A5 discussed in Chapter 1. convolutional codes differ from block codes in that the
encoder contains memory, and the eﬂco der outpuis at any given time unit depend
not only on the inputs at that time unit but also on some number of previocus inpuis.
A rate R = k/n convolutional en foﬂ»eg ith memory order /m can be realized as
a k-input. n-outpui linear sequential circuit with input memory m; that is, mputs
remain in the encoder for an additiona i m time units after entering. Typically, s
and k are small integers, ¥ < #», the information sequence is divided inio bl ockc
of length k. and the codeword is divided into blocks of lengih n. In the importani
special case when &k = 1, the information sequence is not divided into blocks and
is processed continuously. Unlike with block codes, large minimum distances and
low error probabilities are achievad not by increasing & and » bui by increasing the
memory order .

In this chapier we describe the convolutional encoding process and explain
the notation used to represent convolutional codes. We show how convolutional
encoders can be represenied using a st iagram and how weight-enumerating
functions for convolutional codes can be derived. Finally, we introduce several
distance measures for convelutional codes

Convolutional codes were firsi introduced by Elias [1] in {955 as an alter-
native to block codes. Shortly thereafter, Wozencraft and Reiffen {2] proposed
sequential decoding as an efficient decoding method for convolutional codes with
large constraint lengihs, and experimenial siudies soon began to appear. In 1963
Massey [3] proposed a less efficient but simpler-to-implement decoding method
called threshold decoding. This advance spawned a number of placucal applica-
tions of convolutional codes to digital transmission over telephone, satellite, and
radio channels. These two suboptimal decoding methods are discussed in detail
in Chapter 13. Ther, in 1967 Viterbi [4] proposed a maximum likelihood (ML)
decoding algorithm that was relatively easy to implement for sofi-decision decod-
ing of convolutional codes with small constraint lengths. The Viterbi algorithm,
along with soft-decision versions of sequential decoding, led to the application
of convolutional codes to deep-space and satellite communication systems in the
1970s. In 1974, Bahl, Cocke, Jelinek, and Raviv (BCIR) [5] introduced a maxi-
mum a posteriori probability (MAP) decoding algorithm for convolutional codes
with unequal a priori probabilities for the information bits. The BCIR aigo-
rithm has been applied in recent years to soft-decision iterative decoding schemes
in which the a priort probabilities of the information bits change from itera-
tion to iteration. These two optimal decoding algorithms are discussed in detail
in Chapter 12, and the associated iterative decoding schemes are presented in
Chapter 16.

In 1976 Ungerboeck and Csajka [6] introduced the concept of trellis-coded
modulation using short constraint length convolutional codes of rate R = k/(k+ 1)
along with soft-decision Viterbi decoding, (For a more complete introduction, see

jab}

=+

e}
2,

453
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Ungerboeck [7].) These schemes form the basis for achieving high-speed digital
transmission over bandwidth-limited telephone channels and are discussed in detail
in Chapter 18. Ungerboeck’s work spawned interest in the properties of feedback
encoders for convolutional codes, since high-rate codes are most efficiently repre-
sented in systematic feedback form. Another application of systematic feedback
convolutional encoders, called turbo coding, was introduced by Berrou, Glavieux,
and Thitimajshima [8] in 1993. (For a more complete introduction, see Berrou
and Glavieux [9].) This coding scheme, which combines a parallel concatenation
of two systematic feedback encoders with iterative MAP decoding, is capable of
achieving moderately low BERs of around 107> at SNRs near the Shannon limit. It
is currently being considered for adoption in a variety of applications, including data
transmission on digital cellular channels, deep-space and satellite communication,
and high-speed digital magnetic recording. Turbo coding is discussed in detail in
Chapter 16.

Convolutional codes are covered in varying amounts of detail in many books
on coding theory and digital communications. Recently, three books have appeared
devoted solely to convolutional codes [10, 11, 12]. The book by Johannesson and
Zigangirov [12] is the most comprehensive and contains a detailed analysis of all
aspects of convolutional codes.

11.1 ENCODING OF CONVOLUTIONAL CODES

We present the basic elements of encoding for convolutional codes using a series
of examples. Encoders for convolutional codes fall into two general categories:
feedforward and feedback. Further, within each category, encoders can be either
systematic or nonsystematic. We begin by considering the class of nonsystematic
feedforward encoders.

EXAMPLE 11.1 A Rate R = 1/2 Nonsystematic Feedforward Convolutional
Encoder

A block diagram of a binary rate R = 1/2 nonsystematic feedforward convolutional
encoder with memory order m = 3 is shown in Figure 11.1. Note that the encoder
consists of k = 1 shift register with m = 3 delay elements and with » = 2 modulo-2
adders. The mod-2 adders can be implemented as EXCLUSIVE-OR gates. (We
note here that any multi-input mod-2 adder, such as those in Figure 11.1, can be
implemented using a sequence of binary input mod-2 adders, or EXCLUSIVE-OR
gates.) Because mod-2 addition is a linear operation, the encoder is a linear system.
All convolutional codes can be realized using a linear feedforward shift register
encoder of this type.

The information sequence w = (uy. uy, itp, - --) enters the encoder one bit at
a time. Because the encoder is a linear system, the two encoder output sequences
v = (véo), vio). vém. o) and vV = (vé“. vil), vél), ---) can be obtained as the
convolution of the input sequence u with the two encoder impulse responses. The
impulse responses are obtained by letting w = (1 0 0--.) and observing the two
output sequences. For an encoder with memory order m, the impulse responses

can last at most m + 1 time units and are written as g = (g(()O), g%o), ey and
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FIGURE 11.1: A rate R = 1/2 binary nonsystematic feedforward convolutional
encoder with memory order m = 3.

g = (.g(()l)v .€§1)s - gt!. For the encoder of Figure 11.1,
g =011 (11.12)
gD =1111). (11.1b)

The impulse responses g¥ and g'!) are called the generator sequences of the encoder.
We can now write the encoding equations as

v —weg?, (11.2a)

v = {m@g(l)? (11.2b)

where & denotes discrete convolution, and all operations are modulo-2. The convo-
tution operation implies that for all/ > 0,

n

) A o 92 () o

U[J :Lulfig,‘] :”/gol +“1—131] +"'+“/—171g1(z}] . i=01, (]]3)
i=0

where u;_; £ 0foralll < i . and all operations are modulo-2. Hence, for the encoder
of Figure 11.1,

yl(o) = uy +up_p + U3 (11.481)

Uz(l) =+ uy Fup v 3, (11.4b)

as can easily be verified by direct inspection of the encoder diagram. After encod-
ing, the two output sequences are multiplexed into a single sequence, called the
codeword, for transmission over the channel. The codeword is given by

YV = (véo)vél), vio)vih, véo)vél), ) (11.5)
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For example, let the information sequence w = (1 0 1 1 1). Then, the output
sequences are

v =1011D®1011H=010000001), (11.6a)
v =10111)®111H=11011101), (11.6b)

and the codeword is
v=(11,01,00,01,61,01,00.1 1). (11.7)

If we interlace the generator sequences g and g’ and then arrange them in
the matrix

JUBEY] 0y (1) ) @ 0

8o 8o 81 81 8 & v B8m 8m
(OB @ M © 1 )] 1)
G 8o 8o 81 81 g,,,_lg,(”)_l Em gl(n
= O @) O @ o O [(UBREY ’
80 8o o 8n—28m—2 Sm—18m—1 8m &m

(11.8)

where the blank areas are all zeros, we can rewrite the encoding equations in matrix
form as
v = uG, (11.9)

where again all operations are modulo-2. The matrix G is called the (time domain)
generator matrix of the encoder. Note that each row of G is identical to the previous
row but shifted n = 2 places to the right and that G is a semi-infinite matrix,
corresponding to the fact that the information sequence u is of arbitrary length. If
u has finite length A, then G has & rows and 2(m + /) columns, and v has length
2(m + h). For the encoder of Figure 11.1,ifw = (1 01 1 1), then

v=uG

11 01 11 11
11 01 11 11
=10111) 11 01 11 11 (11.10)
11 01 11 11
11 01 11 11

=(11,01,00,01.01.01,00,1 D).

which agrees with our previous calculation using discrete convolution.

EXAMPLE 11.2 A Rate R = 2/3 Nonsystematic Feedforward Convolutional
Encoder

As a second example of a nonsystematic feedforward convolutional encoder,
consider the binary rate R = 2/3 encoder with memory order m = 1 shown
in Figure 11.2. The encoder consists of k = 2 shift registers, each with m = 1
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FIGURE 11.2: A rate R = 2/3 binary nonsystematic feedforward convolutional
encoder with memory order m = 1.

delay element, along with » = 3 mod-2 adders. The information sequence enters

the encoder &k = 2 bits at a time and can be written as w = (up, u ) =
(ui()l)u(()z),LﬁD ;2),L§l) %) <o) og as the two input sequences ud = (u(l) 1(11),
ug ) oyandu® = (Ll(() , ”(f , Lié . ). There are three generator sequences corre-

(/) () (1) ()

sponding to each input sequence. Letting = (870871 + &, represent the
generator sequence corresponding to input i and output j, we obtam the generator
sequences for the encoder of Figure 11.2;

g =1 gV =001 g2 =(11). (11.11a)
g =01 g =10 g2 = (10), (11.11b)
and we can write the encoding equatlons as
vO —u® " tu® e g“” (11.12a)
vy = gV g(l) +u® @ g (11.12b)
V(2) — M(l) g(z) + M(Z) g52)~ (11'120)
The convolution operation implies that
v[(O) = w?l) + +u,(1>1 + “1(2)17 (11.13a)
vl(l) = 11,(2) -+ uﬁ)l, (11.13b)

UI(Z) _ (”+u§2)+u,(1)1, (11.13¢)
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as can be seen directly from the encoder diagram. After multiplexing, the codeword
is given by -
y = (vg))vél)v((f), viwvi“vy). U;O)vél)véz), <) (11.14)

For example, if u® = (10 1) and u® = (1 1 0), then

vO=10Ded+110)®O1)=(1001), (11.15a)

vy =10DeOh+110®d0)=01001), (11.15b)
vVP=10DedD+110)®10)=0011), (11.15¢)

and
v=(110,000,001,111). (11.16)
The generator matrix of a rate R = 2/3 encoder is
[ ihervey eheine o gy st &, ]
800850850 8or8ar8st 1 Eim B im
G= #1808 B 88 Emgel |
830850850 Som-18m-185mo1 EomEomEon
(11.17)

and the encoding equations in matrix form are again given by v = u&G. Note that
each set of k = 2 rows of & is identical to the previous set of rows but shifted n = 3
places to the right. For the encoder of Figure 11.2,ifu® = (1 0 1) andu® = (11 0),
then u = (ug, uwy, W) =(11,01,10),and

101 111
011 100
v=uG=(1101,10) (1)?} iéé —(110,000,001,111),
101 111
011 100

(11.18)

which again agrees with our previous calculation using discrete convolution.

In Figures 11.1 and 11.2, the connections from the k shift registers used to store
the input sequences to the n modulo-2 adders used to form the output sequences
correspond directly to the nonzero terms in the kn generator sequences given in
(11.1) and (11.11), respectively. Similarly, any set of kn generator sequences can be
used to realize a rate R = k/n feedforward convolutional encoder of the same type
shown in Figures 11.1 and 11.2 with & shift registers to store the input sequences and
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n modulo-2 adders to form the outpui sequences. Specifically, the k input sequences
enter the left end of each shift regLQ T, md the » ouiput sequences are produced by
modulo-2 adders external to the shift registers. Such a realization is called controller
canonical form, and any feedforward convolutional encoder can be realized in this
manner. (We will see later in this section that feedback encoders also can be realized
in coniroller canonical form.)
xample 11.2 clearly illustrates that encoding, and the notation used to
describe it, is more complic aﬁei when the aurmber of input sequences k > 1. In
par uculaﬂ Tne encoder contains k shift registers, not all of which must have the same
fength. We now give four dem itions related io the lengths of the shift registers used
in convolutional encoders realized in controller canonical form.

Dermirion 1.1 Lety; be the length of the ith shift register in a convolutional
encoder with k input sequences, i = 1,2, ---, k.

DEFINITION 1.2 The encoder memory order m s defined as
o= max v;; (11.19)
i<i<k

that is, m is the maximum length of ail k shift registers.

For the rate R = 1/2 encoder of Figure 11.1, m = v; = 3, and for the rate R =2/3
encoder of Figure 11.2, m = maxz{vy, vp) = max(1, 1) = 1.

D

EFINITION 11.3  The overall constraint length v of the encoder is defined as

v= i (11.20)

I<i<k
that is, v is the sum of the lengths of all k shift registers.

For the rate R = 1/2 encoder of Figure 11.1, v = vy = 3, and for the rate R = 2/3
encoder of Figure 11.2, v=v; + v =14+ 1=2

DerFmviTION 114 A vate R = k/n convolutional encoder with overall con-
straint length v is referred to as an (z, k, v) encoder.

The rate R = 1/2 encoder of Figure 11.14s a (2, 1, 3), encoder and the rate R =2/3
encoder of Figure 11.2is a (3, 2, 2) encoder.

Here we note that for an (n, 1, v) encoder, the overall constraint length v
equals the memory order m; that is, v = m when k = 1; however, for k > 1, in
general, m < v, and in the case when each shift register has the same length, v = km.

