers {0, 1, 7} and {0, 2, 3, 4, 6}; that is,
gD(D) =1+ D+ D7 and gP(D) = 14 D? + D3 + D* + DO The rules for forming
J = 8 orthogonal parity checks are given by the set

{Oh. @), ah, @, %3, @'4d), 7Y, (3's'6led)],

where the notation (k') indicates that the syndrome bit s,') forms an orthogonal
check-sum on e() . and (k1) indicates that the sum s(') + s(]) forms an orthogonal
check-sum on e(() . The J = 8 orthogonal parity checks on ‘30 are thus given by the
set

D @O D (@@ (D@ Wy @]
0 R AR A R %o |

Problems 685

This code has
capability trp

letely orthogonalizable, and has error-correcting

hieve a given majority-logic
rder i than self-orthogonal
DU fmg sums of Synd‘a ome biis to
es. The major disadvantage
,U_'ﬁ'oma"' cresynchronization

pzopeﬂ] hat fimn edback decoding.

PROBLEMS

)
E

13.1 Consider the (2, 1, 3) encoder with

+Dp* 4+ D%

a. Draw the code 11
lb. Find the codew
For a binary-inpu
symbols, show that the QHQ‘U

C(ms der the (Z 1. .))

of length 4 = 4.

ation sequencem = (100 1).
AC with equally likely input
es satisfy (13.7).

=
ggz)
=]

f=
S&b
o

p

c table for the Fano metric.
b. D

=160, 1% 00,01, 10, 11)
using the stack algorithm. C

number required b u/ the Viterbi aigoz‘iihrﬁ.
¢. Repeat (b) for the received sequence

number of decoding steps with the

Compare the final decoded path with the results of Problem 12.6, where the
same received sequence is decod m using the Viterbi algorithm.
13.4 Consider the (2.1)encorle" of Prob 3.1
@, For the binary-i riput S-ary output D Mf‘ of T‘;oble”n 12.4, find an integer metric
table for the Fano metric. {Hin: Scale each metric by an appropriate factor
and round to the neavest integei.)
b. Decode the received sequence

r= (1211, 1207, 030:. Oyi3, 12070, 031y, 0307)

using the stack zﬂgouthm Compare the final decoded path with the result
of Problem 12.5(b), wheve the same received sequence is decoded using the
Viterbi algorithm.

13.5 Consider the (2,1, 3) encoder of Problem 13.1. For a binary-input, continuous-
output AWGN channel with E,/Ng = 1, use the stack algorithm and the
AWGNHN channel Fano metric from (13.16) to decode the received sequence r =
(+1.72,40.93, +2.34, —3.42, ~0.14~, —2.84, —1.92, +0.23, +0.78, —0.63, —0.05,

+2.95, -0.11, —0.55). Compare the final fiec ded path with the result of Prob-
lem 12.7, where the same i"eceived sequenice is decoded using the Viterbi
algorithm.

686 Chapter 13 Suboptimum Decoding of Convolutional Codes

13.6

13.7

13.8

13.9

13.10

13.11

13.12

13.13

13.14

13.15

13.16

13.17

13.18

13.19
13.20

Repeat parts (b) and (c) of Problem 13.3 with the size of the stack limited to
10 entries. When the stack is full, each additional entry causes the path on the

AL Latloty L

bottom of the stack to be discarded. What is the effect on the final decoded path?

a. Repeat Example 13.5 using the stack-bucket algorithm with a bucket quan-
tization interval of 5. Assume the bucket intervals are --- +4 t0 0, —1 to
-5, —6to —10, ---.

b. Repeat part (2) for a quantization interval of 9, where the bucket intervals are
<+ 4+8t00, —1to -9, —10to0 —18, ---.

Repeat Example 13.7 for the Fano algorithm with threshold increments of A = 5

and A = 10. Compare the final decoded path and the number of computations to

the results of Examples 13.7 and 13.8. Also compare the final decoded path with

the results of the stack-bucket algorithm in Problem 13.7.

Using a computer program, verify the results of Figure 13.13, and plot p as a

function of E; /Ny (dB) for R = 1/5and R = 4/5.

Show that the Pareto exponent p satisfies limg_.g p = oo and limg_, ¢ p = 0 for

fixed channel transition probabilities. Also show that 3R/3p < 0.

a. For a BSC with crossover probability p, plot both the channel capacity C
and the cut-off rate Ry as functions of p. (Note: C =1+ plog, p + (1 —
p)logy (1 — p).)

b, Repeat part (a) by plotting C and Ry as functions of the SNR Ej,/Ny. What is

the SNR difference required to make C = Ry = 1/27

Calculate Ry for the binary-input, 8-ary output DMC of Problem 12.4.

b. Repeat Example 13.9 for the DMC of part (a) and a code rate of R = 1/2.
(Hint: Use a computer program to find p from (13.23) and (13.24).)

