Reliability-Based Sott-Decision

Decoding Algeorithms for Linear
Block Codes

All the decoding algorithms developed so far are based on hard-decision outputs of
the matched filter in the receiver demodulator; that is, the output of ihe matched
filter for each signaling inierval is quaniized in two levels, denoted as 0 and 1, which
resulis in a hard-decision binary received sequence. Then, the decoder processes
this hard-decision received sequence based on a specific decoding method. This type
of decoding is referred to as hard-decision decoding. Hard-decision decodings using
algebraic structures of the codes ave called algebraic decodings. The metric used in
hard-decision decodings is the Hamming distance. The objective is to decode the
hard-decision received sequence to the closest codeword in the Hamnung distance.
A hard decision of a received signal resulis in a loss of information, which degrades
performance.

If the outputs of the matched filter are unquaniized or quantized in more
than two levels, we say that the demodulator makes soff decisions. A sequence
of soft-decision ocutpuis of the matched filier is referred to as a soft-decision
received sequence. Decoding by processing this soft-decision received sequence is
called sofi-decision decoding. Because the decoder uses the additional information
contained in the unquantized (or multilevel quantized) received samples to recover
the transmitted codeword, seft-decision decoding provides better error performance
than hard-decision decoding. In general, soft-decision maximum likelihood decoding
(MLD) of a code has about 3 dB of coding gain over algebraic decoding of the
code; howeves, soft-decision decoding is much harder to implement than algebraic
decoding and requires more computational complexity. This is the price to be paid
for better error performance.

Many soft-decision decoding algorithms have been devised. These decod-
ing algorithms can be classified into two major categories: reliability-based (or
probabilistic) decoding algorithms and code structure-based decoding algorithms.
Important reliability-based decoding algorithims are presented in this chapter. The
other category of decoding algorithms will be covered in later chapters.

10.1 SOFT-DECISION DECODING

For soft-decision decoding, metrics other than the Hamming distance must be used.
The most commonly used metrics are the likelihood function, Euclidean distance.

395
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correlation, and correlation discrepancy. In this section we develop these metrics
and discuss the error performance of the soft-decision MLD.

Let C be a binary (n, k) linear block code with minimum Hamming distance
dmin(C) that is used for error control. Suppose BPSK signaling is used for transmis-
sion over an AWGN channel with two-sided PSD Ny/2. Assume that each signal
has unit energy. Let v = (vg, vy, - -+ ., v,—1) be a codeword in C. For transmission,
this codeword is mapped into a sequence of BPSK signals that, in vector form,
represented by the bipolar sequence ¢ = (cg, ¢1, -+ , ¢y_1), where for 0 </ < n,

-1 for V] = 0.

+1 forvy =1 (10.1)

Cl = 21)1 —1= {
Let ¢ = (cio.¢i1,-.¢in—1) and ¢ = (cjo.cj1,- - ,Cjn—1) be two signal
sequences corresponding to codewords v; = (vjp,vi1.---,Vip—1) and v; =
(vjo. vj1, -+, vjn—1), respectively. The squared Euclidean distance between ¢; and

¢; is defined as
n—1

P Z(Cu — e (10.2)
For convenience, we denote this squared Euclidean distance by dé (vi, v;). It follows
from (10.1) and (10.2) that

n—1
dp(vi,v) =4 (v —vjn). (10.3)
=0

Letdg (v, v;) denote the Hamming distance between v; and v;. It follows from (10.3)
that we have the following relationship between the squared Euclidean distance and
the Hamming distance between v; and v;:

dE(vi, v)) = 4dy (v;, v)). (10.4)

The minimum squared Euclidean distance of code C is then defined as follows:

E mm(C) = mln{dE(‘I vi):vi,v; €C and v; # Vi } (10.5)
From (10.4) and (10.5), we readily see that
% i (C) = 4ddyin(C). (10.6)

Consider a soft-decision MLD with the log-likelihood function as the decoding
metric. Let r = (rg,r1,---,ry,_1) be the soft-decision received sequence. The
log-likelihood function of r given a codeword v is (defined in (1.10))

n—1
log P(rlv) = > _log P(r|v;). (10.7)
=0

With the log-likelihood function as the decoding metric, MLD is carried out as
follows: the received sequence r is decoded into a codeword v = (vg, v1, -+, vy—1)
for which the log-likelihood function log P (r|v) given in (10.7) is maximized.
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For an AWGN channel with two-sided PSD Ny/2, the conditional probability
P(r|v) is given by

n—1
1 2
P(SIY) = s P~ 2 = Qi = 1)*/ N
10.8
1 n—1 ( )
-_— - SN N2
© (wNg) /2 exp f)::o/(il ¢i)*/No

The sum ) 1 Ol(r, — ¢;)? is simply the squared Euclidean distance between the
received sequence r and the code signal sequence (cp, ¢1, - - . ¢,—1). We denote this
distance with d% (r, ©). From (10.8) we see that maximizing P(r|v) (or log P (r|v))
is equivalent to minimizing the squared Euclidean distance dé(n“, ¢). Consequently,
soft-decision MLD can be carried out with the squared Euclidean distance as the
decoding metric as follows: the received sequence r is decoded into a codeword v
for which the squared Euclidean distance a’?E (r, ©) is minimized.
Consider the squared Euclidean distance

n—1

dp(rey = (i — ) (10.9)

Expanding the right-hand side of (10.9), we have

n—1 n—1
dip.oy=) rt+n-23 r-c. (10.10)
i=0 i =0
In computing dZ (r. ) for all codewords in MLD, we see that 37— 112 is a common

term, and n is a constant. From (10.10) we readily see that mm]nmlzmcy d (r,e) is
equivalent to maximizing

n—1

m(, v) = m(r, ¢) = Zr, Ci. (10.11)

The preceding sum is called the correlation between the received sequence r and
the code sequence ¢. Therefore soft-decision MLD can be carried out in terms of
the correlation metric as follows: r is decoded into a codeword v for which m(x, ¢) is
maximized.

Finally, we can rewrite (10.11) as

n—1

m(r, ¢) = Zm—z > il (10.12)

i <0

MEV) =Am O = Y . (10.13)

[t <0
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Then,
n—1
m(, €)= ) |ri| — 2A(x, ©). (10.14)
i=0

Therefore, maximizing m(r, €) is equivalent to minimizing A(r, ). Because Y | (} |7

is the largest correlation that can be attained for a given r, we call A(r, ¢) the
correlation discrepancy between r and ¢. Soft-decision MLD can be carried out in
terms of the discrepancy metric as follows: r is decoded into a codeword v for which
A{x, ¢) 1s minimized.

Let R and {Ag, A1, -+, A,} be the rate and weight distribution of code C,
respectively. Then, with soft-decision MLD, the probability of decoding a received
sequence incorrectly, called block (or word) error probability, is upper bounded as
follows [1, p. 440]:

Py <> A0 (JziREb/No) , (10.15)
i=1

where Ej, is the received energy per information bit, and

0(a) = " e gy (10.16)

1
7=
is called the Q-function. This upper bound is known as the union bound. If the
weight distribution of C is known, we can evaluate this bound.

Because the minimum Hamming distance of C is dyip, A1 = Ay = -+ =
Ag,.—1 = 0. Since Q(w) decreases exponentially with «, O(\/2dyin REj/Np) is the
dominant term in the summation of (10.15). Therefore, for large SNR, E; /Ny, the
first term in the summation of (10.15),

Adyis @ (V2AminREy/No) (10.17)

gives a good approximation of the upper bound. 4,4, is commonly called the error
coefficient. For large Ej /Ny, the union bound given by (10.15) is quite tight.

For 1 <i < n, let B; denote the average number of nonzero information
bits associated with a codeword of weight i. Then, the bit-error probability (the

probability that an information bit is decoded incorrectly) is upper bounded by
1 n
Py 2 ) ABiQ <w/2iREb /N0> . (10.18)
i=1

Soft-decision MLD achieves optimum error performance; however, it is very hard to
implement and requires large computational complexity, especially for long codes.
A brute-force method requires 2% computations of metrics for 2¢ codewords, and
2K — 1 comparisons to find the most likely codeword. For large k, the number of
computations and comparisons is simply too large for practical implementation.
Several soft-decision MLD algorithms have been devised. They are very efficient
for codes of short to moderate lengths. For long codes, they still require very large
computational and storage complexities. To overcome this complexity problem,
various nonoptimum or suboptimum soft-decision decoding algorithms have been
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devised, and thev provide 3 good trade-oif between error performance and decoding
complexity.

Soft-decision decoding algorithims for codes, block or convolutional, can
be classified into iwo categories: code structure-based decoding algorithms and
reliability-based {or probabilistic) decoding algorithms. The most well known
siruciure-based decoding algorvithin is the Viierbi algorithin (VA 3, 4], which
is devised based on the irellis represeniation of a codc to achieve MILD with a
significant reduction in Covn‘pucmonal complexity. It was first devised for decod-
ing convolutional codes; however since block codes also have trellis structure (as
shown in Chapter 9}, the Viterbi decoding algorithm applies to these codes as well.
Resides the VA, there are other trellis-based decoding algorithms for both block
and convolutional codes.

Consider a MLD based on minimizing the squared Euclidean distance between
the received sequence ¢ and a codeword in C. 1t follows from (10.6) that if the
received sequernce r falls inside a hypersphere of radivs ./dyy, centered at the
transmitted code sequence ¢ in the n-dimensional Euclidean space, then decoding
is correct. A sofi-decision decoding algorithm that guarantees correct decoding for
all received sequences located inside the 28 hyperspheres of radius -/dy,;, centered
at each of the 2¥ code sequences is called a bounded disiance decoding algoriihin.
Bounded distance decoding has long been regarded as a criterion for designing
good suboptimum decoding algorithms because its asympiotic error performance
is the same as that of MLD, as deduced from (10.17); however, recent results tend
to indicate that although bounded distance decoding algorithms perform well for
codes with a relatively small Hamming distance dpy (5ay diin < 12), this is not
always the case for more poweum codes, mostly due to the significant increase of
the corresponding error coefficients.

For large £,/No, Pp is well approximated based on (10.18) by

1
~ A
PZ) ~ A‘[]HHH

k ,”,” / nnnPEb//*]O) (1019}

It encoding is realized in systematic form, we can choose B;j/k = i/n, since
information bits are determined independently based on the systemaiic form of the
encoder. In this case, (10.19) becomes

i T e
Py =2 - IZ” din & ( }f‘]mmREZJ/NO\P (10-20)

however, this is no longer the case for other types of encodings, such as encoding
based on the trellis-oriented generator matrix Grogy introduced in Chapter 9. In
that case, B;/k > i/n in general [2]. Consequently, it follows from (10.20) that for
large E,/Np, encoding in nonsystematic form becomes suboptimum with respect
to encoding in systematic form for the bit-error probability associated with ML,
This problem can easily be cvercome based on the fact that a maximum likelihood
decoder provides the most likely (ML) codeword out of the 2¥ candidate codewords
of a codebook, independent of the mapping used between information bits and
codewords. As a result, the decoder can be designed based on a particular generator
mafrix G, althongh any generator matrix G defining the same 2F codewords as G
can be used for encoding. In particular, G can be transformed by row additions
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only into the matrix G = GREF. so that Grer contains the k columns of an identity
matrix, but not necessarily in the first & positions. This matrix Grgr is said to
be in reduced echelon form (REF). If Grgr is used for encoding, the information
sequence is easily retrieved from the codeword delivered by the decoder based on
the knowledge of the positions of the k columns of the identity matrix in Grgr. An

example that illustrates this simple operation will be given in Section 10.5.

10.2 RELIABILITY MEASURES AND GENERAL RELIABILITY-BASED
DECODING SCHEMES

Letr = (ro, 71, -+ . ,—1) be a soft-decision received sequence at the output of the
matched filter of the receiver. For 0 <i <n — 1, suppose each received symbol r; is
decoded independently based on the following hard-decision rule:

z = { 0 for Fi < 0, (1021)

1 forr =0.

Then, the magnitude |r;| of r; can be used as a reliability measure of the hard-decision
decoded bit z;, since the magnitude of the log-likelihood ratio

[log(P(rilv; = 1)/ P(rijv; = 0))]

associated with the foregoing hard decision is proportional to |r;|, where v; is the ith
transmitted bit. The larger the |r;|, the more reliable the hard decision z; is.

Based on the given reliability measure, we can reorder the symbols of the
received sequence r in decreasing order of reliability. As a result of this ordering, the
received symbols and their corresponding hard decisions at the left-side positions
of the reordered received sequence are more reliable than the received symbols
and their corresponding hard decisions at the right-side positions of the reordered
received sequence. With hard-decision, an error is more likely to be committed at a
less reliable position than at a more reliable position. Figure 10.1 shows the number
of errors occurring at each position after reordering 500,000 received sequences
with 50 symbols for cach sequence, in decreasing order of reliability for various
values of SNR. From this figure we see that few hard-decision errors are recorded in
the more reliable positions of the ordered sequences, whereas the number of hard-
decision errors increases exponentially in the less reliable positions. Based on this
error distribution phenomenon, soft-decision decoding algorithms using reliability
measures of the received symbols have been devised. These decoding algorithms
are thus known as reliability-based decoding algorithms.

Based on the reliability measures of the received symbols, the symbol positions
of areceived sequence can be divided into two groups according to a certain criterion:
one group consists of the least reliable positions (LRPs), and the other group consists
of the most reliable positions (MRPs). Then, decoding can be devised based on
either processing of the LRPs or processing of the MRPs.

Letz = (20,21, . Zy_1) be the hard-decision received sequence obtained
from r. Then, errors are more likely to occur in the LRPs, as shown in Figure 10.1,
and the MRPs are likely to contain very few or no errors. The errors in the LRPs
can be reduced or removed by modifying the hard-decision received vector in these
positions. Let E be a set of error patterns with errors confined only in the LRPs.
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FIGURE 10.1: Number of errors at each ordered position for 500,000 BPSK sequences
of length 50 with SNR values of 0 dB, 2 dB. 4 dB, and 6 dB.

For each error pattern e in £, we modify z by adding e to z. Consequently, there are
error patterns in £ that reduce the number of errors at the LRPs of z, and possibly,
there is one error patiern in E that removes all the errors at the LRPs of z. As a
result, the modified vector z + e very likely contains either no errors or a number
of errors within the error-correcting capability ¢ of the code. In that case, decoding
z + e with an algebraic decoder will give the ML codeword. Based on this concept,
we can devise a general decoding scheme as follows:

1. Construct the error patiern set £ based on the LRPs of r.
2. For each error pattern e in F, form a modified received vector z + e.

