CHAPTER 12

Optimum Decoding
off Convolutional Coces

In this chapter we show that convolutional encoders have a natural treliis structure,
and we present iwo decoding algorithms based on this siructure. Both of these
algorithms are optimal according to a certain criterion. In 1967 Viterbi [1] intro-
duced a decoding algorithm for convolutional codes that has since become known
as the Viierbi algorithm. Later, Omura [2] showed that the Viterbi algorithm was
equivalent to a dynamic programming solution to the problem of finding the shori-
est path through a weighted graph. Then, Forney [3, 4] recognized that it was
in fact a maximum likelihood (ML) decoding algorithm for convolutional codes;
that is, the decoder output selected is always the codeword that maximizes the
conditional probability of the received sequence. The Bahl. Cocke, Jelinek, and
Raviv (BCJR) algorithm [5] was introduced in 1974 as a maximum a posteriori
probability (MAP) decoding method for convolutional codes or block codes with
a trellis structure. The optimality condition for the BCJIR algorithm is slightly
different than for the Viterbi algorithm: in MAP decoding, the probability of
information bit error is minimized, whereas in ML decoding the probability of
codeword ervor is minimized (alternative versions of MAP decoding were intro-
duced by McAdam, Welch, and Weber [6]. Lee {7], and Hartmann and Rudolph
[8]); but the performance of these two algorithms in decoding convolutional codes
is essentially identical. Because the Viterbi algorithm is simpler to implement, it
is usually preferred in practice; however, for iterative decoding applications, such
as the Shannon limit—approaching turbo codes io be discussed in Chapter 16, the
RCJIR algorithm is vsually preferred. We also present a version of the Viterbi
algorithm that produces soft outputs, the soft-output Viterbi algorithm (SOVA)
introduced in 1989 by Hagenauer and Hoeher [9], for iterative decoding applica-
tions.

Union bounds on the performance of convolutional codes with ML decoding
are developed in this chapter, and tables of optimal codes based on these bounds
are given. The bounds make use of the weight-enumerating functions, or transfer
functions, derived in Chapter 11. The application of transfer function bounds to
the analysis of convolutional codes was also introduced by Viterbi [10]. This
work laid the foundation for the evaluation of upper bounds on the performance
of any convolutionally encoded system. The technique is used again to develop
performance bounds in Chapter 16 on turbo coding and in Chapter 18 on trellis-
coded modulation. (Tightened versions of the transfer function bound are given
in [11, 12, 13].} Finally, the practically important code modification techniques of
tail-biting and punciuring are introduced.
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516 Chapter 12 Optimum Decoding of Convolutional Codes
12.1 THE VITERBI ALGORITHM

To understand the Viterbi decoding algorithm, it is convenient to expand the
diagram of the encoder in time, that is, to represent each time unit with a separate
state diagram. The resulting structure is a trellis diagram, first introduced for linear
block codes in Chapter 9. An example is shown in Figure 12.1 for the (3, 1, 2)

nonsystematic feedforward encoder with
GD)=[1+D 1+D*> 1+D+ D% (12.1)

and an information sequence of length # = 5. The trellis diagram contains A+m+1 =
8 time units or levels, and these are labeled from 0 to 4 -+ m = 7 in Figure 12.1. For
a terminated code, assuming that the encoder always starts in state Sg and returns
to state Sp, the first m = 2 time units correspond to the encoder’s departure from
state Sop, and the last m = 2 time units correspond to the encoder’s return to state
So. It follows that not all states can be reached in the first m or the last m time units;
however, in the center portion of the trellis, all states are possible, and each time
unit contains a replica of the state diagram. There are 2¢ = 2 branches leaving and
entering each state. The upper branch leaving each state at time unit i represents
the input bit #; = 1, and the lower branch represents #; = 0. Each branch is labeled
with the n = 3 corresponding outputs v;, and each of the 2/ = 32 codewords of
length N = n(h 4+ m) = 21 is represented by a unique path through the trellis. For
example, the codeword corresponding to the information sequencem = (1110 1)

0 1 2 3 4 5 6 7

<t—— Time units ——

FIGURE 12.1: Trellis diagram for a (3, 1, 2) encoder with 7 = 5.
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is shown highlighted in Figure 12.1. In the general case of an (n, k, v) encoder and
an information sequence of length K* = kh, there are 2% branches leaving and
entering each state, and 25" distinct paths through the trellis corresponding io the
2K codewords.

Now, assume that an information sequence w = (ug, --- ., w,_1) of length
{* = kh is encoded Into a codeword v = (vg, Vi, -+, Vpam_1) of length N =
n(h + m) and that a Q-ary sequence ¢ = (Lo, I1, -, Ippm—1) 1S Teceived over a
binary-input, @-ary output discrete memoryless channel (DMC). Alternatively, we
can write these sequences as u = (ug, Uy, -+ , Ug+—1), v = (vg, v1, -+, vy_1), and
r = (rp, r1, - - » Fv—1), where the subscripts now simply represent the ordering of the
symbols in each sequence. As discussed in Section 1.4, the decoder must produce
an estimate ¥ of the codeword v based on the received sequence r. A maximum
likelihood (ML) decoder for a DMC chooses ¥ as the codeword v that maximizes
the log-likelihood function log P (r|v). Because for a DMC

h4m—1 N-1
raw = [ Pwwy =[] Peulw), (12.2)
[=0 1=0
it follows that
h+m—1 N-1
log P(x|v) = L log P(iy|v)) = Z log P(ry|vp), (12.3)
=0 =0

where P (r;|v;) is a channel transition probability. This is a minimum error probability
decoding rule when all codewords are equally likely.

The log-likelihood function log(rlv), denoted by M(r|v), is called the metric
associated with the path {(codeword) v. The terms log P (i;|v;) in the sum of (12.3) are
called branch metrics and are denoted by M (r;|v;), whereas the terms log P (r|v;)
are called bit metrics and are denoted by M (r|v;). Hence, we can write the path
metric M(xr|v) as

h+m—1 h+m—1 N-1 N-1
M@y = ) M@miv)= ) logPlv) =) Mrlv)= ) logP(rlu).
1=0 1=0 =0 =0

(12.4)

We can now express a partial path metric for the first 1 branches of a path as

t—1 r—1 nr—1 nt—1
M(rlvl) =Y M@lv) =) log Plv) = ) M(nlv) = ) log P(rilu).
1=0 =0 =0 =0

(12.5)

The following algorithm, when applied to the received sequence v from a
DMC, finds the path through the trellis with the largest metric, that is, the maxinuum
likelihood path (codeword). The algorithm processes r in a recursive manner. At
each time unit it adds 2% branch metrics to each previously stored path metric
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(the add operation), it compares the metrics of all 2F paths entering each state
(the compare operation), and it selects the path with the largest metric, called the
survivor (the select operation). The survivor at each state is then stored along with
its metric.

The Viterbi Algorithm

Step 1. Beginning at time unit ¢ = m, compute the partial metric for the single
path entering each state. Store the path (the survivor) and its metric
for each state.

Step 2. Increase ¢ by 1. Compute the partial metric for all 2% paths entering
a state by adding the branch metric entering that state to the metric
of the connecting survivor at the previous time unit. For each state,
compare the metrics of all 2¢ paths entering that state, select the path
with the largest metric (the survivor), store it along with its metric,
and eliminate all other paths.

Step 3. Ifr < h + m, repeat step 2; otherwise, stop.

The basic computation performed by the Viterbi algorithm is the add, compare,
select (ACS) operation of step 2. As a practical matter, the information sequence
corresponding to the surviving path at each state, rather than the surviving path itself,
is stored in steps 1 and 2, thus eliminating the need to invert the estimated codeword
¥ to recover the estimated information sequence @ when the algorithm finishes.
There are 2V survivors from time unit 7 through the time unit 4, one for each of
the 2V states. After time unit 4 there are fewer survivors, since there are fewer states
while the encoder is returning to the all-zero state. Finally, at time unit & + m, there
is only one state, the all-zero state, and hence only one survivor, and the algorithm
terminates. We now prove that this final survivor is the maximum likelihood path.

TueoreEM 12.1 The final survivor ¥ in the Viterbi algorithm is the maximum
likelihood path; that s,

M(x|9) > M(rlv), allv #£ . (12.6)

Proof. Assume that the maximum likelihood path is eliminated by the algo-
rithm at time unit 7, as illustrated in Figure 12.2. This implies that the partial
path metric of the survivor exceeds that of the maximum likelihood path at
this point. Now, if the remaining portion of the maximum likelihood path is
appended onto the survivor at time unit 7, the total metric of this path will
exceed the total metric of the maximum likelihood path; but this contradicts
the definition of the maximum likelihood path as the path with the largest
metric. Hence, the maximum likelihood path cannot be eliminated by the
algorithm; that is, it must be the final survivor. Q.E.D.

Theorem 12.1 shows that the Viterbi algorithm is an optimum decoding algo-
rithm in the sense that it always finds the maximum likelihood path through the treilis.
From an implementation point of view, it is more convenient to use positive
integers as metrics rather than the actual bit metrics. The bit metric M (r;lv;) =
log P(r;lv;) can be replaced by c¢;[log P (r;|v;) + ¢1], where ¢q is any real number
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Time ——>=
t—1 t
B
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Maximum likelihood path \

FIGURE 12.2: Elimination of the maximum likelihood path.

and ¢, is any positive real number. It can be shown (see Problem 12.2) that a
path v that maximizes M (r|v) = Zf\gol M{r|v) = Z;vj)l log P(r|v) also maximizes
ﬁ[N:Bl c2[log P(r1|v1) + ¢1], and hence the modified metrics can be used without
affecting the performance of the Viterbi algorithm. If ¢y is chosen to make the
smallest metric 0, ¢p can then be chosen so that all metrics can be approximated by
integers. There are many sets of integer metrics possible for a given DMC, depending
on the choice of ¢, (see Problem 12.3). The performance of the Viterbi algorithm is
now slightly suboptimum owing to the metric approximation by integers, but ¢; and
¢z can always be chosen such that the degradation is very slight. We now give two
examples illustrating the operation of the Viterbi algorithm.

EXAMPLE 12.1 The Viterbi Algorithm for a Binary-lnput, Quaternary-
Qutput DMC

Consider the binary-input, quaternary-outpui (@ = 4) DMC shown in Figure 12.3.
Using logarithms to the base 10, we display the bit metrics for this channel in a
metric table in Figure 12.4(a). Choosing ¢; = 1 and ¢; = 17.3, we obtain the integer
metric table shown in Figure 12.4(b). Now, assume that a codeword from the trellis
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FIGURE 12.3: A binary-input, quaternary-output DMC.

) oo 02 1 1t ) oo | 1L
0 | -04|-0521-07 | -10 0 |10/8 |5 | 0
1 | -10]-07 | —052 | —04 1 015 |8 |10

(a) (b)

FIGURE 12.4: Metric tables for the channel of Figure 12.3.

diagram of Figure 12.1 is transmitted over the DMC of Figure 12.3 and that the
quaternary received sequence is given by

r = (111201, 111102, 191101, 141111, 011201, 120214, 15011y). (12.7)

The application of the Viterbi algorithm to this received sequence is shown in
Figure 12.5. The numbers above each state represent the metric of the survivor for
that state, and the paths eliminated at each state are shown crossed out on the trellis
diagram. The final survivor,

v = (111, 010, 110, 011, 000, 000, 000), (12.8)

is shown as the highlighted path. This surviving path corresponds to the decoded
information sequence @ = (1 100 0). Note that the final m = 2 branches in any trellis
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FIGURE 12.5: The Viterbi algorithm for a DMC.



522 Chapter 12 Optimum Decoding of Convolutional Codes

path correspond to 0 inputs and hence are not considered part of the information
sequence.

In the special case of a binary symmetric channel (BSC) with transition
probability p < 1/2,! the received sequence ris binary (Q = 2) and the log-likelihood
function becomes (see (1.11))

p

log P(r|v) = d(r, v)log 1
4

+ Nlog(l — p), (12.9)

where d(r, v) is the Hamming distance between r and v. Because log % < 0 and

Nlog(l — p) is a constant for all v, an MLD for a BSC chooses v as the codeword ¥
that minimizes the Hamming distance

htm—1

N~-1
dx.v)y= > d,v) =) drw). (12.10)
=0 =0

Hence, when we apply the Viterbi algorithm to the BSC, d(x;, v;) becomes the
branch metric, d(r;, v;) becomes the bit metric, and the algorithm must find the
path through the trellis with the smallest metric, that is, the path closest to r in
Hamming distance. The operation of the algorithm is exactly the same, except that
the Hamming distance replaces the log-likelihood function as the metric, and the
survivor at each state is the path with the smallest metric.

EXAMPLE 12.2 The Viterbi Algorithm for a BSC

An example of the application of the Viterbi algorithm to a BSC is shown in
Figure 12.6. Assume that a codeword from the trellis diagram of Figure 12.1 is
transmitted over a BSC and that the received sequence is given by

r = (110, 110, 110, 111, 010, 101, 101). (12.11)
The final survivor,
v = (111, 010, 110,011, 111, 101, 011), (12.12)

is shown as the highlighted path in the figure, and the decoded information sequence
is @ = (11001). That the final survivor has a metric of 7 means that no other path
through the trellis differs from r in fewer than seven positions. Note that at some
states neither path is crossed out. This indicates a tie in the metric values of the two
paths entering that state. If the final survivor goes through any of these states, then
there is more than one maximum likelihood path, that is, more than one path whose
distance from r is minimum. From an implementation point of view, whenever a tie
in metric values occurs, one path is arbitrarily selected as the survivor, owing to the
impracticality of storing a variable number of paths. This arbitrary resolution of ties
has no effect on the decoding error probability.
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Now, consider a binary-input, additive white Gaussian noise (AWGN) channel
with no demodulator output quantization, that is, a binary-input, continuous-cutput
channel. Assume the channel inputs 0 and 1 are represented by the BPSK signals (see

cos(2n for), where we use the mapping 1 — ++E; and 0 > —J/E,.

(1.1)) +

2E,

T
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Normalizing by VE,, we consider the codeword v = (vg, vy, - -+ , uy—1) to take on
values £1 according to the mapping 1 — +1 and 0 — —1, and the (normalized)
received sequence r = (rg,r{,---,ry—1) to be real-valued (unquantized). The
conditional probability density function (pdf) of the (normalized) received symbol
r; given the transmitted bit v; is

. _ L —(Ey/Ng)(ri— v/> (12.13)
7No JTN()

s

(rVEs ~v VEs )2
e

plrilv) =

where Ng/E; is the (normalized) one-sided noise power spectral density. If the
channel is memoryless, the log-likelihood function of the received sequence r given
the transmitted codeword v is

N-1 N-1
M@v) =lnpaiv) =In [ | ptiloy = 3 In p(rifup)
=0 =0

N-1
E, , N E
=S = w4 > 1n
No & ity

(12.14)

E N—
:_ﬁzéVIMZ}lv[+1)+2 JTN()
N—-1

E, Ey N E
=253 = NY+ =1
( NO)[_O(VIUI) No(lffl +N)+ 5 nﬂNo

= C1(xv) + (2,

where C; = (2E;/Np) and C; = —[(Es/Np)([r|> + N) — (N/2) In(E, /7 Ny)] are
constants independent of the codeword v and r-v represents the inner product
(correlation) of the received vector r and the codeword v. Because Cp is positive,
the trellis path (codeword) that maximizes the correlation r-v also maximizes the
log-likelihood function In p(r]v). It follows that the path metric corresponding to
the codeword v is given by M (r|v) = r-v, the branch metrics are M(r;{v;) = 1;-v;,[ =
0,1,---,h+m — 1, the bit metrics are M(r;|v;) = rjv;, 1 =0,1,--- , N — 1, and the
Viterbi algorithm finds the path through the trellis that maximizes the correlation
with the received sequence. (It is important to remember in this case that the (real-
valued) received sequence r is correlated with trellis paths (codewords) v labeled
according to the mapping 1 — +1and 0 — —1.)

An interesting analogy with the binary symmetric channel is obtained by
representing the (real-valued) received sequence and the codewords as vectors in
N-dimensional Euclidean space. (In this case, the N-bit codewords with components
+1 all lie on the vertices of an N-dimensional hypersphere.) Then, for a continuous-
output AWGN channel, maximizing the log-likelihood function is equivalent to
finding the codeword v that is closest to the received sequence r in Euclidean
distance (see, e.g., [12] or [14]). In the BSC case, on the other hand, maximizing
the log-likelihood function is equivalent to finding the (binary) codeword v that is
closest to the (binary) received sequence r in Hamming distance (see (12.9)). An
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example of the application of the Viierbi algorithm to a continuous-output AWGN
channel is given in Problem 12.7.

In Section 1.3 we noted that making sofi demodulator decisions (@ > 2) results
in a performance advantage over making hard decisions (Q = 2). The preceding two
examples of the application of the Viterbi algorithm serve to illustrate this point. If
the quaternary outputs 01 and 0, are converted into a single output 0, and 17 and
1, are converted into a single cuiput 1, the soft-decision DMC is converted to a
hard-decision BSC with transition probability p = 0.3. In the preceding examples
the sequence r in the hard-decision case is the same as in the soft-decision case with
01 and 0, converted to O and 1; and 1, converted io 1; but the Viierbi algorithm yields
different results in the two cases. In the soft-decision case (Q = 4), the information
sequence t = (1 1 0 0 0) produces the maximum likelihood path, which has a final
metric of 139. In the hard-decision case (Q = 2), however, the maximum likelihood
path isuw = (1 1 0 0 1). The metric of this path on the quaternary output channel is
135, and so it is not the maximum likelihood path in the soft-decision case; however,
since hard decisions mask the distinction between certain soft-decision outputs—for
example, outputs 0; and O, are treated as equivalent outputs in the hard-decision
case—the hard-decision decoder makes an estimate that would not be made if more
information about the channel were available, that is, if soft decisions were made.
(For another example of the difference between sofi-decision and hard-decision
decoding, see Problems 12.4-12.6.)

As a final comment, both of the preceding channels can be classified as “very
noisy”’ channels. The code rate R = 1/2 exceeds the channel capacity C in both
cases. Hence, we would not expect the performance of this code to be very good with
either channel, as reflected by the relatively low value (139) of the final metric of the
maximum likelihood path in the DMC case, as compared with a maximum possible
metric of 210 for a path that “agrees’” completely with r. Also, in the BSC case, the
final Hamming distance of 7 for the maximum likelihood path is large for paths only
21 bits long. Lower code rates would be needed to achieve good performance over
these channels. The performance of convolutional codes with Viterbi decoding is
the subject of the next section.

12.2 PERFORMIANCE BOUNDS FOR CONVOLUTIONAL CODES

We begin this section by analyzing the performance of maximum likelihood (Viterbi)
decoding for a specific code on a BSC. We will discuss more general channel models
later. First, assume, without loss of generality, that the ali-zero codeword v = 0 is
transmitted from the (3, 1, 2) encoder of (12.1). The IOWEF of this encoder (see
Problem 11.19) is given by

X'wir?
1— XWL(Q + X2L)
=X'WL[1+ XWLA + X2L) + X*W2L2(1 + X?L*) + -]

AW, X, L) =
(12.15)

=X'WE+ X3W2Lt + XOWIL + xOw2L  + weLh 4.

that is, the code contains one codeword of weight 7 and length 3 branches generated
by an information sequence of weight 1, one codeword of weight 8 and length 4
branches generated by an information sequence of weight 2, and so on.
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FIGURE 12.7: A first event error at time unit 7.

