CHAPTER 8

Wiajority-Logic Decodable
anad Finite Geometry Codes

Majority-logic decoding is a simple and effective scheme for decoding certain classes
of block codes, especially for decoding certain classes of cyclic codes. The first
majority-logic decoding algorithm was devised in 1954 by Reed [1} for the class
of RM codes presented in Chapter 4. Reed’s algorithm was later extended and
generalized by many coding theorists. The first unified formulation of majority-logic
decoding was due to Massey [2].

Most majority-logic decodable codes found so far are cyclic codes. Important
cyclic codes of this category are codes constructed based on finite geometries, namely,
Euclidean and projective geomeiries. These codes are called finite geometry codes
and they contain punctured RM codes in cyclic form as a subclass. A special subclass
of finite geometry codes forms a special subclass of low-density parity-check codes
that will be discussed in Chapter 17. Finite geometry codes were first investigated by
Rudolph [3} in 1967. Rudolph’s work was later extended and generalized by many
coding researchers, from the late 1960s to the late 1970s.

In this chapter we first introduce majority-logic decoding based on orthogonal
parity-check sums formed from the parity-check matrix or the dual space of a code.
Then, we present several classes of cyclic majority-logic decodable codes.

8.1 ONE-STEP MAJORITY-LOGIC DECODING

Consider an (n, k) cyclic code C with parity-check matrix H. The row space of H
is an (n, n — k) cyclic code, denoted by Cy, which is the dual code of C, or the null
space of C. For any codeword v in C and any codeword w in Cy, the inner product
of v and w is zero; that is,

WV = wovg + wivy -+ wy_1vy—1 = 0. (81)

In fact, an n-tuple vis a codeword in C if and only if for any vector win Cy, w - v = 0.
The equality of (8.1) is called a parity-check equation. Clearly, there are 2¢~%) such
parity-check equations.

Now, suppose that a codeword v in C is transmitted. Let e = (eg, e1, -+ , €4_1)
andr = (rp, 1y, -, ry—1) be the error vector and the received vector, respectively.
Then,

r=v+e. (8.2)

For any vector w in the dual code Cy, we can form the following linear sum of the
received digits:
A=w-r=worg+wiry + -+ Wy 171, (83)

which is called a parity-check sum or simply check-sum. If the received vector r
is a codeword in C, this parity-check sum, A, must be zero; however, if r is not a
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codeword in C, then A may not be zero. Combining (8.2) and (8.3) and using the
fact that w - v = 0, we obtain the following relationship between the check-sum A
and error digits in e:

A = wpey +wier + -+ wy_1€,1- (8.4)

An error digit ¢ is said to be checked by the check-sum A if the coefficient w; = 1.
In the following, we show that certain properly formed check-sums can be used for
estimating the error digits in e.

Suppose that there exist J vectors in the dual code Cy,

w1 = (W1, Wit, - » Wln—1)»
wy = (w20, W2L, "+, W2 p—1),
wy =Wy, Wi, -+, Wip-1)

that have the following properties:

1. The (n — 1)th component of each vector is a 1; that is,
Wil =Wpp 1= =Wjsp-1 =1

2. For i # n — 1, there is at most one vector whose ith component is a 1; for
example,if w; =1, thenwy; =w3; =---=wy,; =0.

These J vectors are said to be orthogonal on the (n —1)th digit position. We call them
orthogonal vectors. Now, we form J parity-check sums from these J orthogonal
vectors:

Ay =w(-F = wyro + w1k + -+ Wi p-170—1

Ap =wo -¥ = wyro+wyrr1 + -+ W2 p-17a—1

(8.5)
Aj=wy-r=wyoro+wyiri+ -+ wWsp-1"n-1.
Because w1 ;1 = Wy,,—1 = +++ = Wy 41 = 1, these J check-sums are related to the
error digits in the following manner:
A1 = wipeo + wrier + - F Wi p2€p-2 + €1
Ay = wopep + worer + -+ wWp p2€p-2 + €n—1 56
8.

Ay =wjyoeo+wyie1+-+wypoe-2+e,_1.

We see that the error digit e,_1 is checked by all the preceding check-sums. Because
of the second property of the orthogonal vectors wy, Wy, --- , wy any error digit
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other than ¢,_1 is checked by at most one check-sum. These J check-sums are said
to be orthogonal on the ervor digit e,_1. Since w; ; = 0, or 1, each of the foregoing
check-sums orthogonal on ¢,_1 is of the form

AJ' =¢,_1+ Z é;.

i#n-1

If all the error digits in the sum of A; are zero for i # n — 1, the value of e, is equal
to Aj (ie.,e,_1 = A;). Based on this fact, the parity-check sums orthogonal on e,_;
can be used to estimate ¢,_1 or to decode the received digit r,,1.

Suppose that there are |J/2] or fewer errors in the error vector e =
(eg, €1, ,eqn_1) (le., [ J/2] or fewer components of e are 1). If ¢, 1 = 1, the
other nonzero error digits can distribute among at most |J/2] — 1 check-sums
orthogonal on ¢,_1. Hence, at least J — [ J/2]| + 1, or more than half of the check-
sums orthogonal on e,_1, are equal to ¢,_1 = 1; however, if ¢,_; = 0, the nonzero
error digits can distribute among at most | J /2| check-sums. Hence, atleast J —[J /2]
or at least half of the check sums orthogonal on ¢, _1 are equal to e,_1 = 0. Thus, the
value of e,_; is equal to the value assumed by a clear majority of the parity-check
sums orthogonal on ¢,_1; if no value is assumed by a clear majority of the parity-
check sums (i.e., there is a tie), the error digit ¢,_1 is zero. Based on the preceding
facts, an algorithm for decoding e, can be formulated as follows:

The error digit e, _1 is decoded as 1 if a clear majority of the parity-check sums orthogonal
on e, 1 is 1; otherwise, e,_q is decoded as 0.

Correct decoding of e, i is guaranteed if there are [J/2] or fewer crrors in the
error vector e. If it is possible to form J parity-check sums orthogonal on e¢,_1,
it is possible to form J parity-check sums orthogonal on any error digit because
of the cyclic symmetry of the code. The decoding of other error digits is identical
to the decoding of ¢, 1. The decoding algorithm just described is called one-step
majority-logic decoding [2]. If J is the maximum number of parity-check sums
orthogonal on ¢, 1 (or any error digit) that can be formed, then, by one-step
majority-logic decoding, any error pattern of | J/2] or fewer errors can be corrected.
The parameter 1y, = |J/2] is called the majority-logic error-correcting capability
of the code. Let d,;, be the minimum distance of the code. Clearly, the one-step
majority-logic decoding is effective for this code only if 7, = [J/2] is equal to
or close to the error-correcting capability 1 = [(dnin — 1)/2] of the code; in other
words, J should be equal to or close to dpin — 1.

DerFmniTION 8.1 A cyclic code with minimum distance dp;, is said to be
completely orthogonalizable in one step if and only if it is possible to form
J = dpin — 1 parity-check sums orthogonal on an error digit.

At this point, a clarifying example will be helpful.

EXAMPLE 8.1
Consider a (15, 7) cyclic code generated by the polynomial

gX)=1+x*+x%4 x7 + x5
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The parity-check matrix of this code (in systematic form) is found as follows:

ho 1000000011010 00
I 01 0000000110T100
Iy 001000000011 0T10
H_| M |_|000100000001101
| |T|00001T0001 101110
hs 0000010001 10111
he 0000001011100 1°1
k| 0000000110100 01]

Consider the following linear combinations of the rows of H:

Digit positions: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
— hs=0 0010000000 1 1 0 1),
Wy = hi+hs=(0 1 0 0 010000 0 0 0 1 1),
wi=ho+h+he=(1 0 1 0001000 0 0 0 0 1),
Wy = =0 000000110 1 0 0 0 1)

We see that all four vectors have a 1 at digit position 14 (or X!%), and at any
other digit position, no more than one vector has a 1. Therefore, these four vectors
are orthogonal on the digit position 14. Let ¥ be the received vector. The four
parity-check sums formed from these orthogonal vectors are related to the error
digits as follows:

Aj=wy -r= e3 +ei1 + e +e14
Ay =wp-1= e +es +e13 + e
Az=w3 - r= ¢ +ep +eq +e14
Ag =Wy 1= e7+eg + ey +e14.

We see that ej4 is checked by all four check-sums, and no other error digit is checked
by more than one check-sum. If e;4 = 1, and if there is one or no error occurring
among the other 14 digit positions, then at least three (majority) of the four sums,
A1, Az, Az, and Ay, are equal to e;4 = 1. If e;4 = 0 and if there are two or fewer
errors occurring among the other 14 digit positions, then at least two of the four
check-sums are equal to e4 = 0. Hence, if there are two or fewer errors in e, the
one-step majority-logic decoding always results in correct decoding of e14. Because
the code is cyclic, four parity-check sums orthogonal on any error digit can be
formed. It can be checked that four is the maximum number of parity-check sums
orthogonal on any error digit that can be formed. Thus, by one-step majority-logic
decoding, the code is capable of correcting any error pattern with two or fewer
errors. It can be shown that there exists at least one error pattern with three errors
that cannot be corrected. Consider an error pattern e with three errors, eg, e3, and
eg (i.e., g = e3 = eg = 1). From the four parity-check sums orthogonal on e14, we
have A; =1, Ay = 0, A3 = 1, and A4 = 1. Because the majority of the four sums
is 1, according to the decoding rule, eq4 is decoded as 1. This results in an incorrect
decoding. The code given in this example is actually a BCH code with a minimum
distance of exactly 5. Therefore, it is completely orthogonalizable.
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Given an (n. k) cyclic code C for which J parity-check sums orthogonal on
an error digit can be formed, the one-step majority-logic decoding of the code can
casily be implemented. First, from the null space C, of the code, we determine a set
of J vectors wy, Wy, - - - , W, that are orthogonal on the highest-order digit position,
X" Then, J parity-check sums A1, Ay, - -+, A; orthogonal on the error digit e, 1
are formed from these J orthogonal vectors and the received vector r. From (8.5),
we see that the vecior w; tells what received digits should be summed up to from the
check-sum A;. The J check-sums can be formed by using J multi-input modulo-2
adders. Once these J check-sums are formed, they are used as inputs o a J-input
majority-logic gate. The output of a majority-logic gate is 1 if and only if more
than half its inputs are 1; otherwise, the output is 0. The output is the estimated
value of ¢,_1. A general one-step majority-logic decoder is shown in Figure 8.1.
This decoder is called the type-1l one-siep majority-logic decoder [2]. The error
correction procedure is as [ollows:

Step 1. With gate 1 turned on and gate 2 turned off, the received vector r is
read into the buffer register.

Step 2. The J parity-check sums orthogonal on ¢,_1 are formed by summing
the appropriate received digits.