3. Decode z + e into a codeword in C with an algebraic decoder (decoding may
fail if the number of errors in z+e is greater then the error-correcting capability
t of the code).

4. StepsZand 3 result in a list of candidate codewords. Compute the soft-decision
decoding metrics of these candidates and find the one with the largest metric
if correlation is used (or the smallest metric if squared Euclidean distance or
correlation discrepancy is used), which is the decoded codeword.

The complexity of this general decoding scheme depends on the size of £ and
the complexity of the algebraic decoder for generating candidate codewords. The
error performance of this scheme depends on how many LRPs are chosen to
construct the error pattern set. Various decoding algorithms based on this general
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scheme have been devised. These algorithms are referred to as LRP-reprocessing
algorithms.

The second type of reliability-based decoding scheme processes the MRPs of
r. This decoding approach is based on the fact that a set of k independent positions
in z uniquely determines a codeword in an (n, k) linear code. Based on the reliability
measures of the received symbols, we determine a set of k most reliable independent
positions (MRIPs) in r. Then, the hard-decision received vector z contains only very
few errors in these k MRIPs. Let z;, denote the k-tuple that consists of the symbols
of z at the k MRIPs. Let E be a set of low-weight error patterns of length k. For each
error pattern e in E, we form z; + e and encode it into a codeword in C. If z; + e
contains no errots, the resultant codeword is the ML codeword. A general decoding
scheme based on this concept follows:

1. Determine the error pattern set E based on the K MRIPs of r.
2. For each error pattern e in E, encode z; + e into a codeword in C.

3. Step 2 generates a list of candidate codewords. Compute the soft-decision
decoding metrics of these candidate codewords. Choose the one with the
largest metric as the decoded codeword if correlation is used.

The error performance and complexity of this general decoding scheme depend on
the choice of the error pattern set E. This general decoding scheme is referred to as
the MRIP-reprocessing decoding algorithm. Various such decoding algorithms have
been devised.

In the rest of this chapter, some important LRP-reprocessing and MRIP-
reprocessing decoding algorithms are presented for binary linear block codes.
In general, for nonbinary codes and multilevel modulation schemes, reliability
measures are not as easily expressed as for BPSK transmission of binary codewords,
and likelihood ratio metrics have to be considered. For a linear code over GF(g),
these metrics depend on ¢, the modulation used, and the channel model and may
also be simplified in conjunction with the algorithm considered. Such considerations
can be found in [5-7] for the AWGN channel with nonbinary error-correcting codes.

10.3 SUFFICIENT CONDITIONS ON THE OPTIMALITY OF A DECODED CODEWORD

Reliability-based decoding algorithms generally require generation of a list of
candidate codewords of a predetermined size to restrict the search space for finding
the ML codeword. These candidate codewords are usually generated serially one
at a time. Each time a candidate codeword is generated, its metric is computed
for comparison and final decoding. If a condition can be derived to test whether
a generated candidate is the ML codeword, then decoding can be terminated
whenever this condition is satisfied. This may result in an carly termination of
the decoding process without generation of the entire list of candidate codewords
and hence reduces computations and delay. Such a condition is referred to as
an optimality condition. We now desire a sufficient condition on optimality of a
candidate codeword based on the reliability measures of the received symbols.
Letv = (vg.v1.--- . v,-1) be a codeword in C, and let ¢ = (cg,c1, -+~ .¢; 1)
be its corresponding bipolar sequence using BPSK signaling, where ¢; = 2v; — 1),
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for 0 <i < n. We define the following index sets for v:

Do) 2 (i v =z with 0<i <n), (10.22)
Dyv) 2 (i v £ 7 with 0<i <n)
B s = ’ (10.23)
={0,1,---,n—1\Dg(™).
Let
n(v) = |D1(W). (10.24)

Ti follows from (10.1) and (10.21) that r; - ¢; < 0 if and only if z; # v;. Consequently,
we can express the correlation discrepancy A(r, v) given by (10.13) as follows:

AT, V) = Z 7. (10.25)
ieDy(v)

MLD based on correlation discrepancy is to find the codeword in C that has the
smallest correlation discrepancy for a given received sequence r. If there exists a
codeword v* for which

Ar, v < afr, v*) £ min {r(r, )}, (10.26)
veC, v£V*

then v* is the ML codeword for r. It 1s not possible to determine «(r, v¥) without
evaluating A(r,v) for all v in C; however, if it is possible to determine a tight
lower bound A* on «fr, v*), then A(z, v) < A* represents a sufficient condition for
the optimality of the candidate codeword v* in the list of candidate codewords
generated by a reliability-based decoding algorithm. We derive such a sufficient
condition next.

If follows from (10.22) to (10.24) that the index set Do(v) consists of n — n(v)
indices. We order the indices in Dy(v) based on the reliability measures of the
received symbols as follows:

Doy ={l1, 10, -, ln—n(w)} (10.27)
such thatfor1 <i < j <n — n(v),
LARSIAL (10.28)
Let D(()j )(v) denote the set of first j indices in the ordered set Dy(v); that is,

P vy =1, b, -+, 1), (10.29)

For j < 0. DY (v) £ ¢.and for j > n — n(v), DY (v) 2 Do(v).

For 1 < j < m, let w; be the jth nonzero weight in the weight profile
W =1{0, w1, w2, --- . wy} of code C, where w1 = dpin(C), and w1 < w2 < -+ < wy,.
For a codeword v in C, we define

w; —n(v). (10.30)
>l (10.31)

R
ieDy ' (v)

il

qj

[fe>

G(v,wj)
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and

R, w) 2 (v € Cidp(v,v) < wj) (10.32)
where dy (v, v) denotes the Hamming distance between v and v. The set R(v, w i)
is the set of codewords in C that are at Hamming distances w;_1 or less from v. For
J =1, R(v, w1) = {v}, and for j = 2, R(v, w) contains v and all the codewords in C
that are at a distance d,;,;, (C) = wy from v. R(v, wy) is called the minimum distance

region centered at v. The following theorem gives a sufficient condition for R(v, w;)
to contain the ML codeword vy, for a given received sequence r.

TueorEM 10.1 For a codeword v € C and a nonzero weight w; € W, if
the correlation discrepancy A(r, v) of v with respect to a received sequence r
satisfies the condition

A, v) < G(v, wy), (10.33)

then the ML codeword vy, for r is contained in the region R(v, w;).
Proof. Letv be a codeword outside the region R(v, w;); that is,
v € C\R(, w)).
Then,
dy(v,v) > w;. (10.34)

To prove the theorem, we need only to prove that A(r, v/) > A(r, v). This would
imply that no codeword outside the region R(v, w;) is more likely than v. In
that case, vy, must be in R(v, w;).

Consider the sets Do(v) N D1 (v ) and Di(vyn Do(v/). We define

nor = |Do(v) N D1(v)], (10.35)

e

nip = |D1(v) N Dy(v)]. (10.36)

Then, it follows from (10.22), (10.23), and (10.34) to (10.36) that
du(v.v) = not +nyo > wj. (10.37)
From (10.35) and (10.37), we readily find that
ID1(¥)| > [Do(v) N D1(v)| = w; — nyg. (10.38)

Because njg = |D;(v) N Do(v)| < |D1(v)], it follows from (10.38) and (10.24)
that

|D1(¥)| > |Do(v) N Dy (V)]

Z wj =Ny

(10.39)

v

wj — [D1(v)]

= w; — n(v).
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MNote that Do(v) N Dy(v) € Dyiv). From (10.25), (10.33), (10.39), and the
definition of Dé" ! (v). we have

ieDg(VIND ()
(10.40)

%

ya |’1|
. trp =y
ieh, (%)

= G{v, w./)

> A(E, V).

{r. v), and no cude word v uumd the region R{v, w; ) is
nee, vy o must be i Qoch

Therefore, A(r. v ) > A
more likely than v. He

Given a codeword vin C, the condition (10.33) given in Theorem 10.1 simply
defines a region in wh 1ch the ML codeword vy can be found. It says that vy is
among those codewords in C that are af a Hammiing distance of w;_; or less from
the codeword v. Two spccxa} cases are particularly important. For j = 1. R(v.wp)
contains only v iisell. Therefore. the (:ondiﬁon }\(r." V) < (v, wy) guaraniees that v
is the ML codeword vy . For j = 2. I s v and its nearest neighbors
{the codewords that are at minimurn _;ammmg dlsmme from v). The following
corollary summarizes these special results.

Cororiary 16,10 Let v be a codeword in 2 binary linear (n, k) code C. Let
v be a received sequence.

1. IfA(e, v) < G(v, wy), then v is the ML codeword vy forr.

Zo I A(r.v) > G(v.wy) but A(r. v) < G(v, un). then the ML codeword vy
for r is at a Hamming distance not greater than the minimum Hamiming
distance d,;;,(C) = w from v. In this case, vy, is either v or one of the
nearest neighbors of v.

The first part of Corollary 10.1.1 vrovides a sufficient condition for optimality
of a codeword v and was first presented in {7 ] This condition can be used as a
stopping condition in any reliability-based decoding algorithm. The geometrical
interpretaiion of this condition in ihe n—dimensmna Euclidean space is depicted in
Figure 10.2. In Figure 10.2, s(x) represent the bipolar sequence associated with the
binary n-tuple x. which differs from v in all positions in D () and in the w; — n(v)
positions in D(w - (v). This figure follows from {10.4), since no point contained in
the n- dlmensmnal hypersphere of squared Euclidean radius 4d,,,;,(C) and centered
at ¢ is a valid code sequence, where ¢ is the code seguence representing v. The
second part of the corollary allows us to search for the ML codeword vy, in the
minimuwm distance region centered at a candidate codeword. Both conditions when
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(a) (®)

FIGURE 10.2: Sufficient condition for optimality of ¢; (a) condition not satisfied:
dp (v, ¢) > dg(r, s(x)); (b) condition satisfied: dg (¥, ¢) < dr(x, s(x)).

used properly result in a significant reduction in average decoding computational

complexity. This concept can straightforwardly be extended to the nonbinary case.
A sufficient condition for determining the optimality of a codeword based on

two codewords can also be derived. Let v; and v, be two codewords in C. We define

51 2 wi — n(vy). (10.41)
5 2 wi—n(vy), (10.42)
Doo = Do(v1) N Dp(v2), (10.43)
Dot 2 Do(v)) N Dy(vy). (10.44)

Without loss of generality, we assume that §; > §. We order the indices in the
preceding index sets according to the reliability values of the received symbols as
defined by (10.27) and (10.28). We define

_ 6
I(vi, %) = (Do U D) (10.45)

where X @ denotes the first ¢ indices of an ordered index set X as defined in (10.29).
We define
G(vi, wi: va. w)) = Z [ril. (10.46)
i€l (v;.v2)

Let v be either v| or v, whichever has the smaller correlation discrepancy. If
Alr,v) < G(vi, wy; vp, wy), (10.47)

then v is the ML codeword v,y for r. The derivation of (10.47) is left as a problem
(see Problem 10.1).

The sufficient condition on optimality based on two codewords given by (10.47)
is less stringent than the sufficient condition given in Corollary 10.1.1 for j =1
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s (x')

FIGURE 10.3: Sufficient condition for the optimality of ¢ satisfied based on both ¢ and
¢ but not satisfied based on ¢ only; dg(r, ¢) < dg(r, s(x)), but de(z, ©) > dg(r, s(x)).

based on a single codeword, which may result in a faster termination of the decoding
process in a reliability-based decoding algorithm. The advantage of considering
two codewords rather than one to derive a sufficient condition of optimality is
illustrated in Figure 10.3. For any codeword v with corresponding signal sequence ¢,
no point contained in the n-dimensional hypersphere of squared Euclidean radius
4d,in (C) and centered at ¢ is a valid candidate codeword. Therefore, if for two signal
sequences ¢ and ¢ representing two codewords v and v processed by the algorithm,
the corresponding hyperspheres intersect, then it is possible to eliminate binary
n-tuples x based on the common knowledge of these two hyperspheres. Such a case
is depicted in Figure 10.3, where the knowledge of the hypersphere associated with
¢ allows us to determine the optimality of the codeword e.

10.4 GENERALIZED MINIMUM DISTANCE AND CHASE DECODING ALGORITHMS

10.4.1

In this section and the following ones, we present various decoding algorithms based
on processing the LRPs of a received sequence. The first such algorithm is known as
the generalized minimum distance (GMD) decoding algorithm devised by Forney [5]
in 1966. This decoding approach was later generalized by Chase and others, mostly
for binary linear block codes [9, 10].

The GMD Decoding Algorithm

The GMD decoding algorithm is a very simple and elegant method of using reliability
information of the received symbols to improve algebraic decoding for both binary
and nonbinary codes. For an (n, k) linear block code with minimum Hamming
distance dy;,, this decoding algorithm generates a list of at most [(dyu, + 1)/2]
candidate codewords based on an error-and-erasure algebraic decoding method
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and then selects the most likely one from the generated codewords. As stated in
Section 7.7, an error-and-erasure decoding method can correct all combinations of
v errors and e erasures provided that

2v+e < dpin — 1. (10'48)

The GMD decoding algorithm simply considers all possible cases of erasures
e < dpmin — 1 1n the dy, — 1 LRPs, which are the most likely positions to be in error.
The decoding is carried out as follows:

1. Form the hard-decision received sequence z from r and assign a reliability
value to each symbol of z.

2. Generate a list of {(dmin + 1)/2] sequences by modifying the hard-decision
received sequence z. If dyy, is even, modify z by erasing the least reliable
symbol, the three least reliable symbols, - - -, the dyy;; — 1 least reliable symbols.
If dpyiy is 0dd, modify z by erasing no symbol, the two least reliable symbols,
-+« the dyyn — 1 least reliable symbols.

3. Decode each modified z into a codeword v using an error-and-erasure algebraic
decoding algorithm.

4. Compute the soft-decision decoding metric for each generated candidate
codeword. Select the candidate codeword with the best metric as the decoded
solution.

Steps 2 and 3 can be executed simultaneously. In most cases, fewer than |[(dmi, +
1)/2] candidate codewords are generated by this procedure, since some algebraic
decodings at step 3 may fail and result in no candidate codewords. Also, a sufficient
condition on optimality can be used for testing each candidate codeword when it
is generated. Decoding is terminated whenever a generated candidate codeword
satisfies the optimality condition. For decoding RS codes, the Euclidean error-and-
erasure decoding algorithm presented in Section 7.7 can be used.