We say that a first event error is made at an arbitrary time unit ¢ if the all-zero
path (the correct path) is eliminated for the first time at time unit ¢ in favor of a
competitor (the incorrect parh). This situation is illustrated in Figure 12.7, where the
correct path v is eliminated by the incorrect path ¥ at time unit . The incorrect
path must be some path that previously diverged from the all-zero state and is now
remerging for the first time at time r; that is, it must be one of the paths enumerated
by the codeword WEF A(X) of the code. Assuming it is the weight-7 path, a first
event error will be made if, in the seven positions in which the correct and incorrect
paths differ, the binary received sequence r agrees with the incorrect path in four or
more of these positions, that is, if ¥ contains four or more 1°s in these seven positions.
If the BSC transition probability is p, this probability is

P7 = P[four or more 1’s in seven positions]

(12.16)
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4 4]

Assuming that the weight-8 path is the incorrect path, a first event error is
made with probability

1/38 °. /8 .
Py = —2—( A )p“ﬂ —p>4+2( . ),m - (1217)

since if the metrics of the correct and incorrect paths are tied, an error is made with
probability 1/2. In general, assuming the incorrect path has weight d, a first event
error is made with probability

d

Z (( Z’ >p@(1 —pie, d odd

d+1

= —=—

Py = 2 J
1 d an _\dj2 d . dee
1 i(d/Z)P A=p?+ 3 |, Jpa=pT, deven

e:%—l—l
(12.18)
Because all incorrect paths of length 7 branches or less can cause a first event
errof at time unit i, the first event ervor probability at time unit t, Py (£, 1), can be
overbounded, using a union bound, by the sum of the error probabilities of each of
these paths. If all incotrect paths of length greater than ¢ branches are also included,
P;(E, 1) 1s overbounded by

o
PHE D) < ) AgPy, (12.19)
d=dpee
where Ay is the number of codewords of weight d (i.e., it is the coefficient of the
weight-d term in the codeword WEF A(X) of the code). Because this bound is
independent of 7, it holds for all time units, and the first evenr error probability at
any time unit, P¢(F), is bounded by

oo
Pr(E) < ) AdPa. (12.20)
d=df;e0
The bound of (12.20) can be further simplified by noting that for d odd,
d

Pi= ) ( i )}pe(l—p)d‘e

_d+1
2

- Z ( Cef )l)[z/z(l _ pyl?

{41
=5

< (12.21)
_ .d/2 d/2
=pPa—-p* ( )

i €

d d

e=0

— 2(1p(1/2(1 _ p)(l/Z'
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It can also be shown (see Problem 12.9) that (12.21) is an upper bound on P, for d
even. Hence,

o]
d
PrE) < S Ag [2\/1)(1 - p)] : (12.22)
d:dﬁ'ee
and for any convolutional code with codeword WEF A(X) = Zgidﬁw AgX?, it
follows by comparing (12.22) with the expression for A(X) that ’

The final decoded path can diverge from and remerge with the correct path any
number of times; that is, it can contain any number of event errors, as illustrated in
Figure 12.8. After one or more event errors have occurred, the two paths compared
at the all-zero state will both be incorrect paths, one of which contains at least one
previous event error. This situation is illustrated in Figure 12.9, where it is assumed

Decoded path

/S T~

~ 17

Correct path

FIGURE 12.8: Multiple error events.

FIGURE 12.9: Comparison of two incorrect paths.
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that the correct path v has been eliminated for the first time at time uanit 7 — / by
incorrect path v/, and that at time unit 7 incorrect paths v/ and v' are compared. If
the partial metric for v/ exceeds the partial metric for v/ at time unit ¢, then it must
also exceed the partial metric for v, since v/ has a better metric than v at time 7
owing to the first event error at time r — /. Hence, if v/ were compared with v at time
unit ¢, a first event error would be made. We say that an event error occurs at time
unit ¢ if v/ survives over v/, and the eveni-error probability at time unit r, P(E, 1), is
bounded by

P(E,1) < Py (E, D), (12.24)

since if ¥ survives over v/ at time unit 7, then it would also survive if compared
with v. In other words, the event that v has a better metric than v’ at time 7 {with
probability P(E, 1)) is contained in the event that v has a better metric than v at
time ¢ (with probability P;(E, 1)).

The situation illustrated in Figure 12.9 is not the only way in which an event
error at time unit + can follow a first event error made earlier. Two other possibilities
are shown in Figure 12.10. In these cases, the event error made at {ime unit ¢
either totally or partially replaces the event error made previously. Using the same
arguments, it follows that (12.24) holds for these cases also, and hence it is a valid
bound for any event error occurring at time unit 7.2

The bound of (12.19) can be applied to (12.24). Because it is independent of 7,
it holds for all time units, and the eveni-error probability at any time unit, P(E), is
bounded by

oQ [o,0] d
P(EY< 5 APi< S A [2«/[)(1——[))] = Ay iy (12.25)
d=djree d=djyee

just as in (12.23). For small p, the bound is dominated by its first ierm, that is, the
free distance term, and the event-error probability can be approximated as

4

Tee
P(B) ~ Auyy [2/p0 = | = g, 20 piin2. (1226)

EXAMPLE 12.3 Evaluating the Event-Error Probability

For the (3, 1, 2) encoder of (12.1), dfe, = 7 and Adp,, = 1. Thus for p = 1072, we
obtain
P(E)~27p"? =128 x 107 (12.27)

The event-error probability bound of (12.25) can be modified to provide
a bound on the bit-error probability, Py(E), that is, the expected number of
information bit errors per decoded information bit. Each event error causes a
number of information bit errors equal to the number of nonzero information bits

2In the two cases shown in Figure 12.10, the event error at time unit 7 replaces at least a portion of a
previous error event. The net effect may be a decrease in the total number of decoding errors; that is, the
number of positions in which the decoded path differs from the correct path. Hence, using the first event
error probability as a bound may be conservative in some cases.
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Time —>
FIGURE 12.10: Other error event configurations.

on the incorrect path. Hence, if each event error probability term Py is weighted by
the number of nonzero information bits on the weight-d path, or if there is more than
one weight-d path, by the total number of nonzero information bits on all weight-d
paths, a bound on the expected number of information bit errors made at any time
unit results. This bound can then be divided by k, the number of information bits
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per unit time, to obtain a bound on P,(E). In other words, the bit-error probability

is bounded by
[ee)

PyE) < ) BqPy, (12.28)

d :(]/‘,-W

where By is the total number of nonzero information bits on all weight-d paths,
divided by the number of information bits k per unit time (i.e., it is the coefficient
of the weight-d term in the bit WEF B(X) = } 7, oo BaX @ of the encoder). Now,
wsing (12.21) in (12.28) and comparing that bound with the expression for B(X), we
see that

oo e:] d
PyE)< 3 BaP< 3. Ba|Wp(=p)| =B, ey (1229)

d=djyee d=dfes

for any convolutional encoder with bit WEF B(X). (We note here that the bound of
(12.25) on the event-error probability P(E) depends only on the code, whereas the
bound of (12.29) on the bit-error probability P,(E) depends on the encoder.) For
small p, the bound of (12.29) is dominated by its first term, so that

([/'7'0@ X .
Py(E) ~ Byy,, | 2/p(1 = P~ By, 20 pleel?, (12.30)

EXAMPLE 12.4 Evaluating the Bit-Error Probability

For the (3, 1, 2) encoder of (12.1). By,,, = 1. and dp. = 7. Thus, for p = 1072, we
obtain
Py(E) =~ 27p"? =1.28 x 1073, (12.31)

the same as for the event-error probability. In other words, when p is small, the most
likely error event is that the weight-7 path is decoded instead of the all-zero path,
thereby causing one information bit error. Typically, then, each event error causes
one bit eyror, which is reflected in the approximate expressions for P(E) and P, (E).

Slightly tighter versions of the bounds on P(E) and P,(E) given in (12.25) and
(12.29), respectively, have been derived in [11] and [13].

If the BSC is derived from an AWGN channel with BPSK modulation,
optimum coherent detection, and binary-output quantization (hard decisions), then

from (1.4) we have
|2,
p=0 (( Vo > . (12.32)

Using the bound of (1.5) as an approximation yields

p o~ tem B/, (12.33)
and for a convolutional code with free distance djee,

Py(E) ~ By, 2%mel2 e~ Wyree/2)(Es/No) (12.34)
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when p is small, that is, when the channel SNR E;/Nj is large. Defining the energy
per information bit, Ep, as
2 E

E )
*TR

(12.35)
and noting that % is the number of transmitted symbols per information bit, we can
write

Py(E) = By, 2%ec/2e™Ripee/DE/NO) (with coding) (12.36)

for large bit SNR E/Ng.
On the other hand, if no coding is used, that is, R = 1 and E; = Ej, the BSC
transition probability p is the bit-error probability P, (E) and

|2F 1
Py(E)=Q ( —N-0£> R~ ie”E”/NO (without coding). (12.37)

Comparing (12.36) and (12.37), we see that for a fixed E; /Ny ratio, the (negative)
exponent with coding is larger by a factor of Rdpe./2 than the exponent without
coding. Because the exponential term dominates the error probability expressions
for large E,/Ny, the factor Rdpe./2, in decibels, is called the asymptotic coding

gainy:

Rdfyee
y 2 1010g10( g ¢ ) dB (12.38)

in the hard-decision case. It is worth noting that coding gains become smaller as
E»/Ng becomes smaller. In fact, if £,/Ny is reduced to the point at which the code
rate R is greater than the channel capacity C, reliable communication with coding
is no longer possible, and an uncoded system will outperform a coded system. This
point is illustrated in Problem 12.12.

Bounds similar to (12.25) and (12.29) can also be obtained for more general
channel models than the BSC. For a binary-input AWGN channel with finite (Q-ary)
output quantization (a DMC), the bounds become

P(E) < A(X)|x=p, (12.39a)

and
Pp(E) < B(X)x=py> (12.39b)

where Dy e Z(0§j§Q~1) VPGIOP(ji1) is a function of the channel transition
probabilities called the Bhattacharyya parameter. Note that when @ = 2, a BSC
results, and Dy = 2,/p(1 — p). Complete derivations of slightly tighter versions of
these bounds can be found in [12].

In the case of a binary-input AWGN channel with no output quantization,
that is, a continuous-output AWGN channel, we again assume that the all-zero
codeword v is transmitted. In other words, v = (—1, —1, .-+, —1) according to the
mapping 0 —+ —1and 1 — +1. Now, we calculate the probability P, that the correct
path v is eliminated for the first time at time unit r by an incorrect path v/ that differs
from v in d positions. Because the Viterbi algorithm always selects the path with
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the largest value of the log-likelihood function log p(r|v) (see (12.14)), a first event
error at time unit ¢ is made with probability

Py = PriM(elv]) > M([xlv])} = Prifes'), > [r-v])

=1 -1
= Pr{[pv], = [rv], > 0} = Pr ZD?]W; - ZH‘[’Y‘/} >0
1=0 1=0 (12.40)

nt—1 nt—1 H
= Pr Zm}[/— Zr;v; >0%,
=0 =0 ﬂ

where [r-v], represents the inner product of r and v over their first 7 branches. (Note
that since we are now dealing with real numbers, the event M ([r[v'];) = M([r|v],) has
probability zero.) Clearly, the difference in the sums in (12.40) is nonzero only in the
d positions where v,/ # v;. Without loss of generality, let [ = 1,2, .-, d represent
those d positions. Then, recalling that in the d positions where v; # vy, v = +1 and
v = —1, we can express (12.40) as

d d d
P; = Pr gZ(Jm) — Zm»;) > OE = Pr {ZZW > 0}

1=1 =1 =1 (1241)

T d
= Pr ﬁZl'/ > OH.
I=1

Eguation (12.41) can be interpreted to mean that a first event error at time unit 7
occurs if the sum of the received symbol values in the d positions where v} # v; is
positive. In other words, if the received sequence r in these d positions looks more
like the incorrect path v/ than the correct path v, a first event error is made.

Because the channel is memoryless, and the transmitted codeword is assumed
to be v = (-1,~1,---, =1, p E Zle r; 1s a sum of d independent Gaussian
random variables, each with mean —1 and variance No/2E; (see (12.13)); that is, p
is a Gaussian random variable with mean —d and variance dNy/2E; (see, e.g., [11]
or [14]}. Thus, we can write (12.41) as

Py=Prip >0 B[ 0, 12.42
= 3 = 4Ng .
d r{p > 0} 7dNy j{) € 0, ( )
and with the substitution y = (p + d)/2E,/d Ny, (12.42) becomes
1 co w2
P = — e ZTdy
" V2m Jia3E am,
1 2
= — e Tdv
V21 J4. 2dEs Ny ’ (12.43)

B 2dE; \ _ 2dRE}
=0l No |~ Q No )
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where Q(x) is the familiar complementary error function of Gaussian statistics.
Now, substituting (12.43) into the bounds of (12.25) and (12.29), we obtain the
following expressions for the event- and bit-error probabilities of a binary-input,
continuous-output AWGN channel:

o0
2dRE
P(E)< Y AdQ< ~—J> (12.44a)
No
d=djec
0
2dRE
PyE) < > BaQ| [T 1. (12.44b)
d=djyec No

Using the (slightly weaker than (1.5)) bound Q(x) < exp(—x%/2) in (12.44),
we obtain the expressions

ad _dRE,
P(E) < > Age ™ = A(X)|X=exp(-REN/Ny) (12.45a)
d=dfyee
had _4REy
Py(E) < Z Bge M :B(X)!X:exp(_REh/NO)A (1245b)
d:d_/'r‘z’c

Comparing (12.45) with (12.39), we see that in the case of a binary-input AWGN
channel! with no output quantization, that is, a continuous-output AWGN channel,
the Bhattacharyya parameter is given by Dg = exp(—RE,/ Ny).

It is instructive to compare the approximate expression for P,(E) given in
(12.36) for a BSC with a similar expression obtained for a binary-input, continuous-
output AWGN channel from (12.45b). For large E,/Ny, the first term in the bit
WEF dominates the bound of (12.45b), and we can approximate P,(E) as

Py(E) ~ Byy,, (e REn/Noydiee — B o= Reiiee En/No, (12.46)

free
Comparing the exponent of (12.46) with that of (12.36), we see that the exponent of
(12.46) is larger by a factor of 2. This difference is equivalent to a 3-dB energy (or
power) advantage for the continuous-output AWGN channel over the BSC, since
to achieve the same error probability on the BSC, the transmitter must generate
an additional 3 dB of signal energy (or power). This energy advantage illustrates
the benefits of allowing soft decisions, that is, an unquantized demodulator output,
instead of making hard decisions. The asymptotic coding gain in the soft-decision
case is given by

Y A 10 logyy (Rdjre.) dB, (12.47)

an increase of 3 dB over the hard-decision case. The decoder complexity increases,
however, owing to the need to accept real-valued inputs.

The foregoing analysis is based on performance bounds for specific codes and
is valid only for large values of E;/Ng. A similar comparison of soft decisions with
finite-output quantization (Q > 2) and hard decisions can be made by computing
the approximate expression for (12.39b) for a particular binary-input DMC and
comparing with (12.30) for a BSC. Generally, it is found that ¢ = 8 allows one fo
achieve a performance within about 0.25 dB of the optimum performance achievable
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with an unquantized demodulator output while avoiding the need for a decoder that
accepts real-valued inputs.

A random coding analysis has also been used to demonstrate the advantages
of soft decisions over hard decisions [12, 14]. For small values of Ej, /Ny, this analysis
shows that there is about a 2-dB penalty in signal power attached to the use of hard
decisions; that is, to achieve the same error probability 2 dB more signal power must
be generated at the transmitter when the demodulator output is hard guantized
rather than unquantized. Over the entire range of E,/Ny ratios, the decibel loss
associated with hard decisions 1s between 2 dB and 3 dB. Hence, the use of soft
decisions is preferred in many applications as a means of regaining the 2-3-dB loss
owing to hard quantization, at a cost of some increase in decoding complexity.

Somewhat tighter versions of the bounds in (12.45) can be found using the
inequality

Oy T2 2 0(/Me™? (y>0,z20). (12.48)

Setting y = 2df. REy/No and z = 2(d — dpee) REp/ Ny, we can use (12.48) to write
(12.43) as

2dRE,
Pd:Q( N >:Q(‘vy+Z)
0
2de REb 7((/—4//-,.“,)RE/,
<0 f'j%() e ™ (12.49)
dieeREy  dRE
. 2dpeeREy | Uit ity
Mo
Now, defining the function
F(x) = 0(/2x)e, (12.50)
we can write do RE .
Pp< f Pl (12.51)
Ny

Finally, substituting (12.51) into the bounds of (12.25) and (12.29), we obtain the
following expressions for the event- and bit-error probabilities of a binary-input,
continuous-output AWGN channel:

o0
dieeREp\ _4RED
P(EY< 5 Asf (Jrejvieb)e M

d=djree (12.52a)

dfree RE)
= f (]%;]7())) A(X) | x=exp(—RE},/No)

e8] -
dree RE _dREp
PyE) < Y Bdf((‘f%>e %

d=d e ) (1252b)

dfree RE}
=f (%) B(X)| x=exp(—RE,/No)-
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We note that the tightened bounds of (12.52) differ from the bounds of (12.45) by the
scaling factor f(dg..R Ep/Np), which depends only on the free distance of the code.

We now give an example illustrating the application of the bit-error probability
bounds in (12.45b) and (12.52b).

EXAMPLE 12.5 Bit-Error Probability Bounds for an AWGN Channel

Consider the (3, 1, 2) encoder of (12.1) whose IOWEF A(W, X, L) is given in (12.15).
The bit WEF of this encoder is given by

JA(W, X
B =app LD .
CAXTW/(L - XW - X3W)]
- oW Wt (12.53)
X7

T A —2X + X2 -2X3 1 2X* 1 X6)
=x"+2x843x% rex0 4 ...,

The free distance of this code is dj.. = 7, and we can use (12.53) directly to evaluate
the bounds of (12.45b) and (12.52b). In Figure 12.11 we plot these two bounds as
functions of the bit SNR E;/Ny. Also plotted for comparison is the performance
of uncoded BPSK and the result of a computer simulation showing the Viterbi
decoding performance of this code on a continuous-output AWGN channel. Note
that the tightened bound of (12.52b) agrees almost exactly with the simulation for
SNRs higher than about 4 dB, whereas (12.45b) tracks the simulation closely but is
not as tight. For lower SNRs, however, both bounds diverge from the simulation
result. This is typical behavior for union bounds; namely, at SNRs near capacity
(about —0.5 dB for rate R = 1/3 and BPSK modulation), they do not give good
estimates of performance.
The (soft-decision) asymptotic coding gain of this code is given by

This is the coding gain, compared with uncoded BPSK, that is achieved in the limit
of high SNR. We see from Figure 12.11, however, that the real coding gain at a bit-
error probability of P, (E) = 10~* is only about 3.3 dB, illustrating that real coding
gains are always somewhat less than asymptotic coding gains. In general, larger real
coding gains are achieved by codes with fewer nearest-neighbor codewords, that is,
smaller values of AJ/,_(,(, and Bdﬁ_ﬂ,.

The performance bounds derived in this section are valid for unterminated
convolutional encoders; that is, they are independent of the length N of the
codeword. The event-error probability P(F) is the probability that at any given

time unit the Viterbi algorithm will select a path that introduces errors into the
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FIGURE 12.11: Performance bounds for convolutional codes.

decoded sequence, whereas the bit-error probability P,(E) is the average number
of bit errors per unit time. Thus the bit-error probability P,(E) represents the
bit-error rate (BER) of an unterminated encoder. The word-error probability,
or word-error rate (WER), of an unterminated encoder, on the other hand, is
essentially unity, since if a long enough sequence is encoded, at least one error event
must occur.

To determine bounds on the WER and BER of terminated encoders, we must
modify the codeword and bit WEFs to include delayed versions of codewords and
codewords that diverge and remerge with the all-zero state more than once, as
noted previously in Section 11.2. In other words, terminated convolutional codes
are block codes, and the WEFs must account for all possible codewords. Techniques
for finding these modified WEFs and evaluating the performance of terminated
convolutional codes are presented in Chapter 16 on turbo coding.
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12.3 CONSTRUCTION OF GOOD CONVOLUTIONAL CODES

We can now address the problem of constructing good codes for use with maximum
likelihood (Viterbi) decoding. Once a desired code rate has been selecied, the
performance bounds presented in the previous section can be used as guidance in
the construction of good codes. For example, the bounds of (12.25), (12.29), (12.39),
and (12.45) all indicate that the most significant term for both P(E) and P, (E), that
is, the free distance term, decays exponentially with increasing dg. and increases
linearly with increasing Ady, and B, This relationship suggests that the most
important criterion should be maximizing the free distance dy.. Then, as secondary
criteria, Adpyes the number of (nearest-neighbor) codewords with weight dfree, and
By, the total information sequence weight of all weight-dp., codewords, divided
by k, should be minimized. (Because of the close relationship between Ay, and
By, (see (11.129)), it is sufficient to simply minimize Ag,,.) Generally speaking,
dfree 1s of primary importance in determining performance at high SNRs, but as the
SNR decreases, the influence of the number of nearest-neighbors Adpye increases,
and for very low SNRs the entire weight spectrum plays a role. Finally, the use of
catastrophic encoders should be avoided under all circumstances.

