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Constructing and representing codes with graphs have long been interesting prob-
lems to many coding theorists. The most commonly known graphical representation
of a code is the trellis representation. A code trellis diagram is simply an edge-labeled
directed graph in which every path represents a codeword (or a code sequence for
a convolutional code). This representation makes it possible to implement maxi-
mum likelihood decoding (ML.D) of a code with a significant reduction in decoding
complexity. Trellis representation was first introduced by Forney [1] in 1973 as a
means of explaining the decoding algorithm for convolutional codes devised by
Viterbi [2]. This representation, together with the Viterbi decoding algorithm, has
resulted in a wide range of applications of convolutional codes for error control in
digital communications.

Trellis representation of linear block codes was first presented by Bahl, Cocke,
Jelinek, and Raviv [3] in 1974. The first serious study of trellis structure and trellis
construction of linear codes was due to Wolf. In his 1978 paper [4], Wolf presented
the first method for constructing trellises for linear block codes and proved that an n-
section trellis diagram of a g-ary (n, k) linear block code has at most g™™.7—k} states.
Right after Wolf’s work, Massey presented a simple but elegant paper [5] in which
he gave a precise definition of a code trellis, derived some fundamental properties,
and provided some implications of the trellis structure for encoding and decoding
of codes; however, these early works in trellis representation of linear block codes
did not arouse much enthusiasm, and for the next 10 years, there was basically no
research and development in this area. It was Forney’s paper in 1988 [6] that aroused
enthusiasm for research in trellis structure of linear block codes. In this paper,
Forney showed that some block codes, such as RM codes and some lattice codes,
have relatively simple trellis structures. Motivated by Forney’s work and the desire to
achieve MLD for linear block codes to improve error performance over traditional
hard-decision algebraic decoding, researchers made significant efforts to study the
trellis structure and to devise trellis-based decoding algorithms for linear block
codes. Developments have been dramatic and rapid, and new results are exciting.

This chapter gives an introductory coverage of trellises for linear block codes
with a simple and unified approach. For further study, the readers are referred to
the bibliography at the end of this chapter.

9.1 FINITE-STATE MACHINE MODEL AND TRELLIS REPRESENTATION OF A CODE

Any encoder for a code C, block or convolutional, has finite memory that stores
information of the past. Suppose the information symbols are shifted into the
encoder serially, and the coded symbols are shifted out of the encoder serially. As
the information symbols are shifted into the encoder they are stored in the memory
for a certain finite period of time (or interval). The stored information symbols in
the memory affect the output code symbols. Let " = {0, 1, 2, ...} denoie the entire
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encoding interval (or span) that consists of a sequence of encoding time instants. The
interval between two consecutive time instants is defined as a unif encoding interval.
During this unit encoding interval, code symbols are generated at the output of the
encoder based on the current input information symbols and the past information
symbols that are stored in the memory, according to a certain encoding rule. There-
fore, the information symbols stored in the memory at any encoding time define
a specific stare of the encoder at that time instant. More precisely, the siate of the
encoder at time-i is defined by those information symbols, stored in the memory at
time-i, that affect the current output code symbols during the interval from time-7 to
time-({ 4+ 1) and future output code symbols. Because the memory has finite size, the
compositions of the stored information symbols are {inite; that is, at any time instant,
the encoder has only a finite number of allowable states. As new information symbols
are shifted into the memory some old information symbaols may be shifted out of the
encoder, and there is a transition from one state {0 another state—a state iranisition.
With these definitions of a state and a state transition, the encoder can be modeled
as a finite-state machine (finite automata), as shown in Figure 9.1. Then, the dynamic
behavior of the encoder can be graphically represented by a state diagram in time,
called a trellis diagram (or simply trellis), as shown in Figure 9.2, that consisis of levels
of nodes and edges connecting the nodes of one level to the niodes of the next level.

At time-0, the encoder starts from some specific initial state, denoted sg. At
time-i, the encoder resides in one and only one allowable state in a finite set. In the
trellis diagram, the set of allowable states at time-/ is represented by a set of nodes
(or vertices) at the ith level, one for cach allowable state. Hereafter, we use the terms
state, node, and vertex interchangeably. The encoder moves from one allowable state
at one time instant to another allowable state at the next time instant in one unit of
time. This state transition, in the trellis diagram, is represented by a directed edge
(commonly called a branch) connecting the starting state io the destination state.
Each branch is labeled with the code symbols that are generated during the state
transition. Therefore, each branch has a label. The set of allowable states at a given
time instant i is called the state space of the encoder at time-i, denoted by Z,;(C).
A state s; € %;(C) is said to be reachable il there exists an information sequence
that takes (drives) the encoder from the initial state sp to state s; at time-i. Every
state of the encoder is reachable from the initial state so. In the trellis, every node
at level-i for i € ' is connected by a path (defined as a sequence of connected

Memory A |
. (state s;) B T
N
. N
I ‘ B
b
— !
Input : :
. . | | O
Combinational [ !
——— logic >
circuit Output

FIGURE 9.1: A finite-state machine model for an encoder with finite memory.
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FIGURE 9.2: Trellis representation of a finite-state encoder.

branches) from the initial node. The label sequence of this path is a code sequence
{or a prefix of a code sequence). Every node in the treliis has at least one incoming
branch except for the initial node and at least one outgoing branch except for a
node that represents the final state of the encoder at the end of the entire encoding
interval. Encoding of an information sequence is equivalent to tracing a path in
the trellis starting from the initial node sg. If the encoding interval is semi-infinite,
the trellis continues indefinitely; otherwise it terminates at a final node, denoted by
s r. Convolutional codes have semi-infinite trellises (to be discussed in Chapter 12),
whereas the trellises for block codes terminate at the end of the encoding interval.
In this graphical representation of a code, there is a one-to-one correspondence
between a codeword (or code sequence) and a path in the code trellis; that is, every
codeword is represented by a path in the code trellis, and conversely, every path in
the code trellis represents a codeword. This trellis representation of a code makes
it possible to implement MLD with a significant reduction in decoding complexity.
This topic will be discussed in later chapters on trellis-based soft-decision decodings.

Fori e I, let [; and O; denote the input information block and its correspond-
ing output code block, respectively, during the interval from time-i to time-(i + 1).
Then, the dynamic behavior of the encoder for a linear code is governed by two
functions:

1. Output function:
O; = filsi, 1),
where fi(s;, I}) # fi(si, I)) for I; # 1.
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2. State transition function:
Sip1 = gilsi, L),

where s; € Z;(C) and 5,51 € Z;41(C) are called the current and next states,
respeciively.

In the trellis diagram for C, the current and next states are connected by an edge
(si, 5i11) labeled with O;.

A code trellis is said to be time-invariant if there exists a finite period
{0,1,..., v} C T and a state space () such that

L Z,( )T for0<i <v,and Z,(C) = 2(C) fori > v, and
2. fi=fandg =gforalli el

A code trellis that is not time-invariant is said to be fime-varying. A trellis diagram
for a block code is, in general, time-varying; however, a trellis diagram for a
convolutional code is usually time-invariant. Figures 9.3 and 9.4 depict a time-
varying trellis diagram for a block code and a time-invariani trellis diagram for a
convolutional code, respectively.

FIGURE 9.4: A time-invariant trellis diagram for a convolutional code.
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In this chapter we are concerned only with trellises for binary linear block
codes. Trellises for convolutional codes will be discussed in Chapter 12.

9.2 BIT-LEVEL TRELLISES FOR BINARY LINEAR BLOCK CODES

In this section we develop the basic concepts, structural properties, and construction
of the primitive bit-level trellises for binary linear block codes.

Consider a binary (n, k) linear block code C with generator and parity-check
matrices, G and H, respectively. During each encoding interval I, a message of &
information bits is shifted into the encoder memory one bit at a time and encoded
into a codeword of n code bits. The n code bits are formed and shifted onto the
channel in n bit times. Therefore, the encoding span I' is finite and consists of n + 1
time instants,

r={0,1,2,...,n}

Let v = (vg, v1, ..., v,—1) be the codeword generated at the output of the encoder.
The code bit v; is generated during the bit interval from time-i to time-(i 4 1). We
can represent C with an n-section trellis diagram over the time span I', in which
every branch is labeled with a single code bit. Let E(C) denote the encoder for C.

DeriniTion 9.1 An s-section bit-level trellis diagram for a binary linear block
code C of length n, denoted by T, is a directed graph consisting of n + 1 levels
of nodes (called states) and branches (also called edges) such that:

1. For 0 <i < n, the nodes at the ith level represent the states in the state
space %;(C) of the encoder E(C) at time-i. At time-0 (or the zeroth level)
there is only one node, denoted by s, called the initial node (or state).
At time-n (or the nth level), there is only one node, denoted by s, (or
sy ), called the final node (or state).

2. For 0 < i < n, a branch in the section of the trellis T between the
ith level and the (i + 1)th level (or time-i and time-(i + 1)) connects a
state 5; € Z;(C) to a state s;.1 € X;+1(C) and is labeled with a code bit
v; that represents the encoder output in the bit interval from time-i to
time-(i + 1). A branch represents a state transition.

3. Except for the initial node, every node has at least one, but no more
than two, incoming branches. Except for the final node, every node has
at least one, but no more than two, ouigoing branches. The initial node
has no incoming branches. The final node has no outgoing branches.
Two branches diverging from the same node have different labels; they
represent two different transitions from the same starting state.

4. There is a directed path from the initial node sg to the final node sy
with a label sequence (vg, vy, ..., v,—1) if and only if (vg, vy, ..., vy_1) 18
a codeword in C.

Two states in the code trellis are said to be adjacent if they are connected by a
branch. During one encoding interval I, the encoder starts from the initial state sg,
passes through a sequence of states

(50,81, -5 Sy .01 SF),
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generates a code sequence
(We, V1. ooy Uiy oo, V1),

and then reaches the final state s;. In the trellis, this sequence is represented by a
path connecting the initial node sq to the final node s;.

Figure 9.3 depicts the 8-section bit-level trellis diagram for the (8, 4) RM code
of minimum distance 4.

For 0 < < n,let |%;(C)] denote the cardinality of the state space Z;(C). Then,
the sequence

(Zo(O)]. 121 (C)]. - . -, 12 (O], 12 (O

is called the siate space complexity profile, which 1s a measure of the staie complexity
of the n-section bit-level code trellis 7. We will prove later thatfor 0 <i <, |Z;(C)|
is a power of 2. We define

pi(C) £ Tog, [ZH(O)].

which is called the state space dimension at time-i. When there is no confusion, we
simply use p; for p; (C) for simplicity. The sequence

(/OO* /Ola DR /OIZ)

is called the siate space dimension profile. Because |Zo(C)| = |Z,(C) =1, pp =
on = 0. From Figure 9.3 we find that the state space complexity profile and the
state space dimension profile for the (8,4) RM code are (1,2,4,8,4,8,4,2,1) and
0,1,2,3,2,3,2,1,0), respectively.

To facilitate the code trellis construction, we arrange the generator matrix G
in a special form. Let v = (vg, v2, ..., v,—1) be a nonzero binary n-tuple. The first
nonzero component of v is called the leading 1 of v, and the last nonzero component
of v is called the trailing 1 of v. For example, the leading and trailing 1’s of the
8-tuple (0,1,0,1,0,1,0,1,0) are v and vg. A generator matrix G for C is said to be
in trellis oriented form (TOF) if the following two conditions hold:

L. The leading 1 of each row of G appears i a column before the leading 1 of
any row below it.

2. No two rows have their trailing 1’s in the same column.

Any generator matrix for C can be put in TOF by iwo steps of Gaussian elimination
(or elementary row operations). Note that a generator matrix in TOF is not
necessarily in systematic form.

EXAMPLE 9.1

Consider the first-order RM code of length 8, RM(1, 3). It is an (8, 4) code with the
following generator matrix:

G =

oo o
—_ O -
O =D
W e =N
OO =
[ W G
O b it
= e e e
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1t is not in TOF. By interchanging the second and the fourth rows, we have

11111111
G — 010106101
0 6110011
00001111

We add the fourth row of the matrix to the first, second, and third rows. These
additions result in the following matrix in TOF:

g0 11110000
lm | |01 011010

GTOGM“g2“00111100’
g3 00001111

where TOGM stands for trellis oriented generator matrix.

In the following development of trellises for codes, we need to establish
the correspondence between digit {or bit) positions and encoding time instants in
'=1{0,1,2,...n},as shown in Figure 9.5. For a codeword v = (vg, v{, ..., Uy—1), the
ith code digit v; is generated in the interval between the time instant i and the time
instant i + 1. Therefore, the ith bit position corresponds to time-i and time-(i + 1).

Let g = (g0.81..-..8:—-1) be a row in Grogy for code C. Let ¢(g) =
{i,i +1,...,j} denote the smallest index interval that contains all the nonzero
components of g. This says that g; = 1 and g; = 1, and they are the leading and
trailing 1’s of g, respectively. This interval ¢(g) = {i,i + 1, ..., j} is called the digit
(or bir) span of g. From Figure 9.5 we see that ¢(g) occupies the time span from
time-i to time-(j + 1); that is, {i,i + 1....,j + 1}. In terms of time, we define the
time span of g, denoted by 7(g), as the following time interval:

e 2 it 1) (9.1)

For simplicity, we write ¢ (g) = [i, j]. and t(g) = [i, j + 1]. Next, we define the active
time span of g, denoted by t,(g), as the time interval

A [i +1,j] for j > i

= ’ . 2

e { ¢(empty set), for j =i. (9.2)
Time 0 1 2 i i+ 1 n—1 n
¥ § { | | ‘ ‘
| | ! | | ! |
I i { | | ! !
| i { 1 | ! !
: v : v : [ : : ” :
@ : i : © @0 _‘@'—',—@_ - _@_.”Al @
l | | l i ]
1 i 1 ' l !
| | l ! ! |

FIGURE 9.5: Time instants and code digit positions.
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EXAMPLE 9.2

Consider the TOGM of the (8, 4) RM code given in Example 9.1.