Chase Decoding Algorithms

In generalizing the GMD decoding approach, Chase devised three algorithms [9],
namely, algorithm-1, algorithm-2, and algorithm-3. For decoding binary linear block
codes, Chase algorithm-3 is very similar to the GMD decoding, except that the
erasure operation is replaced by the complementation operation at the LRPs of
the hard-decision received sequence z (i.e., changing a 1 into a 0, or a 0 into a
1). An error-correction-only algebraic decoder is used to generate a list of at most
{dmin/2 + 1] candidate codewords. Chase algorithm-3 performs the following steps
in decoding:

1. Form the hard-decision received sequence z from r and assign a reliability
value to each symbol of z.

2. Generate a list of at most [dyn/2 + 1] sequences by modifying the hard-
decision received sequence z. If d,,, is even, modify z by complementing no
position, the least reliable bit, the three least reliable bits, - - - |, the dj,;,;, — 1 least
reliable bits. If d,, is odd, modify z by complementing no symbol. the two
least reliable bits, the four least reliable bits, - - -, the d,;;;;, — 1 least reliable bits.
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3. Decode each modified z into a codeword v using an error-correction-only
algebraic decoder.

4. Compute the soft-decision decoding metric for each generated candidate
codeword. Select the candidate codeword with the best metric as the decoded
solution.

From step 2 we see that for even dp, error patterns of odd weights confined to the
dmin — 1 LRPs are added to z {or decoding, and for odd dy,;,, error patterns of even
weights confined to the dy,;, — 1 LRPs are added to z for decoding. Because algebraic
decoding of a modified z may fail, at most |dy;,/2 + 1| candidate codewords can be
generated. If a condiiion on optimality is used for testing each candidate codeword
when it is generated, it may shorten the decoding process. For binary codes, Chase
algorithm-3 achieves about the same error performance as the GMD decoding
algorithm and requires about the same computational complexity.

Chase algorithm-2 is an improvement of algorithm-3; it generates a larger list
of candidate codewords for decoding. In this algorithm, a set E of error patterns
with all possible errors confined to the |dnin/2] LRPs of z is used to modify z. This
algorithm performs the following decoding steps:

1. Form the hard-decision received sequence z from r and assign a reliability
value to each symbol of z.

2. Generate the error patterns in E one at a time, possibly in likelihood order.
For each error pattern e, form the modified vector z + e.

3. Decode each z + e into a codeword v using an error-correction-only algebraic
decoder.

4. Compute the soft-decision decoding metric for each generated candidate
codeword. Select the candidate codeword with the best metric as the decoded
solution.

The set E is called the test error pattern set, and it consists of the 214min/2] test error
patterns obtained by considering all possible combinations of 0’s and 1’s in the
[dimin/2] LRPs of z. Therefore, the candidate codeword list for Chase algorithm-2
grows exponentially with d,,;, and hence is much larger than the candidate codeword
list for algorithm-3 when d,;,;;, becomes large. The result is a greater computational
complexity; however, algorithm-2 achieves a much better error performance than
algorithm-3. A condition on optimality can be incorporated in Chase algorithm-2 to
reduce the number of algebraic decodings.

Chase algorithm-1 generates a list of at most (L d,;,Z, P J) candidate codewords by
complementing all possible combinations of exactly |dy,;,/2] positions in the hard-
decision received sequence z. Owing to its very large computational complexity
compared with other soft-decision decoding methods, Chase algorithm-1 has never
received much attention. Among the three Chase algorithms, algorithm-2 gives the
best trade-off between error performance and decoding complexity.

Generalized Chase and GMD Decoding Algorithms

Chase algorithms 2 and 3 can be generalized into a family of decoding algorithms that
contains Chase algorithms 2 and 3 as the two extremes. Fora = 1,2, -+ -, [dnin/2],
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algorithm A(a) of this family generates at most 29N ([(dpin+1)/2] —a+1) candidate
codewords. For a chosen a, we form a set E(a) of error patterns by modifying the
hard-decision received sequence z. For even dy;,, E(a) consists of the folowing
error patterns:

1. The error patterns with errors confined to the a — 1 LRPs. There are 247! such
error patterns.

2. For each of the preceding error patterns, the i next LRPs, with i =
0,1,3,--,dmnin — 2a + 1, are complemented.

For odd dp, E(a) consists of the following error patterns:

1. The error patterns with errors confined to the a — 1 LRPs.

2. For each of the preceding error patterns, the i next LRPs, with i =
0,2,4,--, dyin — 2a + 1, are complemented.

Then, algorithm A(a) executes the following steps in decoding:

1. Form the hard-decision received sequence z from r and assign a reliability
value to each symbol of z.

2. Generate the error patterns in E (a) one at a time, possibly in likelihood order.
For each error pattern e, form the modified vector z + e.

3. Decode each z + e into a codeword v using an error-correction-only algebraic
decoder.

4. Compute the soft-decision decoding metric for each generated candidate
codeword. Select the candidate codeword with the best metric as the decoded
solution.

We readily see that A(1) and A([dmnin/2]) are simply Chase algorithm-3 and Chase
algorithm-2, respectively. It has been shown that for BPSK signaling, algorithm A(a)
witha = 1,2, -+, [dmin/2] achieves bounded distance decoding [10].

Another family of [dy;,/2] decoding algorithms, denoted by {A.(a) : a =
1,---, [dmin/2]}, can be obtained by modifying the foregoing error pattern set
E(a). Let E.(a) denote the test error pattern set for algorithm A.(a). The set
E.(a) is very similar to E{a) after the complementation operation is replaced
with the erasure operation. For even dmin, E.(a) consists of the following error
patterns:

1. The error patterns with errors confined to the a — 1 LRPs.

2. For each of the preceding error patterns, the i next LRPs, with i =
1,3, dmin —2a + 1, are erased.

For odd dyin, E.(a) consists of the following error patterns:

1. The error patterns with errors confined to the @ — 1 LRPs.

2. For each of the preceding error patterns, the i next LRPs, with i =
0,2.4, -, dmin —2a + 1, are erased.
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Decoding with algorithm A.(a) carries out the same sieps as decoding with algo-
rithm A(«), except that an error-and-crasure algebraic decoder is used at step 3
o generate cm@ld 1, cod’iewards Fora =1, [dnin/2], the algorithm A.(a)
generates al most 1(((;, 1,”/71 — a + 1) candidate codewords. For a = 1, A.(1)
is simply the basgc GMD ore, the family of algorithms
{A{a)}is a Generali?auon ' ) 2 I algorithims A ([dmin/2]) and
A{fdmin/2]) can be SHOWU o be ¢ . since for even weight codes, a gwen
position among the |dyp, /2] LEPs caxn ply be erased in Chase algorithm-2 (se
Problem 10.4).

Fora = 1.-<+ . [dyuin/2], both families of decoding algorithms, {A(a)} and
{A.(a)}, achieve L.OUMﬁdC& distance decodin g ilGj The error performance and com-
putational complexity of these two families of decoding aigorithms depend on the
choice of the parameter a: the m gs“ ihe paifmczer a, the better the error perfor-
mance, and the larger the decoding computational complexity. Therefore, these two
families of bounded distance d 0 ling aioomhms provide a wide range of irade-offs
between the error performance and the mem(nmg ormumw nal cox ﬂplexity, For
BPSK signaling and a given 4, 'Igo 7 icht r

Therefore, the choice of A.{a) or A
implementation considerations.
Figure 10.4 shows the bit-error performanc 03? the (64, 42, 8) RM cod

using decoding algorithms A(a), for o = 1.2, and 4. Algorithms A(1), A(2), and
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FIGURE 10.4: Bit-error performances of the (64, 42, 8) RM code with A(1), A(2), and
A(4) decoding algorithms.
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FIGURE 10.5: Bit-error performances of the (127, 64, 21) BCH code with A(1), A(6),
and A(11) decoding algorithms.

A(4) require to generate and process at most 5, 8, and 16 candidate codewords,
respectively. The Reed algorithm (see Section 4.3) is used to decode the (64, 42, 8)
RM code. In this figure, the error performances of the algebraic, GMD (or A, (1)),
and MLD decodings of the code are also included for comparison. We see that
GMD and A(l) achieve the same error performance with the least computational
complexity (processing only 4 candidate codewords). They achieve 1.1-dB coding
gain over the algebraic Reed decoding algorithm at the BER 1074, Algorithms
A(2) and A(4) give better error performance than the GMD and A(l) decoding
algorithms and require to process 2 and 4 more candidate codewords, respectively.
Algorithm A(4) achieves 1.6-dB coding gain over the algebraic decoding of the
code at the BER 10~ but has a 0.9-dB degradation in coding gain compared
with the MLD of the code. Figure 10.5 shows the bit-error performances of the of
the (127, 64, 21) BCH code with decoding algorithms A(1), A(6), and A(11). The
Berlekamp algorithm is used in decoding the (127, 64, 21} BCH code. Algorithms
A(l), A(6), and A(11) require to generate and process at most 11, 192, and 1024
candidate codewords, respectively. We see that A(1) (also GMD) performs better
than the algebraic decoding only for SNR values greater than 4.7 dB. Algorithm
A(11) (or Chase algorithm-2) achieves 1.1-dB coding gain over algebraic decod-
ing at the BER 10~ but has a 1.7-dB loss in coding gain compared with MLD.
In general, for a given a, the performance degradation of A(a) (or A.(a)) com-

considered.
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WEIGHTED ERASURE DECODING

The weighted erasure decoding (WED) algorithm is another variation of GMD for a
binary input and Q-ary output channel. This algorithm was devised by Weldon for
guantized channel outputs [11]. In this section, we present a simplified version of
the WED algorithm.

Consider a binary linear (n, k) code with minimum distance dyi, that is used
for error control. Suppose the channel output is uniformly quantized into @ levels
with QO — 2 granular regions of equal space and 2 overload regions at the two
ends, For @ = 2", these ( regions are assigned @ w-weights w; = j/(Q — 1), for
0<j=Q0-1.For0Q<i <m—1,wedefine

pi =270 — 1. (10.49)
Then, ) 7 01 pi = 1. It follows from the definition of w-weights and (10.49) that

m—1

w; = Z ajipi, (10.50)
i=0
where the binary m-tuple (a;9,a;1. -, a;,,—1) is simply the binary representation
of the integer j for 0 < j < @ — 1: thatis,
m—1 A
j=> a2 (10.51)

Fach received signal #;, for 0 <1 < n —1,is quantized into one of the Q quantization
levels and assigned the w-weight associated with that level. For 0 </ <n —1, let uy
denote the w-weight of the received symbol r;. We express wy in the form of {10.50)

as follows:
m—1

}* a'lp;. (10.52)

We construct an m x n binary matrix A associated with the received sequence
r = (ro,ry, - 1” 1) for which the /th column is given by the binary m-tuple
(a %, a 51)1 e } 1) obtained from (10.52). Then, wy is called the weight of the /th
column of A.

For0 <i <m — 1, the ith row of A is decoded into a codeword in code C with
an algebraic decoder. The m decoded codewords are then used in the same order to
form another m x n binary array A’. For 0 <i <m — 1, let f; denote the number of
places where the ith row of A and the ith row of A’ differ. We define the reliability
indicator of the ith row of A’ as

Ri = max{0, dpin—2f }. (10.53)

For the Ith column of A’, with 0 <[ <n —1, let Sﬁ and S(’) denote the index sets
of the rows that contain 1 and 0 at bit position /, respectively. Then, the /th bit is

decoded into 0 if
S Ripi > ) Ripi (10.54)

. { : !
€S, ies)
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and decoded into 1 if
SYRipio < > Ripi. (10.55)
ya— yau—y
ieS) ies!

In case of equality, the hard decision of r; is taken to be the decoded bit.

Let N; denotes the number of columns in A with weight w Hlor0<j=<gQ0-1.
Then, the WED algorithm gives correct decoding if the following condition holds:

o-1 Ao
> Njw; < ”Zf’” : (10.56)
7=0

EXAMPLE 10.1

Consider the (8, 4, 4) RM code generated by
11111111
G — 0606001111
- 00110011
010610101

Suppose this code is decoded with the WED algorithm with 4-level output quantiza-
tion and two granular regions of spacing A = 0.3. The w-weights associated with the
quantization levels are wyp = 0, wy; = %, wy = %, and w3 = 1, respectively. We find
that pg = % and p; = % It follows from (10.50) that we can represent the w-weights
as follows:

wo=0-po+0-py,

wi=0-po+1-p1,

wy=1:pp+0-p1,

wy=1-po+1-p1.
Therefore the four 2-tuples associated with the w-weights are (0, 0), (0, 1), (1, 0),
and (1, 1).

The generator matrix G can be put in reduced echelon form (REF) by
elementary row operations:

Grer =

O O e
o OO
_o O
= D ke
OO O
—_O = =
O e
P = O

010

From the last paragraph of Section 10.1, we know that encoding based on Ggrrr
provides a smaller bit-error probability than encoding based on G. Hence, suppose
encoding is based on Grgr. Then, the message u = (1,0,0,0) is encoded into
the codeword v = (1,0,0,1,0, 1,1, 0). For BPSK transmission, v is mapped into
the bipolar sequence ¢ = (1,1, 1,1, -1,1,1, —1). Suppose this sequence is
transmitted, and the received sequence is

r= (07 -21, -1.1, —04, —1.4, 1.7, 0.8, 0.1).
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If a hard decision is made for ecach received symbol, we obtain the following
hard-decision received vector:

z=(1,0,0, 0% 0,1, 1, 1").

This hard-decision received sequence contains two errors (marked x) compared with
the transmitted codeword v. Because the error-correcting capability of the code is
t = 1, correct decoding of z is not guaranteed with algebraic decoding. With WED,
each symbol of r is assigned a specific weight in {wq, w1, w2, w3} associated with the
region that contains the symbol. Then, the w-weight sequence for r is

(w3, wp, wp, wo, we, W3, w3, w2 ).

Based on the 2-tuple representation of each weight, we form the 2 x 8 binary array

A_1000*0111*
10060011 0 |

The first row of A is equivalent to the hard decision of r with two positions in
error. The second row of A contains only one error. The Reed decoding algorithm
decodes the first row of A into information sequence w; = (0, 1, 0, 0), and the second
row of A into information sequence my = (1, 1, 1, 1). Because decoding assumes that
encoding is based on the generator matrix G (Reed algorithm), the two decoded
information sequences, w; and w, are re-encoded into two codewords based on G.
Using these two codewords as rows, we obtain the matrix

A = 0 60 01 1 11
11001011 0}
Comparing A and A’, we obtain fy = 2 and fj; = 1. It follows from (10.53) that the
reliability indicators for the two rows of A’ are Ry = 0 and Ry = 2. The index sets

for the columns of A’ are given in Table 10.1. To decode the code bit at position 0,
we compiute

> Ripi=Ropy = 0,

- o0
1€5,

Y Ripp=Rip =25 = +.

ies?