EXAMPLE 11.3 A (4,3,3) Nonsystematic Feedforward Convolutional
Encoder

A (4,3, 3) binary nonsystematic feedforward convolutional encoder in which the
shift register lengths are vy = 0, v = 1, and v3 = 2 is shown in Figure 11.3. The
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u)

FIGURE 11.3: A (4, 3, 3) binary nonsystematic feedforward convolutional encoder.

memory order is m = 2, and the overall constraint length is v = 3. Following the
notation of Example 11.2, the generator sequences are given by

g =100 ¢V =qa00 ¢ =qa00 g =00, (11.21a)
g = ©000) g =110 g =010 g =100, (11.21b)
<°> = 00) g’ =©010) g =01 g’ =qaon. (11.21c)

In the general case of an (n, k, v) feedforward encoder with memory order m,
the generator matrix is given by

GO Gl G2 Gm
GO Gl Gm~] Gm

G= Go - Gua Gy Gn Do (11.22)

where each G 1s a k x n submatrix whose entries are

()] €8] n—=1)

811 811 T 81
) G n—1
G = 82,1 82,1 821 , (11.23)
© (n—1)
ki 8Skn T Bk

Again note that each set of k rows of G is identical to the pre-
vious set of rows but shifted n places to the right. For an information

sequence uw = (Wg, Wy, --) = (uf)l)u(()z)---uék),uil)u§2)~-~u§k),«»-), the codeword
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v = (V(), vy, - ) — (U(()O)v(()l) . Ué,171), Uio)vil) L. vin—l)7 . ) is gflVC'ﬂ by v = ux. We

are now in a position to give a formal definition of a convolutional code.

DermrrioN 115 An (n, k, v) convolutional code is the set of all output
sequences (codewords) produced by an (n, &, v) convolutional encoder; that
is, it is the row space of the encoder generator matrix G.

Because the codeword v is a linear combination of rows of the generator matrix G,
an (n, k, v) convolutional code is a linear code.

EXAMPLE 11.3 {Continued)

The set of all codewords produced by the (4,3,3) convolutional encoder of
Figure 11.3 is a (4, 3, 3) convolutional code.

In any linear system, fime-domain operations involving convolution can be
replaced by more convenient transform-domain operations involving polynomial
multiplication. Because a convolutional encoder is a linear system, each sequence
in the encoding equations can be replaced by a corresponding polynomial, and the
convolution operation replaced by polynomial multiplication. In the polynomial
representation of a binary sequence, the sequence itself is represented by the
coefficients of the polynomial. For example, for a (2,1, v) encoder, the encoding
equations become

vO(D) = u(D)g(D), (11.24a)
V(D) = w(D)gM (D), (11.24b)
where
w(D) = ug+ u D +us D> + - - - (11.252)
is the information sequence,
vOD) = o + "D 4D 4 (11.25b)
and
(D) = ol + oD 4oV D? - (11.25¢)
are the encoded sequences,
gDy =gV + O+ 1+ Opm (11.25d)
and
5"(D) =g + 81 D+ + gl D" (1123¢)

are the generator polynomials of the code, and all operations are modulo-2. We can
then write the codeword as

V(D) = [v'(D), v (D)] (11.26a)
or, after multiplexing, as

v(D) = v (D% + Dv (D). (11.26b)
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The indeterminate D can be interpreted as a delay operator, where the power of D
denotes the number of time units a bit is delayed with respect to the initial bit in
the sequence.

EXAMPLE 11.1 {Continued)

For the (2,1, 3) encoder of Figure 11.1, the generator polynomials are g(o)(D) =
1+ D? + D3 and gV(D) = 1 + D + D? + D3. For the information sequence
w(D) =1+ D? + D3 + D*, the encoding equations are

vOD)Y=1+D*+D*+DHY1+D*+D*»=1+D, (11.27a)
YODY=1+D*+D*+DHYA+D+D>+D)=1+D+D*+D*+D°+ D,
(11.27b)
and we can write the codeword as
V(D)=[1+D",1+D+D*+D*+D°+ D], (11.28a)
or
v(D)=1+D+D*+ D"+ D’ + D' + D + DS, (11.28b)

Note thatin each case the resultis the same as previously computed using convolution
and matrix multiplication.

The generator polynomials of an encoder realized in controller canonical form
can be determined directly from the encoder block diagram, as noted previously for
generator sequences. The sequence of connections (a 1 representing a connection
and a 0 no connection) from the delay elements of a shift register to an output (mod-2
adder) is the sequence of coefficients in the associated generator polynomial; that
is, it is the generator sequence. The lowest-degree (constant) terms in the generator
polynomials correspond to the connections at the left ends of the shift registers,
whereas the highest-degree terms correspond to the connections at the right ends
of the shift registers. For example, in Figure 11.1, the sequence of connections from
the shift register to output v(¥ is ¢ = (1 0 1 1), and the corresponding generator
polynomial is g (D) = 1 4+ D? + D3,

Because the right end of the shift register in an (n, 1, v) encoder realized in
controller canonical form must be connected to at least one output, the degree of at
least one generator polynomial must be equal to the shift register length vy = v = m;
that 1s,

m= max [deg g (D)]. (11.29)
O<j<n-1
In an (n, k, v) encoder where k£ > 1, there are n generator polynomials for each of
the k inputs. Each set of n generators represents the sequences of connections from
one of the shift registers to the n outputs, and hence

vi = max l[deg g/(D)], 1<i<k, (11.30)
<j<n-

where gfj ) (D) is the generator polynomial relating the ith input to the jth output.
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Because the encoder is a linear sysiem, and u (D) represents the ith input
sequence, and v)(D) represents the jth output sequence, the generator polynomial
gf" )(D) can be interpreted as the encoder transfer function relating input i to output
j. As with any k-input, n-output linear system, there are a total of kn transfer
functions. These can be represented by the &k x n (iransform domain) generator
matrix

(0) (D) (1)(D) . (n H (D)
(0) L (n 1)

com=| 8P & .(D) " ) (11.31)
(0) (D) g/(1) (DY .- g](\Vn—l) (D)

Using the generator matrix, we can express the (transform domain) encoding
equations for an (1, k, v) feedforward encoder as

V(D) = U(D)G(D), (11.32)

where U(D) 2 [u(D), u® (D), - - -, u® (D)] is the k-tuple of input sequences, and
p p q

V(D) £ [vO(D), vO(D). -, v"=D(D)] is the n-tuple of ouiput sequences, or the

codeword. After multiplexing, the codeword can also be expressed as

v(D) =vO (D) + DvD(D") + .. + D"V (DMy. (11.33)

XAMPLE 11.2 (Continued)
For the (3, 2, 2) encoder of Figure 11.2,

1+D D 1+D] (1134)

G(D):[ D 1 1

For the input sequences u¥(D) = 1 + D? and u®(D) = 1 + D, the encoding
equations give the codeword

V(D) = [W(O)(D),W(l)(D),WQ)(D)]:[1+D2,1+D]I: 14D D 1+D :‘

D 1 1

=[1+ D% 1+ D% D?+ D%,
(11.35a)

which also can be written as
v(D) =14 D+ D%+ D%+ D" 4+ p1L, (11.35b)

Again, these results are the same as those calculated using convolution and matrix
multiplication.
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We can rewrite Egs. (11.31), (11.32), and (11.33) to provide a means of
representing the multiplexed codeword v(D) directly in terms of the input sequences
A little algebraic manipulation yields
k .
v(D) = > u@(D")g(D), (11.36)

i=1
where
g (D) £ g7 (D" + Dg (DM + -+ D"V, 121 2k, (1137)

is a composite generator polynomial relating the ith input sequence to v(D).

EXAMPLE 11.1 {Continued)

For the (2, 1, 3) encoder of Figure 11.1, the composite generator polynomial is
g(D) =g (DY) + DgV (D) =1+ D+ D> +D*+ D’ + DS+ D7, (11.38)
and for u(D) = 1 + D? + D3 + D*, the codeword is
v(D) = w(D*g(D) = (1 + D* + DS + D¥)(1 + D + D* + D* + D° + D° + D)

=1+D+D*+ D"+ D%+ D" 4+ D" 4+ DV,
(11.39)

which again agrees with previous calculations.

An important subclass of convolutional encoders is the class of systematic
encoders. In a systematic encoder, k output sequences, called systematic output
sequences, are exact replicas of the £ input sequences. Although, in general, the k
systematic output sequences can be any set of k output sequences, we will follow the
convention that the first k output sequences are the systematic sequences; that is,

vimh =u® i =12, K, (11.40)
and the generator sequences satisfy
» lifj=i-1
gff) = i=1,2,--- k. (11.41)
Oif j£i—1

In the case of systematic feedforward encoders, the (time-domain) generator
matrix is given by

EPQ @Pl ®P2 T QPPIH
EPO qNPI s @mel 0Pm

G= HPO e QPIH—Z ®mel @Pm ’ (1142)
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where [ is the k x k identity matrix, @ is the k x k all-zero matrix, and P; is the
k x (n — k) matrix whose entries are

- (k) k+1) (7771) -
LW AW 81
k (k+1) (n—1)
8 g e 8 p
I - . (11.43)
kD (n—1)
L 8rs 8k T Bry

Similarly, the k x » (transform-domain) generator matrix becomes

10 - 0 gPm o Py
(A (n—
G(D) = Lo e (®) (11.44)
00 ... 1 <" (D) - <” Yipy

Because the first k output sequences are systematic, that is, they equal the k input
sequences, they are also called outpui information sequences, and the lasi n — k
output sequences are called output parity sequences. Note that whereas, in general,
kn generator polynomials must be specified to define an (n, k, v) nonsystematic
feedforward encoder, only k(n — k) polynomials musi be specified to define a
systematic feedforward encoder. Hence, systematic encoders represent a subclass of
the set of all possible encoders. Any encoder whose (transform-domain) generator
matrix G(D) does not contain an identity matrix in some set of k columns is said to
be nonsystematic.

For codes represented by systematic feedforward encoders with generator
matrices in the form of (11.42) or {11.44), we can identify corresponding systematic
parity-check matrices in a straightforward manner. The (time-domain) parity-check
matrix is given by

CPT 1 -
PT 0 PY 1
Pl T
P o o P 1
IH[: . ’
PI o PL | L, 0 - PI I
pr 9 PL_, pT o Pl 1
PL 0 - PT 0 P 0 Pl I

(11.45)

where, in this case, Iis the (n — k&) x (n — k) identity mairix, and 0 is the (n —k) x (n —k)
all-zero matrix. Similarly, the (n — k) x n (transform-domain) parity-check matrix is
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given by
g Py - P 10 -0
g H)(D) g§k+1)(D) o gkkﬂ)(D) 01 ... 0
H(D) = . (11.46a)
(n D(D) g(n i} (D) --- gl((n—l) (D) 0 0 ... 1

where the last (n — k) columns of H(D) form the (n — k) x (n — k) identity matrix.
The parity check matrix in (11.46a) can be rewritten as

o o - B Pmy 10 0
W)y By - w Py 0 1
H(D) =| ° 2 2 ., (11.46b)
hl(z())k(D) hl(zl—)k(D) hr(zk kl)(D) 00 - 1
where we have defined the (j —k + 1)st parlty -check polynomlal associated with the
(i — 1)st output information sequence as h k+1(D) =g ’)(D) j=kk+1,--- ,n—
l,andi =1,2,. -, k. Simplifyin notation we can write the (n — k) x k anty check
} plirying p

polynomials as hfx’)(D), i=1,2,---,n—k,and j =0,1,---, k—1. (In the important
special case of rate R = (n — 1)/n codes, ie., (n —k) =1, we denote the k =n — 1
parity-check polynomials without subscripts ash/)(D), j = 0,1, -+ , k — 1.) Finally,
we associate the parity-check sequence hf] ) with the coefficients of the parity-check
polynomial hgj (D).

Any codeword v (or ¥(D)) must then satisfy the parity-check equations

T =y, (11.47)
where the matrix @ has semi-infinite dimensions in this case, or
V(D)H" (D) = 0(D), (11.48)

where 8(D) represents the 1 x (n — k) matrix of all-zero sequences. In other words,
the set of all codewords v (or V(D)) is the null space of the parity-check matrix H
(or H(D)).

EXAMPLE 11.4 A Rate R =1/2 Systematic Feedforward Convolutional
Encoder

Consider the (2,1, 3) systematic feedforward encoder shown in Figure 11.4. The
generator sequences are g@ = (100 0) and g = (1 1 0 1), and the generator

matrices are given by
11 01 00 O1
11 01 00 01

G= 11 01 00 01 (11.49)



Section 11.1 Encoding of Convolutional Codes 467

> l0)

FIGURE 11.4: A (2, 1, 3) binary systematic feedforward convolutional encoder.

and
G)y=[1 14+D+D%

(11.50)

For an input sequence u(D) = 1 4+ D? 4+ D?, the output information sequence is

vO D) =udeg® (D) = (1 + D* + D>(1) =1+ D? 4 D,
the output parity sequence is
V(D) =w(D)gP (D) = (1 + D* + D*)(1 + D + D%
=14+ D+ D>+ D>+ D"+ D%+ D,
and the codeword is given by
V(D)=[14+D>+D*> 1+ D+ D?>+ D>+ D*+ D’ + DY
or

v(D) = v¥(D?) + Dy (D?)

=14+D+D*+D*+D°+D°+ D"+ D%+ D! 4 D13,

which we can also write as

v = (11,01, 11, 11, 01, 01, 01).