We find that the bit spans of the rows are ¢(gy) = [0, 3], ¢(g1) = [1,6],
d(2) = [2,5], and ¢(g3) = [4,7]. The time spans of the rows are t(gy) = [0, 4],
t{g1) = [1,7], t(g) = [2, 6], and t(g3) = [4, 8]. The active time spans of the rows
are 7,(g) = [1, 3], 7, (g1) = [2, 6], ta(z2) = [3, 5], and . (g3) =[5, 7].

Time — O 1 2 3 4 5 6 7 &
2 111100 00 00 0]
Groey=| & | =110 1000 Ly 1l 0 1 0]
ooM ! | | ! 1 | I | Lo
&2 b0 0 1 1 1 1 00 0
LBy Lo:()?()@‘l:i'i'lJ{
Bit — 0 1 2 3 4 5 6 7
position
Letgy, @1, ....8—1 bethe krows of a TOGM Groga for an (a, k) linear code
C with
& = (810, 811> -+ » 81.n—1)
for 0 <[ < k. Then
&0 800 go1 g2 ... 80m-1
&1 g10 811 812 --- 8ln-1
Groom = : = . . A . (9.3)
8r—1  8k-1,0 8k-11 8k-12 --- 8k—ln-i

Let (ap. a1, . . ., ax—1) be the message of k information bits to be encoded. From (9.3)
(or (3.3)), we find that the corresponding codeword is given by

v = (Vg, V1, ..., VUp—1)

2o
&1
= (ag, ay, ..., Gg—1) - : (9.4)

8r—-1

=ap- -8 +ar- &+ +ar—1- 81

We see that the /th information bit ¢ affects the output codeword v of the
encoder E(C) over the bit span ¢(g) of the /th row g of the TOGM Grogum.
Suppose ¢(g) = [i, j]. Then, the information bit ¢; affects the output code bits
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Vi, Vigi, - -, vy from time-i to time-(j + 1). At time-i, the input information bit 4; is
regarded as the current input. At time-(i + 1), a; is shifted into the encoder memory
and remains in the memory for j — i units of time. At time-(j + 1), it will have
no effect on the future output code bits of the encoder, and it is shifted out of the
encoder memory.

Now, we give a mathematical formulation of the state space of the n-section
bit-level trellis for an (n, k) linear code C over GF(2) with a TOGM Groau-

Attime-i, 0 <i < n, we divide the rows of Grpgjy into three disjoint subsets:

1. Gf’ consists of those rows of Grogy whose bit spans are contained in the
interval [0, — 1].

2 G,f consists of those rows of Grpgy whose bit spans are contained in the
interval [i,n — 1].

3. &7 consists of those rows of &G7oGy whose active time spans contain time-i.

EXAMPLE 9.3

Consider the TOGM Grogyy of the (8, 4) RM code given in Example 9.2. At time-2,
we find that

G =¢, G] ={m.&), G =z ul
where ¢ denotes the empty set. At time-4, we find that

G = (). G} =g} G)=lg. &}

Let A7, A,.f, and A! denote the subsets of information bits, ag, a1, -+ , ax—1,

that correspond to the rows of G, G/, and G?, respectively (see (9.4) for the
correspondence). The information bits in Af’ do not affect the encoder outputs after
time-i, and hence they become the past with respect to time-i. The information bits
in A;f affect the encoder outputs only after time-i. Because the active time spans of
the rows in G contain the time instant ¢, the information bits in A} affect not only
the past encoder outputs up to time-i but also the future encoder outputs beyond
time-i. Therefore, the bits in A} are the information bits stored in the encoder
memory that affect the current output code bit v; and the future output code bits
beyond time-i. These information bits in AY hence define a state of the encoder
E(C) for the code C at time-i. Let

pi = 45| =G

Then, there are 27 distinct states in which the encoder E(C) can reside at time-i;
each state is defined by a specific combination of the p; information bits in A]. These
states form the state space Z;(C) of the encoder E(C) (or simply of the code C).
The parameter p; is hence the dimension of the state space X;(C). In the trellis
representation of C, the states in %;(C) are represented by 27 nodes at the ith level
of the trellis. The set A is called the state defining information set at time-i.

From the preceding analysis we see that at time-i for 0 <i < n, the dimension
pi of the state space %;(C) is simply equal to the number of rows in the TOGM
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TABLE 9.1: Partition of the TOGM of the (8, 4) RM code.

Time
i G? G/ G pi
0 ¢ {20, 21, &2, 3} ¢ 0
1 ¢ {g1, 2. g3} {Zo} 1
2 ¢ {2, 23} {go. 21} 2
3 ¢ {23} {go.21. 21 3
4 {go} {g3} {g1. 22} 2
5 {Zo) @ {g1. 2.8 | 3
6 {go, 22} ® {g1, 83} 2
7 (0. 21, 22} ¢ {3} 1
8 | {g0. &1, &, g3} ¢ ¢ 0

Grogm of C whose active time spans contain time-i. We say that these rows are
active at time-i. Therefore, from the TOGM Grogy we can easily determine the
state space dimension profile (pg, p1, -, pn) simply by counting the number of
rows in Grogp that are active at time-i for 0 <i < n.

EXAMPLE 9.4

Again consider the TOGM Grogyys of the (8, 4) RM code given in Example 9.2. The
partition of the TOGM at each time instant in T = {0,1.2,3.4,5,6,7, 8} is given
in Table 9.1. Counting the number of rows of Grogy that are active at time-i for
0 < i < 8, we obtain the state space dimension profile (0, 1,2, 3,2, 3,2, 1, 0) for the
8-section trellis of the (8, 4) RM code.

For 0 < i < n, suppose the encoder E(C) is in state s; € Z;(C). From time-i
to time-(i + 1), E(C) generates a code bit v; and moves from state s; to a state
si+1 € 2i11(0). Let

@ (1)

={g g .8 (9.5)

and ‘
AS = {a{”, ag), e ag’_)}, (9.6)
where p; = |G{| = |A]|. The current state s; of the encoder is defined by a specific

combination of the information bits in A?.

Letg" denote the row in Gf whose leading 1 is at bit position i. The uniqueness
of this row g* (if it exists) is guaranteed by the first condition in the definition of a
generator matrix in TOF. Let g7 denote the ith component of g*. Then, gf = 1. Let
a* denote the information bit that corresponds to row g*. It follows from (9.3) and
(9.4) and the structure of the TOGM Grogu that the output code bit v; generated
during the bit interval between time-i and time-(i 4 1) is given by

vi=a —{—Zam o]('l), 9.7)
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where g ) is the ith component of gl(” in G}. Note that the information bit a* begins
to affect the output of the encoder E(C) at tlme -i. For this reason, bit a* is regarded
as the current input information bit. The second term in (9.7) is the contribution from
the state 5; defined by the information bits in A} = {ai'), aé’), .. ap,) } that are stored
in memory. From (9.7) we sece that the current output v; is umquely determined
by the current state s; of the encoder E(C) and the current input information bit
a*. The output code bit v; can have two possible values depending on the current
input information bit ¢*; each value takes the encoder E(C) to a different state at
time-(i + 1); that is, there are two possible transitions from the current state s; to two
states in X; 1(C) at time-(i 4+ 1). In the code trellis 7 for C, there are two branches
diverging from the node s;, labeled with 0 and 1, respectively.

Suppose there is no such row g* in Gif . Then, the output code bit v; at time-i
is given by

Za(') gl (9.8)

In this case we may regard that the current input information bit a* is being set to 0;
that is, ¢* = 0 (this is called a dummy information bit). The output code bit v; can
take only one value given by (9.8), and there is only one possible transition from
the current state s; to a state in X, 1(C). In the trellis T, there is only one branch
diverging from the node s;.

From the preceding analysis we see that the output function of the encoder
E(C) is given by either (9.7) or (9.8). This result shows the time-varying nature
of the output function of a linear block code encoder and hence the time-varying
nature of the code trellis.

EXAMPLE 9.5

Consider the (8, 4) RM code with its TOGM Grogas given in Example 9.2. From
Table 9.1 we find that at time-2, G¥ = ¢, G{ = (g2, g3}, and G5 = {go, g1}. Therefore,
A5 = {ag, a1}, the information bits ag and a; define the state of the encoder at time-2,
and there are four distinct states defined by four combinations of values of ap and
ay, {00, 01, 10, 11}. We also find that g* = g,. Hence, the current input information
bit at time-2 is a* = ay. The current output code bit v; is given by

v =[a|+ao-gn +a g

:+a0~1+a1-0
@)+

where denotes the current input. For every state defined by ag and aq, vy has
two possible values depending on a;. In the trellis there are two branches diverging
from each state at time-2, as shown in Figure 9.3. Now, consider time-3. For i = 3,
we find that G£ = ¢, G] = (g3}, and G} = {go, g1, &). Therefore, A} = {ag, a1, a2},
and the information bits in A5 define eight states at time-3, as shown in Figure 9.3.
There is no row g* in G‘?’: with leading 1 at bit position i = 3. Hence, we set the
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current input information bit a* = 0. The output code bit v3 is given by (9.8),
V3 =dag-go3t+a1- 813+ a2 g3

vy=ag-1+a-14+a-1

=gqag -+ ay +ag.

In the trellis, there is only one branch diverging from each of the eight staies, as
shown in Figure 9.3.

So far, we have formulated the state space and determined the output function
of a linecar block code encoder £(C). Next we need to determine the state transition
of the encoder from one time instant to another.

Let g denote the row in G} whose trailing 1 is at bit position-¢, that is, the ith
component g? of g’ is the last nonzero component of g¥. (Note that this row g0 may
not exist.) The uniqueness of the row g° (if it exists) is guaranteed by the second
condition of a generator matrix in TOF. Let a® be the information bit in AS that
corresponds to row g’. Then, at time-(i + 1),

L= G\ U g} (9.9)
and
L= (AN U et (9.10)

The information bits in AJ 41 define the state space X;11(C) at time-(i + 1). The
change from A} to A7 | defines the state transition of the encoder E(C) from the
current state s; defined by A] to the next state s defined by A7, ;. We may regard
the information bit a¥ as the oldest information bit stored in the encoder memory at
time-i. As the encoder E(C) moves from time-i to time-(; + 1), a® is shifted out of
the memory and ¢* (if it exists) is shifted into the memory.

The state defining sets A] and A7, |, and the output functions given by (9.7)
and (9.8), provide all the information needed to construct the n-section bit-level
trellis diagram 7 for the (n, k) code C.

The construction of the n-section trellis T' is carried out serially, section by
section. Suppose the trellis has been constructed up to section-i (i.e., from time-0 to
time-i ). Now, we want to construct the (i + 1)th section from time-i to time-(i + 1).
The state space 2;{C) is known. The (i + 1)th section is constructed as {ollows:

1. Determine Gj; and A}, from (9.9) and (9.10). Form the state space Z;11(C)
at time-(i + 1).

2. For each state s; € %;(C), determine its state transition(s) based on the change
from A} to A7 ;. Connect s; to its adjacent state(s) in X;41(C) by branches.

3. For each state transition, determine the output code bit v; from the output
function of (9.7) or (9.8), and label the corresponding branch in the trellis
with Vi
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EXAMPLE 9.6

Consider the (8, 4) RM code with its TOGM Grocy given in Example 9.2. Suppose
the trellis for this code has been constructed up to time-4. At this point, we find
from Table 9.1 that G} = {g1, g}. The state space X4(C) is defined by A] = {ay, az}.
There are four states at time-4, which are determined by the four combinations of
a1 and ap: {(0,0), (0, 1), (1,0), (1, 1)}. To construct the trellis section from time-4 to
time-5, we find that there is no row gO in G} = {g;, g}, but there is a row g* in

Gé{ = {gs}, which is g3. Therefore, at time-5, we have

Gs = {g1, &, g3}

and
AL = {a1, a2, az).