TABLE 10.1: Index sets for the columns of A'.

Column | © 1 2 3 4 5 6 7
Sh {0y {01 {01 O {13 ¢ o {1
st 1 o g {1}y {© {01} (0,1} {0}
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Because ZieSg Rip < Zies? R; pi, the decoded bit at position 0 is vg = 1. To
decode the code bit at position 1, we compute

D> Ripi=Ropo + Ript =0+ 2 -+ = %,
ies}
Z R; pi = 0.
ieS}
Because ) 50 Ripi >3, s0 Ri pi, the decoded bit at position 0 is ©; = 0. Repeat-
ing the foregoing decoding process, we obtain the following decoded sequence:
i’ = (17 07 01 1) 07 17 17 0)<

which is identical to the transmitted codeword. Thus, the decoding is correct.
The corresponding information sequence is easily retrieved based on Gggp. This
example illustrates that an error pattern not correctable by algebraic decoding can
be corrected by the WED algorithm.

The error performance achieved by the WED algorithm strongly depends on
the quantizer levels, which have to be chosen according to the operating SNR [12].
Nevertheless, the WED represents a very attractive solution for practical imple-
mentations of low-complexity reliabitity-based algorithms owing to its simplicity.

10()

107! & —
= 1072 —
=
<
S
<] .

a. 107 —
5
b}
g ) +:GMD .
107 = o : Chase-3 \
*:WED; Q=4 *
) 0:WED; Q=8

107 = x : Chase-2

10*6 | | ! J !

1 2 3 4 5 6 7

SNR (in dB)

FIGURE 10.6: Comparisons between WED for 0 = 4 and Q = 8 and GMD, Chase-3,
and Chase-2 decodings for the (64, 42, 8) RM code.
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£

Another interesting feature of the WED algorithin is that the number of LRPs
modified varies with each received sequence, as cpposed o LM“J or C h.age—?[‘ype
algorithms. Th_,g adaptive feature of Chase-type decoding algorithms has been
investigated in [13]. Figure 10.6 compares WED for 0 =4 and @ = 8 with GMD,
Chase-3, and Chase-2 decoding algorithms for the (64, 42, 8) BEM code. We cbserve
that WED for ¢ = 8 slightly O'U"Epew orms GMD and Chase-3 decodings for all BER
values larger than 1073 owing to iis implicit adaptive feature.

IMUM LIKELIHC
ESSING OF THE LEAS

SEL ON ITER

In Chase decoding algorithin-2. the number of LRPs to be processed is limited
t0 |dmin/2] to reduce computational complexity while achieving bounded-distance
decoding. As shown in Figures 10.4 and 10.5, this limitaiton results in a signif-
icant performance degradation compared with MLD, especially for long codes.
Performance can be improved by increasing the number of LRPs to be pro-
cessed. Unforiunately, this straightforward approach results in an exponentially
increasing compuiational cormmplexity with decreasing performance improvement.
To reduce the computational complexity, an algorithm must be devised to reduce
the search space dynamically as candidate codewords are generated. Such an algo-
rithm has been devised by Kaneko, Nishijima, Inazumi, and Hirasawa [14]. For
simplicity, we call this algorithm the KNIH algorithm. This algorithm processes
the LRPs of the received sequence iieratively and uses a condition on the cor-
relation discrepancy of the best candidate codeword generated either to guide
the direciion of further search or to terminate the @ecodlno process when the
most likely codeword is found. The KINIH algorithm achieves maximum likelihood
decoding.

Let € be a binary linear (r. k) block code with minimum distance dp,. Suppose
a bounded-distance algebraic decoder is used to generate candidate codewords. The
decoder 1s designed o correct eiror patterns of weights up (o 1 = [(dyin — 1/2].
Letr = (rg, Fy. -+ - . 1y—1) be the received sequence and z be iis corresponding hard-
decision Ssquence Let E(i) denote the set of error patterns with errors confined in
the i LRPs of z, and let J(i) denote the set codewords obtained by decoding the
SEQUENnce Z + @ wuth e € E(i). Then, it follows from the definition of J(i) that

JOHr I S J@)--C Jm). (10.57)

where J(0) contains only one codeword cbtained by decoding z if decoding is
successful and is empty if decocmc of z fails. For 0 <i=n-—lcons sider a codeword
v in J( + D\JG). First, v € J( + 1) implies that v must have at most 7 positions j
outside the (i + 1) LRPs such that v;. # z;. Next, v & J@) implies that v contains
at least (+ + 1) positions j outside the / LRPs such that v/ # z;. Combining these
two facts. it follows that v has exactly (i 4+ 1) positions j outside the i LRPs such
that v # z;, and one such position is the (7 + Dth LRP. Without loss of generality.
assume that the received symbols r; are ordered according to increasing reliability

values; that is, rg is the leasi reliable symbol, and r, -1 is the most reliable symbol.
It follows from the definition of correlation discrepancy given by (10.13) that the
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correlation discrepancy of v with respect to the received sequence r satisfies

+1
AEV) =D il (10.58)
j=1

Let v be the codeword in J (i) that has the least correlation discrepancy with r
(i.e., v is the most likely codeword in J(i)). Then, dg (v, V) > dpyin. Let

2

8; = max{0. dpin — (¢ + 1) — | D1()}}. (10.59)
We define
A r+1
Giwy =Y Irivjl+ Y il (10.60)
]_—_1 [CT3]

Jj€ Do )

Based on the same approach as for Theorem 10.1, it can be shown that [14]
AE V) > Gi(v). (10.61)

The preceding inequality simply says that any codeword outside of J (i) cannot have
a correlation discrepancy smaller than G;(v). Therefore, if

AE V) < Gy, (10.62)

then the most likely codeword with respect to r must be in J(i). From (10.60) we see
that the threshold G, (v) monotonically increases with i. Therefore, as i increases, it
becomes more and more likely that the condition of (10.62) will be satisfied, and the
search for the ML codeword will be terminated.

Based on the foregoing development, we can formulate the KNIH algorithm
as follows:

1. Decode z into a codeword with the algebraic decoder. Set i = 0. If decoding
is successful, record the decoded codeword v and its correlation discrepancy
A(r, v) and go to step 2. Otherwise go to step 4.

2. Based on v, determine the smallest integer iy for which A(r,v) < G . (V).
Seti =i+ 1 and go to step 3.

3. If i < ipin, find the codeword v in J(O\J (@ — 1) that has the least correlation
discrepancy with r. If A(r, v) < A(r, V), setv=v.Goto step 2.
Ifi > ipn. then v is the ML codeword vy, . The decoding stops.

4. Find the codeword vin J (i + 1)\ J () that has the least correlation discrepancy
with r, set i = i + 1 and go to step 2. If J( + D\J (@) is empty (i.e., all the
decodings of z + e withe € E(i + 1)\ E(i) fail), set i =i + 1 and repeat step 4.

The KNIH algorithm always finds the most likely codeword vy, , but the number of
candidate codewords to be generated depends on the SNR. Even though the average
number of computations may be relatively small, the worst-case computational
complexity is bounded by 2%, the total number of codewords in C.

The definition of G, (v) given in (10.60) can be viewed as an improved version
of G(v, wy) given in (10.31), since in (10.60) the fact that at least (z + 1) positions
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outside the i LRPs differ from the corresponding positions in z is used. In other
words, G(v, wy) given in (10.31) has been improved by exploiting the reprocessing
strategy of the KNIH algorithm. The average number of computations obtained by
the KNIH algorithm presented here can be further reduced if in condition (10.60)
a further improvemeni of G;(v) is used. If the decoding of z is successiul, then the
algebraic decoding codeword vy can be used in conjunction with the best recorded
candidate codeword v to determine the optimality of v based on an improved version
of G(v, wy; v, wy) giver in (10.46). If the decoding of z fails, then we simply use
Gi(v) in the condiiion of (10.60). Such a condition is used in [14].

This algorithm is effective for decoding codes of shori to medium lengths.
For long codes, computational complexity becomes very large, especially for low
SNR. For example, consider the decoding of the (128, 64) extended BCH code.
At SNR = 5dB, the KNIH algorithm generates more than 2 million candidate
codewords to decode one particular received sequence r [14]. To overcome the
computational complexity problem we may setl iy < imax < 1 at step 2 of
the algorithm. This reduces the worst-case computational complexity; however.
the algorithm becomes suboptimum. A proper choice of iy, Will provide a good
irade-off between error performance and computational complexity. Also, sclutions
for reducing the average number of candidate codewords processed by the KNIH
algorithm have been proposed in [15].

10.7 REDUCED LIST SYNDROME DECODING ALGORITHM

The reduced list syndrome decoding (RLSD) algorithm proposed by Snyders [16]
provides a different approach to MLD. This algorithm is devised based on the parity-
check matrix H of a code, the syndrome s of the hard-decision received vector z. and
the reliability measures of the symbols in the soft-decision received vector r. The
algorithm requires identification of at most the n — k — 1 least reliable independent
positions (LRIPs) in r and is mostly suitable for decoding high rate codes with
n —k <« k. With respect to the LRP-reprocessing decoding algorithms presented
in the previous four sections, this decoding algorithm requires additional effort to
select independent least reliable positions in r for reprocessing. The LRIPs can be
identified by eliminating dependent LRPs. A systematic procedure for climinating
dependent positions in r will be presented in Section 10.8.1.

The main idea of the RLSD algorithm is to construct a fixed reduced list of
error patterns for the syndrome s computed from the hard-decision received vector
z and the parity-check matrix H. From this list of error patterns we generate a list
of candidate codewords among which one is the ML codeword with respect to the
soft-decision received vector r. There are 2" % possible syndromes. Therefore, 27~*
such lists of error patterns must be constructed. The construction can be tedious;
however, code structure can be used to reduce the effort. For a given code, the
construction of the reduced lists of error patterns for all possible syndromes need
be done only once.

Reduced list syndrome decoding is carried out based on the formulation of
MLD proposed in [17]. We express the parity-check matrix H in terms of its columns
as follows:

H = [h()» by - ~h,,,1] . (1063)
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where for 0 < i < n,h; denotes the ith column of H. Let v be a codeword. We define
an error pattern e = (eg, e, - ,e,-1) as follows:

1 I: €4, €1, s €17 do 10O

(10.64)

11 forle Di(v),
él 0 forl ¢ Di(v),

for 0 <! < n, where Dy(v) is the index set defined in (10.23). Then, e = z + v, and
v = e + z. Consequently, the syndrome of z is

s =zH' = eH’
_ Z by (10.65)
leDy(v)

For a given codeword v the error pattern e defined in (10.64) is called an n(v)-
pattern, where n(v) = |Di(v)| as defined in (10.24). From (10.65) we see that an
n(v)-pattern e is an error pattern of weight n(v) such that the n(v) columns of H
corresponding to the nonzero positions of e (or the positions in Dy(v)) sum to the
syndrome s. We also can represent this n(v)-pattern with its corresponding set of
columns of H summing to s:

{h[ e Dl(V)}.

It follows from the definition of an n(v)-pattern, (10.13), and (10.65) that we can
formulate MLD as follows: among all n(v)-patterns e for n(v) < n, find the pattern
e* that minimizes the correlation discrepancy A(r, z+ ) between r and the codeword
v = e + z. Then, the codeword v* = e* 4 z is the ML codeword with respect to r.

For a given syndrome s there are 2! n(v)-patterns; however, we can eliminate
some of them from consideration. This follows from the fact that the rank of H is
n — k. Using this fact, we can prove that for any n(v)-pattern e with n(v) > n — k,
there exists an n(vl)-pattem ¢ with n(w') < n — k such that

s=eH’ =eH’. (10.66)

The preceding equality implies that e + ¢ = vy is a codeword. Furthermore, this
codeword vo has Hamming weight n(v) — n(v). Consider the codewords v = e + z
and v = e’ 4 z. Then, vg = v + v'. We can readily prove that

A, v) = Ax, ¥) + A(r, ¥).
(10.67)
> Ar, v),

which implies that the n(v)-pattern e cannot produce the ML codeword vy .
Consequently, all n(v)-patterns of weight n(v) > n — k for a given syndrome s can
be eliminated from the search of the ML codeword vy, . In fact, more n(v)-patterns
can be eliminated based on the partial knowledge of LRIPs. Based on the definition
of an n(v)-pattern, the only n(v)-pattern e of weight 1 that needs to be considered is
the one that corresponds to the column in H that is equal to the syndrome s (if such
a column exists).

Let g denote the column of H that corresponds to the /th LRIP of r, and let
Q, denote the set

A
Qr ={q. 9@, g} (10.68)

i
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Ann (v pattern € can be eliminated from the decoding
known to de ermine an n{v}-patiern & such that A(r

and v/ = & + z, respectively. Such an a(v)- -pat
Tor a given code, a reduced list of n(v)-paiterns can
all Q,-eliminated pamemq for r < n — k. For exampl
{qy. ! ,-Mﬂl,a.-~~ﬂn,-m Jhowith io < i3 < o < iy, Where |

povs

le

Then, any n(\/) -paitern e with n(\/) > a(v) that con
subset is S‘/peh”mnmed

Determining all 2, -eliminated error paiierns i
dedicaied, often tedious procedure; however, it i
suidelines for removing error patierns from ihe
values of r. For example, ihe next theorem TG

;;,\

follows directly from the fact that the

TueorEM 102 If s # 37 g,

are Q,_r-climinated. ﬂ’rhﬂrwn {q
weight n — k that is not ,,_;- e]lhm

LA

a{v)-paii

In [16], several theorems thai allow elimination of error paiterns from the
1educed lists are deuved The sizes of the lists can be further reduced by exploiiin
the structures and parameters of the code considered, as shown in the following
example code.