¢. For the value of p calculated in part (b), find the buffer size B needed to
guarantee an erasure probability of 1073 using the values of L, A, and u given
in Example 13.9.

a. Sketch Poqeure versus E /Ny for arate R = 1/2 code on a BSC using the values
of L, A, u,and B given in Example 13.9.

b. Sketch the required buffer size B to guarantee an erasure probability of 103
as a function of £,/ Ny for a rate R = 1/2 code on a BSC using the values of L,
A, and p given in Example 13.9. (Hint: p can be found as a function of £,/ Ny
using the results of Problem 13.9.)

Repeat Problem 13.4 using the integer metric tables of Figures 13.14(a) and (b).

Note any changes in the final decoded path or the number of decoding steps.

For a BSC with crossover probability p, plot both the computational cutoff rate

Ry from (13.27) and R,y from (13.35) as functions of p.

Find the complete CDFs of the (2,1,3) optimum free distance code in

Table 12.1(c) and the (2, 1,3) quick-look-in code in Table 12.2. Which code

has the superior distance profile?

Show that for the BSC, the received sequence v is a codeword if and only if the

error sequence e is a codeword.

Using the definition of the Hl matrix for rate R = 1/2 systematic codes given by

(13.42), show that (13.41) and (13.46) are equivalent.

Draw the complete encoder/decoder block diagram for Example 13.11.

Consider the (2, 1, 11) systematic code with

g

gVDy=1+D+D*+D°+p*+ D+ D04 pl.
a. Find the parity-check matrix H.
. Write equations for ihe syndiome bils sg, 51, -+ -, s11 i terins of the chainiel
error bits.

13.21

13,22

59

>v
(%]

13.24
13.25
13.26

13.29

13.31
13.32

Problems 687

¢, Write equations for the modified syndrome bits Si/’SI/H’ _ ,S;JFH, assum-
ing that the effect of error bits prior to time unit [has been removed by
feedback.

Consider the (3,2, 13) code of Example 13.12 and the (3, 1, 4) code of Exam-

ple 13.13.

a. I'ind the generator matrix G(D).

b. Find the parity-check matrix BI(D).

¢. Show that in each case G(D)H (D) = 0.

Consider the (3, 2, 13) code of Example 13.12.

2. Write equations for the unmodified syndrome bits s;, 5741, -, 5/+13 that
include the effect of error bits prior to time unit/ (assume / > 13).

b. Find a set of orthogonal parity checks for both @,(D) and e](l) from the unmodified

syndrome equations.

Determine the resulting majority-logic error-correcting capability 7377 and

the effective decoding length nyp and compare these values with those in

Example 13.12.

d. Draw the block diagram of the decoder. (Note that in this case the decoding
estimates are not fed back to modify the syndrome. This alternative to feedback
decoding is called definite decoding.)

Find arate R = 1/2 nonsystematic feedforward encoder with the smallest possible

value of m such that J = 4 orthogonal parity checks can be formed on the error

bits e(()o) and egl).

Prove (13.65).

Prove (13.66).

Prove that if the weighting factors w;, i = 0,1, -, J, are calculated using (13.64)

and (13.67) for a BSC with crossover probability p, the APP threshold decoding

rule is equivalent to the majority-logic decoding rule only if all J orthogonal
check-sums include the same number of bits, that is, only ifn) = ny = - - =ny.

Consider an (n, k, m) convolutional code with minimum distance dy,;;, = 2ipp + 1.

Prove that there is at least one error sequence e with weight 175 + 1 in its first

(m + 1) blocks for which a feedback decoder will decode my incorrectly.

Consider the (2, 1, 11) code of Problem 13.20.

2. rind the minimum distance diyi.

b. Is this code self-orthogonal?

¢, Find the maximum number of orthogonal parity checks that can be formed
on eéo),

d. Is this code completely orthogonalizable?

Consider the (3, 1, 3) nonsystematic feedforward encoder with G, (D) = [1 + D

+D% 1+ D% 14D+ D?].

a. Following the procedure in Example 13.14, convert this code to a (3,1,3)
systematic feedforward encoder with the same dy,;y.

b. Find the generator matrix G, (D) of the systematic feedforward encoder.

¢. Find the minimum distance d,,;,.

Consider the (2, 1, 6) code of Example 13.15.