Most code constructions for convolutional codes have been done by computer
search. Algebraic structures that guarantee good distance properties, similar to the
BCH construction for block codes, have proved difficult to find for convolutional
codes. This has prevented the construction of good long codes, since most computer
search techniques are time-consuming and limited to relatively short constraint
lengths. An efficient search procedure for finding dpe. and Ay, based on the
Viterbi algorithm has been developed by Bahl, Cullum, Frazer, and Jelinek [15] and
modified by Larsen [16]. The algorithm assumes the received sequence is all zeros,
confines the search through the trellis to only those paths starting with a nonzero
information block, uses a metric of O for an agreement and +1 for a disagreement,
and searches for the path with the minimum metric. As soon as the metric of
the survivor at the all-zero state is less than or equal to the metric of the other
survivors, the algorithm can be terminated. The metric at the all-zero state then
equals df.., since none of the other survivors can ever remerge to the all-zero state
with a smaller metric. (A straightforward modification of this procedure can also
be used to compute Ay, ,.) A trellis depth of several constraint lengths is typically
required to find dp., for a noncatastrophic encoder. For a catastrophic encoder, the
survivor at the all-zero state may never achieve the minimum metric, owing to the
zero loop in the state diagram. (This can be used as an indicator of a catastrophic
encoder.) This algorithm is capable of computing dy., and Ag,, for values of v up
to about 20. For larger values of v, the number of storage locations required by the
algorithm, 2", becomes unacceptably large and other means of finding df.. must be
tried. No general solution to the problem of finding df.. for large values of v has
yet been discovered. We shall see in Section 13.4, however, that some sequential
decoding algorithms for convolutional codes can, with proper modification, be used
to compute the free distance of codes for values of v up to about 30.

Lists of optimum codes for rates R = 1/4,1/3,1/2,2/3, and 3/4 are given in
Table 12.1, where the optimality criterion first maximizes dj., and then minimizes

. h ¥ " 3 ot tha § Aict .
A N In the table, we list the overall constraint length v, the free distance dp
Afyee 3 & 3 frees

the number of nearest-neighbor codewords Ay, and the soft-decision asymptotic
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coding gain y, given by (12.47), of each code. In Tables 12.1{a), 12.1(b), and 12.1{c),
tor the (low-rate) codes with & = 1, we lisi the coefficients of the polynomials in
the generator matrix G(D) = [g@(D) gV (D) .. gD (D)] (see (11.80a)), that is,
the generator sequences, in octal form, for the minimal controller canonical form
encoder realization. In Tables 12.1(d) and 12.1(e), for the (high-rate) codes with
k > 1, we list the coefficients of the polynomials in the parity-check matrix H(D) =
MC=D(Dy . WD)y h®(D)] (see (11.82b)), that is, the parity-check sequences,
in octal form, for the minimal observer canonical form encoder realization. To be
consistent in the octal representations of the generator and parity-check sequences
for convolutional encoders listed throughout this text, we adopt the following
convention. We first write a binary polynomial f(D) of degree v from highest order
to lowest order as follows:

BD)= f,D" + fo_1D" '+ ..+ AAD + fo. (12.55)

TABLE 12.1(2)’: Optimum rate R = 1/4 convolutional
codes.

¥ g(tﬁ)) g(l) g(z’) g(S) dfree A‘dfree 4 (dB})

1 1 1 3 3 6 1 1.76
2 5 5 7 7 10 1 3.98
3 13 13 15 17 13 2 5.12
4 25 27 33 37 16 4 6.02
5 45 53 67 77 18 3 6.53
6 117 127 155 171 20 2 6.99
7 257 311 337 355 22 1 7.40
& 533 575 647 711 24 1 7.78
9 1173 1325 1467 1751 27 3 8.29

TABLE 12.1(b): Optimum rate R = 1/3 convolu-
tional codes.

g(O) g(}l) g(2.) dﬁvze A e ¥ (dB)

<

1 1 3 3 5 1 222
2 5 7 7 8 2 4.26
3 13 15 17 10 3 5.22
4 25 33 37 12 5 6.02
5 47 53 75 13 1 6.36
6 117 127 155 15 3 6.99
7 225 331 367 16 1 7.27
8 575 623 727 18 1 7.78
9 1167 1375 1545 20 3 8.23
10 2325 2731 3747 22 7 8.65
11 5745 6471 7553 24 13 9.03
122371 13725 14733 24 5 9.03

3Tables 12.1a—e adapted from [17].
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TABLE 12.1(c): Optimum rate R = 1/2 con-
volutional codes.

v g oW dp Ay, v (@B)

1 3 1 3 1 1.76
2 5 7 5 1 3.98
3 13 17 6 1 4.77
4 27 31 7 2 5.44
5 53 75 8 1 6.02
6 117 155 10 11 6.99
7 247 371 10 1 6.99
8 561 753 12 11 7.78
9 1131 1537 12 1 7.78
10 2473 3217 14 14 8.45

11 4325 6747 15 14 8.75
12 10627 16765 16 14 9.03
13 27251 37363 16 1 9.03

TABLE 12.1(d): Optimum rate R = 2/3 convolu-
tional codes.

v @ w® WO g, A4, v@B)

2 3 5 7 3 1 3.01
3 17 15 13 4 1 4.26
4 23 31 27 5 3 5.23
5 71 57 73 6 7 6.02
6 123 147 121 7 17 6.69
7313 227 241 8 43 7.27
8 555 631 477 8 6 7.27
9 1051 1423 1327 9 17 7.78
10 2621 2137 3013 10 69 8.24

TABLE 12.1(e): Optimum rate R = 3/4 convolutional

codes.

v B h® h® h® g4 lfree A Qe 7 (dB) g
2 2 5 7 6 3 6 3.52

3 11 13 15 12 4 16 477

4 33 25 37 31 4 2 4.77

5 47 73 57 75 5 7 5.74

6 107 135 133 141 6 27 6.53

7 211 341 315 267 6 5 6.53

8 535 757 733 661 7 27 7.20

9 1475 1723 1157 1371 8 136 7.78
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Then, starting with the rightmost bit fy, we group ‘the PO@ﬁﬁC]@ﬂtS in threes and
represent them as octal digits, with 0’s appended on the left to make the total
number of bits a multiple of 3. We then list the octal di s from right (lowest-order
terms) to left (highest-order terms) in the tables. For ez sameleﬂ the best (3, 1, 4)
encoder in Table 12.1(b) has

1,

n
v

G2 =gV gV(D) g? (D]

4 4 ~ . e
=[1+D?+D* 14+D+D°+D* 14+ D+ D>+ D"+ DY,

and its generator sequences are listed as g0 = (25), gV = (33), and g¥ = (37,
Similarly, the best (3,2, 3) encoderin T

H(D) = h? ) BV O D]

fl

D3+ D*+D+1 D*4+D*+1 D +Db+1].

and its parity-check sequences are listed as h® = (17), 'V = (15), and B'® = (13).
{(We note that the controller canonical form polynomials in (12.56) must be writien
in reverse order prior to forming the ocial representation, wheveas the observes

canonical form polynomials in (12.57) are already written in reverse order.) Because
the search procedures employed are essentially exhaustive, optimum codes have
been obtained only for relatively short constraint lengths. Mevertheless, the soft-
decision asymptotic coding gains of some of the codes are quite large. For example,
the (2, 1, 18) code with df,. = 22 achieves an asymptotic coding gain of 10
with soft-decision decoding; however, since the number of nearest neighb
code is a rather large Ay = 65, the veal coding gain will exceed 10 dB on!
low BERs (very high SNRs).

The optimum codes listed in Table 12.1 are generaied by either a nonsys-
tematic feedforward encoder or an equivalent systematic feedback ;,,ﬂeeder. This 13
because for a given rate and constraint length, more free distance is available with
nonsystematic feedforward encoders than with systematic feedforward encoders, as
was pointed out in Chapter 11; however, systematic encoders have the advantage
that no inverting circuit is needed io recover a noisy version of the information
sequence from the codeword without decoding. This property allows the user to
take a “quick look™ at the received information sequence without having to invert a
“nonsystematic codeword.” This feature can be important in systems where decod-
ing is done off-line, or where the decoder is subject to temporary failures, or where
the channel is known to be “noiseless” during certain time intervals and decoding
becomes unnecessary. In these cases, the systematic feedback form of encoder
realization is preferred.

In some applications a feedforward encoder realization may be preferred. For
example, for feedforward encoders, m blocks of all-zero input bits can always be
used to terminate the encoder rather than having the termination bits depend on the
information sequence. In this case it is desirable to try to combine the quick-look
property of systematic feedforward encoders with the superior free distance available
with nonsystematic feedforward encoders. To this end, Massey and Costello [18]
developed a class of rate R = 1/2 nonsystematic feedforward encoders called
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quick-look-in encoders that have a property similar to the quick-look capability of

cyefrpmqﬁn encoder T%py are defined hy
S cencodaers. 1he ae L0

Seloiiaigua [ 2w 1838 LwiN

gDy +gV(D)y=D (12.58)

and géo) = g(()l) = g,(,?) = g,% )= 1; that is, the two generator sequences differ in only

a single position. These encoders are always noncatastrophic (see Problem 12.15),
and their feedforward inverse has the trivial transfer function matrix

G YD) = [ } } (12.59)
Because
GG D) =[g"D) D+gYWD)] [ } } =D, (12.60)

the information sequence u(D) can be recovered from the codeword V(D) with a
one time unit delay. The recovery equation is

V(D)YGH(D) = v (D) + vV (D) = Du(D), (12.61)

and we see that if p is the probability that a bit in the codeword V(D) is in error,
then the probability of a bit error in recovering w(D) is roughly 2p,* because an
error in recovering u; can be caused by an error in either v,

For any noncatastrophic rate R == 1/2 encoder with feedforward inverse

—1 D)
Glpy=| 8, | 12.62
( {gll(D) ( )
the recovery equation is
v (Dyg, L (D) + vV (D)g (D) = D'w(D), (12.63)

for some /, and an error in recovering u; can be caused by an error in any of
wlgy ! (D)] positions in v\ (D) or any of wg; ™ (D)] positions in v("' (D). Hence, the

probability of a bit error in recovering u(D) is A £ wig, Yo+ w[gfl(D)] times
the probability of a bit error in the codeword. A is called the error probability
amplification factor of the encoder. A = 2 for quick-look-in encoders, and this is
the minimum value of A for any R = 1/2 nonsystematic encoder. For R = 1/2
systematic (feedforward or feedback) encoders,

GL(D) = [ : } , (12.64)

and A = 1 for systematic encoders. Hence, quick-look-in encoders are “almost sys-
tematic,” in the sense that they have the minimum value of A for any nonsystematic
encoder. Catastrophic encoders, at the other extreme, have no feedforward inverse,
and their error probability amplification factor is infinite.

‘We are ignoring here the unlikely event that two errors in V(D) will cancel, causing no error in
recovering u(D).
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Section 12.3 Construction of Good Convolutional Codes
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TABLE 12.2: Optimum rate R = 1/2
quick-look-in convolutional codes.

v g9 dpee Ag,, ¥ @B
2 5 5 1 3.98
3 15 6 1 477
4 31 7 2 5.44
5 55 8 2 6.02
6 151 9 4 6.53
7 215 9 1 6.53
& 455 10 1 6.99
9 1335 11 3 7.40
10 3055 12 3 7.78
11 6055 13 8 8.13
12 14135 14 10 8.45
13 34731 14 3 8.45
14 60545 15 6 8.75
15 171045 16 i1 9.03
16 341225 16 2 9.03
17 613151 17 5 9.29
18 1422255 18 6 9.54
19 3007451 18 2 9.54
20 6153605 19 4 9.78
21 14565371 20 7 10.00
22 32720445 20 1 10.00
23 63347465 21 3 10.21
24 147373045 22 7 10.41

The capability of quick-look-in encoders to provide an immediate estimate
(prior to decoding) of the information sequence from a noisy version of the codeword
with an error probability amplification factor of only 2 makes them desirable in
some applications. The free distances and number of nearest neighbors for the
optimum rate R = 1/2 codes generated by quick-look-in encoders are listed in
Table 12.2. Note that dp,, for the best quick-look-in R = 1/2 codes is a little less
than dp,, for the best overall R = 1/2 codes listed in Table 12.1(c). Thus, the
“almost systematic” property of quick-look-in codes results in a small performance
penalty compared with the best codes (see Problem 12.16). Their free distances are
superior, however, to what can be achieved with the codes generated by systematic
feedforward encoders (see Problem 12.17).

As noted previously, there are few algebraic consiructions available for con-
volutional codes. One exception is the construction of orthogonal codes for use with
majority-logic decoding. These constructions are covered in Chapter 13. Another
approach, initiated by Massey, Costello, and Justesen [19], vses the minimum dis-
tance properties of a cyclic block code to provide a lower bound on the free distance
of an associated convolutional code. If g(X) is the generator polynomial of any (n. k)
cyclic code of odd length # with minimum distance d,, and h(X) = (X" — 1)/g(X) is
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the generator polynomial of the (n.n — k) dual code with minimum distance dy,, the
following consiruction for rate R = 1/2 codes results.

Construction 12.1 The rate R = 1/2 convolutional encoder with composite
generator polynomial g(D) is noncatastrophic and has dp.. > min(dg, 2dy,).

The cyclic codes should be selected so that d, ~ 2d,,. This suggests trying cyclic
codes with rates in the range 1/3 < R < 1/2 (see Problem 12.18).

EXAMPLE 12.6 Constructing Convolutional Codes from Block Codes

Consider the (15, 5) BCH code with generator polynomial g(X) = 1+ X + X%+ X*+
X + X8 + X' This code has minimum distance dy = 7. The generator polynomial
of the dual code is h(X) = (X —1)/g(X) = X> + X+ X + 1, and d; = 4.
The rate R = 1/2 convolutional encoder with composite generator polynomial
g(D) = 1+ D+ D* + D* + D° + D® + D' then has dpe. > min(7,8) = 7. The
polynomial generator matrix is given by

G(D)=[1+D+D*+D*+D° 1+D?, (12.65)

and we see that the encoder is noncatastrophic and has constraint length v = 5. If
u(D) =1, the codeword

v(D) =w(D*g(D) = 1+ D + D* + D* + D’ + D% + D0 (12.66)

has weight 7, and hence dg,, = 7 for this code.

A similar construction can be used to produce codes with rate R = 1/4.

Construction 12.2 The rate R = 1/4 convolutional code with composite
generator polynomial g(Dz) + Dh(D?) is noncatastrophic and has df., > min(dg +
dp, 3dg, 3dy,).

The cyclic codes should be selected so that d, = dj,. This suggests trying cyclic
codes with rates near R = 1/2 (see Problem 12.18).

Two difficulties prevent these constructions from yielding good long convolu-
tional codes. The first is the problem of finding long cyclic codes with large minimum
distances. The second is the dependence of the bound on the minimum distance of
the duals of cyclic codes. The second difficulty was circumvented in a subsequent
paper by Justesen [20]. Justesen’s construction yields the bound dg., > dg, but it
involves a rather complicated condition on the roots of g(X) and, in the binary case,
can be used only to construct convolutional codes with odd values of n. Another
paper by Tanner [21] broadens the class of block codes to include quasi-cyclic codes.
Tanner’s construction yields the bound dpee > dinin, Where dyyy, is the minimum dis-
tance of an associated quasi-cyclic code, and it provides an interesting link between
the theories of block and convolutional codes.

12.4 [IMPLEMENTATION AND PERFORMANCE OF THE VITERBI ALGORITHM

The basic operation of the Viierbi algorithm was presented in Section 12.1. In
a practical implementation of the algorithm, several additional factors must be
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considered. In this section we discuss some of these factors and how they affect
decoder periormance.

Decoder Memory. Because there are 2V states in the state diagram of the
encoder, the decoder must reserve 2V words of storage for the survivors. Each word
must be capable of storing the surviving path along with its meiric. Since the storage
requirements increase exponentially with the constraint length v, in practice it is
not feasible to use codes with large v (although special-purpose Viterbi decoders
with constraint length as high as v = 14 have been implemented [22]). This limits
the available free distance, and sofi-decision coding gains of arcund 7 dB are the
practical limit of the Yiterbi algorithm m most cases. The exact error probabilities
achieved depend on the code, its rate, its free distance, the available channel SNR,
and the demodulator ouiput quantization, as well as other factors.

Path Memory. We noted in Section 11.1 that convoluiional codes are most
efficient when the length of the information sequence is large. The difficulty this
causes is that cach of the 2" words of storage must be capable of storing a K* = kh-
bit path plus its metric. For very large h, this is clearly impossible, and some
compromises must be made. The approach that is usually taken is to truncate the
path memory of the decoder by storing only the most recent t blocks of information
bits for each survivor, where v << h. Hence, after the first ¢ blocks of the received
sequence have been processed by the decoder, the decoder memory is full. After
the next block is processed, a decoding decision must be made on the first block of
k information bits, since it can no longer be stored in the decoder’s memory.

There are several possible strategies for making this decision. Among these
are the following:

1. Choose an arbitrary survivor, and select the firsi information block on this
path.

Select from among the 2% possible first information blocks the one that appears
most often in the 2" survivors.

I
B

Choose the survivor with the best metric, and select the first information block
on this path.

;ga

After the first decoding decision is made, additional decoding decisions are made in
the same way for each new received block processed. Hence, the decoding decisions
always lag the progress of the decoder by an amount equal to the path memory,
that is, 7 blocks. At the end of a terminated trellis, there remain v — m information
blocks to decode. These are simply selected as the last v — m information blocks on
the final surviving path.

The decoding decisions made in this way are no longer maximum likelihood,
but can be almost as good as maximum likelihood if ¢ is not too small. Experience
and analysis have shown that if v is on the order of 5 times the encoder memory
order or more, with probability approaching 1 all 2" survivors stem from the same
information block t time units back; thus, there is no ambiguity in making the
decoding decision. This situation is illustrated in Figure 12.12. In addition, this must
be the maximum likelthood decision, since no matter which survivor eventually
becomes the maximum likelihood path, it must contain this decoded information
block. Hence, if 7 is large enough, almost all decoding decisions will be maximum
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Survivor
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j jrTHl
G Time

Common stem

FIGURE 12.12: Decoding decisions with a finite path memory.

likelihood, and the final decoded path will be close to the maximum likelihood path.
This point is illustrated in Problem 12.19.

There are two ways in which errors can occur in a truncated decoder. Assume
that a branch decision at time unit ¢ is made by selecting the survivor at time unit
t + v + 1 with the best metric and then decoding the information bits on that path
at time unit 7. If a decoder with unlimited path memory contains a decoding error
(i.e., the maximum likelihood path diverges from the correct path) at time unit ¢,
it is reasonable to assume that the maximum likelihood path is the best survivor at
time unitr + v + 1, and hence a decoder with finite path memory will make the same
error. An additional source of error with a truncated decoder occurs when some
incorrect path that is unmerged with the correct path from time unit ¢ through time
unit 7 + 7 + 1 is the best survivor at time unit 7 + 7 + 1. In this case a decoding error
may be made at time unit 7, even though this incorrect path may be eliminated when
it Jater remerges with the correct path and thus will not cause an error in a decoder
with unlimited path memory. Decoding errors of this type are called decoding errors
due to truncation. The subset of incorrect paths that can cause a decoding error due
to truncation is shown in Figure 12.13. Note that it includes all unmerged paths of
length greater than t that diverge from the correct path at time unit j or earlier.