(11.51)

(11.52)

(11.53a)

(11.53b)

(11.53¢)

Using (11.45) and (11.46b), we see that the parity-check matrices are given by

11

10 11

00 10 11

m—=| 10 060 10 11

10 60 10 11
10 00 10 11

(11.54)
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and
D) =hYD) 1=[1+bD+D> 1] (11.55)
For the codeword of (11.53) we then have
1 1 0 1 7
1000
110 1
100 0
11 0 1
100 0
vH’ =[11,01, 11,11, 01, 01, 01] Lol g (11.56)
b b 1 b b b 1 0 0 () b .
110
100
11
10
1
— 1_
or
3
V(D)HT (D) = [1 + D? + D? 1+D+D2+D3+D4+D5+D6]|:1+D1+Djl
= 0(D). (11.57)

EXAMPLE 11.5 A Rate R =2/3 Systematic Feedforward Convolutional
Encoder

Now, consider the rate R = 2/3 systematic feedforward encoder with generator
matrix

2
G(D>:[1 0 1+D+D }

01 1+D

Using (11.46b), we can write the parity-check matrix as

(11.58)

H(D):[h(0>(D) (D) 1}:[1+D+D2 14D 1]. (11.59)

The controller canonical form realization of the encoder requires a total of v =
vy + vo = 3 delay elements and is shown in Figure 11.5(a). This realization results in
a (3,2, 3) encoder. Moreover, since the output information sequences are given by
v (D) = u®(D) and vV (D) = u® (D), and the output parity sequence is given by

@(p) = u(D)1e® (D) + u® (D 2) D),
vo(D) =u(D)g (D) +u”(D)g, (D) (11.60)
= (1+ D+ DHu®(D) + (1 + D)u® (D),

o

the encoder can also be realized as shown in Figure 11.5(b). Note that this realization
3 “ L

eamirog anlu oy
1\/\1u.u\,o Ullly [ 4
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FIGURE 11.5: (a) Controller canonical form and (b) observer canonical form realiza-
tions of a rate R = 2/3 binary systematic feedforward convolutional encoder.

The encoder realization of Figure 11.5(b) is called observer canonical form. In
general, for observer canonical form encoder realizations, there is one shift register
corresponding to each of the n output sequences, the k input sequences enter
modulo-2 adders internal to the shift registers, and the outputs at the right end of
each shift register form the n output sequences. Also, the lowest-degree (constant)
terms in the generator (parity-check) polynomials represent the connections at the
right ends of the shift registers, whereas the highest-degree terms represent the
connections at the left ends of the shift registers. It is important to note that this
is exactly the opposite of the correspondence between polynomial coefficients and
delay elements in the case of a controller canonical form realization. For this reason,
when an encoder is realized in observer canonical form, it is cornmon to write the
generator (parity-check) polynomials in the opposite of the usual order, that is, from
highest degree to lowest degree. In the case of systematic encoders like the one
in Figure 11.5(b), there are only (n — k) shift registers, and the & input sequences
appear directly as the first k encoder output sequences. Definitions related to the
fengths of the shift registers used in convolutional encoders realized in observer
canonical form can be given that are analogous to Definitions 11.1--11.3. The only
difference is that in this case there are, in general, n shift registers rather then £,
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and v; is defined over the range j =0, 1,--- , n — 1. Any feedforward convolutional

feedback encoders also can be realized in this manner. Thus, controller canonical
form and observer canonical form provide two general realization methods that can
be applied to all convolutional encoders.

EXAMPLE 11.5 {Continued)

For an observer canonical form realization, we rewrite the generator matrix of
(11.58) as

10 DP+bD+1
G(D) = [ 01 D1 } (11.61)
and the parity-check matrix of (11.59) as
H(D) = [D2+D—|—1 D+1 1]. (11.62)

In this way we can clearly identify the coefficients of the polynomials in (11.61)
and (11.62) with the connections in Figure 11.5(b). For this realization, we see that
vy = 0, Vv = 0, v = 2, m= maxgp<j<n—1)V; = 2,andv = 2(05]‘5”_1) V; = 2. Thus,
the observer canonical form realization results in a (3, 2, 2) encoder.

Example 11.5 raises an interesting question. Both encoder realizations gener-
ate exactly the same code, that is, the row space of G(D), but since there are two
distinct encoder realizations with different memory requirements, is this a (3,2, 3)
code or a (3,2, 2) code? If we realize the encoder in controller canonical form, the
overall constraint length is v = 3, resulting in a (3, 2, 3) encoder; however, if we
realize the encoder in observer canonical form, then v = 2, resulting in a (3, 2,2)
encoder. We will see in the next section that since a convolutional encoder can be
realized as a linear sequential circuit, it can be described using a state diagram with
27 states. Also, we will see in the next chapter that maximum likelihood decoding
and maximum a posteriori probability decoding of convolutional codes require a
decoding complexity that is proportional to the number of states in the encoder state
diagram. Hence, we always seek an encoder realization with a minimal number of
states, that is, with a minimal overall constraint length v.

We will continue our discussion of minimal encoder realizations after introduc-
ing another class of systematic encoders. Systematic feedback encoders generate the
same codes as corresponding nonsystematic feedforward encoders but exhibit a dif-
ferent mapping between information sequences and codewords. We again illustrate
the basic concepts using several examples.

EXAMPLE 11.6 A Rate R =1/3 Systematic Feedback Convolutional
Encoder

Consider the rate R = 1/3 nonsystematic feedforward convolutional encoder with
generator matrix

G =[g%0) gV gPw)|=[1+D+D* 14D 1+4D].

(11.63a)
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The (3, 1, 2) controller canonical form realization is shown in Figure 11.6(a). Revers-
ing the order of the polynomials in (11.63a), we have

<G@m::[D2+z)+1, D241 D-%l]“ (11.63b)

from which we obtain the (3, 1, 5) observer canonical form encoder realization shown
in Figure 11.6(b). Note that in this case the controller canonical form realization has
overall constraint length v = 2, that is, 4 states, whereas the observer canonical form
realization requires 32 states! Now, we divide each entry in G(D) by the polynomial
g9(D) = 1 4+ D + D? to obtain the modified generator matrix

Gy=[ g0y g 0)/e% D) (1164)
=1 A+D¥»/A+D+ DY  (L+D)y1+D+ DY '

in systematic feedback form. We note in this case that the impulse response of
the encoder replesemed by ¢ ‘/(D) has infinite duration; that is, the feedback shift
register realization of G (D) is an infinite impulise response (IIR) linear system. For
this reason, the (fime-domain) generator matrix G corresponding to G (D) contains
sequences of infinite length. For example, the ratioc of generator polynomials
gD (D)/g®(D) in (11.64) produces the pOWﬂ series (1 + D?)/(1 + D 4+ D?) =
14+ D+ D*+D*+ D3+ D7+ D%+ DY ... whose time-domain equivalent is the
infinite-length sequence (11101101101 - - -).

The code, that is, the set of encoder output sequences (codewords), generated
by G(D) is exactly the same as the code generated by G(D). This can be seen
by noting that if the information sequence w(D) produces the codeword V(D),
that is, V(D) = w(D)YG(D), in the code generated by G(D), then the information
sequence w(D) = 1+ D+ DHu(D) produces the same codeword V(D), that is,
V(D) = u/(D)G/(D), in the code generated by G (D). In other words, the row
spaces of G(D) and G (D) are the same, and thus they generate the same code. It is
important to note, however, that there is a different mapping between information
seguences and codewords in the two cases. The 4-state, (3, 1, 2) encoder diagram,
in controller canonical form, corresponding to the systematic feedback encoder
of (11.64), is shown in Figure 11.6(c). In contrast, the observer canonical form
realization of G (D) requires 16 states (see Problem 11.8).

Finally, since G (D)is systematic, we can use {11.46a) to obtain the parity-check
matrix

(11.65)

2 2
H“D:[M+DNG+D+D)1 0]

A+D)y1+D+D>» 0 1

where H/(D) is a valid parity-check matrix for both G(D) and G/(D); that is, all
codewords in the row spaces of G(D) and G'(D) are also in the null space of H (D),
and as noted for generator sequences, the systematic (time-domain) parity-check
matrix H corresponding to G contains sequences of infinite length.

In general, if the k x n polynomial matrix G(D) is the generator matrix of a
rate R = k/n nonsystematic convolutional encoder, then elementary (polynomial)
row operations can be performed on G(D) to convert it to a systematic k x n
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FIGURE 11.6: (a) The controller canonical form and (b) the observer canonical form
realizations of a nonsystematic feedforward encoder, and (¢) the controller canonical
form realization of an equivalent systematic feedback encoder.
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The nonsystematic feedforward generator matrix G(D) in Example 11.2 was given

in (11.34), and the 4-state, (3, 2, 2) controlier cancnical form encoder realization was

shown in Figure 11.2. (MNote that the observer canonical form realization of {(11.34)
Q P

would require 3 states.) To convert (D) to an equivalent systematic feedback
encoder, we apply the following sequence of elementary row operations:

W
5
==
==Y

1. Row 1= [1/(0+ D)}jRow 1].
p 2. Row?2= RowZ+ [D{[Row 1].
Row2=[(i+D)y/(1+D + D) |[Row 2].
4, Rowl= Row 1-+[D/(1+ D)}j[Row2].

(O]

w
A
&
&

2}

The vesult is the modified generator matrix (see Problem {1.7)

" 100 1/ + b+ bYH }
1

(11.66)

0 (1 +DY/(1+ D+ D?)
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in systematic feedback form. Now, we can use (11.46b) to form the systematic
parity-check matrix

H (D) = b@D)ym®y Y (D)ma® ) 1]
(11.67a)
=[1/A+D+D*» (1+DH/A+D+DH 1]

or the equivalent nonsystematic polynomial parity-check matrix
HD) =hPD) aYD) nPDd]=[1 1+D*> 1+D+D?, (11.67b)

where h') (D) represents the parity-check polynomial associated with the jth output
sequence. Again, the recursive code generated by G (D) is exactly the same as the
nonrecursive code generated by G(D), and the encoder diagram, in controller
canonical form, corresponding to the systematic feedback encoder of (11.66), is
shown in Figure 11.7(a). We note in this case that Figure 11.7(a) represents a
16-state, (3,2, 4) encoder; that is, two length-2 shift registers are needed in the
controller canonical form realization. Reversing the order of the polynomials in
(11.66) and (11.67a), we obtain

‘=10 1/(D*+D+1)
G(D)_[O 1 (D2+1)/(D2+D+1)} (11.68)
and /
H(D)=[1/(D*+D+1) (D*+1)/D*+D+1) 1], (1169

which leads to the observer canonical form systematic feedback encoder realization
shown in Figure 11.7(b). We note that this represents a 4-state, (3,2, 2) encoder;
that is, for the systematic feedback encoder, the observer canonical form realization
requires fewer states than the controller canonical form realization.

The rate R = 2/3 code of Example 11.2 has a 4-state nonsystematic feed-
forward encoder realization in controlier canonical form (see Figure 11.2). It also
has a 4-state systematic feedback encoder realization in observer canonical form
{(see Figure 11.7(b)). Thus, in this case, both encoder realizations have an overall
constraint length v = 2; that is, we obtain a minimal encoder realization in both
controller canonical form and observer canonical form. We now give an example
of a rate R = 2/3 code in which a minimal encoder realization is obtained only in
observer canonical {form.

EXAMPLE 11.7 A Rate R =2/3 Systematic Feedback Convolutional
Encoder

Now, consider the rate R = 2/3 nonsystematic feedforward generator matrix
given by

(11.70)

G(D):{l D 1+ D ]

0 1+D+D?*+D?* 1+D?+D3

A 16-state, (3. 2. 4) controller canonical form encoder realization is shown in
Figure 11.8(a). (Note that the observer canonical form realization of (11.70) would
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FIGURE 11.7: (a) A (3. 2. 4) systematic feedback encoder in controller canonical form
and (b) an equivalent (3, 2, 2) systematic feedback encoder in observer canonical
form.

require 64 states.) To convert G(D) to an equivalent systematic feedback encoder,
we apply the following sequence of elementary row operations:

Step 1. Row 2= [1/(1 + D + D? + D%)] [Row 2].
Step 2. Row 1 = Row 1 + [D][Row 2].

The result is the modified generator matrix (see Problem 11.7)

(11.71)

’ 2 2 3
G(D):[ 1 0 A+D+D?»/0+D+D +D)]

0 1 (1+D+D*»(1+D+D*+D%
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FIGURE 11.8: (a) A (3,2, 4) nonsystematic feedforward encoder in controller canon-
ical form and (b) an equivalent (3, 2, 3) systematic feedback encoder in observer
canonical form.

in systematic feedback form, and we can use (11.46b) to form the systematic
parity-check matrix

H (D) = [h?(D)/m? D) nPD)/m? ) 1]
[(A+D+DYH/A1+D+D*+D% (1+D+D)/(1+D+D*+D% 1]
(11.72a)

or the equivalent nonsystematic polynomial parity-check matrix

HD)=[1+D+D* 1+D+D* 1+D+D*+D%] (11.72b)
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In this case, the encoder diagram, in controller canonical form, corresponding
to the systematic feedback encoder of (11.71), represents a 64-state, (3, 2. 6) encoder;
that is, two length-3 shift registers are needed in the controller canonical form
realization. Reversing the order of the polynomials in (11.71) and (11.72a), we
obtain

(11.73)

G«(D)_‘l 0 (D*+D+D/)D*+D*+D+1)
L0 1 (DPHDHDNDIEDP DD

and

H(D)=[D*+D+ 1)/ (P + D>+ D+1) (DP+D+D)/(D>+D*+ D+ 1) 1],
(11.74)

which leads to the observer canonical form systematic feedback encoder realization
shown in Figure 11.8(b). We note that this represents an 8-state, (3, 2, 3) encoder;
that is, the observer canonical form systematic feedback encoder realization requires
fewer states than the controlier canonical form nonsystematic feedforward encoder
realization.