Step 3. The J orthogonal check sums are fed into a majority-logic gate. The
first received digit r,,— is read out of the buffer and is corrected by
the output of the majority-logic gate.

Step 4. At the end of step 3, the buffer regisier has been shifted one place
to the right with gate 2 on. Now, the second received digit is in the
rightmost stage of the buffer register and is corrected in exactly the

Gate2 |

r .
#*()L')% Gate 1 > n-stage buffer register e Rl =

J-input majority gate

FIGURE 8.1: General type-11 one-step majority-logic decoder.
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FIGURE 8.2: Type-1I one-step majority-logic decoder for the (15, 7) BCH code.

same manner as was the first received digit. The decoder repeats step
2 and 3.

Step 5. 'The received vector is decoded digit by digit in the same manner until
a total of » shifts.

If the received vector r contains |J/2] or fewer errors, the buffer register
should contain the transmitted code vector, and the inputs to the majority-logic
gate should all be zero at the completion of the decoding operation. If not all
the inputs to the majority gate are zero, an uncorrectable error pattern has been
detected.

The type-II one-step majority-logic decoder for the (15, 7) BCH code consid-
ered in Example 8.1 is shown in Figure 8.2.

The parity-check sums orthogonal on an error digit also can be formed from
the syndrome digits. Let

ho 1000 .- 0 Poo Po1 P0.k—1

by 61060 - 0 P1o pi1 Pli-1

H=| ® |0 010 --- 0 P20 P2 P2i-1
hll*k*l 0 0 00 1 Pn-k-1.0 Pun-k-11 =+ Pn—k—1k-1

be the parity-check matrix for an (n, k) cyclic code C in systematic form. Because
the orthogonal vectors wy, ws, --- , w; are vectors in the row space of B, they are
linear combinations of rows of H. Let

Wi = (Wjo, wjt, - Win—1)

= a.thO + a.flhl R aj.n#\'—lhn—k—l
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Because of the systematic structure of Hl, we see that

wjo = a0, Wit =dj1, - s Win—k—1 = djp—k—1- (8.7)
Letr = (rg, #1, -+ , ry—1) be the received vector. Then, the syndrome of 1 is
_ . . HT
S_(S07S1~ t asn—/\'——l)_]r' ’

where the ith syndrome digit is
si=r1r-hy (8.8)

for 0 <i < n — k. Now, consider the parity-check sum
Aj=w; 1
= (ajohg + ajihy + -+ aj oty _g—1) - ¥ (8.9)
=ajor-hyg+apr-hy +-- a1 by
From (8.7), (8.8), and (8.9), we obtain
A =wjosg +wirst+ o Wik 1S—k—1 (8.10)

Thus, the check-sum A; is simply a linear sum of the syndrome digits whose
coefficients are the first n — k digits of the orthogonal vector w;. Based on (8.10), we
obtain a different implementation of the one-step majority-logic decoding, as shown
in Figure 8.3 (the received vector can be shifted into the syndrome register from the
right end). This decoder is called the type-1 one-step majority-logic decoder [2]. The
error correction procedure is as {ollows:

Step 1. The syndrome is computed as usual by shifting the received polyno-
mial r(X) into the syndrome register.

Step 2. The J parity-check sums orthogonal on e,_; are formed by taking
proper sums of the syndrome digits. These J check-sums are fed into
a J-input majority-logic gate.

Step 3. The firstreceived digit is read out of the buffer register and is corrected
by the output of the majority gate. At the same time the syndrome
register is also shifted once (with gate 2 on), and the effect ¢,_; on
the syndrome is removed (with gate 3 on). The new contents in the
syndrome register form the syndrome of the altered received vector
cyclically shifted one place to the right.

Step 4. The new syndrome formed in step 3 is used to decode the next
received digit r,_p. The decoder repeats steps 2 and 3. The received
digit r,,_» is corrected in exactly the same manner as the first received
digit r,_1 was corrected.

Step 5. The decoder decodes the received vector r digit by digit in the same
manner until a total of n shifts of the buffer and the syndrome registers.

At the completion of the decoding operation, the syndrome register should
contain only zeros if the decoder output is a codeword. If the syndrome register
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FIGURE 8.3: General type-I one-step majority-logic decoder.

does not contain all zeros at the end of the decoding, an uncorrectable error pattern
has been detected. If we are interested in decoding only the received message digits
but not the received parity digits, the buffer register needs store only the k received
message digits, and it consists of only & stages. In this case, both type-I and type-II
decoders require roughly the same amount of complexity.

EXAMPLE 8.2

Consider the (15, 7) BCH code given in Example 8.1. From the vectors wy, wp, w3,
and wy that are orthogonal on the digit position 14, we find that the parity-check
sums orthogonal on e14 are equal to the following sums of syndrome digits:

Ay =353, Ay=s1+5s5, Az =350+ 52 +56, Ag =357

Based on these sums we construct the type-I one-step majority-logic decoder for
the (15, 7) BCH code as shown in Figure 8.4. Suppose that the all-zero codeword
(0,0, ---,0)is transmitted, and r(X) = X3 4+ X1 is received. Clearly, there are two
errors at locations X'° and X'*. After the entire received polynomial has entered
the syndrome register, the syndrome register contains (0 0 1 1 1 0 0 1). The four
parity-check sums orthogonal on ey4 are

A1 =1, Ay=0, A3;=1 As=1.
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FIGURE 8.4: Type-I one-step majority-logic decoder for (15, 7) BCH code.

Because the majority of these four sums is 1, the output of the majority-logic gate
is 1, which is the value of ey4. Simultaneously, the buffer and syndrome registers
are shifted once; the highest-order received digit ri4 = 1 is then corrected by the
output of the majority-logic gate, and the new contents in the syndrome regisier are
(00010111). The new parity-check sums are now

O _ L _ 1 _ 1 _
AP =1, alV =1, al’=1, aP =1

Again, the output of the majority-logic gate is 1, which is the value of ej3. Both
the buffer and syndrome registers are shifted once more; the received digit ri3 will
be corrected, and the syndrome register will contain only zeros. At this point, both
errors have been corrected, and the next 13 received digits are error-free.

One-step majority-logic decoding is most efficient for codes that are completely
orthogonalizable, or for codes with large J compared with dpi, — 1. When J is small
compared with di;,, — 1, one-step majority-logic decoding becomes very inefficient,
and much of the error-correcting capability of the code is sacrificed. Given a
code C, one would like to know the maximum number of parity-check sums
orthogonal on an error digit that can be formed. This question is answered by
Theorem 8.1.

TurorEM 8.1 Let C be an (n, k) cyclic code whose dual code Cy has mini-
mum distance §. Then, the number of parity-check sums orthogonal on an
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error digit that can be formed, J, is upper bounded by

n—1
J < . 8.11
<3 (s.11)
Proof. Suppose that there exist J vectors wy, wo, - - -, wy in the dual code of

C that are orthogonal on the highest-order digit position, X" 1. Because each
of these J vectors has a weight of at least 8, the total number of 1’s in these J
vectors is at least J§; however, because of the orthogonal structure of these J
vectors, the total number of 1’s in them cannot exceed J + (n — 1). Therefore,
we have J§ < J + (n — 1). This implies that J < (n — 1)/(§ — 1). Because J is
an integer, we must have J < |[(n — 1)/(5 — D). Q.E.D.

The dual code of the (15,7) BCH code has a minimum distance of 4. Therefore,
the maximum number of parity-check sums orthogonal on an error digit is upper
bounded by [14/3] = 4. This proves our claim in Example 8.1 that J = 4 is the
maximum number of parity-check sums orthogonal on an error digit that can be
formed for the (15, 7) BCH code.

If it is possible to form J parity-check sums orthogonal on an error digit for
a cyclic code, then the code has a minimum distance of at least J + 1 (Massey
bound [2]). The proof of this statement is left as a problem.

As we pointed out earlier in this section, one-step majority-logic decoding is
most effective for cyclic codes that are completely orthogonalizable. Unfortunately,
there exist very few good cyclic codes in this category. The double-error-correcting
(15, 7) code considered in Example 8.1 is the only known BCH code that is
completely orthogonalizable in one step. Several small classes of one-step majority-
logic decodable cyclic codes are presented in the next two sections. Two of the
classes are proved to be completely orthogonalizable.

8.2 A CLASS OF ONE-STEP MAJORITY-LOGIC DECODABLE CODES

In this section we present a class of one-step majority-logic decodable cyclic codes
whose construction is based on a certain symmetry property.

Let C be an (n, k) cyclic code generated by g(X), where n = 2™ — 1. We may
extend each vector v = (vg, v, -+, v,_1) in C by adding an overall parity-check
digit, denoted by ve, to its left. The overall parity-check digit v, is defined as the
modulo-2 sum of all the digits of v (i.e., voo = vg + V1 + -+ + V-1 ). Adding v to v
results in the following vector of n + 1 = 2" components:

Ve = (Voo, Vg, V1, =+, Up—1).

The overall parity-check digit is 1 if the weight of v is odd, and it is 0 if the weight
of v is even. The 2¥ extended vectors form an (n + 1, k) linear code, denoted by
C., which is called an extension of C. Clearly, the codewords of C, have even

weight.
Let « be a primitive element in the Galois field GF(2™). We may number
the components of a vector v, = (Veo, Vg, V1, -+ , tau_3) in C, by the elements of

GF(2™) as follows: the component vy, is numbered ¢® = 0, the component vy is
numbered o = 1, and for 1 <i < 2™ — 1, the component v; is numbered «'. We
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call these numbers the location numbers. Let ¥ denote the location of a component
of v,. Consider a permutation that carries the component of v, at the location ¥
to the location Z = a¥ + b, where ¢ and b are elements from the field of GF(2™),
and a # 0. This permutation is called an affine permutation [14]. Application of an
affine permutation to a vector of 2 components resulis in another vector of 2"
components.

EXAMPLE 8.3

Consider the following vecior of 16 components, which are numbered with the
elements of GF(2%) (using Table 2.8):

a™® o ol a2 o3 ot o b o7 o ¥ ol0 Gl g2 413 414

@ ++ 0 ¢ 1 ¢ ¢ 1 o0 0 1 ¢ 0o 1 0 0

Now, we apply the affine permutation
Z =aY + o4

to the components of the preceding vector. The resultant vector is

3] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0114

8

For example, the component at the location ¥ = «° is carried to the location

8 14

Z=0-a ‘o 4

:oz9+ozl4:ozA

An extended cyclic code C, of length 27 is said to be invariant under the
group of affine permutations if every affine permutation carries every codeword in
C, into another codeword in C,. In the following discussion we state a necessary and
sufficient condition for an extended cyclic code of length 2™ to be invariant under,
the affine permutations.