The state space X5(C) is then defined by the three bits in AS. The eight states in Xs(C)
are defined by the eight combinations of aj, ap, and as: {(0,0, 0), (0,0, 1), (0, 1, 0),
0,1,1), (1,0,0), (1,0, 1), (1, 1,0), (1, 1, )}. Suppose the current state s4 at time-4
is defined by (a1, az). Then, the next state at time-5 is either the state s5 defined by
(a1, a2, a3 = 0) or the state s; defined by (a;, a2, a3 = 1). The output code bit vy is

given by
v4:+a1'1—§—a2‘1,

which has two values depending on whether the current input bit a3 is 0 or 1.
Connecting each state at time-4 to its two adjacent states at time-5 by branches and
labeling each branch with the corresponding code bit v4 for either a3 =0 oraz =1,
we complete the trellis section from time-4 to time-5. To construct the next trellis
section from time-5 to time-6, we first find that there is a row go in G3 = {g1. &, &},

which is g, and there is no row g* in Gl = ¢. Therefore,

Gi = G\ = {g1. &3}

and
A; = {a1, az}.
From the change from AZ to Ag. we find that two states defined by (a1, a2 = 0, a3)

and (ay, a; = 1, az) at time-5 move into the same state defined by (a1, az) at time-6.
The two connecting branches are labeled with

vs =@+a1-0+(a2:0)-1+a3-1,

and
v5:@+al-0+(a2:1)-1+a3-1,

respectively, where @ denotes the dummy input. This complete the construction
of the trellis section from time-5 to time-6. Continue with this construction process
until the trellis terminates at time-8.
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During the encoding interval I' = {0, 1...., n}, the output function of the
encoder E(C) changes between (9.7) and (9.8). Also, the set {gg’.)i, gl g,‘)j} in

the summations of (9.7) and (9.8) may change from one time instant o another.
This is because each coluinn in the TOGM is, in geaeral, not a downward shift
of the column before it. Therefore, the outpui {function of E(C) is fime-varying.
Furthermore, from (9.10), we see that the size and the composition of the state-
defining information set may change from one time instant to another depending
on whether there is an oldest information bit tc be shifted out of the memory and a
current information bit o be shifted into the memory. As a result, the state space of
the encoder E(C) varies from time to time. Therefore, the trellis T is time-varying.

9.3 STATE LABEUNG

The counstruction of a code trellis can be facilitaied by labeling the staies at each level
of the treliis. Staie labeling is also necessary in the implementaiion of a trellis-based
decoding algorithm. Next. we present a labeling method based on the information
set that defines the state space at a particular encoding fime instant.

In a code trellis, each state is labeled by a fized sequence (or given a name}. This
labeling can be accomplished by using a k-tuple /(s) with components corresponding
to the k information bits, ag. 4, .. ., a;_1, in a message. At time-i, all the components
of I(s) are set to zero except for the components at the positions cotresponding to
the information bits in A} = {ai”a aé’), - a;f,.)}. Every combination of the p; bits
at the positions corresponding to the bits in A7 gives the label I(s;) for the state s;
defined by the information bits, a%’), aé'), e, ai)',).

EXAMPLE 9.7

Consider the (8, 4) code given in Example 9.2. At time-4, the state-defining informa-
tion set is A} = {a1, az}. There are four states corresponding to four combinations of
a1 and a». Therefore, the label for each of these four states is given by (0. a1, a2, 0).
At time-5, A = a1, a2, a3}, and there are eight states. The label for each of these
cight states is given by (0, ay, a2, ¢3).

With the described state labeling, we can restate the trellis construction
procedure. Suppose the trellis T has been constructed up to section-i. At this point,
Gy, A. and Z;(C) are known. Each state 5; € %, (C) is labeled by a k-tuple I(s;). The
(i + Dth section is constructed as follows:

1, Determine G, | and A7, from (9.9) and (9.10).

2. Form the state space ¥, 1(C) at time-(i 4+ 1) and !abel each state in Z;,1(C)
based on A’ e The states in Z;.1(C) form the nodes of the code trellis T at
the (i + 1)th level.

3. For each state s; € %,(C) at time-i, determine its transition(s) to the state(s)
in Z;,1(C) based on the information bits ¢* and aY. For each transition from a
state s; € %;(C) to a state 5,41 € %;41(C), connect the state s; to the state s;1
by a branch (s;. si41).

4. For each state transition (s;, 5;+1), determine the output code bit v; and label
the branch (s;, s;.01) with v;.
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Recall that at time-i there are two branches diverging from a state in %;(C) if
there exists a current information bit a*. One branch corresponds to a* = 0, and the
other corresponds to a* = 1. For the convenience of graphical representation in the
code trellis T, we use the upper branch to represent a* = 0 and the lower branch
to represent ¢* = 1. If ¢* is a dummy information bit, then there is only one branch
diverging from each state in %;(C). This single branch represents a dummy informa-
tion bit. Using the described representation, we can easily extract the information
bits from each path in the trellis (the dummy information bits are deleted).

EXAMPLE 9.8

Consider the state labeling and trellis construction for the (8, 4) RM code given in
Example 9.2 whose TOGM Grogy is repeated here:

£ 11110000
leg !l |01011010
GTOGM‘gz_oo111100
g 000071111

For 0 <i < 8, we determine the submatrix G; and the state-defining informa-
tion set A7 as listed in Table 9.2. From A} we form the label for each state in X; (C) as
shown in Table 9.2. The state transitions from time-i to time-(i + 1) are determined
by the change from A; to A7, ;. Following the trellis construction procedure given
described, we obtain the 8-section trellis diagram for the (8, 4) RM code as shown
in Figure 9.6. Each state in the trellis is labeled by a 4-tuple.

In many cases, we do not need k bits for labeling the states of the n-section
bit-level trellis for a binary (n, k) linear block code C. Let (pg, o1, ..., pn) be the
state space dimension profile of the trellis. We define

A
Pmax(C) = OIE?LX Pi (9.11)

TABLE 9.2: State-defining sets and labels for the 8-section
trellis for the (8, 4) RM code.

i G} a® a® A] State Label
0 ¢ ag — ¢ (0000)

1 {go} ap | — {ao} (ap000)

2 {go. g1} a | — {ag, a1} (apa100)
3| {go.g1.8) | — | ao | {ap,a1, a2} (aparaz0)
4 {g1, &} as | — {ay, az} (0a1a,0)
5| {g&gl) | — | @ | {a,a, a3} (Oarazaz)
6 {g1, g3} — | @ {a1, a3} (0a;10a3)
7 {g3} — | a3 {as} (000as3)

8 ¢ — e ¢ (0000)
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FIGURE 9.6: The 8-section trellis diagram for the (8, 4) RM code with state labeling
by the state-defining information set.

which is simply the maximum state space dimension of the trellis. Because p; =
G} = |Af | for0 <i <an,and Gf is a submatrix of the generator matrix of C, we have

Pmax(C) < k. (9.12)

In general, pmayx is smaller than k. Because the number of states at any level of the
trellis is less than or at most equal to 2pmas(©) - (C) bits are sufficient for labeling
the states in the trellis. Consider the state space Z;(C) at time-i with0 < i < 7 thatis
defined by the set {ai’), aé'), o a,()'f} of p; information bits. For each state s; € &;(C),
we form a pmax (C)-tuple, denoted by [(s;), in which the first p; components are simply
a{’), aé'), e, af,’,.), and the remaining pmax(C) — p; components are set to 0; that is,

1) = @6l a,0,0,...,0).

Then, I(s;) is the label for the state s;.

EXAMPLE 9.9

For the (8, 4) RM code, the state space dimension profile of its 8-section trellis is
0,1,2,3,2,3,2,1,0) (sec Figure 9.6). Hence, pmax(C) = 3. Using 3 bits for labeling
the states as described previously, we give the state labels in Table 9.3. Compared
with the state labeling given in Example 9.8, 1 bit is saved.

States also can be labeled based on the parity-check matrix H of a code. In this
case, n—k bits are needed to label each state. Therefore, for high-rate codes with small
n — k, labeling states based on the parity-check matrix is more efficient than labeling
based on the TOGM G of the code. This topic will be discussed in a later section.

EXAMPLE 9.10

Consider the second-order RM code of length 16. It is a (16, 11) code with a
minimum distance of 4. Its conventional generator matrix is given in Example 4.2.
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TABLE 9.3: State labeling for the (8, 4)
RM code using pmax(C) = 3 bits.

i Af State Label
0 ¢ (000)

1 {ao} (ap00)

2 {ag, a1} (aogar0)

3 {ag, a1, a2} (aparay)
4 {ay, a2} (a1a20)

5 {ai, az, as} (ar1aza3)
6 {a1, a3} (a1a30)

7 {as} (a300)

8 1) (000)

Performing elementary row operations, we obtain the following TOGM:

2 1111000000000000
g 0101101000000°000
2 0011110000000000
2 000111101000T1000
2 0000111100000000
Grogu=| g |=/0000010110100000
g 0000001111000000
27 0000000011 110000
25 0 0000000010110 10
2 000000000011 1100
g0 ] LOOOOOCOO0DO0DOOOO11 1 1

From this TOGM, we easily find the state space dimension profile, (0,1, 2, 3,3,
4,4,4,3,4,4,4,3,3,2,1,0). The maximum state space dimension is ppax(C) = 4.
Therefore, we can use 4 bits to label the trellis states. The state-defining information
sets and state labels at each time instant are given in Table 9.4. With the information
given in this table, we can readily construct the 16-section bit-level trellis for the
(16, 11) RM code, as shown in Figure 9.7.

9.4 STRUCTURAL PROPERTIES OF BIT-LEVEL TRELLISES

In this section we develop some fundamental structural properties of an n-section
bit-level trellis for an (x, k) binary linear block code C.

For 0 <i < j < n, let C;; denote the subcode of C consisting of those
codewords in C whose nonzero components are confined to the span of j —i
consecutive positions in the set {i, i +1,..., j — 1}. Clearly, every codeword in C; ;
is of the form

0,0,...,0,v1, 0541, ...,v;-1,0,0,...,0),
[ — [ ——

i n—j
and C; ; is a subcode of C. It follows from the definition of C; ; and the structure
of the TOGM Groguy for C that C; ; is spanned by those rows in Grogy whose
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Structural Properties of Bit-Level! Trellises

TABLE 9.4: Staie-defining sets and labels for the 16-section trellis
for the (16, 11) RM code.

i G a* a® Al State Label
0 ¢ a | — ¢ (0000)
1 {go} a — {ao} (ag000)
2 {go, &1} a | — {ag, 1} (apar 00)
3 {Z0, &1, &2} az ap {ag, a1, az} (aga1a20)
4 {g1, &, 83} as | — {a1. o, a3} (a1a2a30)
50 {gm,83, 81 | as ay | a1, 02,03, a4} | (a1a2a3a4)
6 | (a8, 84850 | as a; | {ai. a3, a4, a5} | (araszasas)
7\ {3, 84,85.8) | — | a4 | {ez.aq,as.a6) | (aza4asa6)
3 {83, 85, 86} ap | — {as, as, ag} (a3asa60)
9 | {3, 85.8.87) | ag as | {as.as.a¢, a7} | (azasagay)
10 | {gs.@5.g7.88) | ao | as | laz.as,a7.a3) | (asasazag)
11 | {gs.g7.88.8) | — | a7 | {as.a7.a8,a9} | (azazagag)
12 {23, g5, o} ayp | as {a3, ag, ao} (a3a3a90)
13 {gs. 29, Zio} — | ag {as, ag, ao} (agagay0)
14 {gs. 10} — | ag {ag, a0} (aga1000)
15 {g10} — | 410 {a10} (a10000)
16 ¢ — | — ) (0000)
@y m‘w @y ‘W’ iy
(@@ @)
@D ‘om i m
@&@
W‘ 00 (m)‘ %
QIO 010 @A‘ \(M) @m’ ‘m’
w@@@ﬂm@@ww@@@@@
@@@‘@@@@@@@ QUID @D 10-CTo00y
DY YD .mm(m.mwm am
oo @D'w
@E@‘\@
Gor Qoo
anp @‘@
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FIGURE 9.7: 16-section trellis for the (16, 11) RM code with state labeling by the
state-defining information sets.
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bit spans are contained in the interval [/, j — 1]. The two subcodes Cy; and C; , are
spanned by the rows in G/ and Glf , respectively, and they are called the past and
future subcodes of C with respect to time-i.

For a linear code B, let k(B) denote its dimension. Then, k(Cyp ;) = ]Gf’ [,

and k(C; ;) = lGif|. Recall that the dimension of the state space Ei(C) at time-{ is
pi(C) = |G}|. Then, it follows from the definitions of G¢, G, and Gf that
pi(C) =k — |G| - |G|
=k- k(CO,i) - k(ci,n)-

(9.13)

This expression gives a relationship between the state space dimension p; (C) at
time-/ and the dimensions of the past and future subcodes, Cy; and C; ,, of C with
respect to time-i.

Note that Cy; and C;, have only the all-zero codeword 0 in common. The
direct-sum of Cp; and C; ,, denoted by Cy; @ C, », is a subcode of C with dimension
k(Cp i) + k(C; ). The partition C/(Cq; @ C; ) consists of

‘C/(Co‘i D Ci,n)‘ = 2k=k(Co.)=k(Cin)

9.14
o (9.14)
cosets of Cp; @ C; . Equation (9.14) says that the number of states in the state space
%;(C) at time-i is equal to the number of cosets in the partition C/(Co; & Ci n).
Let S; denote the subspace of C that is spanned by the rows in the submatrix
G;. Then, each codeword in §; is given by
—_ (D ) s
v={(a,,a;’,....,a") &
P e (9.15)

= a{i) 'g?) +a§i) . gg) +.. +(1,gii) . gg')

where al(i) € A for 1 <1 < p;. It follows from the definitions of Gf’ , Gif , and G that
C=3S8d(Co;®Cin).

The 27 codewords in S; can be used as the representatives for the cosets in the
partition C/(Cp; & C; ). Therefore, S; is the coset representative space for the
partition C/(Co ; & C; ). From (9.15) we see that there is one-to-one correspondence
between v and the state s; € T;(C) defined by (af), aé’), . a/(,’,.)). Because there is
a one-to-one correspondence between v and a coset in C/(Cy; @ C; ), there is a
one-to-one correspondence between a state in the state space XZ;(C) and a coset in
the partition C/(Cp; & Ci ).