Example 11.6shows that for araie R = 1/3 code, a minimal encoder realization
is obtained in controller canonical form. In general, for any rate R = 1/» encoder
described by a 1 x n polynomial generator matrix G(D) or an equivalent systematic
rational function generator matrix G' (D), the controller canonical form realization
of either G(D) or G (D) is minimal, provided all common factors have been removed
from G(D). {(Removing common faciors from a 1 x » polynomial generator matrix
does not change its row space.) For example, consider the rate R = 1/2 nonsystemaiic
feedforward encoder described by the generator matrix

Gy =YD Py =[1+D* 14D (11.75)

The controller canonical form realization of this encoder has overall constraint
length v = 3; that is, it has 2 = 8 states; however, if we remove the common factor
(1+ D) from the generator polynomials g'¥(D) and gV (D), we obtain the generator
matrix

G =[g%D) gP"Dd)=[1+D 14D+ D% (11.76a)
or its systematic feedback equivalent,
G =01 gPDygD)]=01 d+D+DH/1+ D) (11.76b)

The controller canonical form realization of both G(D) and (G/(D) has minimal
overall constraint length v = 2; that is, it has 2V = 4 states.

Similarly, Example 11.7 shows that for a rate R = 2/3 code, a minimal
encoder realization is obtained in observer canonical form. In general, for any rate
R = (n — 1)/n encoder described by an (n — 1) x n polynomial generator matrix
G(D) with an equivalent systematic rational function generator matrix G (D), the
observer canonical form realization of G'(D) is minimal, provided all common



478 Chapter 11 Convolutional Codes

factors have been removed from the 1 x n polynomial parity-check matrix H(D)
corresponding to the systematic rational function parity-check matrix H (D) derived
from G (D). (Removing common factors from a 1 x n polynomial parity check
mairix does not change its null space.) An exception occurs when one or more of
the rational functions in G (D) is not realizable; that is, the delay of its denominator
polynomial exceeds the delay of its numerator polynomial, where the delay of a
polynomial is defined as its lowest-degree nonzero term. In this case, a realizable
minimal realization must be found, which may not correspond to observer canonical
form. An example is given in Problem 11.9.

In general, the rate R = k/n convolutional code produced by a k x n generator
matrix G(D) can also be produced by any k x n matrix G (D) with the same row
space as G(D). If the encoder contains feedback, the code is recursive; otherwise,
it is nonrecursive. Any realization of one of these equivalent generator matrices
that has minimal overall constraint length, that is, a minimal number of delay
elements, results in a minimal encoder. The foregoing summary of the requirements
for determining minimal encoder realizations applies to all code rates normally used
in practice, that is, rates R = 1/n and R = (n —~ 1)/n. For code rates with k¥ > 1
and (n — k) > 1, such as rates 2/5, 2/4, and 3/5, determining minimal encoder
realizations is more complex. In these cases, a minimal encoder may require a
realization that is neither in controller canonical form nor in observer canonical
form. The subject of minimal encoder realizations was first treated in a seminal
paper by Forney [13]. More recently, the book by Johannesson and Zigangirov [12]
provides a comprehensive treatment of this topic.

Throughout the remainder of the text, when we refer to an (n, £, v) convo-
lutional code, we assume a minimal encoder realization; that is, v is the minimal
overall constraint length of any encoder realization. Also, when we use the term
systematic (or nonsystematic) code, we mean the code produced by a systematic
(or nonsystematic) encoder. Finally, we observe that for rate R = 1/n encoders in
controller canonical form and rate R = (n — 1)/n encoders in observer canonical
form, the overall constraint length v equals the memory order m. Thus, for rates
R =1/nand R = (n — 1)/n, we can refer to an (n, k, v) code or, equivalently, an
(n, k,m) code. In general, however, if the form of the encoder realization is not
specified, m < v.

To this point we have discussed nonsystematic feedforward encoders, system-
atic feedforward encoders, and systematic feedback encoders. A fourth general type
of encoder is the class of nonsystematic feedback encoders.

EXAMPLE 11.8 A Rate R =2/3 Nonsystematic Feedback Convolutional
Encoder

Consider the rate R = 2/3 nonsystematic recursive convolutional code (NSRCC)
generated by the matrix

(11.77)

2 3 3
G(D):[ 1/(1+ D+ D? D/(1+ D% 1/(1+D)]

D*/(1+ D% 1/A+D% 1/1+D)

in nonsystematic feedback form. To determine the controller (observer) canonical
form realization of (11.77), the rational functions in each row (column) of G(D) must
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have the same denominator (feedback) polynomial; that is, we must find the least
COMIMOT denomin ¢ the rational functions in each row {column}. In this case,
since 1/(1+ D+ D% = (1 4+ D)/(1 + D), and 1/(1 + D):(]+D—|—D¥2)/(1+D3),
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FIGURE 11.9: (a) The controller canonical form and (b) the observer canonical form
realization of a nonsystematic feedback encoder.
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FIGURE 11.10: (a) The controller canonical form and (b) the observer canonical form
realization of an arbitrary realizable rational function.

(If WD) = 1, (11.81) describes a systematic feedforward encoder.)
The code is described by specifying the n parity-check polynomials
(D), WP (D), ... ,h® (D) or the n equivalent parity-check sequences
h(0)7 h(1)7 el =1

In the notation of (11.81), for rate R = (n — 1)/n codes, the output parity
sequence v~V is associated with the feedback parity-check sequence k"1 and
the (n — 1) output information sequences v\, ... | v"=2 (ie., the input sequences
uh, ... u"DY are associated with the parity-check sequences h@, ... h®=2),
respectively. Also, in the observer canonical form realization of the encoder, the
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output parity sequence v~D is at the bottom of the diagram, and the (n — 1)
output information sequences, in the order v\, ... v~ are on top. (See, for
example, the labeling of output sequences in Figure 11.8(b)). For reasons related to
the design of trellis-coded modulation systems, which are described in Chapter 18
and use only rate R = (n — 1)/n codes, it has become conventional in the literature
to reverse the order of the labeling of input and output sequences when describing
rate R = (n — 1)/n codes. In other words, instead of being written in the notation
of (11.81), the parity-check matrices used to describe a rate R = (n — 1)/n code are
given as

HD) =h"Yo)yn%Dm - wO0ym®m) 1] (11.82a)

and
H(D) =" YDy . nYm O (11.82b)

(For systematic feedforward encoders, the new labeling implies that h® (D) = 1, and
(D) = gfl”:jl)(D), j=1,2,---,n—1.) In this case, the output parity sequence
v© is associated with the feedback parity-check sequence h®, and the (n — 1) output
information sequences v, ... v~ (ie, the input sequences u®, - .. , u®~D) are
associated with the parity-check sequences h(V, ... h®~D respectively. To corre-
spond to this notation, the observer canonical form realization of the encoder is
relabeled so that the output parity sequence v is at the bottom of the diagram, the
(n — 1) output information sequences, in the order v~V ... vV are on top, and
the (n — 1) input sequences are reordered accordingly. As an example, a relabeled
version of the (3, 2, 3) observer canonical form realization of the systematic feed-
back encoder in Figure 11.8(b) is shown in Figure 11.11. To avoid confusion with
the published literature in this area, we will use the modified notation of (11.82) and
the relabeling of Figure 11.11 throughout the remainder of this text to describe rate
R = (n — 1)/n codes.!

In some cases it is desirable to recover a noisy version of the information
sequence directly from the codeword, without decoding. For example, this may be
the case when the channel noise conditions are being tested, when the decoder

O o o

FIGURE 11.11: A relabeled version of the (3,2, 3) systematic feedback encoder of
Figure 11.8(b).

IEXCF:pT.iOI!S are made in Sections 13.5-13.7 and in Chapter 21 where, to conform to the literature on
systematic feedforward encoders, the labeling of Figure 11.5 is used to describe rate R = (n — 1)/n codes.
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is malfunctioning, or when the channel SNR is high enough that decoding is not
necessary. In general, this process requires an inverter to recover the information
sequence from the codeword. For systematic encoders the inverter is trivial, since
the information sequence is directly available. For nonsystematic encoders, on the
other hand, an n x k inverse matrix G~1(D) must exist such that

G(D)G YD) =10 (11.83)

for some | = 0, where I is the k x k identity matrix. Equations (11.32) and (11.83)
then imply that

V(D)YGHD) = UD)YGD)G (D) = UD)D!, (11.84)

and the information sequence can be recovered with an /—time unit delay from the
codeword by letting V(D) be the input to the n-input, k-output linear sequential
circuit whose transfer function matrix is G—1(D).

For an (n, 1, v) convolutional encoder, a generator matrix G (D) has a feedfor-
ward inverse G~1(D) of delay [ if and only if

GCD[g(O) (D), g(l)(D)5 cee g(ll—l)(D)] — D[ (1185)

° > ..
for some [ = 0, where GCD denotes greatest common divisor. For an (n, k, v)

encoder with & > 1, let A;(D), i =1,2,---, (( "

A >), be the determinants of the

Z ) distinct k& x k submatrices of the generator matrix G(D). Then, a feedforward

inverse of delay / exists if and only if

GCD [A,-(D) =12, (( ’; \ﬂ =Dl (11.86)

for some [ = 0. Procedures for constructing feedforward inverses G~ 1(D) are given
in Massey and Sain [14].

EXAMPLE 11.9 Feedforward Encoder Inverses
a. For the (2,1, 3) encoder of Figure 11.1, the generator matrix is given by
6o = [0 D] =[1+02+D° 14+D+D+ D7),
(11.87a)
GCD[g® (D), V(D) = GCD[1+D*+D*, 1+D+D*+D*] =1, (11.87b)

and the transfer function matrix

A, | 1+ D+D?
G~ (D) = [ D+ D2 (11.88)
provides the required feedforward inverse of delay 0; that is, GG YD)

= 1. A realization of the encoder inverse is shown in Figure 11.12(a).
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FIGURE 11.12: Feedforward encoder inverses for (a) a (3,1, 2) encoder and (b) a
(3,2, 2) encoder.

b. For the (3,2,2) encoder of Figure 11.2 with generator matrix G(D) given in
(11.34), the 2 x 2 submatrices of G(D) yield determinants 1+ D ++ D?, 1+ D?,
and 1. Because

GCD[1+ D+ D? 14 D% 1]=1, (11.89)

there exists a feedforward inverse of delay 0. The required transfer function
matrix is given by

0 0
G Ypy=|1 1+D |, (11.90)
1 D

and its realization is shown in Figure 11.12(b).

To understand what happens when a feedforward inverse does not exist, it is
best to consider another example.

EXAMPLE 11.10 A Catastrophic Encoder

Consider the (2, 1, 2) encoder whose generator matrix is given by
G(D) = [g“))(D) g<1>(D)] - [1 +D 1+ Dz] . (11.91a)
In this case we see that

GCD[gY (D) ¢V(D))=GCD[1+D, 1+D*=1+D, (11.91b)
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and a feedforward inverse does not exist. If the information sequence is w(D) =
14+D =1+ D+ D% + .-, then the output sequences are v(¥(D) = 1 and vV(D) =
1+ D;thatis, the codeword has only weight 3 even though the information sequence
has infinite weight. If this codeword is transmitted over a BSC, and the three nonzero
bits are changed to zeros by the channel noise, then the received sequence will be
all zero. A maximum likelihood decoder will then produce the all-zero codeword as
its estimate, since this is a valid codeword and it agrees exactly with the received
sequence. Thus, the estimated information sequence will be w(D) = 0(D), implying
an infinite number of decoding errors caused by a finite number (ounly three in this
case) of channel errors. Clearly, this is very undesirable, and the encoder is said to
be subject to catastrophic error propagation; that is, it is a catasirophic encoder.

Thus, in selecting encoders for use in an error control coding system, it is
important to avoid the selection of catastrophic encoders. Massey and Sain [14)
have shown that (11.85) and (11.86) are necessary and sufficient conditions for
an encoder to be noncatastrophic. Hence, any encoder for which a feedforward
mverse exists is noncatastrophic. It follows that systematic encoders are always
noncatastrophic, since a trivial feedforward inverse exists. Minimal nonsystematic
encoders are also noncatastrophic, but nonminimal encoders can be catasirophic
[12]. Note, for example, that the nonminimal encoder of (11.75) does not satisty
(11.85), and thus it is catastrophic. Only noncatastrophic encoders are listed in the
tables of good convolutional encoders given later in the text in Chapters 12, 13, 16,
18, and 21.