EXAMPLE 10.2

Consider the (7, 4, 3) Hamming code with pariiy-check matriz

1661 6 1 1
H=]0101 1 01 (10.6%)
006 10 1 1 1
For a Hamming code of length 27 — 1, since "ﬂ ists of all the nonzero m-tuples
U

as columns, a nonzero syndrome § must be id

entical ¢ one of ihe columns in H
Therefore, there is an n(v)-patiern {s} of Wméht fL e

> veduced list for the (7, -”-

3

Th
P
Ty

3) Hamming code consists of one n(v)-pattern {s} of weight 1, three n(v)-pattcrns
{or, qu +s). {qo, qo + s}, and {g1 + g2, o + qp + s}, of weight 2, and. one n(v)-patiern
{91, g2, q1 +qp + s} of weight 3. All other n(v)-patterns of weight 2 Qp-eliminated
or §2p-climinated. For example, {a3, qp + g3} is {%-eliminated as s = gp. In general,

MLD is achieved by first identifying those n{v)-patierns on the list thai are valid
for the compuied syndrome s and then finding the ML codeword vy, among
the candidate codewords generated by the n(v)-paiterns for ihe computed s. For
Hamming codes, all patterns on the list have to be kept, since H consisis of all the
nonzerc m-tuples as columns. Also, depending on the syndrome s computed, the
complete list can be further reduced. For example, if s = gy, the list reduces to {s}
and for s = qq + qp, the list reduces to {s} and {g;, qz}; however, s =q + 2 + g
then the entire list needs o be considered.

hard-decision received vectoris z = (000110 0), and the syndrome of z is
s=zH’" = (101) = hi. We find that ¢ g1 = by, qp = h3, and s = g + qp. As a resuli.
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only the n(v)-patterns {hs} and {hs, hs} have to be considered. The error pattern

corresponding to {hs} ise; = (000001 0), and the codeword generated by this

error patternis v = e +z=(0000010)+©001100=@©001110).
The correlation discrepancy of vy is A(r, v1) = 1.1. The error pattern corresponding
to {hs,h4}ise; = (0001 100), and the codeword generated by this error pattern
iSv)y =e)+z=0001100)+@©001100)=(©000000). The correlation
discrepancy of v; is A(r, v2) = 0.9. Hence, v; = (0 0000 0 0) is the ML codeword.

In [16], the reduced lists of n(v)-patterns for the (15, 11, 3) and (31, 26, 3)
Hamming codes are given. The complete reduced list for the (15, 11, 3) code is
composed of one n(v)-pattern of weight 1, seven n(v)-patterns of weight 2, seven
n(v)-patterns of weight 3, and one n(v)-pattern of weight 4. Also in [16], a method is
presented for efficiently constructing the reduced list of n(v)-patterns for an extended
code based on the reduced list of the original code. Schemes for constructing reduced
lists of n(v)-patterns for codes based on binary trees and graphs are also presented
in [18]. MLD of high-rate codes based on the RLSD algorithm can be achieved with
very few real operations and therefore is quite suitable for high-speed decoding of
these codes.

10.8 MOST RELIABLE INDEPENDENT POSITION REPROCESSING

10.8.1

DECODING ALGORITHMS

In the previous four sections we presented various soft-decision decoding algorithms
for linear block codes that are based on processing the LRPs of a received sequence.
These decoding algorithms are referred to as LRP-reprocessing decoding algorithms.
In this section we present two soft-decision decoding algorithms that are based on
the processing of MRIPs of a received sequence. These decoding algorithms are
referred to as MRIP-reprocessing decoding algorithms.

Most Reliable and Least Reliable Bases

For the GMD and Chase-type decoding algorithms, only a partial ordering of the
reliability values of the received symbols is needed to identify the LRPs of a received
sequence for decoding; however, decoding based on MRIPs, requires not only a
complete ordering of the received sequence based on their reliability values but
also identification of k MRIPs. These k MRIPs can be determined by permuting the
columns of the generator matrix of a code based on the ordering of the received
symbols and then finding & independent columns by elementary row operations of
the permuted generator matrix.

Consider a binary (, k) linear block code C with generator matrix G. Suppose
a code sequence is transmitted. Let ¥ = (rg, r|, - - - , r,_1) be the received sequence.
We order the received symbols based on their reliability values in decreasing order
(if there is a tie between two received symbols, then we order them arbitrarily). The
resultant sequence is denoted by

¥ = (r(/),rll, .r;,_l), (10.70)

with | r(/\, [>| ’1 > v > "’;,7;1 |. This reordering of the receive

permutation 7, for which ¢ = 7;[r]. We permute the columns o
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obtain the following matrix:

’

G = 7'[1[@] = [g@/, g]ll cee gm_l/] s (1@.71)

where for 0 < i < n, g denotes the ith column of G . The code C' generated by G’
is equivalent to C generated by G; that is,

C =m|[C]={m®: :veC}

Because the ith column g of G corresponds to the ith component '1 of r with
reliability value | 1; [, we call | ;I | the reliability value associated with column gﬁ/,

Although the first k positions of r (or the first k columns of G') are the k
most reliable positions, they are not necessarily independent, and therefore they do
not always represent an information set. To determine the k¥ MRIPs, we perform
elementary row operations (or Gaussian eliminations) to pui G’ in the reduced
echelon form. There are k columns in G in reduced echelon form that contain only
one 1. These k columns are linearly independent. Consequently, the positions in r
that correspond to these % lincarly independent columns are the & MRIPs. Note
that the matrix in reduced echelon form generates the same code C as G/ﬂ except
for the mapping between an information sequence and a codeword. We use these k
finearly independent columns as the first k columns of a new generator matrix G,
maintaining the decreasing order of their associated reliability values. The remaining
n — k columns of G in reduced echelon form give the next n — k columns of G
arranged in order of decreasing associated reliability values. This process defines a
second permutation 7. It is clear that the code generated by G is

"

¢ = m[C=mlm[C]l.

Rearranging the components of r according to the permutation ;. we obtain the
sequence
y:(V{)v vl'- 9)]!(—17 Vs synfl)» (1072)

with | vo 1> vi |I> -+ > w1 |, and | v |> -+ >| y,—1 |- It is clear that
y = my[r' | = my[m1[r]]. The first k components of y are the k MRIPs. These k MRIPs
are said to form the most reliable basis (MRB) for code C.

We can permute the rows of G’ to obtain a generator matrix Gy in systematic
form,

10 - 0 P00 o POn—k—1
0 1 0 P10 c Pln—i-1

Gy = [k P] = o ) (10.73)
60 - 1 prm1o0 - Pr—ta—k-1

where [ represents the k x k identity matrix, and P is the k x (n — k) parity-check
matrix. The code C; defined by G consists of the same 25 codewords as code
C" and is equivalent to both C' and C. Suppose that Gy is used for decoding the
permuied received sequence y. Assume that ¥ is the decoded codeword in C;. Then,
V= nflnz_l[“@] is the decoded codeword in C, where nfl and 7751 are the inverse
permutations of 7y and my, respectively (see Problem 10.11).
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By analogy with the MRB, we define the least reliable basis (LRB) as the
set of the n — k least reliable independent positions (LRIP) in the dual code Ct+
of C. Then, it is shown in [19] that the positions not included in the MRB form
the LRB. Because the complement of an information set is an information set
of the dual code, it follows from (10.73) that H; = [P?E,_,] is the parity-check
matrix of the code C;. Consequently, if n — k < k, we can determine G after
constructing Hy in the dual code C. In this case, the ordering is from right to left in
increasing order of reliability values. This process also defines two permutations (i1
and u, corresponding to the ordering of the received sequence in increasing order
of reliability values and the determination of the »n — k first independent positions of
this ordering, respectively. It follows that at most n - min{k, n — k}? binary additions
are performed to construct 1. Also, although the received sequence can be ordered
with O (nlog,(n)) comparisons if unquantized values are considered, the ordering
corresponding to 71 (or p1) becomes trivial if quantized values are used, since only
the numbers of quantized values corresponding to each quantization level suffice to
determine the complete ordering of the quantized received sequence.

Priority-First Search Decoding Algorithm

As shown in Chapter 9, every linear block code can be represented graphically by
a trellis. Another useful graphical representation of a linear block code is a tree.
Every binary linear systematic (n, k) block code C can be represented by a binary
tree T, as shown in Figure 10.7. This binary tree has the following structures:

1. T consists of n -+ 1 levels.

2. For 0 <i < k, there are 2/ nodes at the ith level of the tree. For k <i < n, the
number of nodes at the ith level of the tree is 2%. There is only one node s at

second level

first level

FIGURE 10.7: A tree representation of a binary linear systematic block code.
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the zeroth level of the tree called the initial node {or the roor) of the tree, and
there are 2¥ nodes at the nih level of the tree, which are called the ferminal
nodes of the tree.

3. For O < < k, there are two branches leaving every node s5; at level-i and
connecting to two different nodes at level-(i + 1). One branch is labeled with
an information symbol 0, and the other branch is labeled with an information
symbol 1. For k < i < n, there is only one branch leaving every node s at
level-i and connecting to one node at level-(i + 1). This branch 15 labeled with
a parity-check symbol, either G or 1.

4. The label sequence of a path connecting the initial node sy to a node s; at
the kth level corresponds to an information sequence w of & bits. The label
sequence of the path connecting the initial node s through a node s, at the
kth level to a terminal node s;; at the nth level is a codeword in C. The label
sequence of the tail connecting node s; (0 node s, corresponds to the n — k
parity-check symbols of the codeword.

From the preceding definition of a code tree, it is clear there is a one-io-one
correspondence between a codeword in C and a path connecting the initial node sy
to a terminal node s,,. The set of nodes at the ith level of the tree is called the node
(or state) space, denoted by T, (C).

EXAMPLE 10.3

Figure 10.8 depicts the tree representation of the systematic (6, 3) linear code
generated by

— 0O
[ W
LS =
O = =

The tree representation of a linear block code can be used to facilitate decoding.
One such tree-based decoding algorithm is the priority-first search (PFS) decoding
algorithm devised by Han, Hartmann, and Chen [20]. This decoding algorithm
processes the tree Ty of the permuted code Cy generated by the generator matrix
Gy given in (10.73), where the first k levels of the tree correspond to the k MRIPs
of r. The basic concept of this algorithm is to penetrate the tree from the initial
node s, level by level, to search for the ML path. At each level. a list of likely paths
is constructed, and only the most likely path on the list is extended. Because the
starting part of the tree corresponds to the most reliable positions and contains only
a smaller number of nodes at each level, it is possible to direct the search of the
ML path in a particular highly reliable direction and hence keep the size of the list
and the computation effort small. Each time the kth level of the tree is reached, a
candidate codeword is generated and tested. The candidate codeword with the least
discrepancy is kept. For each test, all the partial paths on the list with correlation
discrepancies larger than this least correlation discrepancy are discarded from the
list. This process is repeated until the list becomes empty. Then, the stored candidaie
codeword v* with the least correlation discrepancy is the decoded codeword and is
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€ [

FIGURE 10.8: A tree representation for a systematic (6, 3) linear code.

the ML codeword in C; with respect to the permuted received sequence y. Then,
~1y_-1
v=n [n, [v']]

is the ML codeword in C with respect to r.

The PFS decoding is carried out based on a cost function f(s;) associated with
each state s; € X;(C). This cost function is a measure of the correlation discrepancy
of any path that starts from the initial node sg, passes through the node s;, and ends
at a terminal node of the tree. It is used to guide the search of the most likely path in
the code tree along the most likely direction. Decoding is performed on the ordered
received sequence

y = mlmifr]] = (o, y1. -+ va).
Let z = (20,21, , zn—1) denote the hard-decision vector obtained from y. For
1 <i <mn,let pis) S {(vg, v1, -+ -, v;_1) denote the path in the code tree that
connects the initial node sq to node s; at the ith level. We define the binary sequence
v(si) = (vo(si), vi(si), -+, vp—1(si)), where
we={ 2 i 21 5y (1074

Therefore, m(s;) is a prefix of v(s;). Note that v(s;)

A\l

and z differ only within the
positions in {0, 1,--- ,i — 1}. Let Dy(v(s;)) denote the set of positions where v(s;)
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P

ws from the definition of

and z differ. Then, D1 (¥(s)Y) <€ {0, 1,
correlation discrepancy given by (10,13} that

—— e
My vy =, vl {10.75)
le Dy ({5 ))

Forl<i<kletv represent any of the ok pams of ler
node of the code tree 77 that have (vg. vi, -+ . V_1

diverge ﬁrom node s; at level-i. These patl
The correlation discrepancy betwee:

(10.76>
where D((v)) denotes it e from th
definitions of v(s;} and v’ that

Di(v(s)) € Di(v). (10.77)

From (10.75), (10.76). and (10.77). we obtain the following lower bound on A(y. v'):

forl <i <k,

Ay, vy < My 7). (10.73)

The preceding lower bound on Ay, v') can be further improvad based on ideas

similar io those presented in Section 10.3. Let @ be the information Sequence defined
byt =z for 0 <1 <k—1;thatis, @ is sim‘p / u@uncd u_/ k

hard-decision received vector z. From i, we

called the inifici seed codeword. Because G is ir syste

part of ¥1is (20,71, -+ , 2k ) Theve‘fore ¥ and z differ only
{kk+1,--- .n— 1}‘ Based he weight profile {wy = 0, wl, wy, -
define
8(s;) = min {|w; — a7 — a@EN|h (10.7%)
e{0.m}
where n(¥) = | Dy (3|, and n{(7(s;)) = | D1 (¥(s))|. Since 7 differs from z in n(¥) LRP

and v(s;) differs from z in n(v(s;)) MRPs, 6(s;) represents the minimum nuraber of
additional positions in which z and v(s;) must differ for v{s;) to be a valid codeword.
Consequently, we obtain the following lower bound on A(y, v'):

S(5)
R OESYRICH ER S ) (16.86)
=1
We define (
$ S,‘)
A T
Flsi) =2y v+ ) (10.81)
=1

which is called the cost function of node s;. This cost function consisis of two
parts. The first part of f(s;), A(y, v(s;)), represents the coniribution {rom the
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common prefix (vg, vy, -+ -, v;—1) of all the 2k codewords (or paths) diverging from
node s;. The second part of f(s;), Zfﬁi) |v,—|, represents a lower bound on the
contributions from a tail (v;, vi41, -~ -, vy—1) of a codeword diverging from node s;.

The cost function f(s;) simply says that each codeword passing through node s; has
a correlation discrepancy of at least f(s;). For two different nodes, s; and s, in the
tree, if f(s;) < f(s;), then it is reasonable to assume that a path passing through
node s; is more likely to produce the received sequence y than a path passing through
node s5;. Therefore, a higher priority should be given to node s; to penetrate the tree
in search of the ML codeword. This assumption forms the basis of the PFS decoding
algorithm.