Let h be a nonnegative integer less than 2. The radix-2 (binary) expansion of
his

h=080+82+82%+ - +8,.12" ",

where §; =0 or 1for 0 <i < m. Let &’ be another nonnegative integer less than 2
whose radix-2 expansion is

Bo=6y 8248522 -8 2mh

m—1

The integer /' is said to be a descendant of h if ] < §; for 0 <i < m.

EXAMPLE 8.4

Let m = 5. The integer 21 has the following radix-2 expansion:

21=140.-2+1-22+0-22+1.2%
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The following integers are proper descendants of 21:

20=04+0-2+1-2240.234+1.24
17=1+0-2+0-224+0-2°+1.2%,
16=0+0-2+0.2240.23+1.24
5=140-2+41-224+0-224+0.24,
4=040-24+1-2240-22+0.24
1=14+0-240-224+0-224+0.2%
0=0+0.24+0-22+0.23+0.2%

Let A(h) denote the set of all nonzero proper descendants of 2. The following
theorem characterizes a necessary and sufficient condition for the extension C, of a
cyclic code C of length 2 — 1 to be invariant under the affine group of permutations.

TaeoreM 8.2 [4, 5] Let C be a cyclic code of length n = 2" — 1 generated by
g(X). Let C, be the extended code obtained from C by appending an overall
parity-check digit. Let « be a primitive element of the Galois field GF(2™).
Then, the extended code C, is invariant under the affine permutations if and
only if for every «” that is a root of the generator polynomial g(X) of C and
for every A’ in A(h), o' is also a root of g(X), and o? = 1is not a root of e(X).

The proof of this theorem is omitted here. For a proof, the reader is referred
to [4] and [5]. A cyclic code of length 2™ — 1 whose generator polynomial satisfies
the conditions given in Theorem 8.2 is said to have the doubly transitive invariant
(DTI) property. RM codes and extended primitive BCH codes are invariant under
the affine permutations [4, 5].

Givenacode C, oflengthn = 2" thatis invariant under the affine permutations,
the code C obtained by deleting the first digit from each vector of C, is cyclic. To
see this, we apply the permutation Z = «¥ to a vector (veo, Vg, V1, - - - , Vau_3) in C,.
This permutation keeps the component ve, at the same location «® but cyclically
shifts the other 2" — 1 components one place to the right. The resultant vector is

(Voo, Upm_2, Vg, V1, -+ -, Vam_3),

which is also in C,. Clearly, if we delete vy, from each vector of C,, we obtain a
cyclic code of length 2" — 1.

Now, we are ready to present a class of one-step majority-logic decodable
codes whose dual codes have the DTI property. Let J and L be two factors of 2" — 1
such that J - L = 2" — 1. Clearly, both J and L are odd. The polynomial X2"~1 41
can be factored as follows:

X2111—1—|-1:(1+XJ)(1+X]+X2J+"'+X(L_1)J).

Let
n(X)=1+X"+x* +... 4 x4/, (8.12)
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From Theorem 2.12 we know that the 27 — 1 nonzero elements of GF(2™) form
the 2" — 1 roots of X2~ 4+ 1. Leta be a primitive element of GF(2™). Because
(@l)! = 2" 1 =1, the polynomial X/ 4 1 has a¥ = 1,aF o2k ... oV DL g5 3]
its roots. Therefore, the polynomial % (X) has o' as a root if and only if 4 is not a
multiple of L,and 0 < h <27 — 1.

Now, we form a polynomial H(X) over GF(2) as follows: H(X) has o as a
root if and only if (1) o is a root of # (X) and (2) for every i’ in A(h). o’ is also a
root of w(X). Let o' be a root of H(X). Let ¢,(X) be the minimal polynomial of &'
Then,

H(X) = LCM{minimal polynomials ¢;(X) of the roots of H(X)}. (8.13)

It is clear that H(X) divides  (X) and is a factor of X*" 1 + 1. Let ¢ be the cyclic
code of length 2" — 1 generated by H(X). It follows from Theorem 8.2 that €/ has
the DTI property. Thus, the extended code C) of €’ is invariant under the group of
affine permutations. Let C be the dual code of C’. Then, C is also cyclic. Since H(X)
divides X2"~1 4+ 1, we have

¥l 41 = GOOH(H).

Let k be the degree of H(X). Then, the degree of G(X) is 2" — 1 — k. The generaior
polynomial of C is
g(X)=Xx"""*1gxh, (8.14)

which is the reciprocal of G(X). Next, we will show that the code C is one-step
majority-logic decodable and is capable of correciing ry; = {J/2] or fewer errors
where J = (2" — 1)/L.

First, we need to determine J vectors from ' (the dual of C) that are
orthogonal on the digit at location 2" 2. Because % (X) is a multiple of H (X) and has
degree less than 2" — 1, it is a code polynomial in C’ generated by H(X). Clearly, the
polynomials Xz (X), X?w(X), -, X/ ~'7 (X) are also code polynomials in C’. From
(8.12) we see that, for i # j, X'z (X) and X/ % (X) do not have any common term. Let
vg, ¥1, - -+ , vy_1 be the J corresponding codewords of w (X), X (X). -- -, XL (0.
The weight of each of these vectors is L. Adding an overall parity-check digit to
each of these vectors, we obtain J vectors ug, wy. - -+ . uy_1 of length 27 that are
codewords in the extension C/, of C’. Since L is odd, the overall parity-check digit of
each w; is 1. Thus, the J vectors ug. uy, - - - , w;_1 have the following properties:

1. They all have 1 at location « (the overall parity-check digit position}.
2. One and only one vector has a 1 at the location o/ for 0 < j < 2 — 1,

Therefore, they form J vectors orthogonal on the digit at location «®. Now, we
apply the affine permutation

o _

Z =a¥ + o2
to ug, Wy, - . Wy_1. This permutation carries g, Wy, --- .Wy_1 into J vectors
Z9,71.--- ,Z;—1, Which are also in C, (since €/ is invariant under the group of

affine permutations). Note that the permutation Z = a¥ + " ~? carries the com-

ponent of w; at location a® to location «?” =2, Thus, the vectors zg, z;, - - - , z;_; are
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orthogonal on the digit at location «*" 2. Deleting the digit at location «® from
zo, 21, -+ , &j—1, We obtain J vectors wg, wy, - - - , wy_{ of length 2" — 1, which are
vectors in C’ and are orthogonal on the digit at location «®" 2. From these J vectors
we can form J parity-check sums orthogonal on the error digit ep» _». Therefore, the
cyclic code C generated by

g(X) =x"*lexh

is one-step majority-logic decodable and is capable of correcting ry; = {J/2] or
fewer errors. For convenience, we call this code a type-0 one-step majority-logic
decodable DTI code.

EXAMPLE 8.5
Let m = 5. We can factor the polynomial X2 =1 +1 = XI5 4 1 as

XB41=01+XH0+ x5+ x10,

Thus,J =5, L =3,andw(X) = 1+ X + X0 Letabea primitive element in GF(2%
(use Tabie 2.8) whose minimal polynomial is ¢1(X) =14+ X+ X* Because o> = 1,
the polynomlal 1+ X5 has 1,a>, o, o’ and ol as all its roots. The polynomial
7(X) has o, &2, a*. o, o”. a8, ozw I o13 and o' as roots. Next, we determine the
polynomial H (X ). From the conclmons on the roots of H(X), we find that H(X) has
a, a?, o, o, ob, and oY as its roots. The roots o, @2, o, and o are conjugates, and
they have the same minimal polynomial, ¢,(X) = 1 + X + X*. The roots o> and a1?
are conjugates, and they have ¢5(X) = 1 + X + X* as their minimal polynomial.
Hence,

HX)=¢,(X)¢s(X) =1+ X + XHA + X + X?)
=1+ X+ x* 4+ x5+ Xx°

We can easily check that H(X) divides n(X), and, in fact, m(X) = (1 + X° +
XHH(X). Also, H(X) divides X5 +1,and X° +1 = (1 + X34 X4 X5+ X8 4
X9 H(X). Thus, G(X) = 1+ X3 + X* + X5 + X3 + X°. The polynomial H(X)
generates a (15, 9) cyclic code €', which has the DTI property. The polynomials
(X)), Xn(X), X7 (X), X37E(X), and X47r(X) are code polynomials in C’. The dual
code of C’. C. is generated by

gX)=XGX H=1+X+Xx"+x +x°+x°

Thus, C is a (15, 6) cyclic code.
To decode C, we need to determine parity-check sums orthogonal on e14. The
vectors corresponding to (X)), Xn (X), X?n(X), X>x(X), and X*m (X) are

Location Numbers

0{0 0{1 052 0(3 0(4 aS 0«56 0(7 as 0(9 al@ all O(IZ 0(13 u14
w=( 0 0 0 0 1 0 0 0 0 1 0 0 0 0
w=@© 1 0 0 0 0 1 0 0 0 0 1 0 0 0
v=(0© 0 1 0 0 0 0 1 0 0 0 0 1 0 0

© 0 0 1 0 0 0 0 1 0 0 0 0 1 0

© 6 0 0 1 0 0 0 0 1 0 0 0 0 1),
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which are codewords in C’. Adding an overall parity-check digit to these vectors, we
obtain the following vectors:

Location Numbers

a® ¥ ot of o of @ «f o &f ¥ al® ot &f? o3 U
w={¢ 1 06 0 & 0 1 6 6 0 0 1 ¢ 0 0 0
w=(< ¢ 1 ¢ 6 ¢ ¢ 1 6 0 6 6 1 0 0 0
m=( ¢ ¢ 1 0 6 ¢ 0 1 ¢ 06 0 ¢ 1 ¢ O
m= ¢ 6 ¢ 1 ¢ ¢ 0 0 1 ¢ 0o 0 0 1 0
w=( ¢ 0 0 ¢ 1 ¢ 6 6 0 1 o6 0 0 0 1D,

which are vectors in C, (the extension of C’). Now. we apply the affine permutation
Z=a¥+aMt0 permute the components of wg, wy, wy, w3, and wy. The permutation
results in the following vectors:

Location Numbers

oL oo [4:4 0 [3:4 1 @Zz 053 054 @ZS (OZ(6 (DZ7 058 @Zg) o 10 4 = [v4 12 974 i3 [ 14
=0 0 0 ¢ 6 0 0 6 1 1 0 1 06 0 0 1)
n=0 06 1 0 0 0 1 0 0 0 0 ©0 0 0 1 1)
=0 1 0 1 0 06 0 1 6 0 0 0 0 0 0 1)
=1 0 0 0 6 1 0 0 0 0 1 0 06 0 0 1)
=0 0 0 0 1 0 0 0 0 0 0 6 1 1 0 1,

which are also in . Deleting the overall parity-check digits from these vectors, we
obtain the following vectors in C:

Location Numbers

CZ@ (OZ}1 @52 023 @54 OZS 0{6 @Z7 (OZ8 (059 @Zl@ [v4 1 o4 12 OZ]B o 14
wo=®© 0 0 0 0 0 0 1 1 0 1 o o6 0 1
w=0 1 0 0 ¢ 1 0 0 06 0 0 ¢ 0 1 1)
w=(31 0 1 0 0 0 1 0 0 0 0 0 0 0 1)
ws=@® 0 0 0 1 6 0 0 ©0 1 0 0 0 0 1)
wy=® 0 06 1 0 0 0 0 06 0 0 1 1 0 1

We see that these vectors are orthogonal on the digit at location o!%.