An (n, k,v) convolutional encoder can generate infinitely long encoded
sequences {(codewords). Because n encoded bits are produced for each k information
bits, R = k/n is called the rate of the convolutional encoder. For a finite-length
information sequence of i time units, or K* = kh bils, it is customary to begin
encoding in the all-zero state; that is, the initial contents of the shift registers are
all zevos. Also, to facilitate decoding, it is necessary to return the encoder to the
all-zero state after the Iast information block has entered the encoder, as will be
seen in Chapters 12 and 13. This requires that an additional m input blocks enter
the encoder to force it to return to the all-zero state. For feedforward encoders,
it can be seen from the encoder diagram that these m termination blocks must be
all zeros, whereas for feedback encoders, the termination blocks depend on the
information sequence (see Problem 11.12). These termination blocks are not part
of the information sequence, since they are fixed and cannot be chosen arbitrarily.
(We note here that for controller canonical form encoder realizations with v < km,
only v bits are required for termination. Thus, km — v bits in the m termination
blocks can be information bits. For example, for the (4, 3, 3) encoder realization
shown in Figure 11.3, only v = 3 bits arc needed for termination, and the remaining
3 bits in the 2 termination blocks can be information bits. A similar situation holds
in the case of observer cancnical form realizations (see Problem 11.13). For sim-
plicity; however, we ignore these special cases in the succeeding development.) The
corresponding codeword has length N = n(h + m), including the m ouiput blocks,
or nm output bits, resulting from termination. Such a terminated convolutional code
can be viewed as an (N, K*) = [n(h + m), kh] linear block code with a K* x N
generator matrix G. The block (terminated convolutional) code rate is given by
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R, = KW = - (hkj:m), the ratio of the number of information bits to the length of the
codeword. If 4 >> m, then h/(h+m) ~ 1, and the block (terminated convolutional)
code rate R; and the convolutional encoder rate R are approximately equal. This
represents the normal mode of operation for convolutional codes, and we usually do
not distinguish between the rate R of a convolutional encoder and the rate R; of the
associated block (terminated convolutional) code; that is, we assume R = R;. If h is
small, however, the ratio HU%IHY which is the rate R, of the block (terminated con-

volutional) code, is reduced below the convolutional encoder rate R by a fractional

amount
Kk kh "
n n(h-+m)
= 11.92
k/n h+m ( )

called the fractional rate loss. For example, for the (2, 1, 3) encoder and information
sequence in Example 11.1, # = 5 and the fractional rate loss is % = 37.5%; however,
for an information sequence of length # = 1000, the fractional rate loss is only
o5 = 0.3%.

For short information sequences, the fractional rate loss can be eliminated by
simply not transmitting the nm termination bits and considering the first N* = nh
encoder output bits as the codeword; however, as will be seen in Chapters 12 and
13, if the termination bits are not transmitted, the performance of the code is
degraded. One way to combat this problem is to allow the encoder to start in an
arbitrary state—that is, the initial contents of the shift registers are not necessarily
all zeros—and then force it to return to the same state at the end of the information
sequence. It turns out that if the starting state is chosen properly, no extra bits
are required to force the encoder back to the same state, so no fractional rate loss
is incurred. This technique results in so-called tail-biting codes, a subject that is
discussed in more detail in Section 12.7.

11.2 STRUCTURAL PROPERTIES OF CONVOLUTIONAL CODES

Because a convolutional encoder is a linear sequential circuit, its operation can be
described by a state diagram. The state of an encoder is defined as its shift register

contents. For an (n, k, v) encoder in controller canonical form, the ith shift register

at time unit / (when ul(l), M1(2)’ o ,ul(k) are the encoder Inputs) contains v; bits,
denoted as sl(i)l, sl(l_)z, e ,s,(l_)w, where sl('_)1 represent the contents of the leftmost
delay element, and sl(i)vi

1<i<k.

represents the contents of the rightmost delay element,

DeriniTION 13.6  The encoder state o at time unit [ is the binary v-tuple

— (DM @ @ @) @) (k) (k) (k)
01 = (S)0S 0 Sy 1218y S, S S Sy ) (11.93)

Thus, we see from (11.20) that there are a total of 2 different possible states. For
an (n, 1, v) encoder, the encoder state at time unit / is simply

61 = (511 S1—2 -~ Si—p). ’ (11.94)

In the case of feedforward encoders, we can see from the encoder diagram
(see, for example, Figure 11.1) that the contents of the ith shift register at time unit
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@ 0 M)

[ are its previous v; inputs, that s, u; ", u; 5, -+, ]y and hence the encoder state
at time unit / is given by
1 D D 2 2 2 k 3] %)
oy = (Ll[<_)1ul(v2 e ”1(*\11 Lll(_)1L£I<JZ cen Lil(jvz . '“‘1(—)1”1(4 . ‘Lll—w)' (11.95)

For an (n, 1, v) encoder, (11.93) becomes simply
6 = (uj_1 U3 -+ Uj_yp). (11.96)

For observer canonical form encoder realizations, the encoder state o; at time
unit / can also be defined as in (11.93), except that in this case there are, in general,
a total of n rather than k shift registers. Also, feedforward encoders in observer
canonical form do not have the property that the contents of a shifi register are its
v; previous inputs; that is, {11.95) and (11.96) apply only to feedforward encoder
realizations in controller canonical form.

Each new input block of k bits causes the encoder to shift; that is, there is
a transition to a new state. Hence, there are 2F branches leaving each state in the
state diagram, one corresponding to each different input block. For an (n, 1, v)
encoder, therefore, there are only two branches leaving each state. Each branch in

the state diagram is labeled with the k inputs (u]m, u?z), e Ll[(k)) causing the tran-
sition and the n corresponding cutputs (vl(o), vl(l)7 e vl("fl)). The state diagrams

for the feedforward controller canonical form realizations of the (2,1, 3) encoder
of Figure 11.1 and the (3, 2, 2) encoder of Figure 11.2 are shown in Figures 11.13(a)
and 11.13(b), respectively. The states are labeled S, 81, -+, Sv_1, where by con-
vention §; represents the state whose binary v-tuple representation bg, by, -+, 5,1
is equivalent to the integer i = bg20 + 2! + - -+ + b,_12"~L. For example, for the
(2,1, 3) encoder of Figure 11.1, if the shift register contents at time / are given by
o = (551 si—2 s;_3) = {uj_1 w;_» wu;_3), the state at time [ is denoted as §;, where
I =up_1 -+ 2u;_o + duy_s3.

We note here that for time-invariant convolutional encoders, that is, encoders
whose generator matrix and associated encoder diagram do not change with time,
the encoder state diagram is also time-invariant. Thus the same state diagram (see,
e.g., those in Figure 11.13) is valid for all time units I. Time-varying convolutional
encoders are not treated explicitly in this text, but we note here that the class of turbo
codes, to be covered in Chapter 16, is generated by a special kind of time-varying
convolutional encoder.

Assuming that the encoder is initially in state Sy (the all-zero state), we can
obtain the codeword corresponding to any given information sequence by following
the path through the state diagram determined by the information sequence and
noting the corresponding outputs on the branch labels. Following the last information
block, a terminated encoder is returned to state Sp by a sequence of m input
blocks appended to the information sequence. For example, in Figure 11.13(a), if
uw=(11101), encoding is terminated by appending m = 3 zeros to u, and the
resulting codeword is given by v=(11,10,01,01,11,106,1 1,1 1).

We now return briefly to the subject of catastrophic encoders introduced in
the previous section. An encoder is catastrophic if and only if the state diagram
contains a cycle with zero output weight other than the zero-weight cycle around
the state Sp. The state diagram for the catastrophic encoder of Example 11.10 is
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4@\ 1/10 @
7™ Y

0/00 1/10
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0/00
(a)

00/000

01/111 § 10/010

11/101
(b)

FIGURE 11.13: Encoder state diagrams for (a) the (2, 1, 3) encoder of Figure 11.1 and
(b) the (3, 2, 2) encoder of Figure 11.2.

shown in Figure 11.14. Note that the single branch cycle around the state S3 has zero
output weight.

The state diagram can be modified to provide a complete description of the
Hamming weights of all nonzero codewords, that is, a codeword weight enumerating
function (WEF) for the code. We begin by considering the case of unterminated
encoders; that is, the information sequence can be of arbitrary length. State Sp is
split into an initial state and a final state, the zero-weight branch around state Sy is
deleted, and each branch is labeled with a branch gain X¢, where d is the weight of
the n encoded bits on that branch. Each path connecting the initial state to the final
state represents a nonzero codeword that diverges from and remerges with state Sp
exactly once. (We do not enumerate codewords that never remerge with state Sg,
since, for noncatastrophic encoders, they must have infinite weight. Also, codewords
that diverge from and remerge with state Sp more than once are not enumerated,
since they can be considered as a sequence of shorter codewords.) The path gain is the
product of the branch gains along a path, and the weight of the associated codeword
is the power of X in the path gain. The modified state diagrams for the encoders of
Figures 11.1 and 11.2 are shown in Figures 11.15(a) and 11.15(b), respectively.
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)

FIGURE 11.15: Modified encoder state diagrams for (a) the (2, 1, 3) encoder of Figure
11.1 and (b) the (3, 2, 2) encoder of Figure 11.2.
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EXAMPLE 11.11 Computing Path Gains in a State Diagram

a. The path representing the state sequence SpS$15357565552548; in
Figure 11.15(a) has path gain X2 - x'. x!. x1.x%.x1.x%2.x2 = x12,
and the corresponding codeword has weight 12.

b. The path representing the state sequence Sy51535,S in Figure 11.15(b) has
path gain X>- X'. X%. X1 = X* and the corresponding codeword has weight 4.

We can determine the codeword WEF of a code by considering the modified
state diagram of the encoder as a signal flow graph and applying Mason’s gain
formula {15] to compute its transfer function,

AX) =) Agx?, (11.97)
d

where Ay is the number of codewords of weight d. In a signal flow graph, a path
connecting the initial state to the final state that does not go through any state twice
is called a forward path. Let F; be the gain of the ith forward path. A closed path
starting at any state and returning to that state without going through any other
state twice is called a cycle. Let C; be the gain of the ith cycle. A set of cycles is
nontouching if no state belongs to more than one cycle in the set. Let {i} be the set
of all cycles, {i’, j'} be the set of all pairs of nontouching cycles, {i”, j”, 1"} be the set
of all triples of nontouching cycles, and so on. Then, we define

A=1=3"Ci+Y CiCy— > CuCpCpt--, (11.98)
i i

I‘//’j//’l//

where }_; C; is the sum of the cycle gains, 37, . Ci:Cj is the product of the cycle
gains of two nontouching cycles summed over all pairs of nontouching cycles,
2 jnp CinCynCpr is the product of the cycle gains of three nontouching cycles
summed over all triples of nontouching cycles, and so on. Finally, A; is defined
exactly like A but only for that portion of the graph not touching the ith forward
path; that is, all states along the ith forward path, along with all branches connected
to those states, are removed from the graph when computing A;. We can now state
Mason'’s formula for computing the transfer function A(X) of a graph as

AX) = —Z% (11.99)

where the sum in the numerator is over all forward paths. We give several examples
to clarify this procedure.

EXAMPLE 11.12 Computing the WEF of a (2, 1, 3) Code

Consider the code produced by the (2, 1, 3) nonsystematic feedforward encoder of
Figure 11.1, whose modified state diagram is shown in Figure 11.15(a). There are 11
cycles in the graph of Figure 11.15(a):



Cycle 1:
Cycle 2:
Cycle 3:
Cycle 4:
Cycle 5:
Cycle 6:
Cycle 7:
Cycle 8:
Cycle 9:
Cycle 10:
Cycle 11:
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51535756555,5451 (€1 = X®)
515357565451 (Cy = X°)
515386555:5451  (C3=X")
5153565451 (Cy = X?)
515,858357565451  (Cs = X
5158553565451  (Co = X°)
515545 (C7 = X%
§2555 (Cs = X)

5357565553 (Co = X°)
53565553 (Co = X%
5757 (C11 =X)

There are 10 pairs of nontouching cycles:

Cycle Pair 1:
Cycle Pair 2:

{Cycle 2, Cycle 8)
(Cycle 3, Cycle 11)

Cycle Pair 3:  {Cycle 4, Cycle 8)
Cycle Pair 4:  (Cycle 4, Cycle 11)
Cycle Pair 5:  (Cycle 6, Cycle 11)
Cycle Pair 6:  (Cycle 7, Cycle 9)

Cycle Pair 7:
Cycle Pair &:
Cycle Pair 9:
Cycle Pair 10:

(Cycle 7, Cycle 10)
(Cycle 7, Cycle 11)
(Cycle 8, Cycle 11)

{Cycle 10, Cycle 11)

(C2C5 = X4

(C3Cy = X5)
(C4Cs = X3)
(C4C1y = X¥)
(CeC11 = XH
(C7Cy = XB)
(C7C1p = X7)
(C7C1 = X%
(CsCpy = X?)

(C1pC11 = X5)

There are 2 triples of nontouching cycles:

Cycle Triple 1: (Cycle 4, Cycle 8, Cycle 11)
Cycle Triple 2: (Cycle 7, Cycle 10, Cycle 11)

There are no other sets of nontouching cycles. Therefore,

A=1-X+ X+ X+ X+ X+ X+ X+ X+ X+ X+ X

(C4CsCyy = X
(C7C1C1y = XB)

XX+ X+ X+ X+ X+ T+ X+ X0 - (x4 XY

=1-2X-X°.

There are 7 forward paths in the graph of Figure 11.15(a):

Forward Path 1:  SpS5153575655525480
Forward Path 2:  $451.53.57.56¢545¢
Forward Path 3:  S0.515356555,5450
Forward Path 4: 555153555450
Forward Path 5 $35152555357565450
Forward Path 6:  5051525553555450
Forward Path 7:  $p851528450

(F = X%
(F, = X7y
(F3 = X1
(Fy = X5
(Fs = X%)
(Fg=X)

(Fr=Xx)

(11.100)
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Forward paths 1 and 5 touch all states in the graph, and hence the subgraph not
touching these paths contains no states. Therefore,

Ay =As=1. (11.101)

The subgraph not touching forward paths 3 and 6 is shown in Figure 11.16(a), and
hence,

A3=A¢=1-X. (11.102)
The subgraph not touching forward path 2 is shown in Figure 11.16(b), and hence,
A =1-X. (11.103)

The subgraph not touching forward path 4 is shown in Figure 11.16(c), and hence,
Ag=1—-X+X)+(X»H=1-2X+ X2 (11.104)

The subgraph not touching forward path 7 is shown in Figure 11.16(d), and hence,
Ar=1-(X+X*"+X)+XxXH=1-Xx-Xx* (11.105)

The transfer function for this graph, that is, the WEF of the associated (2, 1, 3) code,
is then given by

X2 1+xX0 -+ x11 - X)+ X051 —2X + X3+
X 14+X01-X+x"d-X-XxY

A(X) =
X 1-2x - X3

Xy (11.106)

1-2x-Xx3
=x%+3x7 +5x8 +11x% +25x10 4 ...