With the foregoing one-to-one correspondence in the trellis 7', the codeword
v given by (9.15) is represented by a path that passes through the state s; defined by
the information bits a{’), aé”, e a,&? (i.e., a path that connects the initial state sq to
the final state s; through the state s;). If we fix the information bits ai’), aé’), - a/(f,)
and allow the other k — p; information bits to vary, we obtain 2~ codewords of C
in the coset

Ve (Coi ®Ciy) 2 (v+uiueCy @ Cin (9.16)
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Time

So

A coset in A coset in

pl)l(c)/clll/r pl/!(C>/CI“H

FIGURE 9.8: The paths in the code irellis that represent the 27 codewords in
v (Co; @ Cip).

with v as the coset representative. In the trellis, these 28~ codewords are repre-

sented by the paths that connect the initial state s to the final state s, through

the state s5; at time-i defined by the information bits ag”, ag)» - affﬁ as shown in

Figure 9.8. Note that
k— Oi = k(C’J,i} + k\/‘ciﬂ)w (917)

which is simnply the dimension of Co; & C ;.

For0 <i < j < n,let p; ;(C) denote the linear code of length j — i obtained
from C by removing the first i and last » — j components of each codeword in C.
Every codeword in p; ;(C) is of the form

(i, Vig1, . vj21).

This code is called a punctured (or truncated) code of C. Let C,.’A"j denote the
punctured code of the subcode C; ;: that is, '

N
€l = pij{Cij)- (9.18)
It follows from the structure of the TOGM Grogu that
kipi j(C)) =k —k(Coi) = k(Cjn) (9.19)

and
(7)) = k(Ci ). (9.20)

Consider the punctured code pg ;(C). From (9.19) we find that

k(PO:(C)) =k — ]((Ci.n)- (921)
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This punctured code contains Cy; as a linear subcode with dimension k(C{",) =
k(Cp,;). We partition pg ; (C) basedon C[J',. Then, the partition pg ; (C)/ C{; consists of

Zk_k(CO.i)“k(Ci,n) — 2/01'

cosets of C(’)f'i. We can readily see that there is a one-to-one correspondence between
the cosets in pg ;(C)/ C{)’:I. and the cosets in C/(Co; @ Ci ), and hence a one-to-one
correspondence between the cosets in py; (C)/ C(’)”'i and the states in X,(C). The
codewords in a coset in pg ;(C)/ C(’)’:i are simply the prefixes of the codewords in
their corresponding coset in C/(Co; & C; ). Hence, the codewords in a coset of
po0.i(C)/ C{{i will take the encoder E(C) to a unique state s; € X, (C). In the trellis 7,
they are the paths connecting the initial state sg to the state s; as shown in Figure 9.8.
Let L(so, s;) denote the paths in the trellis 7 that connect the initial state so to the
state s; in %;(C). Then, L(sg, s;) is a coset in the partition p(),,'(C)/C(’)’:i.
Now, we consider the punctured code p; ,(C). The dimension of this code is

k(pin(C)) =k — k(Cop ). (922)

It contains Cl”” as a linear subcode with dimension k(Cl?f;I) = k(Ci ). We partition
pin(C) based on C!I" . The partition p,-,n(C)/Ci”’;7 consists of

nn

2k_k(CO.i)_k(Ci‘u ) — 2/0[

cosets of C!’ . Again, there is a one-to-one correspondence between the cosets
in p;a(C)/CY and the cosets in C/(Cp; @ C; ), and hence a one-to-one corres-

i,n

ondence between the cosets in p; ,(C)/C!" and the states in the state space %; (C).
p . P

LN

In the trellis T, the codewords in a coset p; ,(C)/C form the paths that connect

in
a state s; € Z;(C) to the final state s¢ as shown in Figure 9.8. Let L(s;. sy) denote
the paths in the trellis 7' that connect the state s; € X;(C) to the final state s 7. Then,

L(s;, sy) is a coset in the partition p; ,(C)/C!”

[
ForO=<i < j<mn,let A,I_(O) and 350) denote two states on the all-zero path
0 in the trellis 7 at time-i and time-j, respectively, as shown in Figure 9.9. Let
L(si('[)), sg.m) denote the paths (v;, vi41, ..., v;-1) of length j —iin T that connect s

i
(0

tos ;- Consider the paths in T that start from the initial state sg, follow the all-zero

Time n

5

FIGURE 9.9: Paths in the code trellis that represent the codewords in C; ;.
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path O to the state si(m, pass through the paths in L(si(m, sgm) to the state s§.®> , then
follow the all-zero path 0 until they reach the final state s¢ as shown in Figure 9.9.
These paths represent the codewords in the subcode C; ; of C, which implies that

L sy =i (9.23)

Let v = (vp, vy, ..., vy—1) be a path in the code trellis 7. For 0 < i < j < n,
let s and sgw be two states on the path v at time-i and time-j, respectively, Let
L(s™, sjf‘v)) denote ihe paths of length j — i that connect 5" EV)
paths in 7 that start from the iniiial siate 5o, follow the path v to the state sl.(V )
pass through the paths in L(s", sﬁ.w), then follow the path v until they reach the
final state s, as shown in Figure 9.10. These paths represent the codewords in the

following coset of C; ;:

. Consider the
)

to s

VO, 2 vhuineC ). (9.24)

This is a coset in the partition C/C; ;. This implies that L(s", sE.V)) is a coset of C}';
in p; ;(C): that is, '
W N tr . tr 75

L(Si s Sj ) = Pi.; (V) + C,] € Pij (C)/C,]7 (9 h)

where p; j(v) = (v, V41, ..., vj_1). For any two connected states s; € Z;(C) and
s; € Z;{(C)with 0 < i < j < n, they must be on a path in the trellis 7. It follows
from (9.25) that

L(S,‘,Sj) < p,“j(C)/C;fi. (926)
Therefore, the number of paths that connect a state s; € Z;(C) to a state s; € &;(C)
is given by

k(CI") .

2%, it s; and s; are connected, (9.27)

|L (si,55) | = 0. otherwise.

For 0 <i < j <k = n,let Z;(s;,5:) denote the set of states in Z;(C)
through which the paths in L{s;, s;) connect the state s; to the state s; as shown in

Figure 9.11. Let

Lisi.s)) 0 Lis; s0) = [mov:we Lis;.s;).v € Ls;. sk (9.28)

Time

0
|
I
I
!
!
|

G,
i
!

Sy

pllj(v) @ Cz.j

FIGURE 9.10: Paths in the code trellis that represent the codewords in the coset
v D C,“j.
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Time i j k
N
-Or
rOA
S; Z Sk
O
E,(S,', S/)

FIGURE 9.11: Connectivity between two states in the code trellis.

where u o v denotes the concatenation of two sequences u and v. In the treliis,
L(s;, sj) o L(sj, sx) consists of those paths in L(s;, s;) that connect the state s; to the
state s; through the state s;. Then, L(s;, s) is the following union:

Lsioso = | Lisisp)oLisj, 50 (9:29)
s;€X;(si.s%)

This expression displays the connectivity between two states in a code trellis.

9.5 STATE LABELING AND TRELLIS CONSTRUCTION
BASED ON THE PARITY-CHECK MATRIX

Consider a binary (n, k) linear block code C with a parity-check matrix

H:[E‘Ro,hl,....h]’,.,.,h”_l], (9.30)
where, for 0 < j < n, h; denotes the jth column of H and is a binary (n — k)-tuple.
A binary n-tuple v = (vg, vy, ..., u;-1) is a codeword in C if and only if

v-H =(0,0,...,0). (9.31)
L ——

n—k

Let §,,—x denote the all-zero (n — k)-tuple (0,0,...,0). For 0 <i < n, let
denote the submatrix that consists of the first i columns of H; that is,

H; = [ho, by, ..., B 1]. (9.32)
It 1s clear that the rank of H; is at most n — k; that is,

Rank(®;) <n — k. (9.33)
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For each codeword ¢ € Cf/,
e-H! =0, (9.34)

Therefore, Cf; is the nuil space of H;.
Consider the partition pg ; (C) /C(’)’,'Z.. Let B be acosetin po;/Cy;,and B # C{)’:i.
For every vecior a € B,
a- HIT # @n—k

and is the same for all the vectors in B; that is, for a;, a» € B and a1 # ay,
a;-H =2y H. (9.35)

The (n — k)-tuple a - HIT is called the label for the coset B. Let By and B, be two
different cosets in pg; (C)/ C(’)’,'Z.. Leta; € By and &y € By. It follows from the theory
of linear block codes (see Chapter 3) that @) # ), and

ay - WY s a4 - M.

This expression says that different cosets in pg ; (C)/ C{{i have different labels.

Recall the mathematical formulation of the state spaces of a code irellis. There
is a one-to-one correspondence between a state s; in the state space Z;(C) at time-i
and a coset B € py;(C)/ C(’)i‘i, and the codewords of pg;(C) in B form the paths that
connect the initial state sp to the state s;. This one-to-one correspondence leads to
another definition of a state label.

Let L(sg, s;) denote the set of paths in the code trellis T for C that connect the
initial siate sg to a state s; in the state space %;(C) at time-i.

DermNiTION 9.2 For 0 < i < n, the label of a state s; € %;(C) based on
a parity-check matrix H of C, denoted by I(s;), is defined as the binary
(n — k)-tuple

I(s)) £ a HT, (9.36)

for any a € L(sg, s;). For i = 0, H; = ¢, and the initial state sy is labeled with
the all-zero (n — k)-tuple, 0, . For i = n, L(sg, sy) = C, and the final state s
is also labeled with 0, _.

It follows from the preceding definition of a state label, the one-to-one correspon-
dence between the states in %;(C) and the cosets in pg;(C)/ C(’)"i for 0 <i <n,
and (9.36) that every state s; € Z;(C) has a unique label, and different states have
different labels.

It follows from (9.33) and the foregoing definition of a state label that the
number of distinct state labels at any time instant i is less than or at most equal to
2"=*_ Due to the uniqueness of the label for each state at any time-i, the number of
states in the state space Z;(C) at time-i must be upper bounded by 2"k that is,

[Zi(O) < 2" F
for 0 <i < n. Therefore,

0i(C) =logy |Z(CY| <n —k,
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for 0 < i < n. This expression implies that the maximum state space dimension
Pmax(C) defined by (9.11) satisfies the following bound:

Pmax(C) < n — k. (9.37)

For 0 <i < n, let s; and s, be two adjacent states with s; € X;(C) and
si+1 € Zj41(C). Let v; be the label of the branch in the code trellis T that connects
the state s; to the state s;;1. The label v; is simply the encoder output bit in the
interval from time-i to time-(i + 1) and is given by (9.7) or (9.8). For every path

(vg, v1, ..., vi—1) € L(so, 5;), the path (vg, v1, ..., v;_1, v;) obtained by concatenating
(vg, v1, ..., v;—1) with the branch v; is a path that connects the initial state sy to the
state s;,1 through the state s;. Hence, (vg, vy, ..., vi—1, v;) € L(so, s;4+1). Then, it
follows from the preceding definition of a state label that
I(siy1) = (vo, V1, .+ ., Vi1, U)) ~H,-T+1
= (vg,vl,...,vi_1)~Hl-T + v; ~hiT (9.38)
=1(s;) + v hIT

The foregoing expression simply says that given the label of the starting state s;, and
the output code bit v; during the interval between time-i and time-(i + 1), the label
of the destination state s, is uniquely determined.

Now, we present a procedure for constructing the n-section bit-level trellis
diagram for a binary (n, k) linear block code C by state labeling using the parity-check
matrix of the code. Let v = (vg, v1, ..., v;_1) be a binary n-tuple. For 0 < i < n, let
Do,i (v) denote the prefix of v that consists of the first i components; that is,

P0,i (V) = (vg, v1, ..., v;—1).

Fori = 0, pgo(v) is defined as the null sequence. Suppose that the trellis has been
completed up to the ith section (time-i). At this point, the rows of the TOGM
Grocum in the set G = {gii), gg), e, gﬁ,’?} and their corresponding information bits
aii), ag), e affi) uniquely define the state space X; (C). Let

V= af) . gi") —l—ag) ~gg) +oe +a§)ii) «ggl,).

Then, Po.i (V) i_s a path connecting the initial state sg to the state s; defined by
ail), aé’), e, ag.). The label of state s; is given by

I(si) = po;(v) - HI.

The (i 4 1)-section of the code trellis is constructed by taking the following four
steps:

1. Identify the special row g* (if any) in the submatrix Gif and its corresponding
information bit a*. Identify the special row g” (if any) in the submatrix G,
Form the submatrix G;, | by including g* in G} and excluding g’ from Gi.

2. Determine the set of information bits A7 = {afﬂ), a§i+1), R agﬁ)} that

correspond to the rows in G} e Define and label the states in ;.1 (C).
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3. For each state s; € T;(C). form the next outpul v; code bit from either (9.7)
(if there is such a row g" in G;f at time-i ) or {9.8) (if there is no such row g* in
G‘f at time-i ).

4, For each possible value of v; {two if computed from (9.7) and one if computed

I
from (9.8)), connect the staie 5; to the state 5,1 € Z;,1(C) with label

I(si01) = 1si) +vi - Iy

Label the connecting branch, denoted by L(s;, s;11), with v;. This completes
the construction of the (¢ 4 1)th section of the trellis.

Repeat the preceding steps until the entire code irellis is consiructed.