Let v = (ro, 11,12, 3,74, 75, Fg, I'7, T8, 19, 10, I'11, 112, F'13, F14) be the received
vector. Then, the parity-check sums orthogonal on ¢4 are

Ap=r1-Wo=r7+7r3 +rio+ri4,
Ay =r-wy =71 +7rs +r13+r.
Ay =T Wy =719 +1r) +rg+114.
Ay =T -W3 =14 + Fro + r14.
As =0 -Wqg =13+ +rp+rig.

Therefore, the (15, 6) cyclic code C generated by g(X) = 1+ X + X* + X3+ X6 4 x°
is one-step majority-logic decodable and is capable of correcting ry; = [5/2] =2
ot fewer errors. It also corrects many error patterns of three errors. The code has a
minimum distance of at least J + 1 = 5 + 1 = 6; however, the minimum distance of
the code is exactly 6. Hence, the code is completely orthogonalizable.
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Recall that 7 (X) has o” as a root if and only if & is not a multiple of L,
and 0 < & < 2™ — 1. Therefore, w(X) has the following consecutive powers of o
as roots: o, a2, - -« ,at~!. Because any descendant 4’ of an integer 4 is less than
h,if h < L and h' in A(h), both o” and o”" are roots of x(X). Consequently, the
polynomial H(X) also has «, @2, - - - , a1 as roots. Using the argument that proves
the minimum distance of a BCH code, we can show that the minimuim distance of C’
generated by H(X) is at least L; however, since m(X) is a code polynomial of weight
L in ¢’, the minimum distance of C’ is exactly L. It follows from Theorem 8.1 that
the number of parity-check sums orthogonal on an error digit that can be formed

for C is upper bounded by
om _ 9
L 71 J ; (8.15)

however, J = (2" — 1)/L. Therefore, for large L, J is either equal to or close to the
upper bound of (8.15).

In general, it is not known whether the type-0 D'TI codes are completely
orthogonalizable. There are a number of special cases for which we can prove that
the codes are completely orthogonalizable.

The type-0 DTT codes may be modified so that the resultant codes are also
one-step majority-logic decodable, and J — 1 parity-check sums orthogonal on an
error digit can be formed. Recall that the polynomial H(X) does not have (X + 1)
as a factor (i.c., it does not have «” = 1 as a root). Let

Hy(X) = (X + DH(X). (8.16)

The cyclic code €] generated by Hi(X) is a subcode of C’ generated by
H(X). In fact, C| consists of the even-weight vectors of C’ as codewords. Recall
that the J orthogonal vectors wy, wy, --- , wy_1 in C’ are obtained from the vectors
Zo,Z1, - -+ , 271 by deleting the digit at location o°°. Because zg, 21, -+ ,Zy_1 are
orthogonal on the digit at location «?" 2, there is one and only one vector z; that
has a 1 at location «™. Since zg, 71, - - - , Z;_1 all have weight I + 1 which is even, all
but one of the orthogonal vectors wy, wy, - -+, w;_ have weight L + 1. These J — 1
even-weight orthogonal vectors are in C}. Therefore, the dual code of C{, denoted
by (1, is one-step majority-logic decodable, and J — 1 parity-check sums orthogonal
on an error digit can be formed. Let

G(X)

Gi(X) = X+ 1 (8.17)
Then, the generator polynomial for Cj is
yH . ~ X
g1 (X) = X2 2G,(x 1) = 5—(}1, (8.18)

where g(X) is given by (8.14). C; is called a type-1 DTI code, and its dimension is
one greater than that of its corresponding type-0 DTI code.
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EXAMPLE 8.6
For m = 4 and J = 5, the type-1 DTI code € that corresponds to the type-0 DTI

code given in Example 8.5 is generated by

T+ X+ X+ X0+ X0+ X0
1+ X

=1+ X"+ X0+ x7 4 xB

g1 (X) =

It is interesting to note that this code is the (15, 7) BCH code. From Example 8.5 we
see that w3 has odd weight, and therefore it is not a vecior in C; (the dual of Cy).
Hence, the four orthogonal vectors in C/ are

wo=(0 0 0 0 0 0 0 1 1 0 1 0 0 0 1)
w=(0 10 0 0 1 00000 0 0 1 1),
w,=(1 01 0 0 0 1 0000 00 0 1),
wi=(0 0 0 1 0 0 0 0 0 0 0 1 { ¢ 1),

p—

which are the same four orthogonal vectors given in Example 8.1.

Because the dual code of type-1 DTI code € has a minimum distance of £ 41,
the number of parity-check sums orthogonal on an ervor digit that can be formed is
upper bounded by

2]]7_2 2177_1 1 1
g ——l=li-Zl=J-1
il i Rl Ly

Therefore, the number of parity-check sums orthogonal on an error digit that can
be formed for a type-1 DTI code is equal to its upper bound. Since J is odd,
tJ/2] = (J — 1)/2]. Thus, both type-0 and type-1 DTT codes have the same
majority-logic error-correcting capability.

In general, there is no simple formula for enumerating the number of parity-
check digits of the one-step majority-logic decodable DTI codes (type-0 or type-1);
however, for two special cases, exact formulas for n — k can be obtained [6]:

Case I. For m = 2sl and J = 2/ + 1, the number of parity-check digits of the type-1
DTI code of tength 2" —11s

n—k=@2%" -1 —1.

Case II. Form = Al and J = 2! — 1, the number of parity-check digits of the iype-1
DTI code of length 2" — 115

n—k=2" -2 -1 -1,

A list of one-step majority-logic decodable type-1 DTI codes is given in Table 8.1.
Short-length DTT codes are comparable with BCH codes in efficiency. For
example, there exists a (63, 37) one-step majority-logic decodable type-1 DTI code
that is capable of correcting four or fewer errors. The corresponding four-error-
correcting BCH code of the same length is a (63, 39) code that has two information
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TABLE 8.1: Some one-step majority-
logic decodable type-1 DTI codes.

n k 1998 4 n k ML
15 9 1 2047 1211 11
7 2 573 44
63 49 1 4095 3969 1
37 4 3871 2
13 10 3753 4
255 225 1 3611 6
207 2 3367 32
175 8 2707 17
37 25 2262 19
21 42 2074 22
511 343 3 1649 45
139 36 1393 52
1023 961 1 1377 136
833 5 406 292
781 16 101 409
151 46 43 682

30 170

digits more than the (63, 37) type-1 DTI code; however, the decoding circuit for the
(63, 39) BCH code is much more complex than for the (63, 37) DTI code. For large
block lengths, the DTI codes are much Iess efficient than the BCH codes of the same
length and the same error-correcting capability.

8.3 OTHER ONE-STEP MAJORITY-LOGIC DECODABLE CODES

There are two other small classes of one-step majority-logic decodable cyclic codes:
the maximum-length codes and the difference-set codes. Both classes have been
proved to be completely orthogonalizable.

8.3.1 Maximum-Length Codes

For any integer m > 3, there exists a nontrivial maximum-length code with the
following parameters:

Block length: n=2"-1,
Number of information digits: &k = m,
Minimum distance: d=2""1

The generator polynomial of this code is

g(X) = , (8.19)

where p(X) is a primitive polynomial of degree m. This code consists of the all-zero
codeword and 2" —1 codewords of weight 27~ (see Problem 8.11). Maximum-length
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codes were first shown to be majority-logic decodable by Yale [7] and Zierler [8]
imdependently. The dual code of the maximum-length code isa (2" — 1,27 —m — 1)
cyclic code generated by the reciprocal of the parity polynomial p(X),

P X) = X" p(X ).

Because p*(X) is also a primitive polynomial of degree m, the dual code is thus
a Hamming code. Therefore, the null space of the maximum-length code contains
vectors of weight 3 (this is the minimum weight). Now, consider the foliowing set of
distinet code polynomials:

Q={wX)=X +X +2""1:0<i<j<n-1) (8.20)

in the Hamming code generated by p*(X). No two polynomials in O can have any
common terms except the term X"~ L. Otherwise, the sum of these two polynomials
would be a code polynomial of only two terms in the Hamming code. This is
impossible, since the minimum weight of a Hamming code is 3. Therefore, the set 0
contains polynomials orthogonal on the highest-order-digit position X1, To find
w(X), we start with a polynomial X'l Xiforo < j < n— 1 and then determine
X' such that X"~1 + X7 + X' is divisible by p*(X), as follows: Divide X"~ ! + X/ by
p*(X) step-by-step with long division until a single term X' appears at the end of
a certain step. Then, w(X) = X"! + X/ 4+ X' is a polynomial orthogonal on digit
position X"~ 1. Clearly. if we started with X"~! + X', we would obtain the same
polynomial w(X). Thus, we can find (n — 1)/2 = 2"~ — 1 polynomials orthogonal
on digit position X", That is, J = 2"~! — 1 parity-check sums orthogonal on ¢,
can be formed. Because the maximum-length code generated by g(X) of (8.19) has
a minimum distance of exactly 271, it is completely orthogonalizable. The code is
capable of coirecting 15, = 2”2 — 1 or fewer errors with one-step majority-logic
decoding.

EXAMPLE 8.7

Consider the maximum-length code with m = 4 and parity polynomial p(X) =
1 4+ X + X*. This code has block length n = 15 and minimum distance 4 = 8. The
generator polynomial of this code is

x4
gX) = — ——
p(X)

=14+ X+ X+ X0+ X0+ X+ 58+ XM
Itis a (15, 4) code. The null space of this code is generated by
PO = X*pxrh =x+ X+ 1
We divide XM + X1 by p*(¥) = X* + X* 4 1 with long division as follows:

X'

X+ X+ 1 |x¥ o xB
XH I XIS + x10

X9 (stop).
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A single term, X10 appears at the end of the first step of the long division. Then,
wi(X) = XM 4 xB 4 x10 s a polynomial orthogonal on XM Now, we divide
X4+ X2 by p*(X):

X0+ x4+ xS

X4+ X+ 1 |xt + X2
X14 + X13 + XlO
X13 4 X12 + XIO
X13 + X12 + X9
XlO + X9
x4+ x° + X6

X% (stop).