An important property of the cost function f(s;) is that along a path from
node sp to node s;, it is a nondecreasing function of the tree level i. For 0 <i <k,
consider the two nodes 5/(41-)1 and Si(i)l in ¥;.1(C) that are adjacent tonode 5; € Z;(C)
with a cost function f(s;). Without loss of generality, we assume that the label bit
for the branch (s;, s\};) is identical to z;, and the label bit for the branch (s;. 5%,
is z; + 1, the complement of z;. Then, it follows from the definition of v(s;) that
v(s;) = v(sm ), and v(s(z)

P i) differs from W(Si(—ll-)l) only at the ith position. We readily
see that

FD = 1. (10.82)

From (10.81) we can compuie f (s, It follows from (10.79) and the fact that

i+1
2 @

v(s; 1) and v(s; ;) differ only at the ith position that

FGED = Fis0) = il = Iyn—ssn] = 0. (10.83)

The equality of (10.82) and the inequality of (10.83) imply that for a path from node
sp to node s;, 1 < i < k, the cost function f(s;) is a nondecreasing function of the
tree level i. For k < i < n, there is only one branch leaving a node s; € %,;(C) and
connecting a node s; 11 € X;4+1(C). Therefore, vl = v* for i > k. In this case, the cost
function f(s;) is simply f(s) = A(y, v6): that is,

fs) = f(s0) = Ay, ¥H). (10.84)

The PFS decoding algorithm is devised based on the cost function f(s;) to
penetrate a code tree using a depth-first processing procedure. This algorithm
continuously updates a list of nodes in the tree that have been visited (or reached),
and their cost functions. This list is called the cost function list (CFL). The nodes are
ordered in increasing values of their cost functions, such that the first (or top) node
of the list has the smallest cost function, and the last (or bottom) node of the list has
the largest cost function. The first node on this ordered list has the highest priority
to be chosen as the location (or the point) for penetrating the tree in the search of
the most likely path. The algorithm executes the following steps:

1. Construct the initial seed codeword ¥. Compute the cost function f(sg) of the
initial node sg and form the nitial cost function list CF Ly = {59, f(s0)}. Go to
step 2.

2. Check the first node s; on the list and remove its cost function f(s;) from the
list. If i < k, go to step 3; otherwise, go to step 4.
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D

1
-+

,.(331. atlevel-(1 + 1) of

e (L) (2)
) of Si and Siv1s and

;Q}.)

Exiend the node s; into its two adjacent nodes, sf yands

the tree. Compute the cost functions f(s,.(i)l) and f (sl.(i"1
reorder the list. Go to step 2.

4. If i =k, evaluate the cost function f(sx) = A(y, v*) and record the codeword
Vpesr that has the smallest cost function among all codewords tested so far.
Delete all the nodes on the list whose cost functions ave larger than J(¥, Vpes).
If the list is not empty, go to step 2; otherwise, go to step 5.

5. Output vy, as the decoded codeword, and siop the decoding process.

Note that in step 4, nodes on the list with cost functions larger than A(y, Vpes) can
be deleted owing to the monotonicity of the cost function. The codewords passing
through these nodes do not contain the ML codeword and hence should be removed
from further consideration. Also, (10.82) implies that for i < &, Si(i)l is always put at
the top of the list. Because the algorithm is to minimize the cost function (correlation
discrepancy) of a codeword at level-k, the outpt vy, is the MLD codeword.

EXAMPLE 10.4

Consider the (8, 4, 4) RM code with weight profile W = {0.4, 8} and generator
matrix

100600111
01001011
C=loo101101 (10.85)
0 001111090
Suppose the all-zero codeword v = (00000 0 00) is transmitted., and

v = {rp, 71,72, 13. 74, 75, ', 1'7)
=(-12, -1.0, =09, -04, 0.7, -0.2, —0.3, —0.8)

is received. In decoding r, the PFS algorithm first orders the symbols of r in
decreasing reliability values, so we obtain

E = (g Ty o T3 Ty T T 1)
=71(r) = (rg, r1, 12, 77,14, 73, 76, 1's) (10.86)
=(-1.2, -1.0, -09, =08, 0.7, —0.4, -03, -0.2).
Permuting the columns of G based on the permutation sj, we obtain the matrix

10010011

o le1o11001
G=mlGl=14 06111010 (10.87)
00001 111

First, we notice that the first three columns of G, gé)g gllﬁ and gIZ, are linearly
independent; however, the fourth column, g,, depends on the first three columns.
The fifth column, g;l, is linearly independent of the first three columns. Therefore,
g0 £, £, and g, form the most reliable basis. In r, the MRIPs are 0, 1. 2, and 4.
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With inverse permutation 7, 1 we find that in r the MRIPs are also 0, 1, 2, and 4.
Adding the fourth row of G to the second and third rows, and permuting the fourth
and fifth columns of the resultant matrix, we obtain the following matrix:

10001011
SRS RERNE s
60010111
The permutation m, results in the following received vector,
¥ = (Y0 ¥1. Y2, ¥3, ¥4. ¥5. Y6, ¥7)
= oK) = (g7, 7, Ty T3 750 T T7) (10.89)

=(-12. -1.0, =09, 0.7, -0.8, —04, -0.3, —-0.2).
The hard-decision received vector z obtained from y is
z=(0.0,0,1,0,0.0,0).
We set @ = (0001). The initial seed codeword v is given by
v=uG; =(0,0,0,1,0.1,1. ).

Comparing ¥ with z, we find that Dy(¥) = {5, 6, 7}, and n(¥) = |D1(¥)| = 3. Because
v(sg) = 2, D1(v(s0)) = ¥, and n(v(sg)) = |D1(v(s9))| = 0. From (10.79) and (10.81)
we find that §(sg) = 1, and f(sp) = 0.2, respectively. Then, the PFS algorithm for
decoding y is initialized with the cost function list CFLy = {sg, f(s0) = 0.2} (or
simply, {f(so) = 0.2}).

The decoding process is depicted by the tree shown in Figure 10.9. At the first
step, so is extended to nodes sil) and sl(z) with connecting branches (s, sl(l) ) =0and
(s0, sf)) = 1. Because Dy (V(Sf)) = {0}, and n(v(sl(z))) =1, we find from (10.79) that
5(s§2)) = 0. From (10.81) we find that f(sfz)) = 1.2. Updating C F Ly, we have a new
CFL = sV, V) = 0.2:57, £ (s = 1.2) (or simply, {£sV) = 02; (s =
1.2}).

: The rest of the decoding steps are summarized in Table 10.2. From this table
we find that MLD is achieved in six steps. The ML codeword is vp.;, = (00000000)
with correlation discrepancy A(Y, ¥p.s) = 0.7.

The PFS algorithm performs MLD efficiently for binary linear block codes of
lengths up to 128 at medium to high SNR; however, at low SNR, the number of
computations required by the algorithm to achieve MLD may become prohibitively
large, especially for long codes, owing to the very large number of nodes in the
tree to be visited and extended, which results in a very large cost function list. The
worst-case scenario is that all the 2 nodes at the kth level of the tree must be
visited and their cost functions computed. To overcome this problem, a suboptimum
version of the PES algorithm is presented in [21], in which a limit is put on the
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FIGURE 10.9: Decoding tree for Example 10.4.

TABLE 10.2: Decoding steps for PFS algorithm.

{1 €l (33 {1
st || peiip {Dl“"si-n)I By ¥hess
Sten s 2 2 PSP ¥ 2 _, s
Step || s Siva || P6Si, ) Dus ] || 867,01 || AE- Vhest) CFL
T | ) 0 i — sy e st
5t {0 1 0 — =102:12)
A I S () 0 1 — s s reih
S o 1 0 — = (0.2 1.0: 1.2)
3 .s‘él) .v%l) (000) 0 1 — {_f(.xé“): b (.séz)): _f'(.\éz'): f(.s'(lzl 1}
s | o1 1 0 — = (0.2:09: 1.0: 1.2}
4 (] D ooty 0 1 - g s rs e Fel re )
sy || (0000) 1 0 — =1{0.2:0.7:09:1.0: 1.2)
5 D )
sl — - — — || (00010111 st = 07)
— — - - 0.9
6 [P = - — — || (00000000) "
_ _ _ — 0.7

size of the cost function list. This suboptimum version provides a good trade-off
between error performance and decoding complexity with a proper choice of the
maximum size of the cost function list. A very large number of computations can be
saved at the expense of a very small degradation in performance, say a few tenths of
a decibel.
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The ancestor of the PFS algorithm was initially proposed by Dorsch in [22]. A
clever implementation of this algorithm based on k lists was presented by Battail
and Fang in [23]. These algorithms can be viewed as using the simplified cost

function f(s;) £ Ay, v(s;)) in (10.81) and, as initially proposed, are therefore less
efficient than the PEFS algorithm. Recently, Valembois and Fossorier proposed a
computational improvement of the Battail-Fang algorithm in [24]. In this method,
a second ordered list of the visited nodes is updated, so that every time a node is
visited, only one node is extended. As a result, this method requires less memory
than the PFS algorithm and often succeeds in decoding blocks that result in memory
overflow with the PFS algorithm. Its average computational complexity is slightly
greater than that of the PFS algorithm but its variance is much lower in general.

One drawback of the PFS algorithm and similar algorithms is that the order
in which the error patterns are processed in the list depends on each received
sequence. In the next section, an algorithm with a fixed order of error-pattern pro-
cessing is presented. This may represent an interesting feature for VLSI realizations
of MRIP-reprocessing algorithms. Furthermore, it was shown in [25] that this struc-
tured reprocessing results in only a very small increase of average computational
complexity with respect to that of the PFS algorithm.

Ordered Statistic Decoding Algorithm

MLD is, in general, achieved at the expense of great computational complexity,
especially for long codes; however, if we do not insist on achieving optimum MLD
performance, efficient soft-decision decoding algorithms can be devised to achieve
near (or practically) optimum error performance with a significant reduction in
decoding complexity.

Consider a suboptimum soft-decision decoding algorithm A. Let P(A) be the
probability that algorithm A commits a decoding error, whereas MLD is correct.
Let Pg denote the block error probability of MLD as defined in (10.15). Then, the
block error probability Pg(A) of algorithm A is upper bounded by

Pp(A) < Pg + P(A). (10.90)

If P(A) << Pp, then Pg(A) ~ Pg. In this case, algorithm A practically achieves the
same error performance as MLD. Clearly, it is desirable to devise such a practically
optimum decoding algorithm with a significant reduction in decoding complexity.
One such decoding algorithm has been proposed in [26]. This algorithm is a MRIP-
reprocessing algorithm that is devised to process the MRIPs progressively in stages
based on the joint statistics of the noise after symbol reordering. These statistics are
also used to evaluate the error performance achieved after each stage and therefore
allow us to determine when practically optimum error performance or a desired
level of error performance is achieved. This algorithm is referred to as an ordered
statistic decoding (OSD) algorithm.

The OSD algorithm reprocesses the ordered received sequence y given by
(10.72) based on the permuted code C; generated by the generator matrix G given
by (10.73). Because the first & symbols of y are the & most reliable independent
symbols, their hard decisions should contain very few errors. Based on this concept,
the algorithm generates a sequence of candidate codewords for testing by processing
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the k most reliable independent symbols of y. The candidate Podexarow‘
least correlation discrepancy mn y is the decoded co cewom hfm, u;
gives the decoded codeword in C. For 0 < i < k, the

execnies the following steps:

1. Perform hard-decision deccdin !
v (the first k symbols of 7). These k h
form an information sequence wg.

2. Construct the codeword vy = ugGy for the
compute the correlation discrepancy A{7. vy

3. Forl <] <i.make all possible changes of 7 of
each change, form a new information seques
codeword v = u(,. Compute the cory ¢
generated codeword. Becord the codeword vpey
discrepancy. This smp is referred o as the
requires generating (1) candidate codewords.

4, Start the next reprocessing phase and continue io update vy, until the 7
reprocessing phase is completed. The recorde 1 codeword Yy, 18 the decoded
codeword.

The OSD algorithm of order-i consists of (i + 1) reprocessing phases and requires
processing of a total of

)

candidate codewords tc make a decoding decision. Tm‘ OSD algorithim of order-k
is MLD, which requires processing of 2¢ codeword

As pointed out earlier, the & first symool £ y are the k moct reliable inde-
pendent symbols, and their hard decisions iost fi? ntain very few error
That is to say that the information sequence gy cO1 ery few errors. Conse-
quently, making all possitie changes of a small number of positions of ug mosi
likely will produce the ML codeword. Therefore, an OSD aﬂgoriﬂmw with 2 small
order-i shouid practically achieve the MLD error performance. it is |26}
that for most block codes of lengths up to 128 and rates k/n > % an order

This s not what we want.

(n

curves basically raﬂ on to D of each m . M ig = Ld,,,,,z/ﬂj is sm:ﬂﬂ .i an kﬂ then
I+ 4+ (I,/:)) is much smaller than 2/‘ Consequently, an OSD algorithm of
order-ip results in a practically optimum eivor periormance with a significant reduc-
tion in computational complexity. The OSD algorithm requires only an cncoder
to gencrate the candidate codewords for testing and is therefore very easy (o
implement.

Figures 10.10 and 10.11 depict the bit-error performances of the (64, 42, 8} RM
code and the (128, 64, 22) extended BCH code with OSD algorithim of various orders,
respectively. For the (64, 42. 8) RM code, since d,,,;;, = 8. the order of reprocessing to
achieve practically optimnum error performance is ip = |8/4) = 2. Inde
in Figure 10.10, the OSD algorithm of order-2 practically achieves the MLD error
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FIGURE 10.10: Order-i reprocessing for the (64, 42, 8) RM code.

performance. It requires generating 1 + (412) + (422) = 904 candidate codewords and

computing their correlation discrepancies. Figure 10.10 also shows that the OSD
algorithm of order-1 gives an error performance only 0.3 dB away from MLD at
the BER 107, It requires generating only 43 candidate codewords. For the (128,
64, 22) extended BCH code, to achieve practically optimum error performance, the
order of reprocessing required by the OSD algorithm is ig = [22/4] = 5; however,
as shown in Figure 10.11, the OSD algorithm of order-4 is already within the union
bound of the code. The OSD algorithm of order-4 requires generating a total of
679,121 candidate codewords, which is much smaller than 264, In these figures, tight
bounds on the error performance of each reprocessing order are also included.
These bounds correspond to (10.90), in which P(A) is evaluated based on order
statistics following the methods of [26-28].

The number of candidate codewords to be processed by the OSD algorithm
of order-i can be drastically reduced by using a sufficient condition on optimality
derived in Section 10.3. At the end of each reprocessing phase before the ith
(last) one, the best candidate codeword vy, recorded is tested for optimality. If
the sufficient condition on optimality is satisfied, then vy, is the ML codeword,
and decoding can be terminated. The sufficient condition based on one candidate
codeword given by (10.31) can be improved by taking into account the structure of
the reprocessing method. Assume that for / < i, phase-/ of order-i reprocessing has
been completed. At this stage, all candidate codewords that differ from the hard-
decision received vector z in at most / MRIPs have been processed. The remaining

candidate codewords to be processed must differ from z in at least (I + 1) MRIPs.
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FIGURE 10.11: Order-i reprocessing for the (128, 64, 22) extended BCH code.