EXAMPLE 9.11

The (8, 4) RM code given in Example 9.1 is a self-dual code. Therefore, a generaior
mafrix is also a parity-check matrix. Suppose we choose ihe parity-check matrix as
follows:

11111111
g_| 00001111
“lo o 1100 11

01010101

Using this parity-check matrix for state labeling and following the foregoing trel-
lis construction sieps, we obiain the 8-section trellis with state labels shown in
Figure 9.12. To illustrate the construction process, we assurae that the trellis has
been completed up 1o time-3. At this instant, &5 = {go. g1, 22} and A = {ag, ay, a2}
are known. The eight states in 23(C) are defined by the eight combinations of ag, a1,
and a;. These eight states and their labels are given in Table 9.5.

Now, we want to construct the fourth section of the trellis up to time-4. At
timne-3, from the TOGM Grogy (see Example 9.1), we find that :go = gp and there
is no such row g with leading 1 at the fourth bit position. Therefore, G} = {g1, g2},

and A} = (a1, @2}. The four states in 24(C) at time-4 are defined by the four

FIGURE 9.12: An 8-section trellis for the (8, 4) RM code with state labeling by the
parity-check matrix.
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TABLE 9.5: Labels of the states at
fime-3 for the (8, 4) RM code based
on the parity-check matrix.

States Defined

by (ag, a1, az) State Label
530 (000) (0000)
s (001) (1010)
s? (010) (1001)
s (011) (0011)
s$¥ (100) (1011)
s (101) (0001)
589 (110) (0010)
s (111) (1001)

TABLE 9.7: Labels of states at

TABLE 96: Paths defined time-4 for the (8, 4) RM code.

by the four states at time-3.

State Defined
(@1, a2) Path by (a1, a2) State Label
0,0) | o = (00000000) o _
(0,1) | v; = (00111100) Sy ©0) (0000)
(1,0) | v» = (01011010) siV (01) (0001)
s (1) (0011)

combinations of a; and a;. The four codewords generated by the rows in Gj are
given in Table 9.6. The four paths that connect the initial state sg to the four states,
denoted by sflo), sfll) s sf), and sf), in X4(C) are

P0.4(vo) = (0000), po,4(vy) = (0011),
po.a(v2) = (0101), pp.a(vs) = (0110).

The submatrix Hy is

H, =

OO O -
—_ O
O = O =
[ =

From pg 4(v;), with O < j < 3 and B4, we can determine the labels of the four states,

sflo), sil), sf) and sf), in £4(C), which are given in Table 9.7. The four states and

their labels are shown in Figure 9.13 at time-4. Now, sunpose the encoder is in the

at L% S P LAl vii

state s§2> with label l(séz)) = (1001) at time-3. Because no such row g" exists at time
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(1001)
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FIGURE 9.13: State labels at the two ends of the fourth section of the irellis for the
(8,4) RM code.

i = 3, the output code bit v3 is computed from (9.8) as follows:

V3 =dp-8o3 a1 - 813+ a2 823
=0.1+1-14+0-1
=1.

Then, the state séz) is connected to the state in £4(C) with label

162y + v3 - Wl = (1001) + 1 - (1011)
3 3
= (0010),

which is state sf), as shown in Figure 9.13. The connecting branch is labeled with
v3 = 1. The connections from the other states in X3(C) to the states in X4(C) are

made in the same manner.




366 Chapter 9

State labeling based on the state-defining information sets requires k (or
Pmax(C)) bits to label each state of the trellis; however, state labeling based on the
parity-check matrix requires n — k bits to label each state of the trellis. In the next
section we show that pmax(C) < min{k, n — k}. Therefore, state labeling based on
state-defining information sets and using pmax(C) bits to label each state in the trellis
is the most economical labeling method.

Trellises for Linear Block Codes

EXAMPLE 9.12

A parity-check matrix of the (16, 11) RM code considered in Example 9.10 is

11110
11111
H=|11 0 0 1
101 061
1 0 06 11

State labeling based on this matrix requires 5 bits. The 16-section trellis for the
(16, 11) RM code with state labels based on H is shown in Figure 9.14. Labeling
states based on H requires 1 bit more than state labeling based on the maximum

0
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0

0

1
0
1
0

[ e )
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state-defining information set shown in Example 9.10.
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o
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FIGURE 9.14: A 16-section trellis for the (16, 11} RM code with state labeling by

parity-check matrix.
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9.6 TRELLIS COMPLEXITY AND SYMMETRY

Trellis complexity is, in general, measured in terms of the state and branch complex-
ities. These two complexities determine the storage and computation requirements
of a trellis-based decoding algorithm.

For a binary (n, k) linear block code C, the state complexity of an n-section
bit-level code trellis is measured by its maximum state space dimension pmax(C)
defined by (9.11), which gives the size 2°m(©) of the maximum state space of the
code trellis 7. In (9.12) and (9.37), we showed that pmax(C) is upper bounded by
both k and n — k. This implies that pmax(C) must satisiy the following bound:

Pmax(C) < min{k, n — k}. (939)

This bound was first proved by Wolf [4]. In general, this bound is guite loose. For
exaraple, consider the (8, 4) RM code. For this code, k = n — k = 4; however,
Pmax(C) = 3. The third-order RM code RM (3, 6) of length 64 is a (64, 42) linear
code. For this code, minf{k, n — k} = 22; however pmax(C) = 14. We see that there is
a big gap between the bound and pmay (C); however, for cyclic (or shortened cyclic)
codes, the bound min{k, n —k} gives the exact state complexity, as will be shown later.

Next, we show that an (n, k) inear code C and its dual code have the same state
complexity. Let C L denote the dual code of C. Then, C1 is an (n, n — k) linear block
code. Consider the n-section trellis diagram for CL.For0 <i <n,let T;(CL) denote
the state space of C* at time-i. Then, there is a one-to-one correspondence between
the states in Z;(C) and the cosets in the partition pg;(Ct)/ C(')J:;.”', where COL;.”’
denotes the truncation of COLJ in the interval [0, { — 1]. Therefore, the dimension of

T;(C1) is given by

pi (CH) = k(po. (CH)) — k(Cy"). (9.40)
Note that pg ;(C1) is the dual code of C(f)’:iﬁ and Cé}’ " is the dual code of pg; (C).
Therefore,
k(po(CH) =i —k(C) 0.41)
=i —k(Co,)
and
K(Coi™) =i — k(poi(C)). (9.42)
1t follows from (9.40) through (9.42) that
pi(CH) = k(po,i(C)) — k(Co,p).
Because k(pg ; (C)) = k — k(C; ), we have
pi(CH) =k —k(Cp ) = k(Cin). (9.43)

From (9.13) and (9.43), we find that for 0 <i <,

pi (CH) = pi (). (9.44)
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This expression says that C and its dual code C* have the same state complexity.
Therefore, we can analyze the state complexity of a code trellis from either the code
or its dual code; however, we must note that a code and its dual code, in general, have
different branch complexities, even though they have the same state complexity.

EXAMPLE 9.13

Consider the (16, 11) RM code given in Example 9.10. The dual code of this code is
the first-order RM code RM (1, 4) of length 16. It is a (16, 5) code with a minimum
distance of 8. Its TOGM is

1111111100000000
0101010110101010
Grocy=]001100111100T1T100
00001111111 10000
0000O0O0OO0OO0OT1T1T111111

From this matrix, we find the state space dimension profile of the code,
0,1,2,3,3,4.4,4,3,4,4,4,3,3,2,1,0),

which is exactly the same as the state space dimension profile of the trellis of the
(16, 11) RM code. The state-defining information sets and state labels are given in
Table 9.8. The 16-section trellis for the code is shown in Figure 9.15. State labeling
is done based on the state-defining information sets. State labeling based on the

parity-check matrix of the code would require 11 bits.

TABLE 9.8: State-defining sets
trellis for the (16, 5) RM code.

and labels for the 16-section

i Gj a* | a° A} State Label
0 ¢ ap | — ¢ (0000)
1 {go} ap | — {ao} {ag000)
2 {go. g1} a | — {ag, a1} (apar00)
3 {go. g1, &) — 1 — | H{ao, a1, a2} (apaia20)
41 {go g2} a3 | — | H{ag, a1, az} (agaiaz0)
5| {go. g, 8.8} | — | — | lap,a1. a2, a3} | (aparazaz)
6 | {go. 81, 8.8}  — | — | {a0, a1, a2. a3} | (apayazas)
7| {g0. 1. 22,8} | — | a0 | {ao, a1, az,a3} | (aparazaz)
8| (g2 8 ag | — lai, az, az} (araza30)
9 1 {g. g 8,8} | — | — | a1, a2, a3, a4} | (a1a2a3a4)
10 | (g &.83.84) | — | — | {a1.a2.a3, a4} | (a1aza3aq)
11 | {e1. &, 83,84} | — | a3 | {a1,a2.03. a4} | (a1aza3ay)
12 (g1, 2,8} — | — 1 Afa1, 4, a4} (araza40)
13| {g1. 2,84} — | @ {ai, a2, as} (a1a2a40)
14 (g1, g4} — | a {ai, a4} (a1a400)
15 (g4} — | a4 {as} (a4000)
16 b — | — ¢ (0000)
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FIGURE 9.15: A 16-section trellis for the {16, 5) RM code with state labeling by the
state-defining information set.

Let 7 be an n-section trellis for an (n, k) code C with state space dimension

profile (pg, p1. ..., pn). The ireliis T is said to be minimal if for any other n-section
trellis 7' for C with state space dimension profile (o}, o1, ..., 0,) the following
inequality holds:

o = ,0,{ )

for 0 <i < n. A minimal irellis is unique within isomorphism; that is, two minimal
trellises for the same code are structurally identical. A minimal trellis results in a
minimal total number of states in the trellis. In fact, the inverse is also true: a trellis
with a minimum total number of states is 2 minimal trellis. The formulation of state
spaces and the construction based on the trellis-oriented generator matrix of an
(n, k) linear block code given in Section 9.2 result in a minimal trellis. The proof is
not given here but can be found in [7].

From (9.13) we see that the state space dimension p; at time-i depends on the
dimensions of the past and future codes, Cy; and C; ,. For a given code C, k(Cp ;)
and k(C; ) are fixed. Given an (n, k) linear code C, a permutation of the orders of
the bit (or symbol) positions results in an equivalent code C’ with the same weight
distribution and the same error performance; however, different permutations of
bit positions may result in different dimensions, k(Cy ;) and k(C; ), of the past and
future subcodes, Cg; and C;,, and hence different state space dimensions p; at
time-i. A permutation that yields the smallest state space dimension at every time of
the code trellis is called an optimum permutation {or bit ordering). It is clear that an
optimum permutation reduces the state complexity and is often desirable. Optimum
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permutation is hard to find, however. Optimum permutations for RM codes are
known [11], but they are unknown for other classes of codes. The construction of
RM code given in Section 4.3 gives the minimum state complexity.

The branch complexity of an n-section trellis diagram for an (», k) linear code C
is defined as the total number of branches in the trellis. This complexity determines
the number of computations required in a trellis-based decoding algorithm to decode
a received sequence. An n-section trellis diagram for an (n, k) linear block code is
said to be a minimal branch (or edge) trellis diagram if it has the smallest branch
complexity. A minimal trellis diagram has the smallest branch complexity.

Consider the n-section trellis diagram 7 for C that is constructed based on the
rules and procedures described in Section 9.2. Recall that at time-i with 0 < i < n,
there are two branches diverging from a state in %;(C) if there exists a row g* in
Gif ; and there is only one branch diverging from a state in %;(C) if there exists no
such row g* in Glf . The existence of g* in Gif implies that there is a current input

information bit ¢* ¢ Aif at time-i. We define

, 1, ifa*¢ Al
LaH2 1o i 9.45
@I=1 2 itareal 04
Let £ denote the total number of branches in 7. Then,
n—1
£=) IZ(O- L@
’22 (9.46)

=227 Li@.
=0

For 0 <i < n, 2% . I;(a*) is simply the number of branches in the ith section of
trellis T'.

EXAMPLE 9.14

Again we consider the (8, 4) RM code given in Example 9.1. From Table 9.2 we find
that

Ip(a®) = I1(a®) = h(a") = I4(a*) =2

and
I(a*) = Is(a”) = Ig(a*) = I[;(a*) = 1.

The state space dimension profile of the 8-section trellis for the code is (0, 1,2, 3, 2,
3,2,1,0). From (9.46) we have
=2 24224222427 14222428 142214201
=2+44+8+8+8+8+4+2
=44,
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Cyclic codes form a large subclass of linear block codes. Many good codes are
cyclic codes. The trellis structure of cyclic codes can be analyzed easily. Consider an
(n, k) cyclic code C over GF(2) with generator polynomial

g(X) = T+ X+ g2X2 e gn—k—lxnikil + ank.

A generator matrix for this code is given in (5.9). For convenience, we reproduce it
here

Z0 1 g 82 - En—k—1 1 0 0 cen 0
z 01 g1 &2 + g1l 0

C=1 . |7 : . (947
1] 00 0 1 g g gnke1 1

We readily see that the generator matrix is already in trellis-oriented form. For
0 <i <k, the time span of the i-row g; is

w(g) =[i,n—k+1+1i]

{or the bit span ¢(g;) = [i, » — k +i]). The active time spans of all the rows have the
same length, n — £.