FIGURE 11.16: Subgraphs for computing A; in Example 11.12.
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The codeword WEF A(X) provides a complete description of the weight distribuiion
of all nonzero codewords that diverge from and remerge with state Sy ezactly once.
in this case there is one such codeword of weight 6, three of weight 7, five of weight
8, and so on.

DAy

2 - i = ] =
o, 4, Ay LD

EXAMPLE 11.13

Consider the code nsystemat
Figure 11.2, whose modm@d staLe d iagram is shown i F g
shown that (see Problem 11.17) there are § cycles, G pairs

1 triple of nontouching cycles in the graph of Figure 11. M(T@) and

0

\\

A=1— X+ X+ P4 X +3 e+ X2+ 3%

X P+ 2 - (XY (11.167)
. <3 . =
=1-2X - 2Xx* - X>+ 3"+ %°
There are 15 forward paths in the graph of Figure 11.15(b) (see Problerm 11.8), and

Y RA=XA-X-X X+ + X=X+ X0 1+ 270 - %)
i +xP 14+ 000 -—x-xH+x®a -+ x4+ X0 -0
+x8 1+ xia-—x - yrxh+xa -3+ x0
+x30-x0+x%1

=2xX + x4+ 0+ x5~ ¥~ %8 (11102

Hence, the codeword WEF is given by

XB4xt4+ x4+ x5 x7 - x8
AX) = P 3 wrd 5
1-2X -2X4 - X>4 X+ + X° (11.109
=230 4+ 5x* + 15X%° +
and this code contains two nonzerc codewoids of weight 3, {ive of weight 4, fificen

of weight 5, and so on.

Additional information about the weight properiies of a code can be obtained
using essentially the same procedure. If the modified state diagram is augmented by
labeling each branch corresponding (6 a nonzero information block with W, where
w is the weight of the k information bits on that branch, and labeling each branch

with L, then the codeword input—ouiput weight emunerating function (IGWEF) of
the code is given by
AW. X Ly= ) Apg WXL (11.110}
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WXL

S()

FIGURE 11.17: Augmented modified state diagram for the (2,1,3) encoder of
Figure 11.1.

The coefficient A, 4, denotes the number of codewords with weight d, whose
associated information weight is w, and whose length is / branches. The augmented
modified state diagram for the encoder of Figure 11.1 is shown in Figure 11.17.

EXAMPLE 11.12 (Continued)
For the graph of Figure 11.17, it can be shown that (see Problem 11.18)

A=1—XSWALT+ X3W3L° + X7W3L0 + XPw2L + x*wALT + xX3w3Lo
+ XPWL 4+ XWL? + XOWL + X*W2L? + XWL) + (X*W*L7
+ X3WALT + XPWALS + 33W3L + X*AwALT + xSwiLT + xTw3Le
+ XAWILA 4+ XPWALR + XOWALY — (WAL + x3wrLT)
=1—XW({L+L>-X*WL* - L% - x*wL? - x*w?® - LY
(11.111)

and

S FA =XPWALS 1+ XTWILSA - xwLh + XM WALTA - XWL)
+XOW2LI — XW(L + L2 + X*W2L3] + x8w4Ld .1
+X"W3LTA - XWEL) + X'WL (1 — XWL — X*W2L?)

=X5W2LS + x"wit — x3w?L’ (11.112)
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Hence, the codeword IOWEF is given by
XOW2L® + X'WL* — X*wrL?
1— XW(L+ LY — X2W2(L4 — L3 — X3WL3 — XAW2(L3 — LY
=xw2L° + XTowLt + w3Le + wiLT)
+XSWALO + WAL + WAL 2w Ly + (11.113)

AW, X, L) =

This implies that the codeword of weight 6 has length-5 branches and an information
weight of 2. one codeword of weight 7 has length-4 branches and information weight
1, another has length-6 branches and information weight 3, the third has length-7
branches and information weight 3. and sc on.

The term WL+ in A(W, X, L), corresponding to information weight 1, always
represents the shortest path through the augmented modified state diagram. It is
interesting to note, however, that this may not be the minimum-weight path. In
Example 11.12, for instance, the term X’ W L* represents the shoriest path, whereas
the term XSW? L5 represents the minimum-weight path. Also, it is important to note
that the codeword WEF A(X) is a property of the code; that is, it is invariant to the
encoder representation. The codeword IOWEF A(W, X, L), on the other hand, is a
property of the encoder, since it depends on the mapping between input sequences
and codewords (see Problem 11.21).

An alternative version of the IOWEF, which contains only information about
the input and output weights but not the lengths of each codeword, can be obtained
by simply setting the variable L in A(W, X, L) to unity: that is,

AW, X) = ZAw,dv wxd = AW, X, D)l ~1. (11.114)

w,d

where Ay g = ) Aw.a, Tepresents the number of codewords with weight d and
information weight w. Similarly, the WEF A(X) is related to the IOWEF as

AX) = ZA[IX" =AW, X)|wey = AW, X, L)|lwer—;. (11.115)
d

where Ay = ), Ay« In Chapter 16 we will see that an imporiant tool needed to
compute the WEF of turbo codes is the codeword conditional weight enumerating
function (CWEF), which enumerates the weights of all codewords associated with
particular information weights. For an information weight of w, the CWEF is
given by
Ap(X) =) AuaX?. (11.116)
d

It follows directly from (11.114) that the IOWEF can be expressed as
AW, X) = W"Ayu(X). (11.117)

w

Clearly, the CWEF is also a property of the encoder.
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EXAMPLE 11.12 (Continued)
The simplified IOWEF of (11.113) becomes

AW, X) = AW, X, L)1 = W2X® + (W +2W) X7 + (W2 +4WHx8 + ..
(11.118)

indicating one codeword of weight 6 with information weight 2, three codewords of
weight 7, one with information weight 1 and two with information weight 3, and so
on, and we can obtain the WEF as

AX) =AW, X)iwey = X0 +3X7 +5x8 +... | (11.119)

which agrees with the A(X) computed previously in (11.106).

To compute the CWEFs for this encoder we must find the path weights
associated with the information sequences of a given weight that traverse the
modified state diagram from the initial state to the final state. There is one such
information sequence of weight 1, w = (1 0 0 0), three such sequences of weight 2,
u=(11000),(101000),and (1001000), nine such sequences of weight 3, u =
(111000),(1101000),(1011000),(10101000),(11001000),(10011000),
(101001000),(100101000),and (1001001 000), and so on. {The last
three 0’s in each sequence represent the termination bits.) Thus, using Figure 11.17,
we see that

A(X) =X, (11.120a)
Ay(X) = X5 4+ x% + x1°, (11.120b)

and
A3(X) =2X7 +3x% 4 3xM 4 x13, (11.120¢)

Finally, using (11.117), we can write

AW, X) =) W¥Au(X)
w (11.121)

=wx + WX+ x%+ x19 + wPexT +3x° +3xM x4
Because of the different ways in which they were calculated, it is not immediately
obvious that (11.118) and (11.121) give the same result; however, if we rewrite

A(W, X, L) in (11.113) listing the numerator and denominator terms in increasing
powers of W, and then set L = 1, we obtain

WX7 + W2(x° - x8)
1-WE2X + X3) (11.122)
= WX+ WA+ x8+ x0y L wiex? +3x +3xN + xBy 4.,

AW, X) =

the same result as in (11.121).
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The preceding example illustrates that if we wish to express the IOWEF in
terms of increasing codeword weight, we should list the numerator and denominator
terms in A(W, X) in increasing powers of X prior to division; however, if we wish io
express the IOWEF in terms of increasing information weight, we should list them
in increasing powers of W.

Now, consider the case of terminated encoders, that is, encoders whose output
sequences are limited to A = h +m blocks, where A represents the total length of the
input sequence, which comprises /i information blocks and m termination blocks.
To adapt the foregoing procedure for computing WEFs o terminated encoders, we
write the numerator and denominator terms of the IOWEF A(W, X, L) in increasing
powers of L. Then, we perform division and drop terms of degree larger than L*
from the resulting power series.

EXAMPLE 11.12 {Continued)
We begin by rewriting (11.113) as
LW 4 LIWA(X — X
1—LWX — L2WX — L3[WX3 + W2(X* — X2)] — LYW2(X2 — X%’
(11.123)

AW, X, L) =

Now, let the encoder be terminated after . = 8 blocks; that is, consider only
input sequences with /i = 5 information blocks and m = 3 termination blocks. Then,
division and truncation of terms with degree larger than L8 gives (see Problem 11.22)

AW, X, L) = L*WX" + L°W*xS + LOw?x® + w3x"y + LT[w?x "0
W3+ X + WS + LAWK + whx® + X104+ X + wh k%
(11.124)

as the IOWEF of this terminated encoder. There are exactly 15 terms in this [OWEF,
because we consider only information sequences whose first bitis a 1, and we do not
consider the information sequence w = (10001 00 0), since it diverges from and
remerges with state Sy twice. (Note that W* is the largest input weight represented
in (11.124), since L — m = 5.) We can now compute the simplified IOWEF, the
CWEFs, and the WEF of this terminated encoder as

AW, Xy = AW, X, D)1=y = WX+ W20 + X3+ x99 + w3x” +3x° + x1hH

+w*exs + x4+ x  wix”, (11.125a)
Ax) =x7. (11.125b)
Ay(x) = x8 + x84+ x10, (11.125¢)
Az =2x7 +3%° + x1, (11.1254)
Ay(X)y =2x8 + x'0 4 x12, (11.125e)

As(X) = X°, (11.125¢)
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and
AX) = AW, X)lw=1 = X® +3x7 +3x% +4x? 4 2x10 + xM + x12, (11.125g)

respectively. Note that the CWEF Asz(X) given in (11.125d) for the terminated
encoder differs from the expression given in (11.120c¢) for the unterminated encoder.
This is because some of the weight w = 3 information sequences in the unterminated
case are more than h = 5 bits long, and thus they are not valid input sequences to
the terminated encoder.

Itis important to note here that the foregoing method for computing codeword
WEFs considers only nonzero codewords that diverge from the all-zero state at the
initial time unit and remerge exactly once. In other words, delayed versions of
the same codeword or codewords that diverge and remerge more than once are
not counted. (The reason for enumerating the weights of nonzero codewords in
this fashion is related to the method used to calculate the bit-error probability
of convolutional codes with maximum likelihood decoding, a subject that will
be discussed in Chapter 12.) Thus, in the case of a terminated encoder with an
information sequence of length /1 = 5 considered in the preceding example, only 15
nonzero codewords are counted, rather than the 2° — 1 = 31 nonzero codewords that
exist in the equivalent (N, K*) = [n(h + m), kh] = (16, 5) block code. Methods for
calculating the complete WEF of the equivalent block code obtained by terminating
a convolutional encoder are needed to compute the WEFs of turbo codes. These
methods are discussed in more detail in Chapter 16.

To determine the information bit-error probability of convolutional codes
with maximum likelihood decoding, a subject to be discussed in the next chapter,
it is convenient to modify the codeword WEF expressions introduced previously
to represent the number of nonzero information bits associated with codewords of
a given weight. These modified expressions are referred to as bit WEFs. For an
information weight of w, the bit CWEF is given by

By(X) =) ByaX’, (11.126)
d

where By, 4 = (w/k)A, 4. Hence, By, 4 can be interpreted as the total number
of nonzero information bits associated with codewords of weight d produced by
information sequences of weight w, divided by the number of information bits k per
unit time. It follows directly that the bit [OWEF can be expressed as

B(W, X) = B, W"X% =" W"B,(X), (11.127)
w,d w

and the bit WEF is given by

B(X) =) ByX" = B(W, X)|w_1. (11.128)
d

where By = > By 4 is the total number of nonzero information bits associated

with codewords of weight d, divided by the number of information bits k per unit
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EXAMPLE 11.12  (Continued)
Applying (11.130) to the codeword IOWEF given in (11.118) for the (2. 1, 3) encoder
in this example, we obtain the bit WEF

1AW, X)

BX)= ——— 1200
= w Wt

W2XS + (W +2WHXT + (W2 +dawhH xS+ .. ] (11.131
oW

W=l

=2x%% 4+ 7x%7 +18%8 +
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The coefficients of B(X) in (11.131) represent the total number of nonzero informa-
tion bits associated with codewords of each weight for this encoder.

We will see in the next chapter how the bit WEF B(X) can be used to
determine the bit-error probability associated with maximum likelihood decoding
of convolutional codes.