Then, wy(X) = X'* 4 X12 + X0 is another polynomial orthogonal on X*. The rest
of the polynomials orthogonal on X4 can be found in the same manner; they are

wi(X) =14+ XM+ X1 w0 =X+ X7+ x4,
ws(X) = X + X8+ XM, we(X) = X+ X7+ x4,
wi(X) = X2+ X3 4+ x4,

From the set of polynomials orthogonal on X'* we obtain the following seven
parity-check sums orthogonal on ey4:

A1 = e10 + e13 + e1q,
Ay =es +epn + e,
Az =ep +e11 + e,
Ag=e4 +ey + ey,
As =€ +eg + e14,
Ag=es +er + e,
A7 =er +e3 + ey

In terms of syndrome bits, we have A1 = sjg, Ay = 8¢, A3 = S0, A4 = S4 + 59, A5 =
51 -+ 58, Ag = 55 + s7. and A7 = s + s3. The code is capable of correcting three or
fewer errors by one-step majority-logic decoding.

8.3.2 Difference-Set Codes

The formulation of difference-set codes is based on the construction of a perfect
difference set. Let P = {ly. 1, 12, --- ,1,} be a set of ¢ 4+ 1 nonnegative integers such
that

O<ly<lhh<bh<---<ly <qlg+1).

From this set of integers it is possible to form ¢ (g + 1) ordered differences as follows:
D={l; -1:j#i}.

Obviously, half the differences in D are positive, and the other half are negative.
The set P is said to be a perfect simple difference set of order ¢ if and only if it has
the following properties:
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1. All the positive differences in D are distinet.
2. All the negative differences in D are distinct.
3. Ifl; —; is a negative difference in D, then g(g + 1) +1 + (I; — {;) is not equal
i0 any positive difference in D.
Clearly, it follows from the definition that P’ = {0,/y — o, b —lp. -~ . [, — o} is also
a perfect simple difference set.

Consider the set P = {0,2,7,8, 11} with ¢ = 4. The 4 - 5 = 20 ordeved differences
are

D=1{2,7.811.56.91473 -2.-7,-8. =11, -5, -6, -9, -1, -4, =3}.

It can be checked easily that P satisfies all three properties of a perfect simple
difference set.

Singer [2] has constructed perfect difference sets for order ¢ = p*, where pis
a prime and s is any positive integer (see also [10]). In the following discussion we
shall be concerned only with g = 2%,

Let P ={ly =0,11.12,--- , I} be a perfect simple difference set of order 2°.
We define the polynomial

2(Xy =1+ X" 4+ %"+ + x0. (8.21)
TLetn =2%(2° + 1)+ 1 and h(X) be the greatest common divisor of z(X) and X" + 1;
that is,
h(X) = GCD{z), X" +1}

, (8.22)
=14+ X+ X4+ x4 xR

Then a difference-set code of length n is defined as the cyclic code generated by
X}Y +1

h(X) (8.23)
=14 gX+gpX>+ -+x"F

gX) =

This code has the following parameters:

Code length: n = 2% 4- 25 4+ 1
Number of parity-check digits: n —k = 3" 4+ 1

Minimum distance: d = 25 + 2.

Difference-set codes were discovered by Rudolph [11] and Weldon [12]
independently. The formula for the number of parity-check digits was derived by
Graham and MacWilliams [13].
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EXAMPLE 8.9

In Example 8.8 we showed that the set P = {0,2,7,8,11} is a perfect simple
difference set of order g = 22 Tetz(X) =1+ X*+ X7 + X8+ X' Then,

h(X)=GCD{1 + X*> + X7+ x8 + x1 1+ x?Y
=1+ X"+ X" +x%+ x'L.
The generator polynomial of the difference-set code of length n = 21 is

XZl +1
h(X)

=1+ X+ X+ x0+ X7+ x1°,

g(X) =

Thus, the code is a (21, 11) cyclic code.

Let h*(X) = X*h(X~ 1) be the reciprocal polynomial of h(X). Then, the
(n, n — k) cyclic code generated by h*(X) is the null space of the difference-set code
generated by g(X) of (8.23). Let

2 (X) = X»z(x™hH
lys—I 51 bs (8‘24)
=14 ... X257 4 xhs~h 4 xhs

Because z(X) is divisible by h(X), z*(X) is divisible by h*(X). Thus, z*(X) is in the
null space of the difference-set code generated by g(X) of (8.23). Let

WO(X) — Xllﬁl—lzsz*(X)
- Xn-lflzs NI anlflz + X71~1—1| + X”ﬁl.

Obviously, wo(X) is divisible by h* (X) and is also in the null space of the difference-set
code generated by g(X) of (8.23). Now, let

w;(X) = X[,-fl,;l—l + Xl,-—l,_2~1 NI Xl,-‘l]fl + Xl;—l
8.25
4+ X/zfl—lzs-i—l, 4 Xn~17/2.\,|+1‘ 4t anl ( )

be the vector obtained by shifting wo(X) cyclically to the right /; times. Because
{lo =0.01. I, - - - . Iy} is a perfect difference set, no two polynomials w; (X) and w; (X)
fori # j can have any common term except XL Thus, wo(X), wi(X). -+ . wo (X)
form a set of J = 2° + 1 polynomials orthogonal on the digit at position X" 1. Since
the code generated by g(X) of (8.23) is proved to have a minimum distance of 2° + 2,
it is completely orthogonalizable and is capable of correcting 73, = 2°~! or fewer
erTors.

EXAMPLE 8.10

Consider the code given in Example 8.9, which is specified by the perfect difference
set P =1{0,2,7,8, 11} of order 22, Thus, we have
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FIGURE 8.5: Type-II majority-logic decoder for the (21, 11) difference-set code.

and
wo(X) = X7 () = X7+ X2+ x5 4 X0+ X,

By shifting wo(X) cyelically to the right 2 times, 7 times, 8 times, and 11 times, we
obtain

wi(X) =X + x4 x4 x4 x%0
wo (X) = X-l x6 4 ylo -+ x19 + X‘O,
w3 (X)=1 +X° +Xx7 +xV 4+ x%
wa(X) = X2 + X3 + x5 4 x10 4 x20

Clearly, wo(X), wi(X), wa (X)), w3(X), and wa(X) are five polynomials orthogonal
on X%°. From these five orthogonal polynomials, we can form the following five
parity-check sums orthogonal on eyg:

Al =259 =e9 + e12 + €13 + e13 + €20,
Ay =81 = ¢y + ey + e +e15 + e,
Az =54+ 8¢ =e4 + e + e16 + €19 + e,

Ay =350+55+857=ey+es +e7 + e+ ey,
As=s5y+s3+sg=ex+e3 +eg + e+ e

A type-11 majority-logic decoder for this code is shown in Figure 8.5. The construc-
tion of a type-I decoder for this code is left as an exercise.

Difference-set codes are nearly as powerful as the best known cyclic codes in
the range of practical interest. Unfortunately, there are relatively few codes with
useful parameters in this class. A list of the first few codes with their generator
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TABLE 8.2: A list of binary difference-set cyclic codes.

Associated

s n k d t Generator polynomial, g(X)* difference set

1 7 3 4 1 06,23,4 0,2,3

2 20 11 6 2 0,2,4,6,7,10 0,2,7,8,11

3 73 45 10 4 0,2,4,6,8,12,16,22, 25,28 0,2, 10, 24, 25, 29,
36,42,45

4 273 191 18 8 0,4,10,18,22,24,34,36,40,48, 0, 18,24, 46, 50, 67,

52,56, 66,67,71,76,77, 82 103,112, 115, 126,

128, 159, 166, 167,
186, 196, 201

5 1057 813 34 16 0,1,3,4,511,14,17,18,22,23, 0,1,3,7, 15,31, 54,

26,27,28,32,33,35,37,39,41, 63,109,127, 138,
43,45,47,48,51,52,55,59,62, 219,255,277, 298,
68,70,71,72,74,75,76,79,81, 338,348, 439, 452,
83, 88, 95, 98, 101, 103, 105, 511, 528, 555, 597,
106, 108, 111, 114, 115, 116,120, 677, 697, 702, 792,
121,122,123, 124,126, 129,131, 897, 905, 924, 990,
132,135,137, 138, 141, 142, 146, 1023
147. 149,150, 151, 153, 154, 155,
158, 160, 161, 164, 165, 166, 167,
169, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 186, 188,
189, 191, 193, 194, 195, 198, 199,
200, 201, 202, 203, 208, 209, 210,
211, 212, 214, 216, 222, 224, 226,
208,232, 234,236, 242, 244

*Each generator polynomial is represented by the exponents of its nonzero terms. For
example, {0, 2, 3, 4} represents g(X) =1 + X2+ x3 4+ x4,

polynomials and their corresponding perfect simple difference sets is given in
Table 8.2.

Other one-step majority-logic decodable cyclic codes will be presented in
Section 8.5.

8.4 MULTIPLE-STEP MAJORITY-LOGIC DECODING

The one-step majority-logic decoding for a cyclic code is based on the condition that
a set of J parity-check sums orthogonal on a single error digit can be formed. This
decoding method is effective for codes that are completely orthogonalizable or for
codes with large J compared with their minimum distance dy,;,. Unfortunately, only
several small classes of cyclic codes are known to be in this category; however, the
concept of parity-check sums orthogonal on a single error digit can be generalized
in such a way that many cyclic codes can be decoded by employing several levels of
majority-logic gates.
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Let £ = {e;,, €1y, -+ , €, } be aset of M error digits, where 0 <i) <ip < -+ <
iy < n. The integer M is called the size of E.

DermviTION $.2 A set of J parity-check sums Aj, Ap, -+, Ay is said to be
orthogonal on the set £ if and only if (1) every error digit ¢;, in E is checked
by every check-sum A; for 1 < j < J. and (2) no other error digit is checked
by more than one check-sum.

For example, the following {our parity-check sums are orthogenal on the set
E = {eg. ez}

Al = e +e +eg +eg,
Ay = €3+ eq +eq +eg,
Az = ey +eg+e7  Hes,
Ay = e5  teg +eg.

Following the same argument employed for one-step majority-logic decoding, we
can correctly determine the sum of error digits in E, ¢; + ¢, -+ -+ + ¢;,, from the
check-sums Aj, A, -- -, Ay orthogonal on E provided that there are | J/2] or fewer
errors in the error pattern e. This sum of error digits in £ may be regarded as an
additional check-sum and so can be used for decoding.