Now, we consider the n-section bit-level trellis for this (n, k) cyclic code. There
are two cases to be considered: k > n —k and k < n — k. Consider the case k > n —k.
For 1 <i < n—k, the number of rows in & whose active time spans contain the time
index i is i, These rows are simply the first i rows. For n — k < i <k, the number of
rows whose active time spans contain the time index i is n — k. For k < i < n, the
number of rows whose active time spans contain the time index i is n — i. Because
i >k,n—1i <n—k. From the preceding analysis, we see that the maximum state
space dimension is pmax(C) = n — k, and the state space profile is

©1,....n—k—-1n—k ...,n—kn—k-1,...,1,0).

Next, we consider the second case for which k <n — k. For 1 <i < k, the
number of rows in G whose active time spans contain the time index { is i (the first i
rows in G). For k <i < n — k, the number of rows whose active time spans contain
the time index i is k. For n — k < i < n, the number of rows in G whose active time
spans contain { is n — i. Because i > n —k, n — i < k. From the foregoing analysis,
we find that the maximum state space dimension is pmax(C) = k, and the state space
dimension profile is

©O1,. ... k—1,k ....kk—=1,...,1,0.

Combining the results of the preceding two cases, we conclude that for an
(n, k) cyclic code, the maximum state space dimension is

Pmax(C) = min{k, n — k}.
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This is to say that a code in cyclic form has the worst state complexity; that is, it
meets the upper bound on the state complexity. To reduce the state complexity of a

Srads COILIpACALLY O

cyclic code, a proper permutation on the bit positions is needed.

EXAMPLE 9.15

Consider the (7,4) cyclic Hamming code generated by g(X) = 1 + X + X°. Its
generator matrix in TOF is

£ 1101000
le | _Jo110100
“|lm |7 |0011010

£ 0001101

By examining the generator matrix, we find that the trellis state space dimension
profile is {0, 1, 2, 3, 3, 2, 1, 0). Therefore, pmax(C) = 3. The 7-section trellis for this
code is shown in Figure 9.16, the state-defining information sets and the state labels
are given in Table 9.9.

Next, we derive a special symmetry structure for trellises of some linear
block codes. This structure is quite useful for implementing a trellis-based decoder,
especially in gaining decoding speed. Consider the TOGM of a binary (n, k) linear
block code of even length n,

g0 800 801 e 80,n—1
81 810 811 s 81.n—1
G = . = . . . .
Bi—1 8k-1,0 8k-1,1 -  8k-1.n-1

Suppose the TOGM & has the following symmetry property: for cach row g
in G with bit span ¢(g) = [a, b], there exists a row g’ in & with bit span ¢(g) =
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TABLE 9.9: State-defining sets and state labels for the
8-section trellis for ithe (8, 4) RM code.

; Gs a® | a® Af State Label
0 ¢ ag | — & (000)

1 {mo} ap | - {ao} (900)

5 {20, 21) a | — {ag., a1} (apa; 0)

30 (0.2} | a3 | a0 | fao, a1 m) | (aemar)

4\ {2 m)t | — | a1 | {a1, @, 03} {mazaz)

5 le, £3) — | {ay, o3} (apa30)

6 (m3) — | o {as} (a360)

7 P N & (0G0)

[n—1—b,n~1—a]. With this symmetry in G, we can readily see thatfor 0 < i < n/Z,
the number of rows in & that are active at time-(n —7) is egnal to the number of rows
in G that are active at time-i. This implies that |Z,_ (T = [2(O)] (or pu—i = pi)
for 0 < i < n/2. We can permute the vows of & such that the resultant matrix,
denoted by G, isin a reverse treliis—orienied form:

1. The trailing 1 of each row appears in a column before the trailing 1 of any row
below it.
2. Mo two rows have their leading 1’s in the same column.

If we rotate the matrix G’ 180° counterclockwise, we obtain a matrix G” in
which the ith row g is simply the (k — 1 —i)throw g, . of G'inreverse order (the
trailing 1 of g, . becomes the leading 1 of g, and the leading 1 of g _;_, becomes
the trailing 1 of g/). From the foregoing, we see that G” and G are structurally
identical in the sense that ¢(g/) = ¢ (g) for 0 < i < k. Consequenily, the n-section
trellis T for C has the following mirror symmerry [7, 37]: the last n/2 sections of 7'
form the mirror image of the first #/2 sections of T (not including the path labels).

EXAMPLE 9.16
Consider the (8, 4) RM code given in Example 9.1 with TOGM

a0 11 (10000
. dam |l foe1o11010
Groom=1 o /=1 5011110 0

2 00001111

Examining the rows of Grogu, we find that ¢(ge) = [0, 3], ¢(gz) = [4, 7], and g
and g3 are symmetrical with each other. Row g has bit span [1. 6] and is syminetrical
with itself. Row gy has bit span [2, 5] and is alsc symmetrical with itself. Suppose we
permute g; and g;. We obtain the [ollowing mairix in reverse trellis—orienied form:

£ 1111000 0
G| & |_]00111100
“lg | T|0o1e 11010

g, 00001 1 11|
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Rotating G’ 180° counterclockwise, we obtain the following matrix:

| g | 11110000
| B _|0o101 1010
“le|Tl0o01 11100

! 00001111

We find that G” and G are in fact identical, not just structurally identical. Therefore,
the 8-section trellis T for the (8,4) RM code has mirror symmetry with respect to
boundary location 4: the last four sections form the mirror image of the first four
sections, as shown in Figures 9.3 and 9.6.

Figure 9.7 shows that the 16-section bit-level trellis for the (16, 11) RM code
also has mirror-image symmetry. In fact, trellises for all RM codes have mirror-image
symmetry.

For the case in which r is odd, if the TOGM Grogu of a binary (n, k) code C
has the mirror symmetry property, then the last (n — 1)/2 sections of the n-section
trellis T for C form the mirror image of the first (n — 1)/2 sections of T.

From (9.47) we readily see that the generator matrix of a cyclic code has
the mirror symmetry property. Therefore, the trellises of all cyclic codes have
mirror-image symmetry. Figure 9.16 displays the mirror-image symmetry of the
(7,4) Hamming code.

9.7 TRELLIS SECTIONALIZATION AND PARALLEL DECOMPOSITION

In a bit-level trellis diagram, every time instant in the encoding interval I' = {0, 1, 2,

..,n} is a section boundary location, and every branch represents a code bit.
It is possible to sectionalize a bit-level trellis with section boundary locations at
selected instants in I'. This sectionalization results in a trellis in which a branch may
represent multiple code bits, and two adjacent states may be connected by multiple
branches. Proper sectionalization may result in useful trellis structural properties
and allow us to devise efficient trellis-based decoding algorithms or to simplify
decoder implementation.

For a positive integer v < n, let

A
A={nn.n, ... .t}

be a subset of v + 1 time instants in the encoding interval I' = {0, 1,2, ..., n} for an
(n, k) lincar block code C with0 =15 < <1 < --- <1, = n. A v-section trellis
diagram for C with section boundaries at the locations (time instants) in A, denoted
by T(A), can be obtained from the n-section trellis 7 by (1) deleting every state in
Z(Cyfort € {0,1,....n}\ A and every branch entering or leaving a deleted state,
and (2) for 1 < j < v, connecting a state s € Z;, , to astate s € Z, by a branch

with label « if and only if there is a path with label « from state s to state s in
the n-section trellis 7. In this v-section trellis, a branch connecting a state s E,M

to a state s € ¥y, represents (f; — ;1) code symbols. The state space X%, _,(C) at

time-7;_y, the state space X; (C) at time-f;, and all the branches between states in

A A SALRTT G,

2, (©) and states in %, (C), form the jth section of T(A). The length of this trellis
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section is 1; — 7;_1. If the lengths of all the sections are the same, T(A) is said to
be uniformly sectionalized. The state space dirnension profile for this seciionalized
trellis is an (v + 1)-tuple,

(00 Pris Prav o+ s Pruis Pr)s
where

O, = log2 ‘Zr, (O
: : (9.48)
=k — ]\’(COAV[/-) - k(Cr/.ir)-

The maximum state space dimension of the v-section trellis T (A) is given by

Pv.max(C) é max O, . (9.49)
0<j<v
If the section boundary locations 19, 71, . . ., #, are chosen at the places where o/, pr,.
.. pr,_, are small, then the resultant v-section code trellis T(A) has a small staie
space complexity; however, sectionalization, in general, results in an increase in
branch complexity. Hence, it is important to properly choose the section boundary
locations to provide a good trade-off between state and branch complexities.

EXAMPLE 9.17

Consider the 8-section bit-level trellis 7 for the (8. 4) RM code shown in Figure 9.6.
Suppose we choose v = 4 and the section boundary set A = {0, 2, 4, 6, 8}. Following
the foregoing rules of sectionalization, we obtain a uniform 4-section trellis diagram
as shown in Figure 9.17, in which every branch represents 2 code bits. The state space
dimension profile for this4-section trellisis (0, 2, 2, 2, 0), and the maximum state space
dimension is pa max(C) = 2. The trellis still possesses mirror-image symmetry. Fur-
thermore, the sectionalization decomposes the trellis into two parallel and structurally
identical (or isomorphic) subtrellises without cross connections between them.

EXAMPLE 9.18

Consider the 16-section trellis for the (16, 11) RM code shown in Figure 9.7. Suppose
we choose v = 4 and the section boundary set A = {0,4, 8 12, 16}. The result is a

FIGURE 9.17: A 4-section trellis for the (8, 4) RM code.
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4 states 4 states 4 states
& 2 2
S0 & ) Sy
(=)
=B d
o n 2 £

L\ &)
Two parallel branches

FIGURE 9.18: A 4-section minimal trellis diagram 7 ({0, 4, 8, 12, 16}) for the (16, 11)
RM code.

4-section trellis as shown in Figure 9.18. Each section is 4 bits long. The state space
dimension profile for this 4-section trellis is (0, 3, 3, 3, 0), and the maximum state
space dimension is p4 max(C) = 3. The trellis consists of two parallel and structurally
identical subtrellises without cross-connections between them.

A v-section trellis obtained from a minimal n-section treilis by deleting states
at places other than the section boundary locations is minimal.

A minimal code trellis has the least overall state and branch complexity but
is, in general, densely connected. For long codes with large dimensions, it is very
difficult to implement any trellis-based MLD algorithm based on a full code trellis
on (an) integrated circuit (IC) chip(s) for hardware implementation. To overcome
this implementation difficulty, one possible approach is to decompose the minimal
trellis diagram of a code into parallel and structurally identical subtrellises of
smaller dimensions without cross connections between them so that each subtrellis
with reasonable complexity can be put on a single 1C chip of reasonable size. This
approach is called parallel decomposition.

Parallel decomposition should be done in such a way that the maximum
state space dimension of the minimal trellis of a code is not exceeded. Parallel
decomposition has other advantages. Because all the subtreilises are structurally
identical, we can devise identical decoders of much smaller complexity to process
these subtrellises in parallel. This not only simplifies the decoding complexity but
also speeds up the decoding process. Parallel decomposition also resolves wire
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routing problems in IC implementation and reduces internal communications. Wire
routing is a major problem in IC implementation of a trellis-based decoder.

Consider the minimal n-section trellis 7 for a binary (», k) linear block code C
with maximum state space dimension pmax(C). We are interesied in decomposing T
as a disjoint union of a certain desired number of parallel and structurally identical
subtrellises under the constraint that its state space dimension at every time-i for
0 <i < nisless than or equal (0 pnax(C); that is, we want to decompose T without
exceeding iis mazimum siate complexity.

Suppose we choose a subcode &y of C by removing a row g from the TOGM
Grocy of C. The generator matriz Gy for this subcode is Gy = Grogy \ (g}
Let dim(C) and dim{C;) denote the dimensions of C and Cy, respectively. Then,
dim{(Cy) = dim(C) — 1 = k — 1. The partition C /7 consists of two cosets, Cy and its
coset g @ Cy. The two coset representatives are generated by {g}. which are 0 and g.
Let 71 be the minimal trellis for C;. Recall that the state space dimension 0 (C) is
equal to the number of rows of G whose active time spans contain the time index {.
Then, we readily see that

pi(CY) = pi(C) =1 (9.50)

fori € 1,(g), and
pi(C1) = pi(O) (9.51)

for i ¢ 7,(g). The equalities of (9.50) and (9.51) give the state space dimension
profile of the subcode €. We can obtain the minimal trellis TI for the coset g &
simply by adding g to every path in T1. Therefore, 71 and 7, 1 are structurally identical.
The union of T; and Tl/, denoted by T} U Tl/, gives a trellis representation for € in
which 7, and Tl form two parallel subtrellises without cross connections between
them. We may regard that the minimal trellis T for C is decomposed into two
parallel and structurally identical subtrellises 77 and Tl/. Note that 77 U Tll may not
be a minimal trellis for C.
We define the following index set:

Imax(€) 2 {i : p(C) = pmax(C), for 0 < i <n}, (9.52)

which is simply the set of time instants (or boundary locations) at which the state
space dimensions of the minimal trellis T for C are equal to its maximum, pmax ().
Then, Theorem 9.1 follows from (9.50), (9.51), and (9.52) [7, 37, 38].

TarorEM 9.1 If there exists a row g in the TOGM Grogy for an (n, k)
linear code C such that 7,(g) 2 fnax(C), then the subcode €y of C generated
by Grocu \ {g) has a minimal trellis 7; with maximum state space dimension
Pmax(C1) = Pmax(C) — 1, and

Imax(C)) = Imax(CY U {i : pi (C) = prax(C) — 1.1 ¢ Tn(g)}v (953)

Because G is in TOF, G; = G\ {g} is also in TOF. If the condition of
Theorem 9.1 holds, then it follows from the foregoing that it is possible to construct
a trellis for C that consists of two parallel and structurally identical subtrellises. one
for C; and the other for its coset C; @ g. Each subtrellis is a minimal trellis and
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has maximum state space dimension equal to pmax(C) — 1. Therefore, the maximum
state space dimension of the resultant trellis is still pmax (C).