Based on this fact, the bound on optimality given by (10.21) can be improved as

1+1
Ghesrw)) = »_|vejl+ > Iyl (10.91)
j=1 je D(‘f/ st
where /
§ = max{O d/nin - |D1(Vlzcst)' - (] + 1)} (10 92)
The first term of (10.91), Z 1 1vk—;|. represents the minimum contribution associ-

ated with inverting at least (l + 1) MRIPs in z, and the second term is derived in the
same way as for (10.31). Comparing (10.91) with (10.31), we see that LRPsin (10.31)
are replaced with MRPs in (10.91). Consequently, from Theorem 10.1 (or (10.33)),
we see that {10.91) provides a stronger (or less stringent) sufficient condition for
optimality than (10.31).

Further computation savings can be achieved by improving the optimality
threshold G (vpesr, wi) of (10.91) in a number of ways. First, in evaluating (10.91), we
can use a processed codeword v other than vy, if G(v, wy)islarger than G(vpg, wi).
Second, if vy # Vo, we can consider the MRIPs of z inverted in generating vj,,; in
evaluating G (Vjesr» w1). Third, we may use a sufficient condition on optimality based
on two candidate codewords, as in (10.46), in conjunction with the reprocessing of
the MRIPs in z [29]. Finally, we can use the monotonicity of the reliability values in
the MR1IPs to discard candidate codewords within each reprocessing phase [26, 30].

The effectiveness of using a sufficient condition for optimality test to terminate
the decoding process of the OSD algorithm is best demonstrated by an example.
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FIGURE 10.12: Percentage of codewords declared optimum after phase-1 of order-2
reprocessing for the (24, 12, 8) Golay code.

Consider the (24, 12, 8) Golay code (presented in Chapter 4). For this code, an order-
2 OSD algorithm achieves practically optimum error performance. Figure 10.12
depicts the percentage of codewords that are declared optimum after phase-1
reprocessing for five different cases of applications of sufficient conditions on
optimality. For the first three cases, optimality is determined based on one candidate
codeword, and for the remaining two cases, optimality is determined based on two
candidate codewords. In the first case, the optimality threshold G (v, wq) is evaluated
based on (10.31) by considering the recorded codeword v, at the end of phase-1
reprocessing. In the second case, G(v, wy) is computed from (10.91) for / = 1 based
o1 Vjer. The third case is similar to the second case, except that G(v, wy) is evaluated
based on the codeword that minimizes G(v, w;) of (10.91) among the 13 candidate
codewords generated at the end of phase-1 reprocessing. For the fourth case, the
optimality threshold G(v{, wi; vz, wy) is evaluated based on (10.46) by considering
the two codewords that have the smallest correlation discrepancies among the 13
candidate codewords generated at the end of phase-1 reprocessing. The fifth case
is similar to the fourth case, except that the optimality threshold G (v, wy; va, wy)
is computed from a generalization of (10.91) for two codewords [29]. Figure 10.12
shows that (10.91) provides a more efficient optimality condition for terminating
the decoding process than (10.31). In terms of cost effectiveness, case-3 is the
most effective one, as it is easier to implement than case-5. For case-3, 83% of
the time, the decoding process is terminated at the end of phase-1 reprocessing
at the SNR of 1 dB. This result means that even at a low SNR of 1 dB, only 22
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candidaie codewords need to be processed on average for decoding a received
sequernce.

EXAMPLE 10.5

Consider order-1 reprocessing of the received sequence given in Example 10.4 for
the (8, 4, 4) BM code. At phase-0, we find vg = vpeey = (0.0.0.1.0.1, 1, 1), and
M. Thes) = 0.9. From (10.91) and (10.92). we find that for /| = 0, § = 0, and
G (Vpesr. wi) = 0.7. Because M. Ypesr) > G(Fpesr. wy), decoding must be carried into
phase-1 reprocessing. At the end of phase-1 reprocessing, we find the codeword
v = (0.0.0.6.0.0,0.0), with A(y.v) = 0.7. Since A(y,¥) < A(Y, Vpess). We set
Vpest = (G.9.0,0,0.0, 0. Q). From (10.91) and {(10.92), we find that for [ = 1, § =1,
and G(pesr, w1) = 0.9 4+ 0.7+ 0.2 = 1.8. Because A, Ypesr) < 1.8, Vpegr 18 the MLD
codeword.

In [31]. order-i veprocessing is further improved by considering only a reduced
probabilisiic list of the most probable candidate codewords insiead of the entire set
composed of the 31_, m candidates associated with order-i. For many codes, this
method greatly reduces the number of candidate codewords reprocessed by phase-i
of order-i reprocessing and still achieves practically optimum error performance at
BER values larger than 107, For codes of rate k/n < %, many positicns ouiside
the MRB still have reasonably good reliability measures. Consequently, for such
codes, order-j reprocessing of few information sets becomes more efficient than
order-i reprocessing of the MRB, with j < i. A general presentation of order-j
reprocessing of several information sets is given in [32]. This method was further
improved in [33], where an iterative information set reduction is used to closely
achieve the error performance of order-(i + 1) reprocessing with a decoding cost
closer to that of order-i reprocessing. Finally, Valembois and Fossorier proposed
a new version of OSD called “Box-and-Match™ (BMA) decoding [34]. The BMA
algorithm roughly achieves the error performance of order-(2i) reprocessing with a
decoding cost closer to that of order-i reprocessing but with a memory requirement
of the same order {(whereas OSD has no memory requirement). In contrast with the
OSD algovithm, which processes error patterns independently of each other, the
BMA stores some partial information about the error patterns processed at phase-j
to be used at phase-j , with j > j. As a result, many error patterns processed at
phase-j by ihe OSD algorithm are discarded by the BMA algorithm, and the BMA
algorithm can achieve near-MLD of larger codes than the O8D algorithm.

The OSD algorithm and the Chase-type decoding algorithm are complemen-
tary in nature: the former is based on processing certain MRPs of a received
sequence, and the latter is based on processing certain LRPs. This complemen-
tary feature allows us to combine the two algorithms to form a hybrid decoding
algorithm that has the advantages of both algorithms. Consider the OSD algorithm
with order-i reprocessing. If there are at least / + 1 MRIPs of the ordered received
sequence in eiror, but fewer than r + 1 errors have occurred outside the |dy;,y /2]
LRPs, then the OSD algorithm with order-i reprocessing will result in an incorrect
decoding; however, Chase algorithm-2 will result in a correct decoding. On the other
hand. if the number of errors in the LRPs is large, but the number of errors in the
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MRPs remains less than i + 1, Chase algorithm-2 will fail to decode the received
sequence correctly, but the OSD algorithm with order-i reprocessing will result in a
correct decoding. Based on these results, we can combine these two algorithms to
process the received sequence in parallel. At the end of the processing, there are
two candidate codewords, one produced by the Chase decoder and one produced
by the OS decoder. These two final candidate codewords are then compared, and
the one with the larger correlation (or smaller correlation discrepancy) is chosen as
the final decoded codeword. It has been shown in [35] that for i < |dnin/4], this
hybrid decoding improves the error performance of the OSD algorithm with order-i
reprocessing at medium to high SNR.

The OSD algorithm also can be combined with the PFS decoding algorithm
presented in Section 10.8.2 to limit the size of the cost function list. In the PFS
decoding algorithm, only the cost functions f(s;) that correspond to inverting at
most i MRIPs can be added to the cost function list, either from the beginning
of the reprocessing or at a later stage to first exploit the dynamic nature of the
PFS algorithm. In general, a probabilistic decoding method is associated with two
related problems: (1) converging as quickly as possible to the optimum solution
and (2) recognizing the optimum solution that has been found and stopping the
decoding. For MLD, the PES algorithm converges faster than the OSD algorithm
to the optimum solution owing to its dynamical behavior; however, the structured
reprocessing strategy of the OSD algorithm allows us to derive a less stringent
sufficient condition for optimality of the decoded codewords. These issues are
elaborated in [25].

In this section we described a probabilistic decoding method that achieves
either a desired error performance or practically the optimal error performance of
MLD for a given range of SNR values. Also using a probabilistic approach, Dumer
proposed in [36] a general approach for soft-decision decoding that, at most, doubles
the block error probability P for MLD af all SNR values. This method has also been
extended to MLD [37]. The decoding complexity of this method is shown to be less
than that of trellis-based MLD, suggesting that probabilistic soft-decision decoding
algorithms seem to represent a promising approach for optimum or near-optimum
decoding of block codes with lengths of hundreds of bits.

Syndrome-Based Ordered Statistic Decoding Algorithm

The OSD algorithm can be formulated in terms of syndrome like the syndrome-
based MLD decoding algorithm presented in Section 10.7. Consider the parity-check
matrix H; = [P7I,_;] for the code C; generated by the permuted generator matrix
G) in the MRB given by (10.73). Again, let z be the hard-decision received vector
obtained from the permuted received sequence y. Lets = ZHIT be the syndrome of
z. Consider a set Q; of I columns of P7. Let

51 = (Sl‘(), S1,1s 07 sl,n—k—l)

be an (n — k)-tuple obtained by taking the transpose of the sum of the / vectors
in 0;. Let s = s+ 5. We form the following error vector e = (ey, ), where
er = (e10.€11, - ,e1r-1) with ey ; = 11if j € Q, and e; ; = 0 otherwise, and
e = sp. Then, v =z + e is a codeword in C. MLD is achieved by finding the error
vector e* such that v* = z 4 e* has the smallest correlation discrepancy with y.
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1. Compute the syndrom

2 Forl <l <i, i
form the vecior sum
obtain sq. From s and s,
each error vector e
discrepancy A(y, 7)
correlation discrepa

3. Start the next reproc 0 =
reprocessing phase is pleted. The recorded codeword vy, 13 the decoded
codeword.

itk
it
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This formulation of order-i re
search for the Syﬂdmnm based

In all the algorithms presented previously, the reliability information of the 1
symbols is used to reduce the search space of MLD. Tm reliability
also be used to improve the error performance of algebraic dew ling algoriihimns
while maintaining their simplicity. As a result, 2 good trade-off
performance and decoding complezity is achieved, and
methods are suitable for high-speed decoding. Now., we pr
information o decode majority-logic decodable codes. f
RM codes.

Majority-Logic Decoding of RM Codas
Channel (BSCQ)

In Section 4.2 we showed that for any nonnegative i
there exists a binary rth-order RM code, denoted by §
minimum H "ammn‘lg distance d,;; = 277", and dimension k(r, i) = Z;_
pose this RM(r, m) code is used for ervor control over the AWGH ch
BPSK ftransmission, a codeword v = (vp. v1. - - xv”‘l) 16 mapped in
sequence ¢ = {cg. ¢, -+, Cy—1) with ¢; = 2v; — 1. After tvansmission, ihe "eceiﬁ/cﬂ_z
sequence at the output of the correlation dfu, CEOF 15 T = (70, 71, -+ » Ty—1). FO¥
hard-decision decoding, r is converted into a binary sequence z = (20, 2(, -+ , Zy—1)
with z; = 0 for r < 0, and z; = 1 otherwise. For majori
set §; of check-sums for each information bit w;, 0 < j
Each check-sum 15 a modulo-2 sum of the hard-decision decoded bits z; of cer-
tain received symbols r; (see Chapier 4). For BEM codes, ¢ g i
two distinct check-sums are disjoint. The check-sums in §
pendent estimates of the information bit u;. MNext, we briefly review the main
steps of majority-logic decoding of R codes as detailed i ion 4 ,
we closely follow the approach of [38]. This approach allos

hard-decision majority-logic decoding to sofi-decision i
decoding.

; form a set of inde-

[
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For equiprobable signaling, the transmitted information bit « ; is decoded into
its estimate #; € {0, 1}, which maximizes the conditional probability P(S; | uj). Let
S;=1{A;1:1 =1 <|S;]}, where A;; denotes the /th check-sum in §;. Because the
check-sums in S; are disjoint, we obtain

1551

log (P(S; [up)) = log(P(Aj; | up). (10.93)
=1

An algorithm that maximizes (10.93) is referred to as a maximum a posteriori
probability (MAP) decoding algorithm (or simply a posteriori probability (APP)
decoding algorithm [38]). Let y; be the probability that the number of independent
errors in the check-sum A ; is odd. Then, it is shown in [38] that

1 (10.94)
=5 1= [T a-2pm|.

1€B(j)

where B;(j) represents the set of positions associated with the digits constituting the
check-sum A;/, and p; is the probability that the ith digit is in error. It is clear that
vy is simply the probability that the check-sum A} ; is different from the transmitted
information bit u ;.

For the BSC with crossover probability p; = p = Q(/2E,/Ny), v is the same
for all / and independent of ;. It follows from (10.93) that [38]

|51 5|
P(Aj.zfujzl)) <1—7/z>
el pa, 1w, =0y ) = 224~ Dlo - 10.95
E g(P(A.N lu; =0) ;2; il &\, (10.95)
Because log((1 — y;)/v) is a positive constant, the decision rule is then
[S;1
224 =1 20 (1096)
1=1

which simply compares Z}S:’I' Aj; with [S;]/2. If Zgll Aj1 > |5;1/2, we set the

estimate #; of u; to 1, and if Z;i’ll A1 < |8;1/2, we set ©i; = 0. Whenever

S . . .. . .
} :’ll Ajr = 1S;1/2, we flip a fair coin to determine # ;, which results in an erroneous

decision in half of the cases on average. This type of error dominates the error
performance. The foregoing decoding is the conventional majority-logic decoding.
We readily observe that this decoding method is exactly the same as the Reed
algorithm presented in Section 4.2,

Majority-Logic Decoding Based on Reliability Information
For the AWGN channel model, p; is defined as [38]
e—ILil

Pi



Section 10.9 Weighted Majority-Logic Decoding 441

where L; = 4r; /Ny represents the log-likelihood ratio associated with the received
symbol r;. The optimum decision rule based on (10.97) becomes computationally
expensive and depends on the operating SNR [38]. Using the approximation

[T d-2p)~1-2maxicaypi (10.98)
ieBi(j)
we obtain
e”4|"/|lm’n/N0
M e Ny (10.99)

where |r1|min = minyep,(jy{lr;1}. It follows from (10.95) that for the AWGN channel,
the decision rule based on the approximation (10.99) becomes
[S;1

T

('2/1]"/ — D) rilinin : 0. (10.100)

~

i

1

In (10.100), each term of {10.96) is weighted with the reliability value of the least
reliable digii in its corresponding check-sum. If Z}i’ll QAj =D Irilmin > 0, we

. . . S N
set the estimate i; of u; to 1, and if ‘Z}:’ll (A — V) |rilmin < 0, we set i1; = 0.