2. Estimate the bit-error probability P,(E) of a feedback decoder with error-
correcting capability 775 on a BSC with small crossover probability p.

. Repeat (a) for a feedback majority-logic decoder with error-correcting capa-
bility 371

¢. Compare the results of (a) and (b) for p = 1072,

Repeat Problem 13.30 for the (2, 1, 5) code of Example 13.16.

Find and compare the memory orders of the following codes:

€]
1

688 Chapter 13 Suboptimum Decoding of Convolutional Codes

a. the best rate R = 1/2 self-orthogonal code with dy;ip = 9.

b. the best rate R = 1/2 orthogonalizable code with d,,;, = 9.

¢. the best rate R = 1/2 systematic code with dy;, = 9.

d. the best rate R = 1/2 nonsystematic code with dgee = 9.
13.33 Consider an (n, n — 1,) self-orthogonal code with J; orthogonal check-sums on

), j=0,1,---,n—2. Show that dy, = J + 1, where J £ min(< <2 J;.
13.34 Consider the (2, 1, 17) self-orthogonal code in Table 13.2(a).

a. Form the orthogonal check-sums on information error bit e,

b. Draw the block diagram of the feedback majority-logic decoder for this code.
13.35 Consider an (n, 1, m) systematic code with generator polynomials g(j)(D), j=

1,2,---,n — 1. Show that the code is self-orthogonal if and only if the positive

difference sets associated with each generator polynomial are full and disjoint.
13.36 Find the effective decoding length ng for the (3, 1, 13) code of Example 13.19.
13.37 Consider the (2, 1, 11) orthogonalizable code in Table 13.3(a).

2. Form the orthogonal check-sums on information error bit e,

b. Draw the block diagram of the feedback majority-logic decoder for this code.

BIBLIOGRAPHY

1. J. M. Wozencraft, “Sequential Decoding for Reliable Communication,” /IRE
Conv. Rec. 5 (pt. 2): 11-25, 1957.

2. J. M. Wozencraft and B. Reiffen, Sequential Decoding. MIT Press, Cambridge,
1961.

3. R. M. Fano, “A Heuristic Discussion of Probabilistic Decoding.” IEEE Trans.
Inform. Theory, IT-9: 64-74, April 1963.

4. K. Zigangirov, “Some Sequential Decoding Procedures,” Prob. Peredachi
Inform., 2: 13-25, 1966.

5. F. Jelinek, “A Fast Sequential Decoding Algorithm Using a Stack,” IBM J. Res.
Dev., 13: 675-85, November 1969.

6. J. L. Massey, Threshold Decoding. MIT Press, Cambridge, 1963.

7. J. L. Massey, “Variable-Length Codes and the Fano Metric,” IEEE Trans.
Inform. Theory, IT-18: 19698, January 1972.

8. J. M. Geist, “Search Properties of Some Sequential Decoding Algorithms,”
IEEE Trans. Inform. Theory, IT-19: 519-26, July 1973.

9. J. M. Geist, “An Empirical Comparison of Two Sequential Decoding Algo-
rithms,” IEEE Trans. Comunun. Technol., COM-19: 415-19, August 1971.

19. J. E. Savage, “Sequential Decoding—The Computation Problem,” Bell Syst.
Tech. J.,45: 149-75, January 1966.

11. I. M. Jacobs and E. R. Berlekamp, “A Lower Bound to the Distribution of
Compd~3t.0f‘ for Seqngqu‘cﬂ nﬂnr\rhnn v IEEE Trans. ’nfnt 1. Thonry IT-13:
16774, Aprit 1967.

14,

=y
un

18.

19.

20.

21,

23,

26.

Bibliograghy 689

=

. Jelir

felinek, “An Upper Bound on Moments of Sequential Decoding Effort,”
EEE

rans. Inform. Theory, IT-15: 140-49, January 1969.

Py

. G. D. Forney, Jr., “Convolutional Codes III: Sequential Decoding,” Inform.

Control, 25: 267-97, July 1974.

G. D. Forney, Jr., and E. K. Bower, “A High-Speed Sequential Decoder:
Prototype Design and Test,” IEEE Trans. Commun. Technol., COM-19: 82135,
October 1971,

. 1. Richer, “Sequeniial Decoding with a Small Digital Computer,” Tech. Rep.

491, MIT Lincoln Laboratory, January 1972.

. P. R. Chevillat and D. J. Costello, Jr., “An Analysis of Sequential Decoding for

Specific Time-Invariant Convolutional Codes,” IEEE Trans. Inform. Theory,
IT-24: 443-51, July 1978.

. P. R. Chevillat and D. J. Costello, Ji., “Distance and Computation in Sequential

Decoding,” IEEE Trans. Conunun., COM-24: 440-47, April 1976.