For a convolutional encoder with codeword WEF A(W, X, L), the event-error
probability on a BSC of a truncated decoder is bounded by

21
P(E) < | AW, X, L)+ ) AJ(W,X, L) , (12.67)
i=1 X=2/p(I=p).W=1.L=1

where Z 1A (W, X, L) is the codeword WEF for be SLb et of incorrect paths
that can cause decodmg errors due to truncation [23]. In other w i
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FIGURE 12.13: Incorrect path subset for a iruncaied decoder

the codeword WEF for the set of all unmerged paths of length more than t branches
in the augmentied modified encoder state diagram that conneci the all-zero state
with the ith state. The first term in (12.67) represents the decoding errors made by
a decoder with unlimited path memory, whereas the second term represents the
decoding evrors due to truncation. Equation (12.67) can be generalized to other
DMCs and the unquantized AWGI channel by letting X = D, and X = ¢~ RE/No,
respectively. Also, expressions similar to (12.67) can be obtained for the bit-error
probability P,(£) by starting with the bit WEF B(W. X. L) of the encoder.

When p is small (if the BSC is derived from a hard-quantized AWGHN channel,
this means large E),/Ng). (12.67) can be approximated as

dfyee d(T)
P(E) ~ Agy,, (2«/1)(1 - p)) / + A (2 p(1— p)) . (12.68)

where d(7) is the smallest power of D, and A7y is the number of ierms with weight
d(7) in the unmerged codeword WEF ZZ' . AX(W, X. L). Further simplification of
(12.68) yields

P(E) ~ Ad/',wzdﬁw pd/',w/Z + Ad(f)zd(t)pd(r)/Z. (1269)

From (12.69) it is clear that for small values of p, if d(t) > dpy,, the second term
is negligible compared with the first term. and the additional error probability due
to truncation can be ignored. Hence, the path memory tv should be chosen large
enough so that d(7) > dpe In a truncated decoder. The minimum value of 7 for
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TABLE 12.3: Minimum
truncation lengths for rate

R = 1/2 optimum free
distance codes.

m dfree Tmin ~ A(Tmin)

2 5 7 6
3 6 9 7
4 7 14 8
5 8 18 9
6 10 26 11
7 10 27 11

which d(t) > dpe, is called the minimum truncation length 7, of the encoder. The
minimum truncation lengths for some of the rate R = 1/2 optimum free distance
codes listed in Table 12.1(c) are given in Table 12.3. Note that 7, ~ 4m in most
cases. A random coding analysis by Forney [4] shows that in general t,,,;, depends on
R, but that typically a small multiple of m is sufficient to ensure that the additional
error probability due to truncation is negligible. Extensive simulations and actual
experience have verified that 4 to 5 times the memory order of the encoder is usually
an acceptable truncation length to use in practice.

EXAMPLE 12.7 Minimum Truncation Length of a (2, 1, 2) Encoder

Consider the (2, 1, 2) nonsystematic feedforward encoder with G(D) = [1+ D +
D? 14 D?]. The augmented modified state diagram for this encoder is shown in
Figure 12.14, and the codeword WEF is given by

XSwie3
1—XWLA+ L)

Letting A; (W, X, L) be the WEF for all paths connecting the all-zero state (Sp) with
the ith state ($;) we find that

AW, X, L) =

(12.70)

X2WL(1 — XWL)

AW, X, L) = :
i ) 1-XWLQA + L)

(12.71a)

WXL

Ot O e O O

WL

FIGURE 12.14: Augmented modified state diagram for a (2, 1, 2) encoder.
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FIGURE 12.15: Determining the truncation distance of a (2, 1, 2) encoder.

XPwi? ;
Ay(W, X, L) = : 12.71b
2D = Ry LA D ( )

v3yy272

X°W-L~
A3(W, X, L) = (12.71¢)

1-XWLA+L)
If we now expurgate each of these generating functions to include only paths of
length more than t branches, d(r) is the smallest power of X in any of the three
expurgated functions. For example, 4(0) = 2. d(1) = 3. d(2) = 3, and so on. Because
dfree = 5 for this code, Ty is the minimum value of t for which d(t) = dfe. +1 = 6.
Ay{(W, X, L) contains a term X° W*L7, and hence d(6) < 5 and t,,;; must be at least
7. The particular paih yielding this term is shown darkened on the trellis diagram
of Figure 12.15. A careful inspection of the trellis diagram shows that there is no
path of length 8 branches that terminates on 51, $, or $3 and has weight less than 6.
There are five such paths, however, that have weight 6, and these are shown dotted
in Figure 12.15. Hence, d(7) = 6, Ay7y = 5. and v, = 7, which is 3.5 times the
memory order of the encoder in this case. Hence, a decoder with a path memory of
7 should be sufficient to ensure a negligible increase in event-error probability over
a decoder with unlimited path memory for this code.

Finally, it is imporiant to point cut the distinction between the column distance
d; defined in Section 11.3 and the truncation distance d(t) defined here. 4; is the
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minimum weight of any codeword of length 7 4 1 branches. Because this includes
codewords that have remerged with the all-zero state and hence whose weight has
stopped increasing beyond a certain point, d; reaches a maximum value of dfe.
as [ increases. On the other hand, d(t) is the minimum weight of any codeword
of length more than t branches that has not yet remerged with the all-zero
state. Because remergers are not allowed, d(r) will continue to increase without
bound as r increases. For example, for the encoder state diagram of Figure 12.14,
d9) =7,d(19) =12,d(29) = 17.---, and, in general, d(r) = %l + 2 for odd .
Catastrophic encoders are the only exception to this rule. In a catastrophic
encoder, the zero-weight loop in the state diagram prevents d(r) from increasing
as t increases. Hence, catastrophic encoders contain very long codewords with low
weight, which makes them susceptible to high error probabilities when used with
Viterbi decoding, whether truncated or not. For example, the catastrophic encoder
of Figure 11.14 has dj,. = 4 but contains an unmerged codeword of infinite length
with weight 3, and d(z) = 3 for all ¢ > 1. Hence, the additional error probability due
to truncation will dominate the error probability expression of (12.69), no matter
what truncation length is chosen, and the code will not perform as well as a code
generated by a noncatastrophic encoder with dj. = 4. This performance difference
between catastrophic and noncatastrophic encoders is discussed further in [24].

Decoder Synchronization. In practice, decoding does not always commence
with the first branch transmitted after the encoder is set to the all-zero state but may
begin with the encoder in an unknown state, in midstream, so to speak. In this case,
all state metrics are initially set to zero, and decoding starts in the middle of the
trellis. If path memory truncation is used, the initial decisions taken from the survivor
with the best metric are unreliable, causing some decoding errors. But Forney [4] has
shown, using random coding arguments, that after about 5m branches are decoded,
the effect of the initial lack of branch synchronization becomes negligible. Hence,
in practice the decoding decisions over the first 5m branches are usually discarded,
and all later decisions are then treated as reliable.

Bit (or symbol} synchronization is also required by the decoder; that is, the
decoder must know which of n consecutive received symbols is the first one on a
branch. In attempting to synchronize symbols, the decoder makes an initial assump-
tion. If this assumption is incorrect, the survivor metrics typically remain relatively
closely bunched. This is usually indicative of a stretch of noisy received data, since
if the received sequence is noise-free, the metric of the correct path typically domi-
nates the meitrics of the other survivors. This point is illustrated in Problem 12.21. If
this condition persists over a long enough span, it is indicative of incorrect symbol
synchronization, since long stretches of noise are very unlikely. In this case, the sym-
bol synchronization assumption is changed until correct synchronization is achieved.
Note that at most » attempts are needed to acquire correct symbol synchronization.

Receiver Quantization. For a binary-input AWGN channel with finite-
output quantization, we gave performance bounds in (12.39) that depended on the
Bhattacharyya parameter

0-1
Do =Y VP(IO)P(jID. (12.72)
i=0
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where P(j|0) and P(j|1) are channel transition probabilities, and ¢ is the number of
output quantization symbols. In particular, smaller values of Dy, which depends only
on the binary-input, @-ary output DMC model, result in lower error probabilities.
Because we are {ree to design the quantizer, that is, to select the quantization
thresholds, we should do this in such a way that Dg is minimized. In general, for
Q-ary output channels, there are @ — 1 thresholds to select, and Dy should be
minimized with respect to these @ — 1 parameters.

Because the transmiited symbols +./E; are symmetric with respect to zero,
the (Gaussian) distributions p(|0) and p(r|l) associated with an (unquantized)
received value r are symmetric with respect to £./F;, and since ¢ is novimally a
power of 2, that is, even, one threshold should be selecied at Ty = 0, and the other
thresholds should be selected at values 71, 273, - - -, £T(g/2)—1. Thus, in this case,
the quantizer design problem reduces to minimizing Dy with respect to the (Q/2) — 1
parameters Ty, T, - - . Tegyz)—1. In Figure 12.16 we illustrate the calculation of the
channel transition probabilities P(%¢;|0) and P(Lg;|1) based on a particular set of
thresholds, where the notation +¢; denotes the quantization symbol whose interval
is bounded by +7; and +7;_4,i =1.2,.--, /2, and Ty, = co. Using this notation
and the mapping 1 — +./E; and 0 — —./E,, we can rewrite (12.72) as

o2
Do=)

i=1

[VP@IOP @D +VPgl0P (gD (12.73)

FIGURE 12.16: Calculating channel transition probabilities for a binary-input, Q-ary
output DMC.
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and we can calculate the transition probability P(g;0) using (12.13) as follows:

g (1+1)‘
Pgil0) = / p(ri0) dr ~jf
Ty Ty HNO

We now minimize (12.72) with respect to T; by solving the following equation
for T;:

—~~
[
S/
~J
I

-

opy N LI [VP@OPGTD +P=g; 0P (g, ] |

= =0. 12.75
it oT, 0. (1275)
The solution of (12.75) involves terms of the form
7
IP(g; d fi- p(r]v)dr
Gl _ 72 ] v=0 or 1. (12.76)
aT; aT;
Using the relations
8[/{_’;1 p(riv) dr] 7
a7 = p(Tilv) (12.77a)
and
3[ TTI‘H plriv) dr] P
= 7_‘[' s .
T p(Tilv) ( )
we can write
—%2 =¢ —pTilv), j=i+1 (12.78)
i 0, jEL A+ L

(From Figure 12.16 we can see that only the transition probabilities P(g;[0), P(g;]1).
P(gi+110), and P(g;+1|1) depend on the sclection of the threshold T;.) Now, using
(12.78) in (12.75) we obtain

9Dy _ 1 P(q,w) ity 4 L [P@D

o1, ~ 2\ P@D” T T 2y Plg0)”

PGnl0) |)w PV o (12.79)
2 P(q,ml) ’ Plgia0)

We can also write (12.79) as

P(g:10) P(gilL) P(gi4110) P(gis11)
T:|1) + 7:10) = | L e M om0
P T Y 0 = B P T P Y

(12.80)
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or

- P@ill) | Plgipll) ol [P@aio [Py ]
p(T;10) - = p(Ti]1 - - 12.81)
Pl NP(MO) \/P(q,-ﬂmi : '{ P (gl \Pw,-m} (28

or

iy VPGP ~ /Pl DG D)

PO [ /PG 10/ P gD — /P 0/ Pl

[ NS | | S——|

Plgi1lDPgi 1D
V P(gi [0 P(gi4110)

_ /.P<q,-;1> Plgrl)
Y P(gilOY Plgin1l0)
Now, we define the likelihood ratio of a received value r at the output oi an
unquantized binary-input channel as

-
-
o
zo

e

prii)

Alr) = .
) pr0)

(12.83a

N’

Similarly, we define the likelihood ratio of a received symbol ¢; ai the outpui of a
binary-input, Q-ary output DMC as

P i 1)
Mgy = &
Pgi10)

o]

(12.83b)
Using (12.83), we can now express the condition of (12.82) on the ihreshold 7; that
minimizes Dy as

M) = Mg M giny). i=1.2..0/2 (12.84)

Condition (12.84} provides a necessary condition for a set of thresholds 7j.i =
1,2,--+-,0/2 to minimize the Bhattacharyya parameter Dy and hence also o
minimize the bounds of (12.39) on error probability. In words, the likelihood ratio of
each quantizer threshold value 7; must equal the geometric mean of the likelihood
ratios of the two quantization symbols ¢; and ;. that border 7;. Because (12.84)
does not have a closed-form solution, the optimum set of threshold values must
be determined using a trial-and-error approach. In Problem 12.22, guantization
thresholds are calculated for several values of O using the optimality condition of
(12.84). It is demonstrated that the required SNR E, /Ny needed to achieve a given
value of Dg is only slightly larger when @ = & than when no output quantization
is used. In other words, an 8-level quantizer involves very little performance {oss
compared with a continuous-output channel.

Computational Complexity. The Viterbi algorithm must perform 2V ACS
operations per unit time, one for each state, and each ACS operation involves 2f
additions. one for each branch entering a state, and 28 — 1 binary comparisons.
Hence, the computational complexity (decoding time) of the Viterbi algorithm is
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proportional to the branch complexity 22" = 2+ of the decoding trellis. Thus,

al A4 1 £ A &
as noted previously for decoder memory, the exponential dependence of decoding

time on the constraint length v limits the practical application of the Viterbi
algorithm to relatively small values of v. In addition, since the branch complexity
increases exponentially with &, codes with high rates take more time to decode. This
computational disadvantage of high-rate codes can be eliminated using a technique
called puncturing that is discussed in Section 12.7.

High-speed decoding can be achieved with the Viterbi algorithm by employing
parallel processing. Because the 2" ACS operations that must be performed at each
time unit are identical, 2V identical processors can be used to do the operations in
parallel rather than having a single processor do all 2V operations serially. Thus,
a parallel implementation of the Viterbi algorithm has a factor of 2" advantage in
speed compared with a serial decoder, but it requires 2V times as much hardware.
Decoding speed can be further improved by a factor of about 1/3 for a large subclass
of nonsystematic feedforward encoders by using a comparc-select—add (CSA)
operation instead of the usual ACS operation. Details of this differential Viterbi
algorithm can be found in [25].

Code Performance.  Computer simulation results illustrating the perfor-
mance of the Viterbi algorithm are presented in Figure 12.17. The bit-error
probability P,(E) of the optimum rate R = 1/2 codes with constraint lengths
v = 2 through v = 7 listed in Table 12.1(c) is plotted as a function of the bit SNR
E,/Ng (in decibels) for a continuous-output AWGN channel in Figure 12.17(a).
These simulations are repeated for a BSC, that is, a hard-quantized (Q = 2) channel
output, in Figure 12.17(b). In both cases the path memory was t = 32. Note that
there is about a 2-dB improvement in the performance of soft decisions (unquantized
channel outputs) compared with hard decisions (Q = 2). This improvement is illus-
trated again in Figure 12.17(c), where the performance of the optimum constraint
length v = 4, rate R = 1/2 code with @ =2, 4, 8, and co (unquantized outputs) and
path memory v = 32 is shown. Also shown in Figure 12.17(c) is the uncoded curve
of (12.37). Comparing this curve with the coding curves shows real coding gains of
about 2.4 dB in the hard-decision case (@ = 2), 4.4 dB in the quantized (Q = 8)
soft-decision case, and 4.6 dB in the unquantized (Q = co) soft-decision case at a
bit-error probability of 107>, Also, we note that there is only about 0.2-dB difference
between the @ = 8 quantized channel performance and the unquantized (@ = o0)
channel performance, suggesting that there is not much to gain by using more than
§ channel-output quantization levels. In Figure 12.17(d), the performance of this
same code is shown for path memories 7 = 8§, 16,32, and oo (no truncation) for a
BSC (Q = 2) and an unquantized (Q = oo0) channel output. Note that in both cases
a path memory of T = 8 = 2v degrades the performance by about 1.25 dB, that
7 = 16 = 4v is almost as good as t = 32 = 8y, and that t = 32 = 8y performs the
same as no truncation. (Recall that v = m for rate R = 1/2 codes.) The performance
of the optimum rate R = 1/3 codes with constraint lengths v = 3,5, and 7 listed
in Table 12.1(b) is shown in Figure 12.17(¢) for both a continuous-ouiput AWGN
chanpel and a BSC. Note that these codes do better than the corresponding rate
R = 1/2 codes of Figures 12.17(a) and (b) by between 0.25 dB and 0.5 dB. This is
because the coding gain, that is, the product of R and dfe, in decibels, is larger at
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R = 1/3 than at R = 1/2 for the same constraint length.> Finally, Figure 12.17(f)
shows the performance of the optimum rate R = 2/3 code with v = 6 listed in
Table 12.1(d) for both a continuous-output AWGN channel and a BSC. Again, note
that the corresponding rate R = 1/2 code with v = 6 in Figures 12.17(a) and (b)
does better than the rate R = 2/3 code by about 0.4 dB and 0.25 dB, respectively. All
these observations are consistent with the performance analysis presented earlier in
this chapter.

12.5 THE SOFT-OUTPUT VITERB!I ALGORITHM (SOVA)

The subject of code concatenation. in which two or more encoders (and decoders)
are connected in series or in parallel, will be discussed in Chapters 15 and 16. In
a concatenated decoding system, it is common for one decoder to pass reliability
(confidence) information about its decoded outputs, so-called soft outputs, to a
second decoder. This allows the second decoder to use soft-decision decoding,
as opposed to simply processing the hard decisions made by the first decoder.
Decoders that accept soft-input values from the channel (or from another decoder)
and deliver soft-output values to another decoder are referred to as soft-in, sofi-out
(S1SO) decoders.

The Soft-Output Viterbi Algorithm (SOVA) was first introduced in 1989
in a paper by Hagenauer and Hoeher [9]. We describe the SOV A here for the
case of rate R = 1/n convolutional codes used on a binary-input, continuous-
output AWGN channel; that is, we describe a SISO version of the Viterbi
algorithm. In our presentation of the SOVA we deviate from the usual assumption
that the a priori probabilities of the information bits, P(u;), [ = 0,1,---  h —
1, are equally likely by allowing the possibility of non-equally likely a pri-
ori probabilities. This generality is necessary to apply a SISO deceding algo-
rithm to an iterative decoding proceduie, such as those to be discussed in
Chapter 16.