For systematic encoders, since k information sequences and (n — k) parity
sequences comprise a codeword, the weight of a codeword is the information weight
w plus the weight of the parity sequences. In this case, it is convenient to express the
codeword CWEF as

A(Z) =) Ay . Z7, (11.132)

where Ay, - is the number of codewords with information weight w and parity weight
z. (We note here that the number of codewords A,, . with information weight w
and parity weight z is the same as the number of codewords A,, 4 with information
weight w and total weight d = z + w.) Then, the codeword input redundancy weight
enumerating functions (IRWEFs) are given by

AW.Z,Ly="Y Ay W2ZL (11.133)

w.z.l

where A, . 18 the number of codewords of length / with information weight w and
parity weight z, and

AW, Z) =) Ay W"Z = AW.Z L)1 = D W AL(Z). (11.134)

w, w.z

It follows that the codeword WEF can be expressed as

AX) = Z Ag X = AW, D)lwez_x, (11.135)
d

where Ay = ), ., Ay is the total number of codewords of weight d. (The
notation ), .._, Ay . implies that we are summing over all coefficients A, . such
that w + z = d.) The bit WEFs for systematic encoders are determined in the same
way as in (11.126)—(11.128), with By, . = (w/k)A, - (or, for terminated encoders,
with By, - = (w/K)Ay ). For an information weight of w, the bit CWEF is given by

By(Z) =) By .Z* (11.136)

and B, . can be interpreted as the total number of nonzero information bits
associated with codewords of parity weight z and information weight w, divided by
the number of information bits & per unit time. It follows directly that the bit IRWEF
can be expressed as

7

/s N g Fa) Vrmr—/,‘{ — § Tx
DA\W, £) = ) Dy W 4 = Z (4
w w

;

sl N /449 1
EIVAN {11.13
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and the bit WEF is given by

B(Xy=) ByX'=BW. Z)lw=z=x, (11.138)
d

where By =, ,._, Buw. - is the total number of nonzero information bits associated
with codewords of weight d, divided by the number of information bits k per unit
time. Finally, (11.137) and (11.138) can be used to develop the following formal
relationship between the codeword IRWEF A(W, Z) and the bit WEF B(X):

BOX) = BW, D)lwez=x =y Bu:W"Zwezex = ) (W/K)Ay W"Z |lw=z=x

w,Z w.z

— o ) (11.139)
137y Aw WY Z] L, 0AW, 2)

k aw W=Z=X Kk oW Wez=x

that is, the bit WEF B(X) can be calculated divectly from the codeword IRWEF
AW, Z).

Again, for systematic encoders, the codeword WETF is a property of the code
and the codeword CWEFs and IRWEFs, and the bit CWEFs, IRWEFs, and WEF
are all properties of the encoder.

To determine the IRWEF of a systematic encoder using the transfer function
method introduced here, we replace the labels X¢ representing codeword weights
in the augmented modified state diagram with labels Z- representing parity weights.
We now illustrate the techniques for finding WEFSs for systematic encoders with
an example using a systematic feedback encoder. First, we note that for feedback
encoders, the bits needed to terminate the encoder are, in general, nonzero. Thus, in
this case, we refer to the powers of W in the WEFEs as nonzero input bits rather than
nonzero information bits, since termination bits are not considered information bits;
however, this distinction is important only for low-weight input sequences.

EXAMPLE 11.14 Computing the WEFs of a (2,1, 2) Systematic Feedback
Encoder

Consider the (2, 1, 2) systematic feedback convolutional encoder whose generator
matrix is given by

GP)=[1 (1+D*/(1+D+DY] (11.140)

The controller canonical form realization and augmented modified state diagram
for this encoder are shown in Figure 11.18. Following the same procedure as
in Examples 11.12 and 11.13, we see that there are three cycles in the graph of
Figure 11.18(b):

Cycle 1: 51835851 (Cy = Z*L%)
Cycle 2: §15,5 (Cy = WL
Cycle 3: 8353 (C3 = WL)

We also see that there is one pair of nontouching cycles:

Cycle Pair 1: (Cycle 2, Cycle 3}  (C2C3 = W2L3).
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FIGURE 11.18: (a) The controller canonical form realization and (b) the augmented
modified state diagram for a (2, 1, 2) systematic feedback encoder.
In this case there are no other sets of nontouching cycles. Therefore,
A=1—(Z°L*+WL>+ WL)+(W?L?) =1 Z*L> = W(L + L? + W2L3. (11.141)
We now see that there are two forward paths in the graph of Figure 11.18(b):
Forward Path 1: So515,50 (Fy = W3Z2L3)
Forward Path 2: So51535:80 (), = W2Z*L%)

The subgraph not touching forward path 1 is simply the single branch cycle around
state §3, that is, cycle 3. Therefore

Ay=1—-WL. (11.142)
Forward path 2 touches all states in the graph, and hence,
Ay =1. (11.143)

Finally, applying (11.99), we obtain the codeword IRWEF:
W3Z2L3(1 — WLy +W2z4L4 . 1
AW, Z, L) = ( )+
1— 27213 - W(L + L?) + W2L?
_ WEZALA 4+ WRZ2L3 - w2
11— Z2L3 —W(L+ LY +W2L3

(11.144)

2474 2713 4or5 6
_wizit sl 2e 2]
F(Z,L) |_F(Z,L) F2(Z,L) J
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where we have defined F(Z, L) = 1 — Z2L3. In this case we see that there are an
infinite number of codewords corresponding to input sequences of weight 2. (In the
state diagram, cycle 1 has zero input weight associated with it, so that an infinite
number of codewords with input weight 2 can be generated by traversing this cycle
an arbitrary number of times.) We can represent these codewords by expanding the
first term in (11.144) as follows:

w2z4p#

L WHZA 200+ 280 4y, 11.145
FZ L) ( + +) ( )

that is, corresponding to weight-2 input sequences, there are codewords with parity
weight 4 + 2 and length 4 +3j, j = 0,1,2,---, owing to the gain C; = Z°L> of
cycle 1. Similarly, there are an infinite number of codewords corresponding to input
sequences of weight 3, and so on.

We can now obtain the IRWEF without length information from (11.144) as
follows:

W2z4 4+ wi3z2 — whz?

1— 72 -2W + w2

w2 T 2 - (11.146)
H@+ + +

AW, Z) = AW, Z. Lo =

It

F(Z)  FUZ)

where F(Z) =1 — 72, and we can use (11.134) to obtain the following CWEFs:

4
ANZ) = T (11.1472)
7> 274
AﬂZ%:1_22+1~221+ZW (11.147b)

and so on. It is interesting to note here that (11.147a) implies that all input weight-2
codewords have a total weight of at least 6 (input weight 2 plus parity weight of at
least 4), whereas (11.147b) implies that there is one input weight-3 codeword with a
total weight of only 5. Thus, the minimum-weight codeword in this case is produced
by a weight-3 inpuf sequence. Finally, the codeword WEF is obtained by setting
W = Z = X in (11.146), giving the expression

X6 4 x5 — X6

A(X) = AW, Dlw=z=x = -0 X+ 12

X (11.148)

T1-2x

Nt

=X 4 2x0 rax7 +8x8 4.,

(Note that the substitution W = Z = X is made directly into the rational function
representation of {11.146) rather than into the series representation in order of
increasing input weight, since this results in a simplified expression for A(X).)
We see from (11.148) that this code contains one codeword of weight 5, two of
weight 6, four of weight 7, and so on. In Problem 11.23 it is shown that the
equivalent nonsystematic feedforward encoder, which produces the same code as
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the systematic feedback encoder of (11.140), has the same codeword WEF A(X) as
the one in (11.148). But its IOWEFs and CWEFSs represent different input—output
relationships than the IRWEFs and CWEFs computed previously, because these
functions are properties of the encoder.

Finally, following (11.136)—(11.138), the bit CWEFs are given by

2z*
By(Z) = =72 (11.149a)
372 67
B3(Z) = , 11.149b
W =T a2 ( )
the bit IRWEF is given by
B(W,Z)=) WYBy(Z)
’ (11.150)

2wzt N 3W3z2 N 6w3z* N
1=z 1-22  1-272+4 7% ’
and the bit WEF is given by

B(X) = B(W, Z)lw=z=x
STxTTox T 1oaxEaxs
We can also use (11.139) to calculate B(X) as follows:

1. _03A
By = w2A 2
k ow W=Z=X

A[(W2Z4 + W3Z2 — w422/ — Z2 = 2W + W?)]

- W (11.152)
aw
W=Z=X
_ N(W,2)
DWW, Z) | yezex'
where
N(W,Z) =2W*(z* — 28 + W3 (322 — 52% —2w*(z? —27* +37%)
+7W3 2% 2w 72 (11.153a)
and

DW,Z)=1-2Z>+2Z*—4W(1 — Z%) + 2W?(3 - 7% — 4w’ + w*. (11.153b)
Now, carrying out the division we obtain (see Problem 11.24)
B(X) =3X> +6X0 +14x7 +32x% + .. (11.154)

that is, the weight-5 codeword has information weight 3, the two weight-6 code-
words have total information weight 6, and so on. (Because & = 1 in this case,
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the coefficients of B(X) represent the total information weight associated with all
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In Example 11.14 we saw thai there wa i cycle in the siate
diagram that allowed the cnceder to generaie an 0 infinite number of codewords with
input weight 2. These zero-input weighi ry les are characteristic of all feedback
encoders, in which a single input 1 drives the encoder away {rom the all-zero Stat@
and then, after the zero-input weight cycle is traversed some nurat
another input 1 returns the encoder to the all-zero state. We will see in C ’\plel 1@
that the codewords produced by these weight-2 input sequences play a critical role
in the performance of turbo codes.

We now introduce an aliernative method of computing the WEFs of con-
volutional encoders. The foregoing method, based con representing the state
diagram of the encoder as a signal flow graph, has the advantage of

visualization of the set of all codewords that diverge from and remerge wit
the all-zero state exactly once. Computationally, though, it becomes difficult to

apply once the overall constraint length v exceeds 3, that is, once the siate
diagram contains more than 8 states. A more efficient method of com pmmo
the transfer function of an encoder is to use 2 state variable representation of
the encoding equations. We illusivate the technique by continuing preceding

example.

GO
<

EXAMPLE 11.14 {Continued)

In the augmented modified state diagram of Figure 11.18, let Z; be a state ‘vaﬁabie

that represents the weights of all paths from the initial state Sg to the state 5;,1 = 1,
2, 3. Then, we can write the following sei of siate equations:

P =WZL 4+ L%, (11.155a)
S =WL>1+ ZLZ3, (11.155@)
=ZLZ| + WL%s, (11.155¢

1

and the overall transfer funciion of the graph is given by
AW, Z LYy=WZLZ,. {11.156)

Equations (11.155) are a set of linear equations in the state variables Zq, %7, and
3. We can rewrite them in matrix form as

WZL 1 —L 0 1
0 =| -wL 1 —ZL b (11.157)
0 | —-ZL 0 1-WL PR
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Using Cramer’s rule to solve (11.157) for the state variable &, we obtain

1 WZL 0

det! —WL 0 -ZL
5 ~ZL 0 1-WL
2 1 L 0
det| -wL 1 -ZL (11.158)

-ZL 0 1-WL
 WZPLR 4+ WPzl - WwizL?
1 Z2L3 — W(L + LY + W2L¥

Now, we apply (11.156) to find the IRWEEF:
AW . Z, L)y=WZLY;

W2Z4 L4 1 W3Z2L3 — whz2 4 (11.159)
T 1= Z23 - WL+ LY + w2L¥’

which is the same result obtained using the signal flow graph approach.

It should be clear from the preceding examples that the transfer function
approach to finding the WEFs of a convolutional encoder quickly becomes imprac-
tical as the overall constraint length v becomes large. As will be seen in the next
section, however, the important distance properties of a code necessary to estimate
its performance at moderate-to-large SNRs can be computed without the aid of the
transfer function. Nevertheless, the transfer function remains an important concep-
tual tool, and it will be used in Chapters 12, 16, and 18 to obtain performance bounds
for convolutional codes used with maximum likelihood decoding.

11.3 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

The performance of a convolutional code depends on the decoding algorithm
employed and the distance properties of the code. In this section several distance
measures for convolutional codes are introduced. Their relation to code performance
will be discussed in later chapters.

The most important distance measure for convolutional codes is the minimum
free distance dfye,.

DermniTIoN 11.7 The minimum free distance of a convolutional code is
defined as
dfree = min{d(v,v") 1w #u'}, (11.160)
u .t
where v and v’ are the codewords corresponding to the information sequences
u and u . respectively.

In (11.160) it is assumed that the codewords v’ and v have finite length and
start and end in the all-zero state Sy: thatis, m termination blocks are appended to the
information sequencesu anduw . Ifw andw have different lengths, zeros arc added
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to the shorter sequence so that the corresponding codewords have equal lengths.
Hence, dfee is the minimum distance beiween any two finite-length codewords in
the code. Because a convolutional code is a linear code,

dﬁ:ee = r@ig{W(V/ + W”) : M/ 7& Uﬁ,/}
.

= min{w(v) : u # 0} (11.161)
i}

= min{w@wG) : u # 0},
u

where v is the codeword corresponding to the information sequence m. Hence,
dpee is the minimum-weight codeword produced by any finite-length nonzero
information sequence. Also, it is the minimum weight of all finite-length paths
in the state diagram that diverge from and remerge with the all-zero state Sp,
and hence it is the lowest power of X in the WEF A(X). For example, dp.. = 6
for the (2,1, 3) code of Example 11.12, and dp.. = 3 for the (3,2,2) code of
Example 11.13.

Another importani distance measure for convoluiional codes is the column
distance function (CDF). Let

0y (1 (n=1) (O (1 -1 0, M (n—1) -
[];_-(vo UO)"'UOH N vﬁ)--min ),~~,v1( uoeey ) (11.162)
denote the /th truncation of the codeword v, and let
[]L]][ = (1181)11(()2) “g\.)al §1)Ll§2) L!ik). A li[(l)Ll}z Z!;l‘ ) (11163)
denote the /th truncation of the information sequence .