EXAMPLE 9.19
Consider the (8, 4) RM code with TOGM

20 11110000
G _|@|_|01T011010
rocM 2 001 11100

g 60001111

Its minimal 8-section trellis T' is shown in Figure 9.3. Its state space dimension profile
15 (0,1,2,3,2,3,2,1,0) and pmax(C) = 3. The index set Iinax(C) s Imax (C) = {3, 5}.
By examining Grogy, we find only the second row gi, whose active time span,
T.(g1) = [2, 6], contains I (C) = {3, 5}. Suppose we remove g; from Groguy. The
resulting matrix is

11110000
Gi=[00111120 60,
006001111

which generates an (8, 3) subcode € of the (8,4) RM code C. From &G; we can
construct a minimal 8-section trellis 71 for €y, as shown in Figure 9.19 (the upper
subtrellis). The state space dimension profile of 77 is (0,1,1,2,1,2,1,1,0) and
Pmax(C) = 2. Adding g = (01011010) to every path in 77, we obtain the minimal
8-section trellis Tll for the coset g; &y, as shown in Figure 9.19 (the lower subtrellis).
The trellises 77 and Tl/ form a parallel decomposition of the minimal 8-section trellis
T for the (8, 4) RM code. We see that the state space dimension profile of 77 U T£ is
0,2,2.3,2,3,2,2,0). Clearly, Ty U Tll is not a minimal 8-section trellis for the (8, 4)
RM code: however, its maximum state space dimension is still ppax(C) = 3. If we
sectionalize T3 U Tll at locations A = {0, 2, 4, 6, 8}, we obtain the minimal 4-section
trellis for the code, as shown in Figure 9.17.

We can apply Theorem 9.1 to the subcode C; of C if there existsarow g’ € G
such that 7,(g) 2 Imax(Cp). Then, Gy = Gi\{g} = Grogum \{g g} generates a
subcode C; of Cy with dim(C;) = dim(Cy) — 1 = k — 2. The maximum state space
dimension of the minimal trellis for C; is then pmax(C2) = Pmax(C1) =1 = Pmax (C)—2.
As a result, the partition C/C; decomposes the minimal trellis T for C into four
parallel structurally identical subtrellises, one for each coset in C/C;. The maximum
state space dimension of the decomposed trellis is still ppax(C).

Theorem 9.1 can be applied repeatedly until either the desired level of decom-
position is achieved or no row in the generator matrix can be found to satisfy the
condition in Theorem 9.1. A general theorem for parallel decomposition is given
next [7, 37, 38].

THEOREM 9.2 Let Grogy be the TOGM of an (n, k) linear block code C
over GF(2). Define the following subset of rows of Groga:

R(C) 2 (g € Groom : ©(@ 2 Imax(CO)}. (9.54)
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FIGURE 9.19: Parallel decomposition of the minimal 8-section trellis for the (8,
RM code.

S

\
J

For any integer » with 1 < r < |R(C)|, there exists a subcode of O, of C such
that pmax(Cr) = Pmax(C) — r and dimi(C,) = dim(C) — r it and only if there
exists a subset . C R(C) consisting of r rows ¢f B(C) such ihat for every ¢
with 0i (C) > pmax(C;), there exist at least p; (C) — pmax(C,) rows in B, whose
active time spans contain i. The subcode £, is generated by Grogp \ Ry, and
the set of coset representatives for C/C, is generated by R,

If the condition of Theorem 9.2 holds, the partition C/C, resulls in a parallel
decomposition of the minimal trellis 7 for € ithat does not exceed the maximum
state complexity omax(C) of T. Two direct consequences of Theorem 9.2 are given
in Corollaries 9.2.1 and 9.2.2.

CororLary 920 In decomposing a mintmal trellis diagram for a linear
block code C, the maximum number of parallel isomorphic subtrellises one
can obtain such that the total state space dimension at any time does not
exceed pmax (C) is upper bounded by 21RO,

CoroLLARY 9.2,2 The logarithm base-2 of the number of parallel isomorphic
subtrellises in a minimal v-section trellis with section boundary locations in
A = {1y, 1, ..., t,} for a binary (n, k) linear block code C is given by the
number of rows in the TOGM Grogy whose active time spans contain the
section boundary locations, f1, 72, ..., fy-1.

EXAMPLE 9.20

Consider the (8, 4) RM code given in Example 9.1, whose minimal 4-section trellis
diagram with section boundary locations in A = {0, 2, 4. 6, 8} is shown in Figure 9.17.
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By examining the TOGM Grogy of the code, we find only one row, the second row,
g; = (01011010), whose active time span, 7,(g;) = [2, 6], contains {2, 4, 6}. There-
fore, the minimal 4-section trellis consists of two parallel isomorphic subtrellises.

EXAMPLE 9.21

Consider the (16, 11) RM code given in Example 9.10. Suppose we sectionalize the
bit-level trellis at locations in A = {0, 4, 8,12, 16}. Examining the TOGM of the
code, we find only row g3 = (0001111010001000) whose active time span,
7,(g3) = [4, 12], contains {4, 8, 12}. Therefore, the 4-section trellis T({0, 4, 8, 12, 16})
consists of two parallel isomorphic subtrellises.

Basically, Theorem 9.2 provides a method for decomposing a complex minimal
trellis into subtrellises without exceeding the maximum state complexity. This
decomposition of a trellis into parallel and structurally identical subtrellises of
smaller state complexity without cross connections between them has significant
advantages for IC implementation of a trellis-based decoding algorithm, such as
the Viterbi algorithm to be discussed in Chapters 12 and 15. Identical decoders of
much simpler complexity can be devised to process the subtrellises independently in
parallel without internal communications (or information transfer) between them.
Internal information transfer limits the decoding speed. Furthermore, the number
of computations to be carried out per subtrellis is much smaller than that of a fully
connected trellis. As a result, the parallel structure not only simplifies the decoding
complexity but also speeds up the decoding process.

9.8 LOW-WEIGHT SUBTRELLISES

Consider a binary (n, k) linear block code C with weight profile W = {0, wy, wa, .. .,
Wy}, where wq is the minimum weight and wi < wy < ... < wy < n. Let
7(A) be a v-section trellis for C with section boundary locations in A = {fy =
0,t1,12,....t,_1, 1, = n}. A subtrellis of T(A) that consists of the all-zero codeword
§ and all the codewords of C with weights up to wy (including wy) is called the
wy-weight subtrellis of T (A), denoted by T, (0). This subtrellis is said to be centered
at 0. For small k, say k = 1 or 2, this subtrellis is called a low-weight subtrellis. The
wi-weight subtrellis Ty, (8) can be obtained by purging the full trellis 7 (A) by using
the algorithm described in [7, 37, 39].

For two adjacent states s and s, with's € %,,(C) and s € i (0), let L(s,s)

denote the set of parallel branches connecting the states s and s . Let b € L(s, 5 )
and w(b) denote the Hamming weight of b. Let o(L(s, 5')) denote the minimum
weight of the parallel branches in L(s, s/). For any state s € Z, (Cywith0 < j < v,
let Wi (s) denote the minimum of the weights of all paths from the initial state sy to
the state s. W (s) is called the minimun path weight to the state s. For every state s
in T(A), Wr(s) can be computed recursively. Suppose that Wy (s) is known for every
state s € L, (C)for 0 <i < j. Let s € T, (O) and F(s/) denote the set of states in

2, (C) that are adjacent to 5. Then,

Wi(s) = min {W;(s) +a(L(s,s )} (9.55)
seF(s)
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The recursion begins with W;(sg) = 0. Once W, (s) is determined for every state
s € Z;,(C), the states n Zp;,, (€) can be processed. The weight computation of
{(9.55) continues until W(s¢)(= 0) is determined.

For any state s € ¥, (C) with 0 < j < v, let Wr(s) denote the mintmum of the
weights of all paths from state s to the final state 5. Wr(s) is called the minimum
path weight from the state 5. For every state s in T(A), Wr(s) can also be computed
recursively from the final state s y. Suppose Wr (s) is known for every state s € Z,,(C)
for j <i <wv. Let s be a state in Z (0), and let G(s/) denote the set of states in
Z . (O that are adjacent to s". Then,

Wr(s) = min {Wr(s) +a(L(s. s)}. (9.56)
seG(s’)
It follows from the definitions of W;(s) and Wr(s) that there is at least one path in
T(A) passing through state s with weight W;(s) + Wr(s). and there is no path in
T(A) passing through state s with weight less than W (s) + Wg(s). Let the all-zero
path 0in T(A) be represented by the state sequence

_ A0 & (O ® _
50 =50 2 Sp 2S4S, =S5f

Then, W; (S(Q)) + Wr (sm)\, = 0 for 0 < j < v and for any state s not on the all-zero
1 1 .

path 0, VV[(S) + Wg(s) > 0.
The wy-weight subtrellis Ty, (0) can be obtained by purging the full trellis 7(A)
as follows:

1. If foreverysiate s € T(A), Wi(s)+ Wr(s) > wy, delete state s and all branches
entering and leaving s.

2. Letsand s be any two adjacent states with s € &, (C) and s € Xy, (C) for
0<j<vLetheL(s.s). If W;(s) + Wr(s") + w(b) > wy, delete branch b.

3. If as a result of applications of the preceding two purging steps, any state
s(+# sp) has no incoming branches, then delete s and all its outgoing branches

from T (A). If any state s(# s¢) has no outgoing branches, then delete s and
all its incoming branches from 7T (A).

The foregoing purging process continues until none of the three purging steps can
be applied. The resultant subtrellis contains the following codewords of C: (1) all
codewords of weights up to and including wy; and (2) possibly some codewords of
weights greater than wy that correspond to nonzero paths in 7' (A) that diverge from
and remerge with the all-zero path 0 more than once. For each of these paths, the
weight of a partial path between the adjacent diverging and remerging states, called
side-loop, is wy or less but not zero. The number of these paihs is, in general, small
and they can be removed by using the state-splitting technique [7, 40]. We call the
described purged trellis the wy-weight subtrellis of T(A).

For k = 1, Ty, (D) contains (1) the all-zero codeword §; (2) all the codewords
of minimum weight wy; and (3) those codewords of weights greater than wq that
correspond to nonzero paths that diverge from and remerge with the all-zero path
more than once. For each of these nonzero paths, the weight of each side-loop is wy.
These paths with weights greater than wy can be removed by splitting the states

® ® (D)
oS S
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on the all-zero path 0 as follows:
1. Create v — 1 new states, denoted by 5;?' Eff), R Efﬁ)l,
location except fp = O and 7, = n;

one at each boundary

2. Forl < j < v —1, connect the state Ef?) to state 5,(?: , by a single branch with

the all-zero (t; 11 — f;)-tuple label. Also connect E,(?L to the final state sy by a
single all-zero label; and

3. Delete every branch b with nonzero weight (i.e., w(lb) # 0) that merges into

one of the states, s,(f”, on the all-zero path from any state s, and create a new
=(0)

branch with the same label from s to state 5"

The foregoing state-splitiing process ensures that there is no path in the new trellis
that after merging with the all-zero path diverges from it again before terminating
at the final state, s r. Consequently, the new trellis, denoted by Tp;, (8) contains only
the all-zero path ¢ and the minimum weight codewords of C. Ty (0) is called the
minimum-weight subtrellis of C and is said to be centered at §.

The subtrellis that contains a nonzero codeword v of C and all the codewords
that are at minimum distance from v, denoted by 71,5 (v), can be obtained by adding
v to all the codewords in Ty, (D). This subtrellis T, (v) is called the minimum-weight
(or more accurately minimum distance) subtrellis of C centered at v.

The minimum-weight trellis T, (0) is sparsely connected and generally has
much smaller state and branch complexities than does the full trellis for the
code. For example, the state space complexity profile for the 4-section minimum-
weight trellis for the (64.42) RM code is (1.157,157,157,1) as compared with
(1, 1024, 1024, 1024, 1) for the 4-section full trellis of the code. For the same code,
the 8-section minimum-weight subtrellis has state complexity profile

(1,45,157,717,157,717,157,45,1)
as compared with
(1,128,1024, 8192, 1024, 8192, 1024, 128, 1)

for the 8-section full trellis of the code. For this code. the §-section minimum-weight
subtrellis has a total of 4524 branches as compared with a total of 278, 784 branches
for the 8-section full trellis.

9.9 CARTESIAN PRODUCT

A trellis for a linear block code constructed from component codes by using a con-
struction technique such as interleaving, product, or direct-sum can be constructed
by taking Cartesian product of the trellises of the component codes.

Consider the interleaved code C* = Cy % Cy % - - - % C;, which is constructed
by interleaving A linear block codes, C1. Ca, -+ -, Cy, of length n (see Section 4.8).
An n-section trellis T can be constructed by taking the Cartesian product of the
n-section ftrellises of the component codes. For 1 < j < A, let T; be an n-section
trellis for C;. For O < i < n, let %;(C;) denote the state space of T; at time-i.