The basic operation of the SOVA is identical to the Viterbi algorithm. The
only difference is that a reliability indicator is attached to the hard-decision output
for each information bit. The combination of the hard-decision output and the reli-
ability indicator is called a soft output. At time unit! = 1. the partial path metric that
must be maximized by the Viterbi algorithm for a binary-input, continuous~output

AWGN channel given the partial received sequence [n‘], (rp.Ty. -~ k1) =
(ry A0 (1) e (” b ,riO) rl(l), ,r{”_l); ;rﬂ :1’1 o <" Dy can be written
as

M(friv]) = I{p(lriv]) PV} (12.85)

Equation (12.85) differs from (12.14) only in the inclusion of the a priori path
probability P([v];). since these will, in general, not be equally likely when the a
priori probabilities of the information bits are not equally likely. Noting that the
a priori path probability P([v],) is simply the a priori probability of the associated
information sequence [u],, we can separate the contribution to the metric before

g A~y .- 1 P i T T T TS R s T o T o &
Recall from Chapter 1, however, that a rate R = 1/3 code requires more channel bandwidih

expansion than a rate R = 1/2 code.
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time ¢ from the contribution at time 7 as follows:

(] /-1 ‘\'g
el =n g | [T p@lv) Pea)y | plela) P )b
’ =0 \[
{ ﬁ n—l 1 g W
—1In jpmwpm>+mﬁ 1oy | Pun{ (12.86)
1=0 \ = 0 B JJ
‘:{ ! Irn 1 - , .
=indd (Ap(n‘/[w)P(m) L )‘ 5 ‘L_ [7(]”[(‘/)[1}[(/)}‘ +in{P@)] ]I .
-0 t‘ i *o B - 1

We now modify the time r term in (12.86) by multiplying each term in the snm by 2
and introducing constants Cf:’ ' and C, as follows:

B’I ]\r (/) (/','! T o [ .
n_ I_ [0(} )] -C | + [Pl —Culy . (12.87)

where the constants
¢ = [p(; Dyt +1)}+1n [p(r,wlvm —1)] cJ=0,1 - on—1 (12.83a)
C, =[Pl =+D]+In[P@;, = -1)] {12.88k)

are independent of the path {v],, and we assume the mapping 1 — +1 and 0 — —1.
Similarly modifying each of the terms in (12.86) before time ¢ and noting that the
modifications do not affect the path [v], that maximizes (12.66), we can express the
modified metric as (see Problem 12.23)

Y

qup_Mﬂm,g+)Eﬂﬂmﬂwmﬂ-d”+pmpmﬂ_g;

j=0
n—1 ) T . -
(]) ity Ivr _—{—L) ) [17(1'/;——+1)}
= M*( )+ +u, In a
Ll 20 [ Tl = -1y | T =
{12.89;

We can simplify the expression for the modified metric in (12.89) by defining the log-
likelihood ratio, or L-value, of a received symbol r at the output of an unquantized
channel with binary inputs v = £1 as

pirjv =-F1)
Ly =1In .'0 . 7.90)
63! ﬂ[p(r|v=~l):’ (12.90;

f

(Note that L{r) = In[r(r)], defined in (12.83a).) Similarly, the L-value of an
information bit i s defined as

(12.91)

L{u) =1In [p(u - _H)] i

plu=-1
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An L-value can be interpreted as a measure of reliability for a binary random
variable. For example, assuming that the a priori (before transmission) probabilities
of the code bits v are equally likely, that is, P(v = +1) = P(v = —1) = 1/2, an
assumption that always holds when the information bits are equally likely and the
code is linear, we can rewrite (12.90) using Bayes’ rule as follows:

plrlv = +1>} . [pw = +1xr>]

b= ln[p(rlv —-D =11

(12.92)
From (12.92) we see that given the received symbol r, a large positive value of L(r)
indicates a high reliability that v = 41, a large negative value of L(r) indicates a
high reliability that v = —1, and a value of L(r) near 0 indicates that a decision
about the value of v based only on r is very unreliable. Similarly, a large positive
value of L(u) indicates a high reliability that u = +1.

For an AWGN channel with received symbol #/, binary input symbols v' =
+./E;, and SNR E,/Ng, we obtain (see Problem 12.24)

L(r') = (4 Es/No)r'. (12.93a)
We can rewrite (12.93a) as
L(r) = (4E;/No)r, (12.93b)

where the normalized value r = r'//E, corresponds to the received symbol with
binary-input symbols v = +1. Equation (12.93b) illustrates that the reliability (-
value) associated with a received symbol r, assuming a transmitted symbol v = %1,
increases linearly with » and that the constant of proportionality increases linearly
with the channel SNR E; /Ny, an intuitively appealing result. Defining L, = 4E; /Ny
as the channel reliability factor, we can now express the modified metric for SOVA
decoding as

n—1
M*([rvl) = M*(ev)-D + D Lot r 4 u L), (12.94)
j=0

where the summation term in {12.94), along with the corresponding terms in
M*([r|v];—1), represents the correlation metric first noted in (12.14). In other words,
the constants C; and (1 in the metric of {12.14) are absorbed into the term L. in
the modified metric of (12.94), and the term u, L(u,) in (12.94) does not appear in
(12.14), since the a priori probabilities of the information bits were assumed to be
equally likely in that case.

As noted previously, the SOV A operates exactly like the Viterbi algorithm,
except that it appends a reliability measure to each hard-decision output. Assume
that a comparison is being made at state §;,i = 0,1,..-,2" — 1, between the
maximum likelihood (ML) path [v], and an incorrect path [v'}]; at time [ = ¢. We
define the metric difference as

1
Ai-1(8) = S (M ([elv]) — M ([rv])). (12.95)

The probability P(C) that the ML path is correctly selected at time ¢ is given by

P([vlr],)
{P([Vhr];) + P([v’hr],)} ’

Oy = {12.506)



Section 12.5 The Soft-Output Viterbi Algorithm (SOVA) 561

We note that
p(rv]) P([v]) MO

; = = 12.
P([vir]) o) o (12.97a)
and M ([x]¥]
, p(rv' D P[]y MU -
P( VO = = {12 /b
[\/ ‘ﬂ])‘) p(ff) p(ff) N 9 )
Using the modifications to the metric made in (12.87), we can write
M¥([r|v]) = 2M (frlv]) — ¢ {(12.983)
and
M ([r|v']) = 2M ([ev'],) — ¢, {12.98b)

where ¢ is a constant that does not depend on [v], or [v']; (see Problem 12.25). Now,
we can rewrite (12.96) using (12.97) and (12.98) as
[e{M-z=([E|V], )/2}+c'/p(r)]
[e{M*([n']v],)/2}+('/p(ﬂa)] -+ [e{M*([le’]z)/2}+"/,i7(n")]
oM V]2
= MV /2 M (T2
eA/—I (i)

- 1 —|—(3A1—I(Si) ’

PC) =

(12.99)

Finally, the log-likelihood ratio, or refiability, of this path decision is given by

PO
ln%[

We now show how the reliability of a path decision is associaied with the hard-
decision outputs of a Viterbi decoder. First, consider the path decisions made at
time [ = m -+ 1, that is, ihe nitial set of 2" path decisions. The path decision at
state $; has reliability A, (S;), as shown in (12.100). The modulo-2 sum of the two
information sequences being compared, that is, [u],, corresponding to the codeword
[v]m and [u'], corresponding to the codeword [v'],,, indicates the error positions,
namely, the bit positions in which the two information sequences differ. These are
the information bits that are affected by the reliability of this path decision; that is,
when these bits are decoded, the reliability of these bit decisions will depend on the
reliability of this path decision. On the other hand, the reliability of the decisions
made for those bit positions where [u], and [u'],, are the same will not depend
on the reliability of this path decision. Thus, we form a reliability vector at time
[ = m + 1 for state §; as follows:

L1 (50) = [Lo(S), Li(S), -+, Lin(S)], (12.101)

where
D (S Hu # ”;

Li(Si) = 00 ifu = u)

L1=01,- ,m. (12.102)
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In other words, the reliability of a bit position is either oo, if it is not affected by the
path decision, or A, (S;), the reliability of the path decision, if it is affected by the
path decision. In the same way, we can obtain a reliability vector L, 1(S;) for each
state S;,i =0,1,---,2Y — 1, attime ]l =m + 1.

At time | = m + 2, the path decisions result in reliabilities A, 1(S;), and
the reliability vectors are given by L,,.2(8) = [Lo(Si), L1(Si), -+« , Lipa1(S)], i =
0,1,---,2" — 1. The reliability vectors are updated by first determining L, +1(S;)
asin (12.102) and then, for the remaining entries, taking the minimum of A, 41 (5;)
and the previous entry in the reliability vector for the error positions. The previous
entries in the reliability vector for the bit positions in which [u],.1 and [w],,41 are
the same are left unchanged. This update procedure is repeated after each path
decision, and for each state, a reliability vector whose length is equal to the surviving
path must be stored along with the surviving path and its metric. For example, at
time [ = ¢ and for state §;, we update the reliability vector as follows:

B (S5 = [Lo(S), L1(S), -+, Li—1 (S} (12.103)
where
. min[A,_1 (S, L[(Si)] ifu; # u; . ) _
Li(S)) — { Li(S) ifu=ul 1=0,1,---,t—1. (12.104)
minfA, _ (S$)), min{a, _ ,(S),

L - (S0 L s(S)} Lo 4(8) L, (5D} L oS L -1(8)

FIGURE 12.18: Updating the reliability vector following a path decision at time ¢.
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In Figure 12.18 we illustrate the reliability vector update procedure that follows a
path decision at time upit 7. (The illustration assumes that the “up” branch leaving
each state represents an input 1, whereas the “down” branch represents an input 0.)

Typically, updating a reliability vector involves changing only a few of the
entries. The determination of the error positions requires no additional storage,
since the information sequences are stored by the algorithm as surviving paths. (We
note here that for feedforward encoders, [u],_1 and [u'},—1 always agree in the m
mosi recent bit positions, but that this is not true in general for feedback encoders.)
The reliability vecior associated with a state keeps track of the reliabilities of all
the information bits along the surviving path for that state. When the end of the
decoding ireliis is reached, the reliability vecior L4, (S5g) associated with the final
survivor provides the soft outputs.

The operation of the SOV A with finite path memory v is essentially the same
as described previously (see Problem 12.26). In this case, the reliability vectors store
only the reliabilities of the v most recent bits on each surviving path. Thus, the
reliability veciors have the same memory as the paths. Bits are decoded exactly as
in the truncated Viterbi algorithm, that is, at each time unit the survivor with the
best meiric is selected, and the bit ¢ time units back on that path is decoded. In the
SOV A the reliability associated with that bit becomes the soft output.

The storage complexity of the SOVA is greater than that of the Viierbi
algorithm because the SOV A must store 2" reliability vectors, one for cach state.
Computational complexity is also increased, because of the need to update a relia-
bility vector after each ACS operation; however, the overall increase in complexity
is modest, and the SOV A always decodes the ML path and, in addition, provides
soft outpuis for concatenated SISO decoding applications. In the nexi section, we
introduce MAP decoding of convolutional codes, a decoding algorithm that maxi-
mizes the probability of correct decoding for each infermation bit and also provides
soft outputs.

12.6 THE BCIR ALGORITHM

Given a received sequence r, the Viterbi algorithm finds the codeword v that
maximizes the log-likelihood function. For a BSC, this is equivalent to finding
the (binary) codeword v that is closest to the (binary) received sequence r in
Hamming distance. For the more general continuous-output AWGN channel, this
is equivalent to finding the (binary) codeword v that is closest to the (real-valued)
received sequence r in Euclidean distance. Once the ML codeword v is determined,
its corresponding information sequence u becomes the decoded output.

Because the Viterbi algorithm finds the most likely codeword, it minimizes the
WER P, (E), that is, the probability P(¥ # v|r) that the decoded (ML) codeword
¥ is not equal to the transmitied codeword v, given the received sequence r. In
many cases, however, we are interested in minimizing the BER P,(E), that is, the
probability P(ii; # u;|r) that the decoded information bit #; at time [ is not equal
to the fransmitted information bit u; at time [, [ = 0.1, ..., K* — 1, rather than
the WER P, (E). To minimize the BER, the a posteriori probability P (& = u;ir)
that an information bit «; is correctly decoded must be maximized. An algorithm
that maximizes P(i; = u|r) is called a maximum a posteriori probability (MAP)
decoder. When the information bits are equally likely, the (ML) Viterbi algorithm
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maximizes P(v = vjr). Although this does not guarantee that P(ii; = u;lr) is also
maximized, P(¥ = v|r) is closely related to P(d; = u;|r), as shown next, and the
Viterbi algorithm results in near-optimum BER performance.

The Viterbi algorithm maximizes P (¥ = v{r) = P(i = u|r), where @ and u are
the information sequences corresponding to the codewords ¥ and v, respectively.
This is equivalent to minimizing P (@ # u|r). The BER is given by

d(a, w)
K*

Py # wlr) = [ :IP(u?;;éﬂﬂltr), =01, K*—1. (12.105)
We see from (12.105) that the BER depends on the Hamming distance between @
and u as well as on the WER P (@1 # ulr). Thus, minimizing P (ii; # u;|r) also involves
selecting an encoder with the property that low-weight codewords correspond to
low-weight information sequences. This choice ensures that the most likely codeword
errors, i.e., those with low weight, result in a small number of information bit errors,
so that the BER is also minimized. We note that the class of systematic encoders
satisfies this property, whereas the class of catastrophic encoders does not.

In 1974 Bahl, Cocke, Jelinek, and Raviv [5] introduced a MAP decoder, called
the BCJR algorithm, that can be applied to any linear code, block or convolutional.
The computational complexity of the BCJR algorithm is greater than that of the
Viterbi algorithm, and thus Viterbi decoding is preferred in the case of equally
likely information bits. When the information bits are not equally likely, however,
better performance is achieved with MAP decoding. Also, when iterative decoding
is employed (see, for example, Chapter 16), and the a priori probabilities of the
information bits change from iteration to iteration, a MAP decoder gives the best
performance.

In this section we describe the BCJR algorithm for the case of rate R = 1/n
convolutional codes used on a binary-input, continuous-ocutput AWGN channel and
on a DMC. (The application of the BCJR algorithm to block codes is covered in
Chapter 14.) Our presentation is based on the log-likelihood ratios, or L-values,
introduced in the previous section. The decoder inputs are the received sequence r
and the a priori L-values of the information bits L, (), { =0,1,--- ,h — 1. Asin
the case of the SOV A, we do not assume that the information bits are equally likely.
The algorithm calculates the a posteriori L-values

Pu = +1!1‘f)}

P = 1) (12.106)

Lup)=In [
called the APP L-values, of each information bit, and the decoder output is given by

. { +1if L(u;) > 0 =01, h—1. (12.107)

MIEY i L) <0

In iterative decoding, the APP L-values can be taken as the decoder outputs,
resulting in a SISO decoding algorithm.

We begin our development of the BCJR algorithm by rewriting the APP value
P(u; = +1jr) as follows:

pur = +1,1)  Lucy; PUIVIP W)
P(r) Y, plw) P
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where U;L is the set of all information sequences w such that u; = +1, v is the

transmitted codeword corresponding to the information sequence w, and p(r|v) is
the pdf of the received sequence r given v. Rewriting P (1) = ~1r) in the same way,
we can write the expression in (12.106} for the APP L-value as

2 weu; PP ()]

LGy =In| === , (12.109)

ZMEUF p(E|W)P(M)
where U, is the set of all information sequences uw such that u; = —1. MAP decoding
can be achieved by computing the APP L-values L(u),/ = 0,1,---, h — 1 direcily

from (12.109) and then applying (12.107); however, except for very short block
lengths /4, the amount of computation required is prohibitive. For codes with a
trellis structure and a reasonable number of siates, such as short constraint length
convolutional codes and some block codes, employing a recursive computational
procedure based on the trellis structure of the code considerably simplifies the
process.

First, making use of the trellis structure of the code, we can reformulate
{12.108) as follows:

py =+1,1) _ Z(S’,S)EZ,*’ plsi =5 5141 =5,1)

Pl =+1) = = 2o

(12.110)

where 7 is the set of all state pairs s; = s” and 5,1 = s that correspond to the input
bit 17 = +1 at time /. Reformulating the expression P(x; = —1|r) in the same way,
we can now write (12.106) for the APP L-value as

Z(x’,s)ezfr plsi =5, 5111 =5, 1)

Lup=In - )
2w wesy PO1 =15 5101 = 5,1)

(12.111)

where X, is the set of all state pairs s; = 5" and 51 = s that correspond to the input
bit #; = —1 at time /. Equations (12.109) and(12.111) are equivalent expressions for
the APP L-value L(u;), but whereas the summations in (12.109) extend over a set of
2h=1 information sequences, the summations in (12.111) extend only over a set of
2Y state pairs. Hence, for large block lengths 7, (12.111) is considerably simpler to
evaluate. Note that every branch in the trellis connecting a state at time / to a state
at time [/ + 1 is included in one of the summations in (12.111).

We now show how the joint pdf’s p(s, s, 1) in (12.111) can be evaluated
recursively. We begin by writing

p(s/ﬁsvff) - p(s/» 51E1<[7E1"Kf>1)7 (12112)

where r; .; represents the portion of the received sequence r before time [, and r;-;
represents the portion of the received sequence r after time /. Now, application of
Bayes’ rule yields

p(s' s, 1) = p(resqls’, s, vrer, 1) pUs’, 5, ety 1)
= pr=1ls’, s, i<, v ps, )8’ vr ) p(s’, 1<) (12.113)
= p(r=119)p(s, mlsHp(s’ 1<),
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where the last equality follows from the fact that the probability of the received
branch at time ! depends only on the state and input bit at time [. Defining

ar(s’y = p(s’, 1) (12.114a)
ni(s',s) = pls,wls") (12.114b)
Br+1(s) = p(Ei>1ls), (12.114c¢)
we can write (12.113) as
p(s’, s, 1) = Bra1($)yils’, ey (s). (12.115)

We can now rewrite the expression for the probability ¢;41(s) as

ar41(s) = pls, Tai1) = Z p(s’s 8, <141)

s'eq

= Z PG, mls’ v <) ps’, wecr)

s'€q;

= > i ulsHpls' 1)

S/EO'/

=Y nls' Hals),

s'eaqy

(12.116)

where oy is the set of all states at time /. Thus, we can compute a forward metric
a;11(s) for each state s at time / + 1 using the forward recursion (12.116). Similarly,
we can write the expression for the probability g (s’) as (see Problem 12.27)

By = Dyl )P, (12.117)

S€0; 41

where 07,4 is the set of all states at time / 4+ 1, and we can compute a backward
metric B;(s’) for each state s” at time [ using the backward recursion (12.117). The
forward recursion begins at time | = 0 with the initial condition

oo (s) ={ (1)’ j;g , (12.118)

since the encoder starts in the all-zero state Sg = 0, and we use (12.116) to recursively
compute oy, 1(s), I =0,1,---, K — 1, where K = h + m is the length of the input
sequence. Similarly, the backward recursion begins at time [ = K with the initial

condition . 0
y § =
Br(s) = { 0. 540" (12.119)

since the encoder also ends in the all-zero state Sy = 0, and we use (12.117) to
recursively compute B;(s), I =K -1, K-2,---,0.
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We can write the branch metric y;(s', s) as

n(s'ss) = pls,mis’) = %ﬁ
By S)] [17(5’» nv)] (12.120)
B L P(S/) P(S/,S)

= P(s|s)pmls’. s) = PQu) pluglw),

where ; is the input bit and v; the output bits corresponding to the state transition
s’ — s at time [. For a continuous-output AWGHN channel, if s — s is a valid state
transition,

, Es ' — L2
vi(s', 8y = Plupp(mlvy) = Puy) m e "o , (12.121)

where |ty — vi||? is the squared Euclidean distance between the (normalized by
JE s) received branch 1y and the transmitted branch v; at time [; however, if s’ — s
is not a valid state transition, P(s|s’) and y{s’, s) are both zero. The algorithm that
computes the APP L-values L(u) using (12.111), (12.115), and the metrics defined
in (12.116)-(12.119) and (12.121) is called the MAP algorithm.

We now introduce some modifications io the algorithm just outlined that
result in greater computational efficiency. First, we note from (12.115)-(12.117) and

4 1
(12.121) that the constant term ( HL]\}O) always appears raised to the power /1 in the
nh
expression for the pdf p(s’, s, r). Thus, ( %Vo) will be a factor of every term in

the numerator and denominator summations of (12.111), and its effect will cancel.
Hence, for simplicity, we can drop the constant term, which results in the modified
branch metric

vi(s'. s) = P(u;)e‘E"/NO““"_V’”z. (12.122)

Next, we express the a priori probabilities P(y; = 1) as exponential terms by
wriilng
[P = +1)/P(ur = =D
{1+ [P =+1)/Pay = -D]F}
et Laun)

= 1 eELaey (12.123)

—L,(up)/2
e ™ AiLau)/2

= {1 + g_Lu(“/)}
= AjetiLan/2

Py ==+1) =

where, since L-values do not depend on the value of their argument, the parameter
Ay isindependent of the actual value of u; (see Problem 12.28). We then use (12.123)
to replace P (i) in (12.122) for I =0, 1, --- , h — 1. that is, for cach information bit.
For the termination bits u;, I =h. h+1,.-- . h+m —1 = K — 1, however, where
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P(u;) =1 and L,(u;) = oo for each valid state transition, we simply use (12.122)
directly. Thus, we can write (12.122) as
Ui’ 5) = Ajetkatn /2= Es/Nolim—will*

— ApetiLan/2 gQE N v =lin P =iviil?

(12.124a)
— AgeUmIPHm g Laun) (2 (L [2)51%)

— A]BleulLu(“l}/ze(Lt‘/Z)(rl'VI)’ I=0,1,.- h—1,

wls',s) = Pup)e—Es/Nolin—wll
— o Es/No)lit=viII* (12.124b)
=BLe/D@V) oy, K 1,

where B, = ||r;||2+n is a constant independent of the codeword v, and L, = 4E;/Ny
is the channel reliability factor.