DeErFINITION 11.8 The column distance function of order /, 4, is defined as

d,é[,r]n%n,] (1191 oo # o)

(11.164)
= %i]n{w[v][) s ulo # 0},

where v is the codeword corresponding to the information sequence m.

Hence, d; is the minimum-weight codeword over the first (/ + 1) time units
whose initial information block is nonzero. In terms of the generator matrix of the
code,

(vl = [ul[G],, (11.165)

where [G]; is a k(I + 1) x n(! + 1) matrix consisting of the first n(/ + 1) columns of G
(see 11.22) with the following form:

Go Gi - G
Go - Gi_i
[G] = ) X , I <m. (11.166a)



508 Chapter 11 Convolutional Codes

TGy Gy -+ - Gpuo1 Gnm 7
GO e Gm—Z Gm—l Gm
G Gy Gz - Gp
. Go Gl GZ T Gm-—l G
[G][ - Gy Gl e Gy Gm—l  L>m
Go . .
G Gy
Go G
i Go
(11.166b)
Then,
dy = min{w({u);[G]) : [u]o # 0} (11.167)

[u]s

is seen to depend only on the first n(/ + 1) columns of G. This accounts for the name
“column distance function.”

We note here that the form of the generator matrix G used in (11.166) (and in
(11.22)) assumes a feedforward encoder realization, that is, a polynomial generator
matrix with memory order m. For feedback encoders with rational function generator
matrices, the associated generator sequences have infinite duration, and the k x n
submatrices G; extend infinitely to the rightin (11.166). In this case, the CDF can still
be expressed using (11.167). We also note that the free distance djy. is independent
of the encoder realization, that is, it is a code property, whereas the column distance
function ¢; is an encoder property; however, if we restrict our attention to encoders
for which the k x n submatrix Gg has full rank, then the CDF 4; is independent of
the encoder realization. (This results in the sensible property that a codeword is not
delayed with respect to its information sequence.) Thus, we will refer to the CDF 4;
as a code property.

Definition 11.8 implies that d; cannot decrease with increasing /; that is, it is
a monotonically nondecreasing function of /. The most efficient way of comput-
ing the CDF of a code is to modify one of the sequential decoding algorithms
to be introduced in Chapter 13 (see Section 13.4). The complete CDF of the
(2, 1, 16) nonsystematic code with G(D) = [1 + D + D?+ D>+ D%+ D8 4+ D3 4
D 1+ D+ p*+ D7+ D%+ D 4 p!! 4 p'2 4 pl* 4 pV5 4 DI is shown in
Figure 11.19.

Two cases are of specific interest: I = m and [ — oc. For | = m, d,, 1s called
the minimum distance of a convolutional code. Hence, d,, is also denoted by dyip.
From (11.167) we see that dj,;, represents the minimum-weight codeword over the
first (m + 1) time units whose initial information block is nonzero. For the code of
Figure 11.19, dpin = dig = 9. Much of the early work in convolutional codes treated
dmin as the distance parameter of most interest, because the principal decoding
techniques at that time had a decoding memory of (m + 1) time units. (See Section
13.5 on majority-logic decoding of convolutional codes.) More recently, as maximum
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FIGURE 11.19: The columan distance function of a (2, 1, 16) code.

iikelihood (ML) decoding, maximum a posteriori (MAP) decoding, and sequential
decoding have become more prominent, dge. and the CDF have replaced dyn as
the distance parameters of primary interest, since the decoding memory of these
techniques is unlimited. A thorough discussion of the relationship between distance
measures and decoding algorithms is included in Chapters 1Z and 13.

For i — co, limy_, o d; is the minimum-weight codeword of any length whose
first information block is nonzero. Comparing the definitions of lim;_, o d; and df..
we can show that (see Problem 11.31) for noncatastrophic encoders

B dy = dje. (11.168)
|—00

Hence, d; eventually reaches dj,. and then it stays constant. This usually happens
when [ reaches about 3v. For the code of Figure 11.19 with v =16, d; =18 for [ > 53,
and hence, dj. = 18. Because dj, is defined for finite-length codewords, however,
(11.168) is not necessarily true in the case of catastrophic encoders.

EXAMPLE 11.10 (Continued)

Consider again the catastrophic encoder whose state diagram s shown in Figure 11.14.
For this encoder, dg = 2, and di = d) = -+ = limy_ o d; = 3, since the truncated
information sequence [u]; = (1,1, 1, -- - , 1) always produces the truncated codeword
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[v]f = (11,01,00,00,---,00), even in the limit as [ — co. Note, however, that
all finite-length paths in the state diagram that diverge from and remerge with the
all-zero state Sy have a weight of at least 4, and hence, dj.. = 4. In this case we have
a situation in which lim; , oo dj = 3 # dfe. = 4; that is, (11.168) is not satisfied.

It is characteristic of catastrophic encoders that an infinite-weight information
sequence produces a finite-weight codeword. In some cases, as in the preceding
example, this codeword can have a weight less than the free distance of the
code, owing to the zero-output weight cycle in the state diagram. In other words,
an information sequence that traverses this zerc-output weight cycle forever will
itself pick up infinite weight without adding to the weight of the codeword. In a
noncatastrophic encoder, which contains no zero-output weight cycle other than the
zero-weight cycle around the state Sp, all infinite-weight information sequences must
generate infinite-weight codewords, and the minimum weight codeword always has
finite length. Unfortunately, the information sequence that produces the minimum-
weight codeword may be quite long in some cases, and hence the calculation of d,
can be a difficult task.

The best achievable dj.. for a convolutional code with a given rate R and
overall constraint length v has not been determined in general; however, upper and
lower bounds on df.. have been obtained using a random coding approach. These
bounds are thoroughly discussed in References [16], [17], and [18]. A comparison
of the bounds for nonsystematic encoders with the bounds for systematic encoders
implies that more free distance is available with nonsystematic feedforward encoders
of a given rate and constraint length than with systematic feedforward encoders.
This observation is verified by the code construction results presented in the next
two chapters and has important consequences when a code with large dp., must be
selected for use with ML, MAP, or sequential decoding. Thus, if a systematic encoder
realization is desired, it is usually better to select a nonsystematic feedforward
encoder with large dj.. and then convert it to an equivalent systematic feedback

encoder.
PROBLEMS
18.1 Consider the (3, 1, 2) nonsystematic feedforward encoder with
g® = (110),
gl =100,
g? =@111).

a. Draw the encoder block diagram.

b. Find the time-domain generator matrix G.

¢. Find the codeword v corresponding to the informationsequencem = (111 01).
11.2 Consider the (4, 3, 3) nonsystemaiic feedforward encoder shown in Figure 11.3.

a. Find the generator sequences of this encoder.

b. Find the time-domain generator matrix G.

¢. Find the codeword v corresponding to the information sequence mw =

(110,011, 101).



11.3

11.4

11.7

11.8

1.9

11.10

11.11

514

Consider the (3, 1, 2) encoder of Problem 11.1.
a. Find the transform-domain generator matriz G(D).
. Find the set of output sequences V() aﬂd tﬂF codewo

5 d,
to the information sequence w(D) = 1 + L D3 - DY
Consider the (3, 2, 2) nonsystematic tcedxm wa;d encoder shown i

a. Find the composite generator polynoinials g (D) and g (D).

b. Find the codeword v(D) cor reopondmg to the set of i
U(D) =[1+D+D* 14+ D>+ D7

Cousider the (3, 1, 5) sysiematic feedforward encoder with

g = (101101),
g? = (110011).

trix G

NIF.

..},(3\

@, Find the time-domain generator ma

b. Find the parity sequences v'! and
sequenceuw = (1 10 1),

Consider the (3, 2, 3) sysiematic feedforward encoder with

,_‘

2

@Dy =1+ D%+ D,
@D(py=1+D+D%

a. Draw the controller canonical form realization of this encoder. How ma
delay elements are required in this realization?

b, Draw the simpler observer canonical form realization that req
delay elements.

Verity the sequence of elementary row opeiaﬁonc leading from the nonsysie

atic feedforward realizations of (11.34) and (11.70) to the systematic feedba

realizations of (11.66) and (11.71).

Draw the observer canonical form reali iza ation of the generator matrix G (D) in
(11.64) and determine its overall constraint length v
Consider the rate R = 2/3 noasysiem iic fee dfoﬂ\mm encoder w
matrix

D D 1

G(D) = 2 |-

I D~ 1+D+D

a. Draw the controller canonical form encoder realization for G( D). What is the

overall constraint length v?

b. Find the generator matrix G (D) of the equivalent systematic feedback
encoder. Is G (D) realizable? If not, find an equivalent realizable genera-
tor matrix and draw the corresponding minimal encoder realization. Is this
minimal realization in controller canonical form or observer canonical form?
What is the minimal overall constraint length v?

Use elementary row operations to convert the rate R = 2/3 generaior mairiz of

(11.77) to systematic feedback form, and draw the minimal observer ccnomcal

form encoder realization. Find and draw a nonsystemaiic feedback controlle:

canonical form encoder realization with the same number of states.

Redraw the observer canonical form realization of the (3, 2, 2) systematic feed-

back encoder in Figure 11.7(b) using the notation of (11.82) and the relabeling

scheme of Figure 11.11.
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11.12

1113

11.14

11.15

11.16
12,17

1118
1119

11.20

11.21

11.22

11.23

Consider the (3, 1, 2) systematic feedback encoder shown in Figure 11.6(c). Deter-
mine the v = 2 termination bits required to return this encoder to the all-zero
state when the information sequence u = (10111).

Consider the (4, 3, 3) nonsystematic feedforward encoder realization in controller

canonical form shown in Figure 11.3.

@a. Draw the equivalent nonsystematic feedforward encoder realization in
observer canonical form, and determine the number of termination bits
required to return this encoder to the all-zero state. What is the overall
constraint length of this encoder realization?

b. Now, determine the equivalent systematic feedback encoder realization in
observer canonical form, and find the number of termination bits required to
return this encoder to the all-zero state. What is the overall constraint length
of this encoder realization?

Consider the (2,1,2) nonsystematic feedforward encoder with G(D) = {1 +

D’ 1+ D+ D%

a. Find the GCD of its generator polynomials.

b. Find the transfer function matrix G~1( D) of its minimum-delay feedforward
inverse.

Consider the (2,1, 3) nonsystematic feedforward encoder with G(D) = [1 +

D? 14+ D+ D?*+ D3

Find the GCD of its generator polynomials.

Draw the encoder state diagram.

Find a zero-output weight cycle in the state diagram.

Find an infinite-weight information sequence that generates a codeword of

finite weight.

e. Is this encoder catastrophic or noncatastrophic?

Find the general form of transfer function matrix G~ 1(D) for the feedforward

inverse of an (u, k, v) systematic encoder. What is the minimum delay [?

Verify the calculation of the WEF in Example 11.13.

Verify the calculation of the IOWEF in Example 11.12.

Consider the (3, 1, 2) encoder of Problem 11.1.

a. Draw the state diagram of the encoder.

b. Draw the modified state diagram of the encoder.

¢. Find the WEF A(X).

d. Draw the augmented modified state diagram of the encoder.

e. Find the IOWEF A(W, X, L).

Using an appropriate software package, find the WEF A(X) for the (4,3,3)

encoder of Figure 11.3.

Consider the equivalent systematic feedback encoder for Example 11.1 obtained

by dividing each generator polynomial by g¥ (D) = 1+ D? + D3

a. Draw the augmented modified state diagram for this encoder.

b. Find the IRWEF A(W, Z), the two lowest input weight CWEFs, and the WEF
A(X) for this encoder.

¢. Compare the results obtained in (b) with the IOWEF, CWEFs, and WEF com-
puted for the equivalent nonsystematic feedforward encoder in Example 11.1.

Verify the calculation of the IOWEF given in (11.124) for the case of a terminated

convolutional encoder.

Consider the equivalent nonsystematic feedforward encoder for Example 11.14

obtained by multiplying G(D) in (11.140) by g (D) =1 + D + D?.

EOEFP
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2. Draw the augmented modified state diagram for this encoder.
b. Find the IOWEF A(W, X, L), the three lowest input weight CWEFs, and the
WEF A(X) for this encoder.
c. Compare the results obtained in (b) with the IRWEF, CWEFs, and WEF
computed for the equivalent systematic feedback encoder in Example 11.14.
11.24 In Example 11.14, verify all steps leading to the calculation of the bit WEF in
(11.154).
11.25 Consider the (2,1, 2) systematic feedforward encoder with G(D) = [1 1+ D?].
8. Draw the augmenied modified state diagram for this encoder.
. Find the IRWEF A(W, Z, L), the three lowest input weight CWEFs, and the
WEFE A(X) for this encoder.
11.26 Recalculate the IOWEF A(W, X, L) in Example 11.12 using the state variable
approach of Example 11.14.
11.27 Recalculate the WEF A(X) in Example 11.13 using the state variable approach
of Example 11.14.
11,28 Consider the (3, 1, 2) code generated by the encoder of Problem 11.1.
a. Find the free distance dp...
b. Plot the complete CDF.
¢, Find the minimum distance dpiy.
11.29 Repeat Problem 11.28 for the code generated by the encoder of Problem 11.15.
11.30 a. Prove that the free distance dj., is independent of the encoder realization, i.e.,
it is a code property.
. Prove that the CDF d; is independent of the encoder realization; that is, it is a
code property. (Assume that the k x n submatrix Gy has full rank.)
11.31 Prove that for noncatastrophic encoders

Hm di = dyree.
{— 00
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