Whenever }:ﬁi’ll (2A; 1 — D) {rtlmin = 0, we flip a fair coin to determine #;; however,
the occurrence of such events becomes less and less probable as the number of
quantization levels used at the receiver increases. This decoding algorithm, referred
to as weighted majority-logic decoding, was first proposed in [39].
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FIGURE 10.13: Conventional and weighted majority-logic decoding for the (64, 22,
16) RM code.
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FIGURE 10.14: Conventional and weighted majority-logic decoding for the (64, 42, 8)
RM code.

As mentioned in Sectionl10.9.1, the error performance of the conventional
majority-logic decoding is dominated by the event Z}iﬁl Aj; = |S;1/2. In such a
case, we can break the tie by using (10.100) instead of flipping a fair coin. A simplified

version of this tie-breaking rule is obtained by simply discarding the check-sum with

the smallest reliability value whenever Zli’ll Aj; = 18;1/2 in the Reed algorithm.
Such a test requires very few additional computations.

Figures 10.13 and 10.14 depict the simulation results for conventional and
weighted majority-logic decoding of the (64, 22, 16) and (64, 42, 8) RM codes,
respectively. Conventional majority-logic decoding in conjunction with (10.100) to
break the ties is also presented. We observe that both soft-decision approaches
provide significant coding gains over conventional majority-logic decoding while
maintaining its simplicity and decoding speed.

Another version of weighted majority-logic decoding based on the parity-check
sums computed from a parity-check matrix of a one-step majority-logic decodable
code will be presented in Chapter 17.

ITERATIVE RELIABILITY-BASED DECODING OF ONE-STEP MAJORITY-LOGIC
DECODABLE CODES
lterative MAP-Based Decoding

Suppose a one-step majority-logic decodable code (see Chapter 8), or a low-density
parity-check (LDPC) code (an LDPC code is defined as the null space of a
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parity-check matiix & with low density of nonzero entries (or 1's). that is, a sparsc
matrix [45]) (see Chapter 17) is used for error control over an AWGN channel.
Then, this code can be decoded based on the approach presented in Section 10.9.2.
In general, the algorithm computes the a posteriori probability P(S; | v;) associated
with each bit v, 0 <i <n — 1, from the corresponding a priori probabilities p;
based on (10.93) and (10.94). Because for the classes of codes considered, this
decoding is completed in one step, a natural extension is to use the set of a posteriori
prebabilities P(5; | v;) as new a priori probabilities p; and 1o repeat the entire
process. As a result, we obtain a simple iterative decoding method based on the
following general procedure. Lei Ju.y denote the maximum number of iterations to
be performed:

1. Consiruct the hard-decision received seguence z from r.
q

2. Initialize the decoding process by setting pfo) =pifori=0.1,...,n—1, and
o _
zYV =1z,

&4

3. For j=1,2, ..., Jmax

a. compute p'/) = (p(()]). pi‘”, R Pz(z]—)l) as the vector of a posteriori error

probabilities using pl/~ D as the vector of a priori error probabilities;
b. if p/) > 05, then set z/) =V V@1 and p =1 - p for i =
0.1,....0n—1.

4, Set the estimated word v* = z{Jma),

In this iterative algorithm the average number of iierations can be reduced by
checking at the end of each step j whether the syndrome computed from z'/) is zero.
In this case, we can directly set v* = z/),

For the algorithm presented in Section 10.9.2 based on (10.100), we obtain the
following iterative procedure:

1. Construct ihe hard-decision received sequence z from r.
2. Set |ri(0)| = |r;
3 For j =1,2... . Jyar. for 0 <i <n—1,and for 1 <! < |55, compute the

check-sums A, ; based on the values 2l 71)’5, and identify

H

i=0.1.... .. n—~1,andz® =z

G- : (=1
7’,‘4; lmin = MWl e i\ il m] I}

Then, compute
(j) ® EL' oy
=1 ) (A — A
=1

NG A VI
vy lmins

where A4; represents the complementary value of the check-sum A; ;.
If ri(") < 0, then set z,(»]) =V g1

1

4. Set the estimated word v* = z(fwa),

This algorithm represents the simplest implementation of iterative soft-decision
decoding of either one-step majority-logic decodable codes or LDPC codes. Because
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this algorithm is independent of the operating SNR, it is referred to as the uniformly
most powerful (UMP) MAP-based decoding algorithm. Other iterative decoding
algorithms based on the same general approach have been proposed in [40-42]. In
general, such algorithms converge with relatively few iterations (say, between 10
and 20) but have a nonnegligible error performance degradation with respect to
optimum MLD or MAP decoding owing to the increasing correlations between the
decisions made at each step.

To reduce the effects of correlated decisions, it was proposed in [43] to
combine this approach with variable threshold decoding. In the algorithm of [43],
only the most likely errors (i.e., those whose associated a posteriori probabilities
are larger than a certain threshold) are corrected, and the variable threshold is
reduced during the decoding iteration process. As a result, the error performance
improves at the expense of a larger number of iterations. A second approach,
which almost eliminates correlations between decisions made at successive steps, is
presented next.

10.10.2 [terative Belief-Propagation-Based Decoding

We first use a simple example to illustrate the correlations between decisions made
at successive iteration steps. Consider three check-sums defined by three codewords
of Hamming weight 2, v{ = (v1,0, v1,1, -+ - V1,n-1), V2 = (02,0, V2.1, - , V2.4-1), and

= (v30,v31, ", U3,-1), in the dual code, with vy ; = vy =1, v3; = va, =1,
and v3; = v3, = 1. At the jth iteration, the general algorithm presented in
Section 10.10.1 computes

P = Fe + (o F ). (10.101)
P = e+ (Fel ™+ r ™), (10.102)

where f (-) and f(-) are two functions defined by the specific algorithm considered.
Similarly, at the (j + 1)th iteration, we have

P = F0O) + (10 + 1)
) ] ’ (10.103)
= Fe + (£ (Fo™ + ™D + 1§ ) + 1),

Because the a posteriori probability p,’ “) for bit vy at the jth iteration is evaluated
based on some information from bit v;, as shown in (10.102), this value becomes
correlated with p(o) As a result, p(O) and p(] ) can no longer be assumed to be
independent when used to evaluate pf’ D , as shown in (10.103).

To overcome this problem, for each position-i, 0 <i < n —1,[S;| a posteriori

probabilities p(j ) rather than one are computed at the jth iteration, where for

Ay e S, pl’l represents the a posteriori probability obtained by considering the

1Si] — 1 check-sums other than A;; in S;. For simplicity, in this particular example
we represent instead with p(] ) the a posteriori probability obtained by discarding
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the check-sum of S; containing bit v;. As a result, (10.101) and (10.102) become
i =T+ £,
P = F™ + s ),
pl = F o™+ rolm.
p) = Fe + re ),
and (10.103) is replaced with
Pyt = M+ 1D,
P = F™ + foh (10.104)
= FeM + £ (Fe™ + 1Y)

Hence, no correlated values appear in (10.104). If a decision about bit v; has to be
made at the (j + Dih iteration, then the a posteriori probability

P9 = 7+ r Dy + £ U

is considered, as it contains all available information evaluated separately about
bit v;. The general form of this algorithm is known as the belief propagation (BP)
algorithm and was introduced in [44]; however, the application of this algorithm
to decoding LDPC codes can be found in [45] and was recently described as an
instance of the BP algorithm in [46—48]. A good description of this algorithm can
be found in {46]. The BP approach also can be applied to the decoding of one-step
majority-logic decodable codes [50].

For LDPC codes, a simplified version of the BP algorithm based on the
approximation (10.99) has been proposed in {49]. This algorithm can be summarized
as follows:

1. Foreachi,0<i <n-—1,andeachl, 1 <[ <|S;|, the hard decisions zfoi) and
z§0> are miﬁalized with the hard-decision decoding z; of the received symbols
riyalso [r”| = |r;|, and for each 1,1 <1 < |S;], Ir “”1 =0

2. The jthiteration with 1 < j < Jy, consists of the following steps:

2. Foreachi,0 <i <n—1andeachl,1 <! < |§;|, evaluate the check-sums

Au=0"Pa| ST 0, (10.105)
e B\
and identify A
7 lmin = min {17 (10.106)

eBONE T
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b. Foreachi,0 <i <n—1,andeachl, 1 <1 < |S;], compute

. 0 — B i P Y ]
PO+ S R = A Dl (10.107)
A reSi\Aig
e. For each i, compute
)L S )
rD = 1O+ Et = A i, (10.108)
=1

d. Form 20 = (¢, 2", .-+ .2 such that 2’ = if r”’ > 0, and

z;j) = zfo) @ 1if rim < 0.
e. Foreachi,0 <i <n-1,andeachi,1 <[ <|S;|, evaluate zfﬁ) such that
2 =200t > 0,and ) =" @ 1if r{) < 0.

3. Set the estimated word to v* = zmav),

This algorithm is referred to as the UMP BP-based decoding algortthm, as it is
independent of the operating SNR. In general, it improves the error performance
of the algorithm presented in Section 10.10.1 at the expense of a larger number
of iterations. Figures 10.15 and 10.16 show the bit-error performance for iterative

10° ]
10*1 g —
42‘ 10*2 . -]
z
< AN
g N
‘54 10*3 | \\\ |
§ ————— N
5 —-— :UMP BP-based decoding N
= .| —— :BPdecodin R
ST g N -
Y
Y
R
i x : 50 iterations N
-5 N |
10 0 :200 iterations \\
\\
a
10-6 [ | ! ! | | 7 !

0 05 1 15 2 25 3 35 4 45
E,/N, (in dB)

FIGURE 10.15: Error performance for iterative decoding of the (504,252) LDPC code
with BP, UMP BP-based, and UMP APP-based decoding algorithms, and at most
50 and 200 iterations.
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FIGURE 10.16: Error performance for iterative decoding of the (1008, 504) LDPC
code with BP, UMP BP-based, and UMP AFP-based decoding algorithms, and at
most 50 and 200 iterations.

decoding of the (504, 252) and (1008, 504) LLDPC codes (constructed by computer
search), respectively, with the BP, UMP BP-based, and UMP APP-based decoding
algorithms, and at most 50 and 200 iterations. The (504, 252) LDPC code has three
check-sums of weight 6 orthogonal on each position, and the (1008, 504) LDPC code
has four check-sums of weight 8 orthogonal on each position. We observe that the
error performance of the simplified UMP BP-based algorithm is close to that of the
BP algorithm and achieves a significant gain over the UMP APP-based decoding
algorithm of Section 10.10.1; however, the number of required iterations is quite
large, and little improvement is observed by increasing the number of iterations
from 50 to 200 for BP-based decoding algorithms.

Construction of LDPC codes and various algorithms for decoding LDPC codes
will be discussed in Chapter 17.

PROBLEMS

10.1 Prove the sufficient condition for optimality of a codeword given by (10.47).
10.2 Consider the value G(v1, wy; v2, wy) given in (10.46).

a. Discuss G(v, wiy; v2, w1) in the case where the codeword delivered by an
algebraic decoder is known. What is the problem in trying to use this result for
all received sequences?

. Discuss G(vy, wy; 72, wy) for vi = vy.

10.3 GMD decoding considers only |(dym + 1)/2] erasures in the dy;, — 1 LRPs.

Explain why not all d,,;;, — 1 possible erasures are considered.
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16.4 Consider an (n, k) binary linear code with even minimum distance d,;i,. Show
that it is possible to achieve the same error performance as for the conventional
Chase algorithm-Z by erasing one given position among the {dy,;, /2| least reliable
positions (LRPs) of the received sequence and adding to the hard-decision
decoding of the received sequence r all possible combinations of 0’s and 1’s in the
remaining {dp; /2] — 1 LRPs.

10.5 Consider an error-and-erasure algebraic decoder that successfully decodes any
input sequence with ¢ errors and s erasures satisfying s -+ 2t < d,y;, and fails to
decode otherwise. Define S,(a) as the set of candidate codewords generated by
the algorithm A, (a) presented in Section 10.4. Fora =1, - - -, [dinin /2] — 1, show
that S.(a) € S.(a + 1).

10.6 In the KNIH algorithm presented in Section 10.6, show that any codeword v in
J(i) rather that the one that has the smallest correlation discrepancy with the
received sequence r can be used for evaluating G, (v). Discuss the implications of
this remark (advantages and drawbacks).

10.7 In the RLSD algorithm presented in Section 10.7, show that there exists at most
one (n — k)-pattern that is not (n — k — 1)-eliminated.

16.8 For the RLSD algorithm presented in Section 10.7, determine the complete
reduced list for the (15, 11, 3) Hamming code.

10.9 Determine the complete reduced list for the (8, 4, 4) extended Hamming code.
Show that this complete list can be divided into two separate lists depending on
whether the syndrome s is a column of the parity check matrix H. (Hint: Each list
is composed of five distinct patterns).

10.1¢ In the RLSD algorithm presented in Section 10.7, prove that all n(v)-patterns
with n(v) > n — k can be eliminated from all reduced lists. For n(vl) < n(v),
determine an n(v )-pattern that justifies this elimination.

10.11 Let C and C; be the two codes defined in Section 10.8.1. Explain why if ¢ is the
decoded codeword in Cy, then 7, 1”2— %] is simply the decoded codeword in C.

10.1Z Prove that the most reliable basis and the least reliable basis are information sets
of a code and its dual, respectively.

10.13 Prove that order-1 reprocessing achieves maximum likelihood decoding for the
(8,4,4) RM code.

19.14 Which order of reprocessing achieves maximum likelihood decoding of an (n, n —
1, 2) single parity-check code? Based on your answer, propose a much simpler
method for achieving maximum likelihood decoding of single parity-check codes.

19.15 Describe the types of errors that can be corrected by Chase algorithm-2, but not
by order-i reprocessing.

10.16 Assume that an rth-order RM code RM(r, m) is used for error control.

a. Show that all error patterns of weight at most ¢, as well as all error patterns of
weight ¢ + 1 with one error in a given position can be corrected.

. Assuming reliability values are available at the decoder, propose a simple
modification of majority-logic decoding (Reed algorithm) of RM(r, m) RM
codes in which the error performance can be improved based on (a).
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