We now note from (12.115)—(12 119) and (12. 124) that the pdf ps’, s, 1)
contains the factors []/—) A; and [[X;' B;. Thus, M= 4; and 115! B will be
factors of every term in the numerator and denommator summations of (12.111),
and their effect will cancel. Hence, we can drop these factors and use the exponential
function

yi(s’, s) = etrbaun2oLe/DE¥) - p =0 1 ... p -1, (12.125a)
n(s' sy = BRI = g1 K -1, (12.125b)

as a simplified branch metric. Note that when the input bits are equally likely,
Lg(ur) = 0, and the simplified branch metric is given by

n(s' sy = bWV g1 K —1. (12.126)

Finally, we see from (12.116), (12.117), and (12.125) that the forward and
backward metrics are sums of 2¥ = 2 exponential terms, one corresponding to
cach valid state transifion in the trellis. This suggests simplifying the calculations by
making use of the identity (see Problem 12.29)

max*(x, y) = In(e* + ¢*) = max(x, y) + In(1 + ¢ F 1) (12.127)

to replace the (computationally more difficult) operation In(e* + ¢”) with a max
function plus a lookup table for evaluating In(1 + e~* =), To benefit from this
simplification, we must first introduce the following log-domain metrics:

u/Lu(u/) + L. v, [=01,---,h—1,

*G&',s)=1n 5) =
Y (s ) v’ s) { LZE’[V[’ l=hh+1,--.,K—1,

(12.128a)
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oy () = o) =1n ) w(s, Hen(s))

s'eqy
=ln )y elr e 0ve (] (12.128b)
s'eq;
= max)., [ s ) +eof(H], 1=0,1,--- K —1,
oo ] 0 s=0 -
ag(s) = 1n ap(s) = { oo, 520, (12.128¢)
Brsh=ln Bsh=In 3 w915
S€EC1 ]
=In DI, O] (12.128d)
-YE?/%I
= max,e,, [/ D+ O =K -1, K20,
* 0, s=0 .
Brls) =1In Br(s) = E Cco. s £0. (12.128¢)

The use of the max* function in (12.128b) and (12.128d) follows from the fact
that these recursive equations involve calculating the log of a sum of two exponential
functions, one corresponding to each valid state transition. Further, we can now
write the expressions for the pdf p(s’, s, r) in (12.115) and the APP L-value L(u;) in
(12.111) as

p(s’, s, 1) = Prn O L)+ (h (12.129)
and
1
- ST B O e )
L(up) =1In 2\:{ erit ! !
(s, s)ex,t
Cln Z eﬁ;‘;l<s)+y;‘<s’-s>+a7‘<f’>{l (12.130)
(s".8)eZ, JJ

and we see that each of the two terms in (12.130) involves calculating the log of a
sum of 2¥ exponential terms, one corresponding to each state in the trellis. Now, we
note that we can apply the max* function defined in (12.127) to sums of more than
two exponential terms by making use of the result (see Problem 12.29)

max*(x, v, z) = In(e" + ¥ + €°) = max*[max*(x, y), z, (12.131)

in other words, we can evaluate a 3-variable max™ function by applying the 2-variable
max* function twice. Finally, using (12.131) in (12.130) allows us to express the APP
L-values as

L{uy) = maXZCs)ez,* [BF1() + ¥ (s, 8) + o (1]

—max, o= (Bl () + ) (', 8) +af (sH]. (12.132)
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The algorithm that computes the APP L-values L(u;) using (12.132), the log-
domain metrics defined in (12.128), and the max* functions defined in (12.127) and
(12.131) is called the log-MAP algorithm, or the log-domain BCJR algorithm. The
log-MAP algorithm, because it uses just a max(e) function and a lookup table, is
considerably simpler to implement and provides greater numerical stability than the
MAP algorithm.

The (Log-Domain) BCJR Algorithm

Step 1. Initialize the forward and backward meirics oj(s) and S (s) using
(12.128¢) and (12.128e).

Step 2. Compute the branch metrics y[*(s/ ,8), [ =20,1,---,K —1, using
(12.128a).

Step 3. Compute the forward metrics o ((s), [ =0,1,---, K — 1, using
(12.128b).

Step 4. Compute the backward metrics ﬂl* s), I=K-1,K—-2,---,0,using
(12.128d).

Step 5. Compute the APP L-values L(u;), I =0,1, -+, h—1, using (12.132).
Step 6. (Optional) Compute the hard decisions #;, I =0,1,--- ,h — 1, using
(12.107).

The calculations in each of steps 3, 4, and 5 involve essentially the same amount
of computation as the Viterbi algorithm, and thus the BCJR algorithm is roughly
three times as complex as the Viterbi algorithm. Also, we see from (12.128a) that
the BCJR algorithm requires knowledge of the channel SNR E /Ny (L. = 4E;/Ny)
to calculate its branch metrics. The branch metrics for the Viterbi algorithm, on the
other hand, are just the correlations r;-v;, and no knowledge of the channel SNR
is needed. (Note that the constant Cy(= L./2) can be dropped from the Viterbi
algorithm metric in (12.14) because it does not affect the decoding result, but the
constant L./2 cannot be dropped from the BCJR algorithm metric in (12.128a),
because its relation to the a priori factor u; L, (1) /2 does affect the decoding result.)
When the BCJR algorithm is used for iterative decoding (see Chapter 16), the
computation of the hard decisions in step 6 takes place only at the final iteration. At
earlier iterations, the APP L-values from step 5 are the (soft) decoder outputs. The
basic operations of the log-domain BCJR algorithm are illustrated in Figure 12.19.

An even simpler algorithm results if we ignore the correction term In(1 +
e Y1y in the max* function and simply use the approximation

max*(x, y) ~ max(x, y) (12.133)
instead. Because the correction term is bounded by
0 <In(1+4e P h <1n(2) = 0.693, (12.134)

the approximation is reasonably good whenever | max(x, y)| > 7. The algorithm
that computes the APP L-values L(u;) using the function max instead of max* is
called the Max-log-MAP algorithm. Because the max function plays the same role as
the compare-and-select operations in the Viterbi algorithm, the forward recursion
in the Max-log-MAP algorithm is equivalent to a forward Viterbi algorithm, and
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o o
o o
a/(s7) o 2 wals)
)
s
[} o Q d]+ I(S) BI (S/) \o
Sy
W »
. . 7 (s
a; (sh) &)+ (s) = max (of two sums) 2 0 8. (s;)
87 (s") = max" (of two sums)
o o
o Q
(a) (b)
Q
o
‘ ——~— Input -1
& () Y
Input +1
a/:‘(Sf)
o B‘[ - I(Sn)
L)) = max” (B, , + v/ + & for solid lines) — max” (B).., + v, + o for dashed lines)
(©)

FIGURE 12.19: Trellis diagrams representing (a) the forward recursion of (12.128b),
{(b) the backward recursion of {12.128d), and (¢) the APP L-value computation of
(12.132) (adapted from [26]).

the backward recursion in the Max-log-MAP algoriihm is equivalent to a backward
Viterbi algorithm. The difference between the BCIR and the Viterbi algorithms,
then, is in the correction term In(1 + ¢~ =), which accounts for the optimality of
the BCJR algorithm with respect to BER. The Viterbi algorithm, which is optimized
for WER, typically results in a slight BER performance degradation compared with
the BCIR algorithm.

All three algorithms presented in this section: MAP, log-MAP, and Mazx-
log-MAP, are examples of forward—backward algorithms, since they involve both
a forward and a backward recursion. They are also examples of SISO decoders,
since we can take the (real) APP L-values L(u) as sofi decoder outputs instead of
applying (12.107) to obtain hard decoder outputs.

We now give an example of the operation of the log-domain BCJIR algorithm.
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EXAMPLE 12.8 BCJR Decoding of a (2, 1, 1) Systematic Recursive Convolu-
[

tiona! Code on an AWGN Channel

Consider the (2, 1, 1) SRCC with generator matrix
G(D)=[1 1/ + D)] (12.135)

whose encoder diagram is shown in Figure 12.20(a). The 2-state trellis diagram, with
branches labeled according to the mapping 0 — —1 and 1 — +1, corresponding to
an input sequence of length 4, is shown in Figure 12.20(b).5 Let u = (uq, u1, u2, u3)
denote the input vector of length K = h +m = 4, and v = (vq, v1, ¥2, ¥3) denote
the codeword of length N = nK = 8. We assume a channel SNR of E;/Ng =
1/4 (—6.02 dB) and a (normalized by /E;) received vector

0 1 0 1 ()] 1 (0] 1
r=(rg,r, Iy, r3) = (ré ),ré ); ri ), rl( ); ré ',ré ); r?s ), rl ))

= (+0.8,4+0.1; +1.0, —-0.5; —-1.8, +1.1; +1.6, —1.6).

(12.136)

-1/-1,-1 /S—< -1/-1,-1

43

r=(+08, +0.1 +1.0,-05 -18,+1.1 +1.6, —1.6)
(b)

Si

FIGURE 12.20: (a) A (2, 1, 1) systematic feedback encoder and (b) the decoding trellis
for the (2,1,1) SRCCwith K =4 and N = 8.

SIn Figure 12.20(b), the branch labels L:,/v,(mv](l) indicate both the input u; and the outputs U1(0>

and U/mA This is because, for feedback encoder trellises, the upper branch leaving each state does not
necessarily correspond to a 1 (+1) input, and the lower branch to a 0 (1) input. Also note, since the
encoder is systematic, that the first output label on each branch equals the input label.
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(Note that, since the rate of the terminated code is R = h/N = 3/8, an E;/Ny =
1/4 (—6.02dB) corresponds ic an E,/Ny = E,/RNg = 2/3 (-1.76dB).) The
received vector r is also shown in Figure 12.20(b).

Assuming that the a priori probabilities of the information bits are equally
likely, L, (u;) =0, [ = 0.1, 2, and we compute the log-domain branch metrics using
(12.128a) (note that L. = 4E, /Ny = 1) as follows:

N ~1 1
¥4 (S0, So) = —Laluo) + 570%9
1
= 5(—0.8 —0.1)y=-045

+1 1
Yo (80, 51) = —-La(uo) + ST0vo

- %(0.8 +0.1) =045

(S0, S0) = ELalu) + srrv
/. y = — a 1 —1Ir1
1 (S0, So > )+ Srrvy
1 -
(50,50 = Lo + 1
v1 (50, 51) = —-Lq L11)+2R1'W1
1
= 5(1,0 —0.5)=0.25

1 1
La(uy) + zry-vy

Y518 = =~ >

— %(4.@ —05) = —0.75

+1 1
yy (81, 80) = 7%(“1) + SI1V1

1
= =(1.0+0.5 = 0.75

N -1 1
¥5 (So. Sp) = -2“[/(1(”2) +5m

= %(1.8 ~1.1) =035

. +1 1
v (80, 1) = TLG(MZ) =+ EKZ'VZ
1
= i(—l.S +1.1) =—-0.35

0 _1 1
1 80 = - Lotu) £ 3m:
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1
= 5(1.8 +1.1)=145

* +1 1
5 (81, So) = 71;5;(%2) + 12V2

= %(—1.8 —1.1) = —1.45

; +1
v3 (S0, So) = 513

1
= 5(-16+1.6) =0

+1
¥3 (81, So) = 5133

1
= 5 (164 1.6) = L6D. (12.137)

We then compute the log-domain forward metrics using (12.128b) as follows:
o] (S0) = [¥g (So, So) + af(Sp)] = —0.45+0 = —0.45
af (51 = [y5 (So. S1) + o (Sp)] = 0.45 +0 = 0.45
a3 (Sp) = max*{[y;" (So. So) + ] (S»)]. [y (S1. So) + af (S}
= max*{[(—0.25) + (=0.45)], [(0.75) + (0.45)]} (12.138)
= max"(~0.70, +1.20) = 1.20 + In(1 - e~ "1y = 1.34
3 (81) = max*{[y]" (So. 1) + a (S0, [¥*(S1. S1) + o (SD]}
= max*(-0.20, —0.30) = —0.20 + In(1 + ¢~y = 0.44.
Similarly, we compute the log-domain backward metrics using (12.128d) as follows:
B3 (So) = [¥5(So. So) + Bi(Sp)} =0+0=0
B3 (S1) = [y3°(S1. So) + B (So)] = 1.60 + 0 = 1.60
85 (So) = max™{[y; (S0, So) + B3 (So)]. [y5 (So., S1) + B5(SD]}
= max*{[(0.35) + (0)]. [(—0.35) + (1.60)])
= max*(0.35,1.25) = 125+ In(1 + ¢ 799 = 1.59
B5(81) = max*{[y; (51, So) + B3 (S0}, [y5 (S1. S1) + B3 (SN} (12.139)
= max*(—1.45,3.05) = 3.05 + In(1 + ¢ " *°) = 3.06
Bi (So) = max™{[y{" (So. So) + B5 (S|, [y (So. SD + B3 (SD]}
=max*(1.34,3.31) = 3.44
B1(S1) = max™{[y]" (S1, So) + B (So)]. [¥{ (51, S1) + B3 (SD]}
= max*(2.34,2.31) = 3.02.
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Finally, we compute the APP L-values for the three information bits using (12.132)
as follows:

L(uo) =[BT (S1) + v5 (S0, S1) + eg(So)} — [B7 (S0) + vg (S, So) + o5 (S0)]
= (3.47) — (2.99) = +0.48
Luy) = max™{[B5(S0) + v; (S1. So) + o5 (SD], [85(51) + 17 (S, S1) + o (So) ]}
—max™{[B5(S0) + ¥{ (So. So) + (S ). [B5 (S0 + v (51, S1) + o (SD]}
= max [(2.79), (2.86)] — max*[(0.89), (2.76)]
= (3.52) — (2.90) = +0.62
L(up) = max™{[B5(S0) + 15 (51. S0) + &3 (SD], [B5(S1) + v5 (S0, S1) + 5 (S i}
— max™{[B3(50) + 15 (So. S0) + a5 (S ], [B3(S1) + 13 (51, S1) + 3 (ST}
= max [(—1.01), (2.59)] — max"[(1.69), (3.49)]
— (2.62) — (3.64) = —1.02. (12.140)

Using (12.107), we cobtain the hard-decision outputs of the BCJR decoder for the

three information bits:
W= (+1, +1, =1). (12.141)

Even though termination bit 13 is not an information bit, it is also possible io use
the same procedure to find its APP L-value. As will be seen in Chapter 16, this is
necessary in iterative decoding, where “soft-output”” APP L-values are passed as a
priori inputs to a second decoder.

In the preceding example, the decoder is operating at an SNR of Ep/Ny =
—1.76 dB, well below the capacity of E;/Ng = —0.33 dB for rate R = 3/8 codes
(see Table 1.2). Although this is not normally the case for BCJR decoding of a
convolutional code, it is not at all unusual in iterative decoding of turbo codes,
where decoders typically operate at SNRs below capacity (see Chapter 16).

We now revisit Example 12.8 to see the effect of applying the Max-log-MAP
algorithm.

EXAMPLE 12.8 (Continued)

In the Max-log-MAP algorithm, the branch metrics remain as computed in (12.137).
The approximation max™*(x, y) ~ max(x.y) of (12.133) affects the computation
of the forward and backward metrics (see (12.138) and (12.139), respectively), as
follows:

03 (5p) = max(—0.70, +1.20) = 1.20
o} (S1) = max(—0.20, —0.30) = —0.20
B5(Sp) = max(0.35,1.25) =1.25
B5(51) = max(—1.45,3.05) = 3.05
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B (So) = max(1.34,3.31) = 3.31
B1(51) = max(2.34,2.31) = 2.34. (12.142)

Then, we compute the APP L-values for the three information bits using (12.132),
(12.133), (12.137), and (12.142) as follows:

L(ug) = [B](SD + v5 (S0, S1) + a5 (S0)] — [B7(So) + v§ (So, So) + a5 (S0)]
= (2.79) — (2.86) = —0.07
L(u1) = max{[5(So) + v (S1, So) + & (SD], [5 (S1) + v{ (So. S1) + ] (So) J}
— max{[B7(So) + ¥ (S0, So) + o (S»)]. [85 (S1) + v1 (51, $1) + o (SD]}
= max|[(2.79), (2.86)] — max{(0.89), (2.76)]
= (2.86) — (2.76) = +0.1000
L(uz) = max{[85(So) + v, (51, S0) + a5 (SD]. [B5(S1) + 5 (S0, S1) + &5 (So) |}
— max{[3(So) + v, (So. So) + o3 (S0)], [B3(S1) + v5'(S1, S1) + a5 (SN}
= max[(—1.65), (2.45)] — max[(1.55), (2.85)]
= (2.45) — (2.85) = —0.4000. (12.143)
Using (12.107), we obtain the hard-decision outputs of the Max-log-MAP decoder:
= (-1, +1, -1, (12.144)

and we see that the Max-log-MAP algorithm does not give the same result as the
log-MAP algorithm in this case.

The log-MAP and Max-log-MAP algorithms do not give the same decoding
result because the decoders are operating at an SNR well below capacity. Typically,
when these algorithms are used to decode convolutional codes at SNRs above
capacity, they will give the same result, although the performance of the Max-
log-MAP algorithm is somewhat degraded at very low SNRs. Also, as will be
discussed in Chapter 16, the performance loss of the Max-log-MAP algorithm is
more pronounced when it is used for iterative decoding, since the approximation
error accumulates as additional iterations are performed.

We now give an example illustrating the application of the BCJR algorithm to
decoding on a DMC. In this case it is convenient to compute the APP L-values L(u;)
using the probability-domain version of the algorithm given by expressions (12.111)
and (12.115)—(12.120), where in (12.120) we compute the branch metrics y;(s”, s) by
substituting the (discrete) channel transition probabilities

n—1
Py =]Pe v, 1=0.1,- K -1 (12.145)
j=0

for the (continuous) channel transition pdf’s p(r;|v;). We then use the hranch
metrics in (12.115) to calculate the (discrete) joint probabilities P(s’, s, ¥), which we
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in turn use to calculate the APP L-values using {12.111). Also, a straightforward
computation of the forward and backward meirics o) (s) and f;(s”) typically results in
exceedingly small values, which can lead to numerical precision problems. Hence, we
iniroduce normalization constants g; and b and normalized forward and backward
metrics A/(s) and B;(s"), respectively, which are defined as follows:

Y =a, 1=1.2, K, (12.146a)
S€T;

Arsy=o(s)/ar, 1=1,2.--- K. alls € oy, {12.146b)

D BGH=b [=K—1,K—-2- .0, (12.146c¢)
s'€ay

BisY=8(sN/by, | =K~1,K~2,---,0, all s’ € g,. (12.1464d)

From (12.146) we can see that the normalized forward and backward metrics sum
o 1 at each time unit /; that is

DAy =1, I=12.- K, (12.147a)
SE€T]
Y Bish=1 1=K~1,K-2.- .0 (12.147b)
s'eoy

Using the normalized forward and backward metrics A;(s) and B;(s'). computed
using (12.116), (12.117), and (12.146), instead of oy(s) and fi(s’), respectively, to
evaluate the joint probabilities in (12.115) avoids numerical precision problems
and has no effect on the calculation of the final APP L-values in (12.111) (see
Problem 12.32).