Consider an (r. k) cyclic code C that is used for error control in a communi-

cation (or storage) system. Let e = (ep, e1, - -+ , e,—1) denoie the error vector that
occurs during the transmission of a codeword v in C. Let Ef‘ E% A E,1 ... be

some properly selected sets of error digits of e. Let S( ]E}) denote the modulo-2 sum
of the error digits in El.l. Suppose that for each set E;‘ it is possible to form at least J
parity-check sums orthogonal on it. Then, the sum S(E ,.1) can be estimated from these
J orthogonal check-sums. The estimation can be done by a J-input majority-logic
gate with the J orthogonal check-sums as inputs. The estimated value of 5(E!) is the
output of a majority-logic gate, which is 1 if and only if more than half of the inputs
are 1; otherwise, it is 0. The estimation is correct provided that there are |J /2] or
fewer errors in the error vector e. The sums S(E{), S(E3). -+, S(E}), -+ (possibly
together with other check-sums) are then used to estimate the sums of error digits
in the second selected sets, E12 Ezz e E? -+, whose size is smaller than that of
the first selected sets. Suppose that for each set E? it is possible to form J or more
check-sums orthogonal on it. Then, the sum S(Eiz) can be determined correctly from

the check-sums orthogonal on EI2 provided that there are no more than [ J/2| errors

in e. Once the sums, S(E%), S(E%), e ,S(E?L -+, are determined, they (maybe
together with other check-sums) are used to estimate the sums of error digits in the
third selected sets, Ef Ey -, Ef ..., whose size is smaller than that of the second

selected sets. The process of estimating check-sums from known check-sums is called
orthogonalization [2]. The orthogonalization process continues until a set of J or
more check-sums orthogonal on only a single error digit, say e, _, is cbtained. Then,
the value of ¢, | can be estimated from these orthogonal check-sums. Because of
the cyclic structure of the code, other error digits can be estimated in the same
manner and by the same circuitry. A code is said to be L-step orthogonalizable
(or L-step majority-logic decodable) if L steps of orthogonalization are required to
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make a decoding decision on an error digit. The decoding process is called L-step
majority-logic decoding. A code is said to be completely L-step orthogonalizable if
J is 1 less than the minimum distance of the code (ie., J = dpin — 1). Because
majority-logic gates are used to estimate selected sums of error digits at each step
of orthogonalization, a total of L levels of majority-logic gates are required for
decoding. The number of gates required at each level depends on the structure of
the code.

The following two examples are used to illustrate the notions of multiple-step
majority-logic decoding.

EXAMPLE 8.11

Consider the (7, 4) cyclic code generated by g(X) = 1 + X + X>. This is a Hamming
code. The parity-check matrix (in systematic form) is found as follows:

hg 10010 11
H={h [=]| 01 011 1C0
hy 001 0111

We see that the vectors hg and hy are orthogonal on digit positions 5 and 6 (or
X> and X%). We also see that the vectors hy + h; and hy are orthogonal on digit
positions 4 and 6. Let E% = {es, ¢} and E% = ey, eg} be two selected sets. Let
r = (rg, 71, 12,73, 14, 5, ) be the received vector. Then, the parity-check sums
formed from hg and hy are

Ar=r-hy=egy +e3 +e5 + €5
Ay =r-hp = e +eq4 es+eg

and the parity-check sums formed from hy + by and &) are

By=r -(p+h) =e+e +eyq +e6
B=r-h = e +eq +es Heg.

The parity-check sums A; and A; arc orthogonal on the set E% = {es, eg}, and the
parity-check sums By and B; are orthogonal on the set E% = {eq4. eg}. Therefore, the
sum S(Ell) = e5 + ¢g can be estimated from A; and A,, and the sum S(E%) =e4+ eg
can be estimated from B and B;. The sums S(E%) and S(E%) will be correctly
estimated provided that there is no more than one error in the error vector e. Now,
let E% = leg}. We see that S(E%) and S(E%) are orthogonal on ¢g. Hence, ¢g can be
estimated from S(E %) and § (E%). The value of ¢¢ will be estimated correctly provided
that there is no more than one error in e. Therefore, the (7, 4) Hamming code can
be decoded with two steps of orthogonalization, and it is two-step majority-logic
decodable. Because its minimum distance is 3 and J = 2, it is two-step completely
orthogonalizable. A type-1I decoder for this code is shown in Figure 8.6.

Let s = (so, 51, 5) = r - H' be the syndrome of the received vector r. Then,
we can form the parity-check sums A1, Ay, By, and By from the syndrome digits as
follows:

Ay = 50, Ay = 52,
B =380+s1, By=s.
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> Gate ——C——> Ty | T Fy ol ks | iy fem————— 0
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FIGURE 8.6: Type-II two-step majority-logic decoder for the (7, 4) Hamming code.

Based on these check-sums, we may construct a type-I majority-logic decoder for
the (7, 4) Hamming code.

EXAMPLE 8.92

Consider the triple-error-correcting (15, 5) BCH code whose generator polynomial is
gX) =1+X+ X2+ X"+ x° + x84+ x%0.

The parity-check matrix (in systematic form) is

Io
oS}
Ty
I3
by
s
Tg
by
lg
il

D

SO OO DO OO, OO
SO OO O OO O
[ I e W e B e B S N o S o Bl e S o S )
SO DOHR OO D
S ORPR OO DO O O
OP OO O OO0 W@
[aali e B e R i B aow B cw I i [k wio Y o Y e
O = R e O O =

SO oo o oo O
DO DO OO OO =O
DO OO DD OO OO D
O OO = e O e
e O O e O R e O
B e D D = O

O e S o s S SN
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Let

El ={ei3, e1s), E3={e12, €14},

E} ={e11, 14}, E}={e. el

Ej = {es.eia}, Ej={e e
be six selected sets of error digits. For each of the preceding sets it is possible to find six
parity-check sums orthogonal on it. Let r = (ro, 1, 12, 3, 74, 5, 16, 77, 18, 19, F10, 11,

r12, 713, F14) be the received vector. By taking proper combinations of the rows H,
we find the following parity-check sums orthogonal on E L E% E% Ei E%, and Eé:

1. Check-sums orthogonal on E% = {e13, €14}

Ay =1-hy =eq +e1 Fe3 e
Ap=r-hy =e7+ e +e3+en
Az =r1-hy =e9 +e1q +e13 + ey

A =r-(hy+hg) =ey +eg +e13+epa
Ajs=r-(hy+hs) =e; +es +e13+ e
A =r-(hy +he) =e3 +es tep+ ey

2. Check-sums orthogonal on E% = {eq2, e1q}:

Ay =1 -hy =ep +e10 t e+ e
Ap =1l =e3 + ey e+ e
Ay =t hy =e7+e3 tennteu

Agg=1-(hy +Ip) =€ +er +en+eq
Ays =1 (hs +hg) =ey +eg +e1p +e1q
Agg =1 (hg + o) =eg +e9g +e1z + era.

3. Check-sums orthogonal on E} = {e11, e14}:

Az =71 -h3 e3 +epp +en e
Az =r1-hy =eg9 +e13 +e11 + e
Az =1 - (ho +hs) =eg +es + ey +epy
Azg =1 (hy +hg) =e; +eg +epp +eua
As=1-(p+hy) =er +eqg e +en
Azg =1-(hg +hy) =ec +e7 +e11 + e1q

4. Check-sums orthogonal on Ei = {e10, €14}:

Aqy =71 -ho =ep + e +ep + e
Ap =1 -hy =ey+e3+etey
Agg=r1-(h; +he) =e1 +e +e+ e
Ay =1 -(h3 +hs) =e3 +es +ejo+ep
Ags =r1-(hy +hg) =e7 +eg +ep+ea
Age =1 - (I +ho) =er +e9 +e10+ 4.
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5. Check-sums orthogonal on E% = {es, e}

Asp =1 (lp + hs) =ep+eir tes e
Asp =71 (Iy +hs) = ey +ej3 +e5 + ey
Asz =1 - (h3 + hs) =e3+eg+es+ ey

Asa =1 (g +Tis +Thg) =eq4 + e +e5 +ena
Ass =1-(hp +hs +hy) = e +e7 +es+eyy
Asg =1 - (Ing + g + o) = eg +e9 + e5 + eqa.

6. Check-sums orthogonal on Eé = {er, e14}:

Agr =1 - (g +Thp) =e1 +ep ter ey
Agy = 1+ (Inp + Tng) =e4t+ep tert+en
Agz =1 (hg+Thy +he) =ep +e5 + e +e14
Ags =1 (hy +h3 +hg) =e3 +eg +ez +eyg
Aes =1 - (hp + s+ hy) =es +e7 + e +es
Age =1+ (lp + Thy) =¢9 +e1g + 2 +e1a

From the foregoing orthogonal check-sums, the sums S(E]) = ej3 -+ ey, S(E]) =
ey + e14, S(EY) = e1 + ena, S(E};) = eo + e14, S(ED) = es + ey4, and S(Eé) =
ey + e14 can be correctly estimated provided that there are no more than three
errors in the error vector e. Let E% = {e1q}. We see that the error sums
S(ED), S(ED), S(ED), S(ED), S(EY), and S(E}) are orthogonal on ej4. Hence, ey
can be estimated from these sums. Therefore, the (15, 5) BCH code is two-step
orthogonalizable. Because J = 6, it is capable of correcting three or fewer errors
with two-step majority-logic decoding. It is known that the code has a minimum
distance of exactly 7. Hence, it is two-step completely orthogonalizable.

The type-II decoder for the (15, 5) BCH code is shown in Figure 8.7, where
seven six-input majority-logic gates (connected in a tree form) are used. Construction
of a type-I majority-logic decoder for the (15, 5) BCH code is left as an exercise (see
Problem 8.12).

A general type-1I L-step majority-logic decoder is shown in Figure 8.8. The
error correction procedure is as follows:

Step 1. The received vector r(X) is read into the buffer regisier.

Step 2. Parity-check sums (no more than (J)* of them) orthogonal on certain
properly selected sets of error digits are formed by summing appro-
priate sets of received digits. These check-sums are then fed into the
first-level majority-logic gates (there are at most (J)- ™! of them). The
outputs of the first-level majority-logic gates are used to form inputs
to the second-level majority-logic gates (there are at most (J)L 2 of
them). The outputs of the second-level majority-logic gates are then
used to form inputs to third-level majority-logic gates (there are at
most (J)L =3 of them). This process continues until the last level is
reached; there is only one gate at the last level. The J inputs to this
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FIGURE 8.7: Type Il two-step majority-logic decoder for the (15, 5) BCH code.

Gate 2
1(X)
—> Gate 1 n-stage buffer register @
e 06 e o @00 e 0 % Q9 e

1st level Yieoel  Jleeo} Y¥eeol

majority M M /% M
gates

% eoQ 980
2nd level cee

Lth level

FIGURE 8.8: General type-11 L-step majority-logic decoder.
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Multiple-Step Majority-Logic Decoding

gate are check-sums orthogonal on the highest-order error digit e;,_1.
The output of this gate is used to correct the received digit r,_y.

The received digit 1,1 is read out of the buffer and is correcied by
the lasi-level majority-logic gate.