J. A. Heller and L. M. Jacobs, “Viterbi Decoding for Satellite and Space Com-
munication,” [EEE Trans. Comwmun. Technol., COM-19: 835-48, October
1971.

P. R. Chevillat and D. J. Costello, Jr., ""A Multiple Stack Algorithm for Era-
surefree Decoding of Convolutional Codes,” IEEE Trans. Commun., COM-25:
1460-70, December 1977.

D. D. Falconer, *“A Hybrid Sequential and Algebraic Decoding Scheme,” Sc.D.
thesis, MIT, Cambridge, 1967.

F. Jelinek and J. Cocke, “Bootstrap Hybrid Decoding for Symmetrical Binary
Input Channels,” Inform. Control, 18: 261-98, April 1971.

D. Haccoun and M. J. Ferguson, “Generalized Stack Algorithms for Decoding
Convolutional Codes,” IEEE Trans. Inform. Theory, IT-21: 638-51, November
1975.

A.J.P.de Paepe, A.J. Vinck, and J. P. M. Schalkwijk, ““A Class of Binary Rate
1/2 Convolutional Codes That Allows an Improved Stack Decoder,” IEEFE
Trans. Inform. Theory, IT-26: 389-92, July 1980.

§. R.Johannesson, “Robustly Optimal Rate One-Half Binary Convolutional

Codes,” IEEE Trans. Inform. Theory, IT-21: 464—68, July 1975.

. R. Johannesson, ““Some Long Rate One-Half Binary Convolutional Codes with

an Optimum Distance Profile,” IEEE Trans. Inform. Theory, IT-22: 629-31,
September 1976.

R. Johannesson, “Some Rate 1/3 and 1/4 Binary Convolutional Codes with an
Optimum Distance Profile,” IEEE Trans. Inform. Theory, 1T-23:281-83, March
1977.

690 Chapter 13 Suboptimum Decoding of Convolutional Codes

27,

28,

29,

30.

31

32,

33.

34,

35,

36.

37,

38.

40.

R. Johannesson and E. Paaske, “Further Results on Binary Convolutional
Codes with an Optimum Distance Profile,” IEEE Trans. Inform. Theory,
IT-24: 264-68, March 1978.

M. Cedervall and R. Johannesson, “A Fast Algorithm for Computing Dis-
tance Spectrum of Convolutional Codes,” IEEE Trans. Inform. Theory, I'T-35:
1146-59, 1989.

R. Johannesson and P. Stahl, “New Rate 1/2, 1/3, and 1/4 Binary Convolutional
Encoders with an Optimum Distance Profile,” IEEE Trans. Inform. Theory,
1T-45: 165358, July 1999.

R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional Coding.
IEEE Press, Piscataway, 1999.

G. D. Forney, Jr., “Use of a Sequential Decoder to Analyze Convolutional
Code Structure,” IEEE Trans. Inform. Theory, IT-16: 793-95, November 1970.

P. R. Chevillat, “Fast Sequential Decoeding and a New Complete Decoding
Algorithm,” Ph.D. thesis, IIT, Chicago, 1976.

J.L. Massey and R. W. Liu, “Application of Lyapunov’s Direct Method to
the Error-Propagation Effect in Convolutional Codes,” IEEE Trans. Inform.
Theory, IT-10: 248-50, July 1964.

J. L. Massey, “Uniform Codes,” IEEE Trans. Inform. Theory, IT-12: 132-34,
April 1966.

D. D. Sullivan, “Error-Propagation Properties of Uniform Codes,” IEEE Trans.
Inform. Theory, IT-15: 15261, January 1969.

J. P. Robinson, “Error Propagation and Definite Decoding of Convolutional
codes,” IEEE Trans. Inform. Theory, IT-14: 12128, January 1968.

T.N. Morrissey, Jr., “A Unified Markovian Analysis of Decoders for Con-
volutional Codes,” Tech. Rep. EE-687, Department of Electrical Engineering,
University of Notre Dame, October 1968.

D. J. Costello, Jr., “Free Distance Bounds for Convolutional Codes,” [EEE
Trans. Inform. Theory, I'T-20: 356—-65, May 1974.

. L. D. Rudolph, “Generalized Threshold Decoding of Convolutional Codes,”

IEEE Trans. Inform. Theory, I'T-16: 73945, November 1970.

J. P. Robinson and A.J. Bernstein, “A Class of Binary Recurrent Codes with
Limited Error PropagaTion,” [EEE Trans. Inform. Theory, IT-13: 106-13,
January 1967.