EXAMPLE 12.9 BCIR Decoding of a (2, 1. 2) Nonsystematic Convolutional
Code on a DMC

Assume a binary-input, 8-ary output DMC with transition probabilities P(rl(j : |u,(j 5
given by the following table:

()

) G T () 0, 03 (17 1a 13 1, 1y
I

0 0.434 0197 0167 0111 0058 0.023 0.008 0.002

1 0.002 0.008 0.023 0.058 0.111 0.167 0.197 0434

Now, consider the (2, 1, 2) nonsystematic convolutional code with generator matrix
G(D) =[1+ D+ D*> 1+ D?] (12.148)

whose encoder diagram is shown in Figure 12.21(a). The 4-state trellis diagram
corresponding to an input sequence of length 6 is shown in Figure 12.21(b). Let
w = (i, 11, u2, U3, 4, its) denote the input vector of length K = h +m = 6,
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AN
+
//%
e
U

S S S
00 0 2w Y w 00 2w
r = (1,0, 0415 1,04 0414 041, 0,0,)
(b)

FIGURE 12.21:(a) A (2,1, 2) nonsystematic feedforward encoder and (b) the decoding
trellis for the (2, 1,2) code with K =6 and N = 12,

and v = (v, V1, ¥2. V3, V4, v5) denote the codeword of length N = «K = 12. We
assume that

1

Py = 0) :{ ?/3« 5 2 ,2,3  (information bits)

1
.S (termination bits), (12.149)

fl

that is, the information bits are not equally likely, and that the received vector is
given by
r = (1401, 0413, 1404, 0414, 0415, 0109). (12.150)
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The received vector r is also shown in Figure 12.21(b). (Note that, since the encoder
is feedforward, the upper branch leaving each state corresponds tc a 1 input and the
lower branch to a 0 input, and the termination bits must be 0’s.)
We begin the algorithm by computing the (probability-domain) branch metrics
using (12.120) as follows:
Y0(So. So) = P(ug = 0)P(1401100) = (2/3) P(14]0) P(01]0)
= (2/3)(0.058)(.434) = 0.01678,
yo(So. $1) = Plug = D P (140111 = (1/3) P (14]1) P (01]1)
= (1/3)(0.111)(.002) = 0.000074,

(12.151)

and so on. The complete set of branch metrics for the trellis is shown in
Figure 12.22(a).

Next, we can compute the (probability-domain) normalized forward and
backward metrics using (12.116)—(12.119), (12.146), and (12.147) as follows:

a1(5) = yo(Sn, Sp)og(So) = (0.01678)(1) = 0.01678,
a1(81) = y(So, S1)ap(Sp) = (0.000074)(1) = 0.000074,

ay = a1 (Sp) + a1 (81) = 0.01678 + 0.000074 = 0.016854,
A1(Sp) = a1(Sp) /a1 = (0.01678)/(0.016854) = 0.9956,
A1(S1) =1 — A1(89) =1 —0.9956 = 0.0044,
Bs(So) = v5(S0, S0)Be(So) = (0.0855)(1) = 0.0855,
Bs(82) = y5(52, So) B (Sg) = (0.000016)(1) = 0.000016,

bs = B5(8p) + B5(S2) = 0.0855 + 0.000016 = 0.085516,
Bs5(Sp) = B5(S0)/bs = (0.0855)/(0.085516) = 0.9998,
Bs5(52) =1 — Bs(Sg) =1 —0.9998 = 0.0002,

(12.152)

and so on. The complete set of normalized forward and backward metrics for the
treflis is shown in Figures 12.22(b) and (12.22¢), respectively.

Finally, using the normalized forward and backward metrics in (12.115) to
compute the joint probabilities P(s', 5, r), which we then use to calculate the APP
L-values in (12.111), and recalling the mapping 0 — —1 and 1 — +1, we obtain

L{ug) =1n

Psp = 8p.51=51.1)
P(so = Sp. 51 = So, 1)

=1In

B1(S1)y0(S0. 51) Ao(So) H (12.153a)

B1(50)vo(So, So)Ao(So)
(0.8162)(0.000074)(1)

=0 0 1838)0.01678) ()

E = -3.933,
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FIGURE 12.22: (a) The branch metric values y;(s’, s), (b) the normalized forward
metric values A;(s), and (c) the normalized backward metric values B;(s’) for
Example 12.9.
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7383 .0003

S
1.000
FIGURE 12.22: {continued)
Lty = In P(s1 = Sp. 52 =81.1)+ P(sy = 81.50 = S3, 1)
P(sy=80.50 = 5.1+ P(sy = 51,9 = 5,1
Ba (S y1(S0, S1)A1(S0) + B2(S3)y1(S1, $3)A1(S1)
B (S0)y1(S0. S0)A1(S0) + B2(S2)v1(S1, $2)A1(S1) (12.153b}
I (0.2028)(0.003229)(0.9956) + (0.5851)(0.006179)(0.0044)
(6.1060)(0.001702)(0.9956) + (0.1060)(0.0008893)(0.0044)
= +1.311.
and, following the same procedure (see Problem 12.33), we have
L{up) = +1.234, (12.153¢)
and
L{uz) = —8.817. (12.153d)

Using (12.107), and again recalling the mapping 0 — —1 and 1 — +1, we see
that the hard-decision outputs of the BCJR decoder for the four information bits
are given by

i = (fg, #1. i2, u3) =(0, 1, 1, 0). (12.154)
In this case, since the encoder is feedforward and the termination bits are known to
be 0’s, it is not necessary to find the APP L-values of u4 and us, even as part of an
iterative decoding procedure.
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Although it is convenient to use the probability-domain BCJR algorithm for
DMCs, the log-domain algorithm can also be used. Similarly, the probability-domain
algorithm can be used for AWGN channels.

12.7 PUNCTURED AND TAIL-BITING CONVOLUTIONAL CODES

The trellis-based decoding procedures for convolutional codes described previously
in this chapter are well suited for medium-to-low encoder rates R = k/n and
moderate-to-large information sequence block lengths K* = hk. For high-rate codes
and short block lengths, however, modified encoding and decoding procedures are
sometimes useful. In particular, since the branch complexity of the decoding trellis
increases exponentially with & for a standard convolutional code, a modified form of
high-rate code, called a punctured convolutional code, which has only two branches
leaving each state, was introduced in a paper by Cain, Clark, and Geist [27]. Also,
since the fractional rate loss of a terminated convolutional code is large when # is
short, a modified form of terminated code, called a tail-biting convolutional code,
which has no termination bits and therefore no rate loss, was introduced in papers
by Solomon and van Tilborg [28] and Ma and Wolf [29].

A rate R = (n —1)/n punctured convolutional code is obtained by periodically
deleting or puncturing certain bits from the codewords of a rate R = 1/2 mother
code, where n > 3. These codes can then be decoded using the Viterbi algorithm
(or the BCJR algorithm) with roughly the same decoding complexity as the rate
R = 1/2 mother code. This is because, in the rate R = (n — 1)/n punctured code, only
two branches enter each state, and thus only one binary comparison is performed
at each state, rather than the 2¢*~D — 1 binary comparisons required to decode a
standard rate R = (n — 1)/n code. We illustrate the technique with an example.

EXAMPLE 12.10 A Punctured Convolutional Code

Consider the 4-state, rate R = 1/2 mother code generated by the (2, 1, 2) nonsys-
tematic feedforward convolutional encoder with generator matrix

GMD)=[1+D*> 1+D+D. (12.155)

This is the optimum free distance code from Table 12.1(c) with dp.. = 5. Now,
consider forming a rate R = 2/3 punctured code by deleting the first bit on every
other branch of the trellis. Six sections of the trellis diagram for this punctured
code, with the deleted bits indicated by an x, are shown in Figure 12.23(a). In the
punctured code, only one symbol is transmitted on those trellis branches where a bit
has been deleted. Thus, the trellis diagram for the punctured code is time-varying,
with a period of two branches.

A Viterbi or BCJR decoder for this rate R = 2/3 punctured code would
operate exactly like the decoder for the mother code, except that no metrics would be
computed for the deleted symbols. Thus, the metric computation would involve two
symbols on half the branches, and only one symbol on the other half. In each two-
branch section of the decoding trellis for the punctured code, a total of two binary
comparisons per state are required to decode two information bits. By contrast, in
each section of the decoding trellis for a standard rate R = 2/3 code, a total of three
binary comparisons per state are required to decode two information bits. Hence,



Section 12.7 Punctured and Tail-Biting Convolutional Codes 583

decoding the rate R = 2/3 punctured code, based on the simpler structure of the rate

R = 1/2 mother code, is less complex than decoding a standard rate R = 2/3 code.
A rate R = 3/4 punctured code can be obtained from the same rate R = 1/2

mother code by deleiing two bits {from each set of three branches, as shown in

(b)

FIGURE 12.23: Trellis diagrams for (a) a rate R = 2/3 punctured convolutional code
and (b) a rate R = 3/4 punctured convolutional code.
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Figure 12.23(b). In this case, in each three-branch section of the trellis for the
punctured code, a total of three binary comparisons per staie are required to decode
three information bits. In contrast, in each section of the trellis for a standard rate
R = 3/4 code, a total of seven binary comparisons per state are required to decode
three information bits. Again, decoding the rate R = 3/4 punctured code, based on
the simpler structure of the rate R = 1/2 mother code, is less complex than decoding
a standard rate R = 3/4 code.

By carefully examining the trellises in Figure 12.23, we see that the minimum
free distance of each punctured code is dfe. = 3. In other words, puncturing a rate
R = 1/2 mother code to a higher rate, as expected, reduces the free distance. These
free distances, however, are equal to the free distances of the best standard 4-state
rate R = 2/3 and 3/4 codes listed in Tables 12.1(d) & (e), respectively. In other
words, no penalty in free distance is paid for the reduced decoding complexity of
the punctured codes in these cases. In general, however, this is not so, since rate
R = (n — 1)/n codes obtained by puncturing a rate R = 1/2 mother code form just
a subclass of all possible rate R = (n — 1)/n convolutional codes.

In Table 12.4 (a) and (b), we list the best rate R = 2/3 and 3/4 codes,
respectively, that can be obtained by puncturing a rate R = 1/2 mother code. In
each case, the puncturing pattern is indicated using a 2 x 7 binary matrix P, where
T is the puncturing period, the first row of P indicates the bits to be deleted from the
first encoded sequence, and the second row of P indicates the biis to be deleted from
the second encoded sequence. (In the matrix PP, a 0 indicates a bit to be deleted, and
a 1 indicates a bit to be transmitted.) For example, in Figure 12.23, the puncturing
patterns are given by

P = l: } (1) } ( Figure 12.23(a)) (12.1562a)
and
101 .
P = [ 110 } ( Figure 12.23(b)) (12.156b)

In applications where it is necessary to support two or more different code rates,
it is sometimes convenient to make use of rate-compatible punctured convolutional
(RCPC) codes [31]. An RCPC code is a set of two or more convolutional codes
punctured from the same mother code in such a way that the codewords of a
higher-rate code can be obtained from the codewords of a lower-rate code simply by
deleting additional bits. In other words, the set of puncturing patterns must be such
that the P matrix of a higher-rate code is obtained from the P matrix of a lower-
rate code by simply changing some of the 1’s to 0’s. {This property implies using
puncturing matrices with the same period T for all code rates and does not apply
to the two puncturing matrices in (12.156).) An RCPC code then has the property
that all the codes in the set have the same encoder and decoder. The higher-rate
codes simply have additional bits deleted. This property is particularly convenient
in two-way communication systems involving retransmission requests, where the
initial transmission uses a high-rate punctured code and then, if the transmission is
unsuccessful, punctured bits are sent during later transmissions, resuiting in a more
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powerful lower-rate code for decoding. (See Chapter 22 for more details on two-way

communication systems. )

TABLE 12.4: Optimum (a) rate R = 2/3 and (b)
rate R = 3/4 convolutional codes obiained by

puncturing a rate R = 1/2 mother code.
Adapted from [30].

Mother Code Punctured Code
v g<@) g(l) P Btyee A diree
2 5 7 i (1) 3 1
3 13 17 {1) i 4 3
4 31 27 (1) i 4 1
S 19
6 155 117 1 é 6 1
(a)
Mother Code Punciured Code
v g®  g® P i Aday,
e
3 13 17 i (1) (1) 4 29
4 31 27 1 ? (1) 3 1
5 65 57 i (1) (1) 4 1
6 155 117 i (1) (1) 5 8
(b)

A tail-biting convoluntional code is obtained by terminating the encoder output
seguence after the last information block in the input sequence. In other words,
no “tail” of input blocks is used to force the encoder back to the all-zero state. In
this case, the input sequence has length K™ = hk, the output sequence has length

N* = hn, and the rate of the resulting tail-biting convolutional code is
K* hk _k

N*  hn on

Rip =

(12.157)
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We see from (12.157) that the rate Ry

[6)
R of its convolutional encoder; that is, th

L Al CONIYVOILLIOL IL0OCGTL, latl &

{ the tail-biting code is the same as the rate
ere Is no rate loss associated with this trellis
termination technique.

It is not difficult to show that with any of the standard trellis-based decoding
techniques, the lack of a tail causes the information bits near the end of the trellis
to receive less protection against the effects of channel noise than the bits earlier
in the trellis. (In fact, the reason for having a tail is to provide the same level of
protection for all the information bits.) In other words, the bits near the end of the
trellis will have a higher decoded error probability than the bits near the beginning
of the trellis, leading to an unequal error protection property. Although this may
actually be desirable in some applications, in most cases we want a uniform level of
error protection throughout the entire information sequence.

To provide a uniform level of error protection for the entire information
sequence and to maintain the zero-rate-loss property. we can modify the tail-biting
technique to require that valid codewords start and end in the same state. Because
codewords without a tail can end in any state, they must also be allowed to start in
any state. In other words, rather than requiring the encoder to start in the all-zero
state Sp, we require the encoder to start in the same state as its ending state, which
can be determined from the information sequence. This restriction results in a set
of 257 = 2hF codewords, of which a subset of 2%~V codewords starts and ends in
each of 2¥ states. (If hk < v, then a fraction 2k=v of the states contain one valid
codeword each.) A tail-biting convolutional code can thus be viewed as a set of 2"
subcodes, each of which contains 2*~ codewords. Maximum likelihood decoding
is then performed by applying the Viterbi algorithm separately to each of the 2"
subcodes, resulting in 2” candidate codewords, and then choosing the codeword
with the best overall metric from among the 2” candidates. Similarly, MAP decoding
can be performed by applying the BCJR algorithm to each of the 2" subcodes
and then determining the APP L-values of each information bit by combining the
contributions from each subcode. When the number of states is too large for ML
decoding, a suboptimum *“‘two-cycle” decoding method that starts decoding in an
arbitrary state, say the all-zero state Sg, finds the ending state, say state S;, with
the best survivor metric, and then repeats the Viterbi algorithm for the subcode
that starts and ends in state S;, achieves reasonably good performance [29]. Similar
suboptimum versions of MAP decoding for tail-biting codes are presented in [32].

We now illustrate the tail-biting technique with an example.

EXAMPLE 12.11 Two Tail-biting Convolutional Codes

Consider the (2, 1, 2) nonsystematic feedforward convolutional encoder of Exam-
ple 12.9. The 4-state trellis diagram shown in Figure 12.21(b) represents an informa-
tion sequence of length K* = h = 4, an input sequence of length ¥ = 4 +m = 6,
and an output sequence of length N = (2 + m)n = 12, resulting in a terminated
convolutional code of rate

K* 4 1
Ri=—=—=~_. (12.158)

N 12 3
Because the information sequence length A is short, the terminated code rate
R, = 1/32 is much less than the enccder rate R = 1/2; that is, a 32% rate loss

occurs in this case. The minimum (free) distance of this (12, 4) block (terminated
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convolutional) code is dyy, = 5, and the number of minimum weight codewords is
As =4,

Now, consider the 4-state tail-biting trellis shown in Figure 12.24(a) corre-
sponding to an information sequence w = (ug, i1, U2, 13, Uy, us) of length K* = h =
6, where we have shown the input labels as well as the output labels on each trellis
branch. There are 257 = 2% = 64 codewords v = (vgo)u(()l), v;m i“, »gmv b véo) vé”,

(0)0(11), EO vﬁl ) of length N* = /in = 12 in this code, resulting in a tail-biting
ronvolutmqai COde of rate
Y 6 1 o
Ry = N* 12 =5 (12.159)
the same as the encoder rate R. The 64 codewords are divided into four subcodes
containing 16 codewords each. The subcode corresponding tostate §;, i =0, 1, 2, 3,
is formed by the set of 16 information sequences whose last two bits (14 and us) result
in the ending state S;. (Recall that for a feedforward encoder, the last v bits of the
input sequence determine the binary representation of the ending state.) Because
all valid codewords must start and end in the same state, the 16 codewords in the
subcode corresponding to state S; are given by the 16 paths that connect the starting
state S; to the ending state S;. The four subcodes corresponding to the tail-biting
trellis of Figure 12.24(a) are shown in Table 12.5(a). Note that the subcodes for
states S, Sy, and S3 are cosets of the subcode for state Sy (see Problem 12.36).
We see from Table 12.5(a) that the minimum (free) distance of this (12. 6) block
(tail-biting convolutional) code is dy;, = 3, and the number of minimum-weight
codewords is Az = 2 (boldface codewords in Table 12.5(a)). The lower minimum
distance of this code compared with the (12, 4) terminated convolutional code is
reasonable, since the rate of the (12, 6) tail-biting code is 50% higher.

In Example 12.11 it is straightiorward to find the subcodes in the tail-biting
code corresponding to each state, because, asnoted earlier, for feedforward encoders
the ending state of a fixed-length input sequence is determined by the last v input
bits. Thus, the stariing state of each valid tail-biting codeword is also determined
by the last v bits of the input sequence. This is not the case for feedback encoders,
however, where the ending state depends on the entire input sequence. Hence, in
order to form tail-biting convolutional codes using encoders with feedback, we must
find, for each information sequence u, a starting state §; such that w also ends in
state ;.

EXAMPLE 12.11 (Continued)

Consider the (2.1, 2) systematic feedback convolutional encoder with generator
matrix
GP)=[1 (1+D%»/(1+D+ D% (12.160)

This systematic feedback encoder is equivalent to the foregoing nonsystematic feed-
forward encoder; that is, they both produce the same set of codewords. The 4-state
tail-biting trellis corresponding to this feedback encoder is shown in Figure 12.24(b)
for an information sequence m of length X* = 4 = 6, where we have again shown



588 Chapter 12 Optimum Decoding of Convolutional Codes

G 1/10 /S\ 1/10 @ 1/10 /S\ 1/10 FS\ 1/10 /S“\ 1/10 S
) {5 {5 {5 5 45 5
S e vVe ¥ N4

R

S S S
o0 YT oo o 000
(b)

FIGURE 12.24: A 4-state tail-biting trellis with an information sequence of length 6
corresponding to (a) a feedforward encoder and (b) a feedback encoder.
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TABLE 12.5: The four subcodes corresponding to (a) the feedforward
tail-biting trellis of Figure 12.24(a) and (b) the feedback tail-biting

trellis of Figure 12.24(b).

Sg

Sy

5

S3

(000000600000
000000111011
000011101100
000011010111
001110110000
001110001011
001101011106
001101100111
111011060000
111011111611
111000101100
111000010111
110101110000
116101001011
110110011100

110110100111

101100000011
1011600111000
101111101111
101111010100
100010110011
100010601000
100001011111
160001100100
010111000011
010111111000
010100101111
010100016100
011001110011
011001001600
011010011111
011010100100

110000001110
110000110101
110011100010
110011011001
111110111110
111110000101
111101010010
111101101001
001011001110
001611110101
001000100010
001000011001
000101111110
000101000101
000110010010
000110101001

011100001101

011100110110
011111100001
011111011010
010010111101
(10010000110
(10001010001
010001101010
100111001101
100111110110
100100100001
100100011010
101001111101
101001000110
101010010001
101010101010

(a)

Sp

S$1

Sz

Sz

0000000000
1101611100
0011010111
1110110000
1101100111
0011101160
0000111011

1000010100
0101001000
0110100100
0101110011
1011000011
0110011111
1011111000

0010000101
0001010010
1100110101
0001161001
1111011001
1100001110
1111100010

0100100001
1010010001
1001000110
0111001101
(160011010
1001111101
0111110110

1116001011 | 1600101111 | 0010111110 | 1010101010
(b)

the input labels as well as the output labels on each trellis branch. Note that the
output labels are exactly the same as for the trellis of Figure 12.24(a) corresponding
to the equivalent feedforward encoder, but that the input labels are different. In
particular, the ending state is no longer determined by the previous two input bits.
To determine the valid codewords in a tail-biting code, we must find, for
cach information sequence w, a stariing state such that w ends in the same state
after K* = 6 time units. Proceeding in a straightforward fashion, we see that the
information sequence u = (000000). when starting in state Sg, ends in state Sp
after six time units and generates the codeword v = (060, 00, 00, 00, 00, 00),
which is thus a valid tail-biting codeword. Now, consider the information sequence
uw' = (100000). If Sy is the starting state. the ending state is $», so the associated
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codeword is not a valid codeword in a tail-biting code. Trying the other possible
starting states, we see that if w starts in state §;, the ending state is Sy; if the
starting state is S, the ending state is S3; and the starting state S3 results in the
ending state S7. In other words, for a block length of K* = 6, there is no valid
tail-biting codeword corresponding to the information sequence u' = (100000). In
addition, we note that the information sequence w = (000000). which generates
the valid tail-biting codeword v = (00, 00, 00, 00, 00, 00) with Sy as its starting
state, generates (different) valid tail-biting codewords with any of the other three
states as its starting state. Hence, we find that some information sequences, like u,
have several corresponding valid tail-biting codewords, resulting in an ambiguous
encoding rule, whereas other information sequences, like w', have no corresponding
valid tail-biting codeword. In other words, in this case, no valid tail-biting code with
information block length K* = 6 exists.