At the end of step 3, the buffer register has been shifted one place
to the right. Now, the second-highest-order received digit r,—» is in
the rightmost stage of the buffer register, and it will be corrected in
exactly the same manner as was the highest-order received digit r,,_1.
The decoder repeats steps 2 and 3.

The received vector is decoded digit by digit in the manner described
until a total of »n shifts.

A general type-I decoder for an L-step majority-logic decoder code is shown
in Figure 8.9. Its decoding operation is identical to that of the type-I decoder for

Feedback connections
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FIGURE 8.9: General type-I L-step majority-logic decoder.
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a one-step majority-logic decodable code except that L levels of orthogonalization
are required.

An L-step majority-logic decoder requires L levels of majority-logic gates.
At the ith level, no more than (J)L~! gates are required. Thus, the total number
of majority-logic gates needed is upper bounded by 1 + J + J? 4 --- 4+ JE=1 In
fact, Massey [2] has proved that for an (n, k) L-step majority-logic decodable code
no more than k majority-logic gates are ever required. Unfortunately, for a given
L-step majority-iogic decodable cyclic code, there is no known systematic method
for minimizing the number of majority-logic gates except the trial-and-error method.
For almost all the known classes of L-step majority-logic decodable codes, the rules
for forming orthogonal parity-check sums require a total of 1 4 J + J% 4 ... + J&=1
majority-logic gates. Thus, the complexity is an exponential function of L. For large
L, the decoder is likely to be impractical. Fortunately, there are many cyclic codes
with useful parameters that can be decoded with a reasonably small L.

Several large classes of cyclic codes have been found to be L-step majority-
logic decodable. The construction and the rules for orthogonalization of these codes
are based on the properties of finite geometries, which are the subject of the next
four sections.

8.5 EUCLIDEAN GEOMETRY

Consider all the m-tuples (ag, ay, - - - , a,,_1), with components ¢;’s from the Galois
field GF(2%). There are (2°)" = 2™ such m-tuples. These 2" m-tuples form a vector
space over GF'(2*). The vector addition and scalar multiplication are defined in the
usual way:

(ap, a1, -+, ap-1) + (b0, b1, -+, byy_1) = (a0 + bo, a1 + b1, -+, @1 + bp_1),
:B " (UO» ap, - vam—l) = (;B - ag, 5 car, - Vﬂ . am—l)v

where additions a; + b; and multiplication S - aq; are carried out in GF(2°). In
combinatorial mathematics, the 2™ m-tuples over GF(2°) are also known to form
an m-dimensional Euclidean geometry over GF(2°), denoted by EG(m, 2°) [14-16].
Each m-tuple a = (ag, a1, -, a,n—1) is called a point in EG(m, 2°). The all-zero
m-tuple, & = (0,0, - - - , 0), is called the origin of the geomeiry EG(m, 2°).

Let a be a nonorigin point in EG(m, 2%) (i.e., a # 0). Then, the 2° points
{Ba: B € GF(2°)} constitute a line (or 1-flat) in EG(m, 2%). For convenience, we use
the notation {Sa} to represent this line. Because this line contains the origin (with
B = 0), we say that {Ba} passes through the origin. Let ag and a be two linearly
independent points in EG(m, 2%) (i.e., Boag + Ba # 0 unless By = B = 0). Then, the
collection of the following 2% points,

{ag + Ba},

with 8 € GF(2%), constitutes a line in EG(m, 2*) that passes through the point ag.
Line {fa} and the line {ag + Sa} do not have any point in common. Suppose that
they have a common point. Then, for some 8’ and g” in GF(2*),

B'a=ag+ pa
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As aresult, ag + (87 — 8')a = (. This implies that 2¢ and a are linearly dependent,
which is a contradiction to our assumption that ag and a are two linearly independent
points in EG(m, 2°). Therefore, {#a} and{ag + Ba} do not have any common points.
We say that {8a} and {ap + Ba} arc parallel lines. Note that {Sa} is simply a one-
dimensional subspace of the vector space of all the 2™ m-tuples over GF(2°), and
{ap + Pa} is simply a coset of {Ba}. Let by be a point not on line {Ba} or on line
{20 -+ Ba}. The line {bg + Ba} passes through the point by and is parallel to both
{Ba} and {ag + Ba}. In EG(n, 2°%), for every line passing through the origin, there are
20m=Ds _ 1 lines parallel to it. A line {Ba} and the 20"~Ds — { lines parallel to it are
said to form a parallel bundle. The 20"~ lines in a parallel bundle are parallel to
each other. Basically, the 20"~ lines in a parallel bundle simply correspond to a
one-dimensional subspace of the vector space of all the m-tuples over GF(2) and its
2m=Ds _ 1 cosets.

Let a; and 2, be two linearly independent points in EG(m, 2%). The lines
{ag + Bay} and {ag + Ba,} have only one point, 8y, in common. Suppose that they
have another point besides ag in common. Then, for some B # 0 and g” # 0, we
have

a9+ B'ay =ag + B ap.

This equality implies that 8'a; — 8”ay = 0 and that a; and s, are linearly dependent.
This is a contradiction to the hypothesis that a; and a; are linearly independent
points in EG(m, 2°). Therefore, {ag + Sa1} and {29 + B2y} have only one poini in
common, and they both pass through the point a9. We say that {ag + fa;} and
{20 + Ban} intersect at the point ag. Given a point ag in EG(m, 2°), there are

oms _ |
» -1

(8.26)

lines in EG@n, 2%) that intersect at ag (including the line {Bay} that passes through
the origin). This is an important property that will be used to form orthogonal
parity-check sums for the codes presented in the next section. Another important
structural property of lines is that any two points are connected by a line. Let a; and
ap be two points in EG(m, 2°). Suppose that a; and a are linearly dependent. Then,
ay = Biay for some element f; in GF(2%). In this case a; and @, are connected by the
fine {Ba;}. Suppose that a; and ay are linearly independent. Let a3 = a; + &;. Then,
2y = a1 + a3, and a; and & are connected by the line {a; + Ba3}. The total number
of lines in EG(m, 2%) 1s
2(77141)5‘ Qms — 1)
25 —1 )

EXAMPLE 8.13

Iet m = 3 and s = 1. Consider the Euclidean geometry EG(3, 2) over GF(2).
There are eight points and 28 lines. Each point a; is a 3-tuple over GF(2). Each line
consists of two poinis {a;, a;}. The points and the lines are given in Table 8.3. Lines
{a0, a1}, {4, a3}, {84, a5}, and {ag, a7} are parallel and they form a paraliel bundle.
The lines that intersect at the point ap are {ag, a2}, {81, @2}, {22, as}, {22, a4}, {82, as},
{m, ag}, and {ay, a7}.
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TABLE 8.3: Points and lines in EG(3, 2).

(a) Points in EG(3, 2)
ag = (000), a; = (001), ap=(010), a3 =(OlD),
as = (100), as=(101), as= (110), a7 = (111).

(b) Lines in EG(3, 2)

{ag, a1} {a1, ax} {ag, a4} {a3, a7}
{ag, ay} {a1, a3} {a2, as} {a4, as}
{20, a3} {a1, a4} {ag, a6} {a4, a6}
{ag, a4} {a1, as} {ar, a7} {a4, a7}
{ag, as} {ag, ag} {a3, a4} {as, a¢}
{ao, ag} {ay, a7} {as, as} {as, a7}
{ag, a7} {ay, a3} {3, ag} {ag, a7}
Now, we extend the concept of lines to planes in EG(m, 2°). Letag, a1, --- , a,

be u + 1 linearly independent points in EG(#, 27), where u < m. The 2*° points of
the form

ag + prag + foar + - + Buay,

with g; € GF(2%) for 1 <i < u, constitute a u-flat (or a y-dimensional hyperplane)
in EG(m, 2°) that passes through the point ag. We denote this u-flat by {ag + S1a; +
---+ B.a,}. The p-flat that consists of the 2+ points

Brar + ;3232 +-+ ,B/Aau

passes through the origin. We can readily prove that the p-flats {f1a; + Sra2 + fza3 +
-+ Bua,) and {ag + p1a; + Brap + - - - -+ L3, ) do not have any point in common.
We say that these two p-flats are parallel. For any p-flat passing through the origin,
there are 20"~#5 — 1 y-flats in EG(m, 2°) parallel to it. These 20" 4% parallel y-flats
form a parallel bundle. Note that a p-flat in EG(m, 2°) is either a u-dimensional
subspace of the vector space of all the 2™ m-tuples over GF(2°) or a coset of a
u-dimensional subspace. The 20"~ parallel u-flats in a parallel bundle simply
correspond to a u-dimensional subspace of the vector space of all the m-tuples over
GF(2) and its 20*~Ds _ 1 cosets.

If a, 1 is not a point in the u-flat {ag + Bra; +- - - + B a,}, then the (u + 1)-flat
{ag + Bray + -+ + Buay + Bur1a,41t contains the p-flat {ap + Bia; + -+ + Buaul.
Letb, 1 be a point not in {ag + Bra; + - -- + Bu118,41}. Then, the two (u + 1)-flats
{ag+B1ar+ - +Buau+Bur18,41} and {ag+p1a;+---+Bua,+B,41b, 41} intersecton
the u-flat {ag+ S1a; +- - -+ p,a,} (i.e., they have the pointsin {ay+ Sra; +- - -+ Buau}
as all their common points). Given a p-flat F in EG(m, 2%), the number of (u+1)-flats
in EG(m, 2%) that intersect on F is

2(1177/05' -1

8.2
2 —1 (8.27)
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TABLE 8.4: 2-Flats in EG(3, 2).