The Cartesian product of 7y, T3, -+, T), denoted by T* = Ty x Th x «- x Ty, 18
constructed as follows:
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1. For 0 <i < n, form the Cartesian product of Z;(Cy), % (Co). -+, Zi(Cy).
T 7
Zi(CH = Z(Cr) x Ti(C2) x -+ X Ti(C))
(9.57)
= (M 5@ Py D e micy for 1 < <),
Then, £;(C*) forms the staie space of T* at iime-i, i.e., the A- tuples in 2; (ol
form the nodes of T* at level-i.
2 A“’&LS(S‘(U, (7) @)m %; (C*) is adjacent to a state (s,(}r)l)ul(i)l . I(fl)
i L,H(«p "y if and only if sm is adjacent to s(fr)l for 1 < j < A Let
[ 2 (s; ) i(fl) denote the label of the branch that connects the state s( " to
the state s“ﬁl for 1 < j < A. We connect the state (sm, sl.(z), 0“)) € T (CH
’)
to the staie (Sz(+)1 s( )1 e I+l) € Z;41(C*) by a branch that is labeled by the

following A-tuple:
CHCREEN/R
This label is simply a column of the array of (4.80).

The constructed Cariesian product T4 = Ty x Ty x --- x T is an n-section trellis for
the interleaved code C* = Cy % C * - - - x Cy, in which each section is of length A.

:X/\M LE 9.22

Let C be the (3, 2) even parity-check code whose generator matrix in trellis-oriented
form is

11 0
GTOGM:[O 1 1]

The 3-section bii-tevel trellis T for this code can easily be constructed from Groguy
and is shown in Figure 9.20(a}). Suppose the code is interleaved to a depth of A = 2.
Then, the interleaved code €% = C % C is a (6, 4) linear code. The Castesian product
T x T results in a 3-section trellis T2 for €2, as shown in Figure 9.20(b).

Let Cy be an (ny, ky) linear code, and let €y be an (np, k) linear code. The
product Cy x Cy is then an (ning, kiky) linear block code (see Section 4.7). To
construct a trellis for the product code Cy x Co, we regard the top ky rows of the
product array shown in Figure 4.3 as an interleaved array with codewords from the
same code Cy. We then construct an nn1-section trellis for the interleaved code,

C]\Z*Clkcl* % Cy,

IS}

using the Cartesian produci. Each ky-tuple branch label in the trellis is encoded into
a codeword in C,. The result is an ny-section trellis for the product C; x €, each
section is n2-bit in length.

EXAMPLE 9.23

Let Cy and C; both be the (3, 2) even parity-check code. Then, the product C; x Cy
is a (9, 4) linear code with a minimum distance of 4. Using the Cartesian product
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A = (00),B = (01),C = (10). D = (11)
(b)

FIGURE 9.20: (a) The minimal 3-section bit-level trellis for the (3, 2) even parity-check
code, (b) A 3-section trellis for the interleaved (3, 2) code of depth 2.

construction method given above, we first construct the 3-section trellis for the
interleaved code C% = C1 * C1, which is shown in Figure 9.20(b). Then, we encode
each branch label in this trellis based on the C) = (3, 2) code. The result is a 3-section
trellis for the product code C; x Cy, as shown in Figure 9.21.

Let Cy and C; be an (n, k1, dq) and an (n, k2, dy) binary linear block code with
generator matrix, &1 and Gg, respectively. Suppose C; and C; have only the all-zero
codeword § in common; that is, C; N Cy = {8}. Their direct-sum, denoted by C1 & C;.
1s defined as follows:

Cécl@CZé{u-i-VZHECl,‘VGCZ}. (9.58)

Then, C = C; @ C;is an (n, k; + k2) code with minimum distance dpi, < min{dy, da}
and generator matrix
_| G
G = { & } ‘

Let 77 and T» be the n-section trellis for C; and C», respectively. Then, an n-section
trellis 7' for the direct-sum code C = C; @ C; can be constructed by taking the
Cartesian product of 77 and 7. The formation of state spaces for T and the condition
for state adjacency between states in T are the same as for forming the trellis for an
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L

SO D

A =(000),B = (011).C = (110). D = (101)

FIGURE 9.21: A 3-section trellis for the product (3,2) x (3, 2).

interleaved code by taking the Cartesian product of the trellises for the component
b g . . —- n 1
codes. The difference is branch labeling. For two adjacent states (sf :

2 . . - . oA ) D o ]
( il Si+1) in 7 at time-i and lH(Hf-(l + 1), let iy =i, ,~9i+l) be the label of the
J

branch that connects the state 5;”’ and the state sffr)l for 1 < j < 2. We connect
2. . . . .
the state (sl.(l), sl.(z)) and the state (sl.(i)l,sf;)l) with a branch that is labeled with
. R,
]l + 12 — ](S(D (48] 2y

¢ T
1

LS00+ 1 s ). The described product of two trellises is also
i+i i i+ b
known as the Shannon product.

sy and

EXAMPLE 9.24
Let €1 and €y be two linear block codes of length 8 generated by

p. 111106000
r1 = 4
61011010

and

00001111

respectively. It is easy to check that C; N Cy = {0}. The direct-sum C; @ (7 is
generated by

1
4622[0011A100j!4

111106000
G_[Gl}_ 010110190
T Gy || 00111100
60001111

which is simply the TOGM for the (8. 4, 4) RM code given in Example 9.1. Both Gy
and G, are in TOF. Based on Gy and G, we constiuct the 8-section irellises T and
T, for € and C, as shown in Figures 9.22 and 9.23, respectively. Taking the Shannon
product of T} and 75, we obtain an 8-section trellis 77 x 75 for the direct-surn C1 § C)
as shown in Figure 9.24, which is simply the 8-sectior: minimal trellis for the (8, 4,
4) RM code as shown in Figure 9.6. We label the states in 7y, 7y and Ty x 7> by the
method of state-defining seis of Section 9.3.
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FIGURE 9.22: The 8-section minimum trellis for the code generated by
G = 11110000
'=lo1o011010 |

FIGURE 9.23: The 8-section minimum trellis for the code generated by

G, 00111100
2= 100001111 |

FIGURE 9.24: The Shannon product of the trellises of Figures 9.22 and 9.23.

The Shannon product can be generalized to construct a trellis for a code that
is a direct-sum of m linear block codes. For a positive integer m > 2,and 1 < j <m,
let C; be an (N, K;, d;) linear code. Suppose C1, C2, - - -, Cy, satisfy the following
condition: for 1 < j, j/ <m,and j # j’,

CJ' N Cj/ = {0}. (9.59)
This condition simply implies that forv; ¢ C; with1 < j < m,

V[+V2+"'+Vm:®
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ifand onlyif vy = vo = -+ - = v,, = 0. The direct-sum of Cy, Cp, - - - , Cyy, is defined as

Cécl@CQEB"'@Cm (960)

={Vi+v+- -+ v, el < <mb
Then, C=Ci®Cy @ - ® Cyyis an (N, K, d) linear block code with

[(=f<1+K2+"'+[{111

d < min {d;}.
1<j<m /

Let G; be the generator matrixof Cjfor1 < j <m.Then.C=C® & --- @ C,,
is generated by the following matrix:

Gy
Gy
G=| . |. (9.61)
L Gy
The construction of an n-section trellis 7 for the direct-sum C = C1dCr D - - d Cyy,
is the same as that for the direct-sum of two codes. Let (s 0 .sfz), e (’”)) and
(sl(i)l,sfi)l, cee ,(’”1) be two adjacent states in 7. Then, the branch connectmg
(1) (2) (m) @O @ (m)
(s;77,8,7, -+ ) to (s, - 31+1 . I+1)1slabeledwnth
1y 2
1V s+ 1P Sy + 16! s, (9.62)
where for 1 < j < m, l(s(”ﬂ fjr)l) is the label of the branch that connects the state
s¢ and the state s} in the trellis T for the jth code C;.

EXAMPLE 9.25

Again, we consider the (8, 4, 4) RM code generated by the following TOGM:

11110060
01011010
001111060
00001111

For1 < j <4.let C; be the (8, 1., 4) code generated by the jth row of G. Then, the
direct-sum, C; & Cy @ C3 @ Cy, gives the (8, 4, 4) RM code. The 8-section minimal
trellises for the four component codes are shown in Figure 9.25. The Shannon
products 71 x T, and T3 x T4 generate the trellises for C; & €, and C3 & Cy,
respectively, as shown in Figures 9.22 and 9.23. The Shannon product (7] x ) x
(T3 x Ty) results in the overall trellis for the (8. 4, 4) RM code shown in Figure 9.24.
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(d) 7,

FIGURE 9.25: The 8-section minimal trellises for the four component codes.

Suppose 11, T», -+, T,, are minimal N-section trellises for the component
codes Cy, Cy, -, . respectively. The Shannon product Ty x T3 x - -+ x T), is not
necessarily the minimal n-section trellis for the direct-sum C = C1 @ 2 @ -+ © Cy.
Let T denote the minimal n-section trellis for C, and p; (C) denote the state space
dimension of T at time-i for 0 < < n. Then,

nt
pi(C) <> pi(C)). (9.63)

Jj=l

Ifthe equality of (9.63) bolds for0 < i < n,then the Shannon product 77 x5 x - - - x Ty,
is the minimal n-section trellis for the direct-sum C = C{ H» Cr, & - -- P Cy,. Theorem
9.3 gives a sufficient condition for the equality of (9.63). A proof of this theorem can
be found in [7].

TuroreEM 9.3 Consider the direct-sum C =C; @ Cr @ - & Cp.Forl < j
< m, let T; be the minimal N-section trellis for the component code C;. Then,
the Shannon product Ty x Tr x -+ X T, is the minimal N-section trellis for
C if and only if the following condition holds: for 0 < i < N, 1 < j, j/ < m,
and j # j',

Po.i(Cj) N poi(Cj) = {0} (9.64)
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The Shannon product can be applied to sectionalized trellises. In this case,
all the trellises must have the same number of sections, and corresponding sections
must have the same length.

EXAMPLE 9.26

Suppose we secticnalize each of the two 8-section trellises of Figures 9.22 and 9.23
into 4 sections, each of length 2. The resultant 4-section trellises are showi in

FIGURE 9.27: A 4-section trellis for the (8, 4, 4) RM code.
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Figure 9.26, and the Shannon product of these two 4-section trellises gives a 4-
section trellis, as shown in Figure 9.27, which is the same as the 4-section trellis for
the (8, 4, 4) RM code shown in Figure 9.17.

PROBLEMS
9.1

9.2

9.3
9.4

9.5
9.6

9.7

9.8

9.9

9.16

8.11

Consider the (6, 3) linear code generated by the following matrix:

101101
G=| 110001
101010

Put this generator in trellis-oriented form.
. Determine the active time spans of the rows in the trellis-oriented generator
matrix.
¢. Determine the state space dimension profile of the bit-level 6-section trellis
for the code.
. Determine the state-defining information set at each time instant.
Determine the input information bit at each time instant.
Determine the output function in each bit interval.
Construct the trellis-oriented generator matrix for the first-order RM code, RM(1,
5), of length 32.
a. Determine the active time spans of the rows.
. Determine the state space dimension profile of the bit-level treliis for the code.
Determine the state-defining information set at each time instant.
. Determine the input information bit at each time instant.
e. Determine the output function in each bit interval.
Construct the bit-level trellis for the (6, 3) code given in Problem 9.1. Label the
states based on the state-defining information set using ppyax(C) bits.
Find a parity-check matrix for the (6, 3) code given in Problem 9.1. Label the
states of its bit-level trellis based on the parity-check matrix.
Construct the bit-level minimal trellis for the (8, 7) even-parity-check code.
Construct the bit-level trellis for the first-order RM code, RM(1, 5), of length 32.
Label its states based on the state-defining information set using pmax(C) bits.
Determine the past and future subcodes of the (6, 3) linear code given in
Problem 9.1 at each time instant. Determine the cosets in the partition

e T

ap o

C/Cyq @ Cyp.

Determine the past and future subcodes of the first-order RM code, RM(1, 4), of
length 16 at time instants 4, 8, and 12. Determine the cosets in the partition

C/Cos & Cs 16-

For the first-order RM code of length 16, determine the punctured code py4 g(C)
and punctured code C{g between time-4 and time-8. Determine the partition

1)4,8(C)/C4I1’:8~

Determine the state space dimension profile of the bit-level trellis for the primitive
(15,5) BCH code. Construct its bit-level trellis.

Consider the first-order RM code of length 16 given in Example 9.13. Construct a
4-section trellis for the code with section boundary locations at 0, 4, 8, 12, and 16.
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9,12 Continue Problem 9.5. Construct a 4-section trellis for the firsi-order RM code of

length 32.

9.13 Consider the first-order RM code of length 16 given in Example 9.13. 1 ero;npose

9.14 Continue Problem 9.13. After decomposition, consiruct an

the bit-level trellis into two parallel subtrellises without exceeding the maxirmum
state space dimension.
8-section trellis for

the code.

9.15 Canthe first-order RM code of length 16 be decomposed into 4 paraliel subtrellises

without exceeding its maximum state space dimension?

9.16 Can the bit-level irellis for the primitive (15, 5) BCH code be decomiposed into

two parallel subtrellises without exceeding its mazzimum state space dimension?
If yes, decompose the trellis.

9.17 Prove that the bit-level trellis for the first-order RM code of length 16 has

mirror-image syminetry.

9.18 Prove that the bit-level trellis for the first-order RM code, RM(r, m}, has mirror-

image symmetry.
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