Now, consider an information block length of K* = 5 by ignoring the last stage
of the trellis in Figure 12.24(b). In this case, each information sequence u of length
K* = 5 corresponds to exactly one valid tail-biting codeword, and a (10, 5) block
(tail-biting convolutional) code exists. The code has four subcodes, each containing
eight codewords, with one subcode corresponding to each of the four trellis states.
The four subcodes are shown in Table 12.5(b). We again note that the subcodes for
states S1, 52, and S5 are cosets of the subcode for state Sy. We see from Table 12.5(b)
that the minimum (free) distance of this (10, 5) code is dyi, = 3, and the number of
minimum-weight codewords is A3 = 5 (boldface codewords in Table 12.5(b)).

Example 12.11 illustrates an interesting property of tail-biting convolutional
codes. For feedforward encoders it is possible to form tail-biting codes of any length,
and the determination of the proper starting and ending state for each codeword
is straightforward. For feedback encoders, on the other hand. a length restriction
exists; that is, it is not possible to form tail-biting codes of certain lengths. Also,
the determination of the proper starting and ending state is more complex. (A
method for finding the proper starting and ending state, based on a state variable
representation of the encoding equations (see Example 11.14), is presented in [33].)
Because the tail-biting codes generated by equivalent feedback and feedforward
encoders are the same, the feedforward realization is normally preferred for the
stated reasons, however, for turbo coding applications (see Chapter 16), feedback
encoders are required.

One of the interesting structural properties of tail-biting convolutional codes is
the symmetry of the trellis representation. Unlike terminated convolutional codes,
where the initial and final m levels of the trellis exhibit an asymmetry (see, e.g.,
Figure 12.21(b)), the trellis representation of a tail-biting code (see Figure 12.24)
is perfectly symmetric. This symmetry allows one to view a tail-biting code using
a circular trellis, in which one wraps around each final state and attaches it to
its corresponding initial state, thus forming a circular structure. For example,
the circular trellis representation of the tail-biting trellis of Figure 12.24 is shown
in Figure 12.25. (It is this circular trellis structure that initially suggested the
terminology tail-biting.) A tail-biting codeword can then be viewed as starting at an
arbitrary state on the circular trellis and then wrapping around it exactly once so as

to reach the same ending state. (Note that choosing a different starting point on the
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FIGURE 12.25: A 4-state tail-biting circular trellis corresponding to an information
sequence of length 6.

trellis simply corresponds to a circular shift of the set of codewords, which does not
affect the properties of the associated tail-biting code.)

The technique described for constructing a rate Ry, block (tail-biting convo-
lutional) code from a rate R = R, convolutional encoder suggests that it should
be possible to determine the generator matrix of the block code from the gener-
ator matrix of ihe associated convolutional encoder. We illusirate the procedure
for feedforward convolutional encoders. (For feedback encoders, the procedure is
more complex.) First, we consider the semi-infinite (time-domain) generator matrix
G, of the unterminated convolutional code given in (11.22) as

GO Gl Gz PN Glﬂ
GO Gl o Gm—l Gm
GC = GO et Gm—~2 Glﬂ—l GITI ! (12161)

Then, we form the finite K* x N matrix Gj corresponding to the block (terminated
convolutional) code with K* information bits. G} is given by

GO Gl T (Gm
GO Gl e Gm

It

G Go Gp - G L (12162)
GO Gm—l Gm

GO (Gl to Gm
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Finally, we obtain the K* x N* matrix G b corresponding to the block (tail
convolutional code by adding the last nm celumns of GJ, to the first am columns

then deleting the last nm columns (recall that N = N* + nm). Thus, G’ b is given by

Go G- Gm
GO Gl T Gy
th Gy G - Gy,
G =1 Gn Go G - Gy |- (12.163)
Gm——l Gm :
: - Gy
Gq G, --- G, Gy

Comparing (12.162) with (12.163), we see that the effect of tail-biting is to wrap
around the last nm columns of G} to its first nm columns. The 2% " codewords in the
block (tail-biting) convolutional code then correspond to the row space of Gi2. It is
interesting to note that the procedure is reversible; that is, if a rate R;;, block code
exists with generator matrix G in the form of (12.163), G can be unwrapped to form
a convolutional encoder with rate R = R;;,.

EXAMPLE 12.11 (Continued)

Applying the wrap around procedure to the generator matrix of the feedforward
convolutional encoder in this example for an information block size of K* = 6, we
obtain the generator matrix

™ 111011 000000
00111011 0000
» | 000011101100
G =1 000000111011 |- (12.164)
11 000000 11 10

101100000011

It is easy to verify (see Problem 12.38) that the row space of G}j’ in (12.164) is the
(12, 6) tail-biting code of Table 12.5(a).

In Table 12.6 we list, for constraint lengths v = 1, 2,--.,6 and rates R, =
K*/N* = 1/3,1/2, and 2/3, the block (tail-biting convolutional) codes with the
largest minimum distance d,,;, and the smallest number of nearest neighbors A, , .
In each case the best encoder is listed for all information block lengths satisfying
h = K*/k > 2. (Recall that for rates R;, = 1/3 and 1/2, K* = h and v = m, whereas

forrate Ry, = 2/3, K* =2h and v = 2m.)



TABLE 12.6: Generator matrices for tail-biting convolutional codes with constraint lengths v = 1, 2, ... 6
and rates (a) Ry, = 1/3, (b} Ry, = 1/2, and {c) Ry, = 2/3.

v 1 2 3

K* g(m g(m g(z) Amin ~ Adys, gm) gm g(z) Bmin ~ Adpsm g(m g@) g@) Amin  Ad,,
2 1 1 3 4 3 1 3 7 4 3 i5 3 7 4 3
3 1 1 3 4 3 i 3 7 4 3 15 7 17 4 3
4 1 3 3 4 i 1 3 7 6 iz 1 3 i3 6 12
5 1 3 3 5 6 1 3 7 6 10 1 3 7 7 15
6 1 3 3 5 6 5 3 7 6 1 15 3 7 3 45
7 K* 5 3 7 7 8 i5 7 17 8 28
8 5 3 7 7 8 11 13 17 8 13
9 5 3 7 7 9 11 13 17 8 9
10 5 7 7 8 45 11 13 17 9 20
11 5 7 7 8 33 15 13 17 10 44
12 5 7 7 8 27 15 13 17 10 36
13 5 7 7 8 26 3K”
14 2K*

15

16

17

18

19

20

21

22

23

Adapted from [13]. (continued overleaf)
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We see from Table 12.6 that, in general, for a given rate R, and constraint
length v, the minimum distance d,;,, of the best block (tail-biting convolutional)
code increases, or the number of nearest neighbors decreases, as the information
block length K* increases. Once K* reaches a certain value, though, the minimum
distance dy;;, of the best block (tail-biting convolutional) code is limited by the
free distance dj.. of the best terminated convolutional code with constraint length
v, and no further increase in dp;, is possible; however, the number of nearest
neighbors Ay, continues to grow linearly with K*. Once this limit is reached, the
generator sequences gt/ (parity-check sequences h'/) in the rate R;, = 2/3 case)
and the minimum distance dn;, stay the same, and in Table 12.6 we simply list
the growth rate of 4, , . In other words, for a given R;;, and v, block (tail-biting
convolutional) codes improve as K* increases up to a point, and then the codes
get worse. Similarly, we can see from Table 12.6 that for a given R;;, and K*, block
(tail-biting convolutional) codes improve as v increases up to a point, and then dyn
and Ay, remain the same. Thus, the best block (tail-biting convolutional) codes
are obtained by choosing the length K* or the constraint length v only as large as is
needed to achieve the desired combination of dj,;, and Ay, . It is worth noting that
many of the best binary block codes can be represented as tail-biting convolutional
codes, and thus they can be decoded using the ML (Viterbi) or MAP (BCJR)
soft-decision decoding algorithms (see Problem 12.39).

PROBLEMS

12.1 Draw the trellis diagram for the (3, 2, 2) encoder in Example 11.2 and an
information sequence of length # = 3 blocks. Find the codeword corresponding
to the information sequence u = (11, 01, 10). Compare the result with (11.16) in
Example 11.2.

12.2 Show that the path v that maximizes Z,N:?)l log P(rlv;) also maximizes
Z,]i?)l c2[log P (r1|v) + c1], where ¢1 is any real number and c; is any positive real
number.

12.3 Find the integer metric table for the DMC of Figure 12.3 when ¢y = land ¢; = 10.
Use the Viterbi algorithm to decode the received sequence r of Example 12.1
with this integer metric table and the trellis diagram of Figure 12.1. Compare your
answer with the result of Example 12.1.

12.4 Consider a binary-input, 8-ary output DMC with transition probabilities P (r/|v;)
given by the following table:

#
W ! L 0, 03 04 1q 13 1> 1y

0 0.434 0.197 0.167 0.111 0.058 0.023 0.008 0.002

1 0.002 0.008 0.023 0.058 0111 0.167 0.197 0434

Find the metric table and an integer metric table for this channel.
12.5 Consider the (2, 1, 3) encoder of Figure 11.1 with

GD)={1+D*+D* 1+D+D*+ D%
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a. Draw the trellis diagram for an information sequence of length /4 = 4.

b. Assume a codeword is transmitted over the DMC of Problem 12.4. Use the
Viterbi algorithm to decode the received sequence r = (1514, 12071, 0301, 0113,
1,05, 0314, 0307).

The DMC of Problem 12.4 is converted to a BSC by combining the soft-decision

outputs 01, 0. 0z, and 0, into a single hard-decision output 0, and the soft-decision

outputs 11, 12, 13, and 14 into a single hard-decision output 1. A codeword from the
code of Problem 12.5 is transmitted over this channel. Use the Viterbi algorithm
to decode the hard-decision version of the received sequence in Problem 12.5 and

compare the result with Problem 12.5.

7 A codeword from the code of Problem 12.5 is transmitted over a continuous-

output AWGN channel. Use the Viterbi algorithm to decode the (normalized by

J/Es) veceived sequence © = (+1.72, +0.93, +2.34. —3.42, —0.14, —2.84, —1.92,

+0.23, +0.78, —0.63, —0.05, +2.95, —0.11, —0.55).

Consider a binary-input, continuous-output AWGN channel with signal-to-noise

ratio E,/Ng = 0 dB.

2. Sketch the conditional pdf’s of the (normalized by E|) received signal r;
given the transmitted bits vy = £1.

. Convert this channel into a binary-input, 4-ary output symmetric DMC by
placing guantization thresholds at the values r; = —1, 0, and + 1, and compute
the transition probabilities for the resulting DMC.

¢, Find the metric table and an integer metric table for this DMC.

d. Repeat parts (b) and (c) using quantization thresholds r; = —2,0, and + 2.

Show that (12.21) is an upper bound on P, for d even.

Consider the (2, 1, 3) encoder of Problem 12.5. Evaluate the upper bounds on

event-error probability (12.25) and bit-error probability (12.29) for a BSC with

transition probability

2 p =01,

b, p = 0.01.

(Hint: Use the WEFs derived for this encoder in Example 11.12.)

Repeat Problem 12.10 using the approximate expressions for P(E) and Py (E)

given by (12.26) and (12.30).

Consider the (3, 1, 2) encoder of (12.1). Plot the approximate expression (12.36)

for bit-error probability P,(E) on a BSC as a function of £,/Ny in decibels.

Also plot on the same set of axes the approximate expression (12.37) for

Py(E) without coding. The coding gain (in decibels) is defined as the difference

between the E,/Np ratio needed to achieve a given bit-error probability with

coding and without coding. Plot the coding gain as a function of P,(£). Find
the value of Ej,/Ng for which the coding gain is 0 dB, that is, the coding
threshold.

Repeat Problem 12.12 for an AWGN channel with unquantized demodulator

outputs, that is, a continuous-output AWGN channel, using the approximate

expression for P,(F) given in (12.46).

Consider using the (3, 1, 2) encoder of (12.1) on the DMC of Problem 12.4.

Calculate an approximate value for the bit-error probability P,(E) based on the

bound of (12.39b). Now, convert the DMC to a BSC, as described in Problem

12.6, compute an approximate value for P,(FE) on this BSC using (12.29), and

compare the two results.

Prove that the rate R = 1/2 quick-look-in encoders defined by (12.58) are

noncatastrophic.
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12.16

12.17

12.18

12.19

12.20

12.21

12.22

Consider the following two nonsystematic feedforward encoders: (1) the encoder
for the (2, 1, 7) optimum code listed in Table 12.1(c) and (2) the encoder for the
(2,1, 7) quick-look-in code listed in Table 12.2. For each of these codes find

a. the soft-decision asymptotic coding gain y;

b. the approximate event-error probability on a BSC with p = 107%;

¢. the approximate bit-error probability on a BSC with p = 1072;

d. the error probability amplification factor A.

Using trial-and-error methods, construct a (2, 1, 7) systematic feedforward

encoder with maximum df... Repeat Problem 12.16 for this code.

Consider the (15,7) and (31,16) cyclic BCH codes. For each of these codes find

a. the polynomial generator matrix and a lower bound on dp, for the rate
R = 1/2 convolutional code derived from the cyclic code using Construction
12.1;

b. the polynomial generator matrix and a lower bound on dy. for the rate
R = 1/4 convolutional code derived from the cyclic code using Construction
12.2.

(Hint: dy is at least one more than the maximum number of consecutive powers

of « that are roots of h(X).)

Consider the (2, 1, 1) systematic feedforward encoder with G(D) =[1 1+ DJ.

a. For a continuous-output AWGN channel and a truncated Viterbi decoder with

path memory t = 2, decode the received sequence r = (+1.5339, +0.6390,

—0.6747, —3.0183, +1.5096, +0.7664, —0.4019, +0.3185, +2.7121. —0.7304,

+1.4169, —2.0341, +0.8971, —0.3951. +1.6254, —1.1768, +2.6954, —1.0575)

corresponding to an information sequence of length 7 = 8. Assume that at

each level the survivor with the best metric is selected and that the information
bit  time units back on this path is decoded.

Repeat (a) for a truncated Viterbi decoder with path memory 7 = 4.

Repeat (a) for a Viterbi decoder without truncation.

. Are the final decoded paths the same in all cases ? Explain.

C0n51der the (3, 1, 2) encoder of Problem 11.19.

a, Find A1(W, X, L), Ap(W, X, L), and A3(W, X, L).

b. Find 1,,,.

¢. Findd(r)and Agy fort =0,1,2, -, Tyn.

d. Find an expression for im;_, », d (7).

A codeword from the trellis diagram of Figure 12.1 is transmitted over a BSC. To

determine correct symbol synchronization, each of the three 21-bit subsequences

of the sequence

go T

r=01110011001011001000111

must be decoded, where the two extra bits in r are assumed to be part of a

preceding and/or a succeeding codeword. Decode each of these subsequences

and determine which one is most likely to be the correctly synchronized received

sequence.

Consider the binary-input, continuous-output AWGN channel of Problem 12.8.

a. Using the optimality condition of (12.84), calculate quantization thresholds for
DMCs with Q = 2, 4, and 8 output symbols. Compare the thresholds obtained
for O = 4 with the values used in Problem 12.8.

b. Find the value of the Bhattacharyya parameter Dy for each of these channels
and for a continuous-output AWGN channel.

c. Fixing the signal energy +/E; = 1 and allowing the channel SNR E; / Ng to vary,
determine the increase in the SNR required for each of the DMCS to achieve



12.23

12.24

12.25
12.26

12.27%
12.28

12.29

12.30

12.31
12.32

12.33

12.35

12.36

12.37

12.38
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the same value of Dy as the continuous-output channel. This SNR difference is
called the decibel loss associated with receiver quantization. (Note: Changing
the SNR also changes the quantization thresholds.)
(Hint: You will need to write a computer program to solve this problem.)
Verify that the two expressions given in (12.89) for the modified metric used in
the SOV A algorithm are equivalent.
Define L(r) = In A(r) as the log-likelihood ratio, or L-value, of a received symbol
r at the output of an unquantized binary input channel. Show that the L-value of
an AWGN channel with binary inputs 4+/E; and SNR E/Nj is given by

L(r) = (4+/E;/No)r.

Verify that the expressions given in (12.98) are covrect, and find the constant c.

Consider the encoder, channel, and received sequence of Problem 12.19.

2. Use the SOV A with full path memory to produce a soft output value for each
decoded information bit.

. Repeat (a) for the SOV A with path memory r = 4.

Derive the expression for the backward metric given in (12.117).
_ Lu(u])/2

Verify the derivation of (12.123) and show that A; = e 1+ """ is independent

of the actual value of uy.

Derive the expressions for the max*(x, v) and max*(x, y, z) functions given in

(12.127) and (12.131), respectively.

Consider the encoder and received sequence of Problem 12.19.

a. For an AWGN channel with E5/Ng = 1/2 (=3 dB), use the log-MAP version
of the BCJR algorithm to produce a soft output value for each decoded
information bit. Find the decoded information sequence .

b. Repeat (a) using the Max-log-MAP algorithm.

Repeat Problem 12.5 using the probability-domain version of the BCJR algorithm.

Show that using the normalized forward and backward metrics A;(s) and B;(s’)

instead of a;(s) and B;(s"), respectively, to evaluate the joint pdf’s in (12.115) has

no effect on the APP L-values computed using (12.111).

Verify all the computations leading to the determination of the final APP L-values

in Example 12.9.

Repeat Example 12.9 for the case when the DMC is converted to a BSC,

as described in Problem 12.6, and the received sequence r is replaced by its

hard-decision version. Compare the final APP L-values in the two cases.

Consider an 8-state rate R = 1/2 mother code with generator matrix

G(D)=[1+D+D* 1+D*+ D

Find puncturing matrices P for the rate R = 2/3 and R = 3/4 punctured codes
that give the best free distances. Compare your results with the free distances
obtained using the 8-state mother code in Table 12.4.

Prove that the subcode corresponding to any nonzero state §;, i # 0, in a tail-
biting convolutional code is a coset of the subcode corresponding to the all-zero
state Sp.

For the rate R = 1/2 feedback encoder tail-biting trellis in Figure 12.24(b),
determine the parameters dy,;» and Ag,,, for information block lengths K* =7, 8,
and 9. Is it possible to form a tail-biting code in each of these cases?

Verify that the row space of the tail-biting generator matrix in (12.164) is identical
to the tail-biting code of Table 12.5(a).
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12.39 Consider the rate R = 4/8, constraint length v = 4 feedforward convolutional
encoder with generator matrix

i+D 0 1 0 i1+D 1 1 i
0 14D 1 1 D 1+D 1 0
Goy=1 | D 14D 0 0 D 14D 1
0 D 0O 1+D D D D 1+D

a. Draw the controller canonical form encoder diagram.

b. Draw an h =3 (K™ = 12), 16-state tail-biting trellis for this encoder.

¢. Find the tail-biting generator matrix G’bb for the resulting (24, 12) tail-biting
code.

d. Show that this code has d,;;;; = 8 and is equivalent to the (24, 12) extended
Golay code.

(Note: The convolutional code generated by G(D) is called the Golay convolu-

tional code.)
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