{20, 21,82, 23} (a4, 35,26, 27} (a0, 81, 84,85} {a, 93, 8, 27}
{a0. 22, 84, 86} {a7.a33, 25,87} {ag, 81, 96,87} {42, 23, 24, as)
{ag, 20, 25, 27} {81, a3, 84,86} {ap,24. 235,87} {41, @, a5, ag)
{ag, a3, 25, 8¢} {ay, @y, a4, a7}

Any point outside the p-flat F is contained in one and only one of the (1 + 1)-flats
that intersect on F. The number of u-flats in EG@n, 2%) is

B am—it+1)
2(1717/4)x ﬁ_’l 2 —1
1 i 2(/1—1'—{—1)5 _ 1

i=

EXAMPLE 8.14

Consider the geometry EG(3, 2) over GF(2) given in Example 8.13. There are four-
teen 2-flats, which are given in Table 8.4. The 2-flats that intersect on the line {ay, a3}
are {ag, a1, a, 23}, {a1, 23, as, a7}, and {ay, a3, a4, ag}. The 2-flais {ag, ay, 2, a3} and

S

{au, a5, ag, 27} are parallel,

Next, we show that the elements in the Galois field GF(2™) actually form
an m-dimensional Euclidean geometry EG(m, 2°). Let o be a primitive element
of GF(2™). Then, the 2" elements in GF(2"%) can be expressed as powers of o
as follows: ¢® = 0,0 = 1, !, 02, -, «?"" 2. It is known that GF(2™) contains
GF(2%) as a subfield. Every element o' in GF{(27S) can be expressed as

ol = a0+ apo + apa® + -+ @ g
where a;; € GF(2%) for 0 < j < m. There is a one-to-one correspondence between
the element o and the m-tuple (a0, aj1, -, a;,,_1) over GF(2*). Therefore, the
2" elements in GF(2™*) may be regarded as the 2™ points in EG(n,2%), and
GF(2™) as the geometry EG(m, 2%). In this case, a pu-flat passing through the point
o consists of the following 2° points:

ol + Bl o Bl

where o, o, &

B € GF(25).

ware y + 1 linearly independent elements in GF(2"™), and

EXAMPLE 8.15

Consider the Galois field GF(2*) given by Table 2.8. Let m = 2. Let o be a primitive
element whose minimal polynomial is ¢(X) = 14+ X + X*. Let 8 = o°. We see that
B0 =1, 8L =a° g% =0a!0 and B3 = &1 = 1. Therefore, the order of 8 is 3. We can
readily check that the elements

0,1, 8, g°
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TABLE 8.5: Elements in GF(2%)*.
2-tuples over GF 2%

0=20 0,0
1=1 1,0
o=« 0,1
?=f+a B. 1
o’ =B+ P B, B
at=14+a« 1,1
=8 (B.0)
a® = a ©, B)
o’ = p% + pa (B B)
$=p2+a B4
O =B+ pa (B, B
all = pg? (B, 0)
0511 — ,3205 (07 ﬁZ)
0112 =1 o+ ,320[ (17 /32)
aBB =1+ Ba (1, B)
0114: 52 +52a (527 ,82)

*Elements in GF(2%) are expressed in the
form a;9 + a;1«, where « is a primitive ele-
ment in GF(2%), and a;j is an element in
GF(2%) = (0,1, B, %} with 8 = o°.

form a field of four clements, GF(2%). Therefore, GF(2%) is a subfield of GF(2%).
Table 8.5 shows that every element ¢' in GF 2% is expressed in the form
o' = a0+ ane,

with a;0 and a;1 in GF(2%) = {0, 1, B, B2}. We may regard GF(2*) as the Euclidean
geometry EG(2, 22) over GF(2%). Then, the points

a4+ 0.0 =al? al* +1.a=4d",
4B o =ab w44 Bt g =l

form a line passing through the point «'*. The other four lines in EG(2, 2%) passing
through ' are

{0114,0513,01, a5}7 {a14,0l0,0[6,0l2},
{al4, o, ot 0}, (o', @12, ot o).

The field GF(2™*) may be regarded either as an extension field of GF(2°) or
as an extension field of GF(2™). Therefore, GF(2™¥) may be regarded either as the
m-dimensional Euclidean geometry EG(m, 2°) over GF(2°) or as the s-dimensional
Euclidean geometry EG(s, 2™) over GF(2™).
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8.6 EUCLIDEAN GEOMETRY CODES

Let
v = (vp, v1, -+, Vs _2),

be a (2" — 1)-tuple over the binary field GF(2). Let o be a primitive element of
the Galois field GF(2™). We may number the components of v with the nonzero
elements of GF (2"} as follows: the component v; is numbered o forQ <i <2m—7,
Henece, o is the Iocation number of v; . Now, we regard GF(27) as the m-dimensional
Euclidean geometry over GF(2°), EG(n, 2%). Let F be a u-flat in EG(m, 2%) that
does not pass through the origin, o = 0. Based on this p-flat 7, we may form a
vector over GF(2) as follows:

VF = (vg, V1, -+, Upms_3),

whose ith component v; is 1 if its location number o' is a point in F; otherwise, v;
is 0. In other words, the location numbers for the nonzero components of vy form
the points of the u-flat F. The vector vr is called the incidence vector of the p-flat
F. The incidence vector vp for the p-flat F simply displays the points contained in
F. A very interesting siruciural property of the incidence vectors of the p-flats in
EG(m, 2°) not passing through the origin is their cyclic structure: a cyclic shift of the
incidence vector of a u-flat not passing through the origin is the incidence vector of
another p-flat not passing through the origin (see Problem 8.33).

EXAMPLE 8.16

Letm =2 and s = 2. Consider the field GF(2%), which is regarded as the Euclidean
geomeiry over GF(2%), EG(Z, 2%). From Example 8.15, the four 1-flats (or lines)
passing through the point «!* but not the origin are

Ly ={a™ o, ab o), 1o = (ot a3, a, o).
L3 — {0514, 0507 066, aZ}’ L4 — {0[147 0[12’ 0[11“ 013}'

The incidence vectors for these {four 1-flats are
Location Numbers

rOZ@ (Oi’1 (0[2 0[3 054 @ZS @Z6 017 (658 0!9 @[m OZM OZM 0513 OZM
vpy=(0 0 0 0 0 6 0 1 1 0 1 0o 0 o0 1)
v,=(0 1 0 0 ¢ 1 6 0 0 0 0 0 0 1 1)
vp,=(1 0 1 0 0 0 1 06 0 0 0 0 0 0 1)
vp,=(0 0 0 1 0 0 ¢ 0 0 0 0 1 1 0 1)

Suppose we cyclically shift the incidence vecior vy, of line Ly. We obtain the
following vector:
(101006010600000 D),

which is the incidence vector of line {a¥, ¢?, o &!4}. If we cyclically shift the

incidence vector vz, of line L, we obtain the following vector:
1000000011010 0 0,

which is the incidence vector of line {9, o, o, o!1}.
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DerFINITION 8.3 A (u, s)th-order binary Euclidean geometry (EG) code of
length 2™ — 1 is the largest cyclic code whose null space contains the incidence
vectors of all the (u + 1)-flats of EG (i, 27) that do not pass through the origin.

Basically, the (u, s)th-order EG code of length 2% — 1 is the dual code (or null
space) of the code (or space) spanned by the incidence vectors of the (u + 1)-flats of
EG(m, 2°) that do not pass through the origin. Due to the cyclic structural property
of the incidence vectors of the flats in EG(m, 2°) not passing through the origin, the
code spanned by the incidence vectors of (1 4 1)-flats not passing through the origin
is cyclic and hence its dual code, the (u, s)th-order EG code, is also cyclic.

The generator polynomial of a (i, s)th-order EG code is given in terms of its
roofs in GF(2™). Let h be a nonnegative integer less than 2. Then, we can express
# in radix-2* form as follows:

h =38+ 5123 + 8222& 4t 8”1_12(”1—1)3"
where 0 < §; < 2° for 0 < i < m. The 2°-weight of 4, denoted by Wys (h), is defined
as the real sum of the coefficients in the radix-2’ expansion of 4; that is,

m-1

War(h) =Y ;. (8.28)
i =0

As an example, let m = 3 and s = 2. Then, we can expand the integer & = 45 in
radix-2¢ form as follows:

45 =1+3.2242.222,
with §g = 1,8, = 3,and §; = 2. The 22—weight of 45 1s then
Wp(@ddS)y=1+3+2=06.
Consider the difference & — W (h), which we can express as follows:
h—=Wah) =82 = 1)+ 825 =D+ + 8,1 2" D — 1.

It is clear from this difference that 4 is divisible by 2* — 1 if and only if its 2°-weight,
Wy (h), is divisible by 2* — 1. Let ¥ be the remainder resulting from dividing 2'h
by 2" — 1; that is,

2lh — q(zmy ~ 1)+ 11<1),

with 0 < h) < 278 — 1. Clearly, h") is divisible by 2* — 1 if and only if & is divisible
by 2¢ — 1. Note that /¥ = £,

Now, we state a theorem (without proof) that characterizes the roots of the
generator polynomial of a (i, s)th-order EG code. The proof of this theorem can
be found in [26, 27], and {33].

TueoreM 8.3 Let « be a primitive element of the Galois field GF(27%). Let
h be a nonnegative integer less than 2" — 1. The generator polynomial g(X)
of the (u, s)th-order EG code of length 2 — 1 has " as a root if and only if

0 < max W hDy < (m —p -1 = 1. (8.29)

<l<s



Section 8.6 Euclidean Geometry Codes 311

EXAMPLE 8.17

Letm = 2,5 = 2, and p = 0. Then, the Galois field GF(2% may be regarded as
the Euclidean geometry EG(2, 22y over GF(2%). Let o be a primitive element in
GF (2% (use Table 2.8). Let & be a nonnegative integer less than 15. It follows from
Theorem 8.3 that the generator polynomial g(X) of the (0, 2)th-order EG code of
lengih 15 has o as a root if and only if

0 < max Wp "y <3.
0</<2 ~

The nonnegative integers less than 15 that satisfy this condition are 1, 2, 3, 4, 6, 8,
9, and 12. Therefore, g(X) has «, a2, &, o, a®, &%, @, and «'? as all its roots. The
elements o, o2, o, and o® have the same minimal polynomial, §(X) = 1 + X + X*,
and the elements o, 0%, °, and «!1? have the same minimal polynomial, ¢(X) =
14 X+ X?>+ X%+ x* Thus, the generator polynomial of the (0, 2)th-order EG
code of length 15 is

g =0+X+XH1+X+ X2+ X3+ xY
=1+ X"+ %04+ X7+ X8

It is interesting to note that the (0, 2)th-order EG code is the (15, 7) BCH code
considered in Example 8.1. It is one-step majority-logic decodable.

EXAMPLE 8.18

Letm = 3,s = 2, and u = 1. Then, the Galois field GF(2%) may be regarded as
the Buclidean geometry EG(3,2%) over GF(2%). Let « be a primitive element in
GF(2%) (use Table 6.2). Let i be a nonnegative integer less than 63. It follows from
Theorem 8.3 that the generator polynomial g(X) of the (1, 2)th-order EG code of
length 63 has ¢ as a root if and only if

0 < max Wy (h'"y < 3.
0<l<?2

The nonnegative integers less than 63 that satisfy this condition are
1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 33, 48

Thus, g(X) has the following roots:

c(l, O.’z,al3,Ol4ﬂ0l6.018,019,0112“0116,0l18, 0124,0532,0533,0548.

From Table 6.3 we find that

L a,o? o of, 1% and o have ¢ (X) = 1+ X + X0 as their minimal polynomial.

2. o3, a0 a? o ¢, and o®® have ¢5(X) = 1+ X + X> + X* + X as their
minimal polynomial.
3. @, &8, and &®® have the same minimal polynomial, ¢o(X) = 1 4+ X2 + X°.
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Therefore, the generator polynomial of the (1, 2)th-order EG code of length 63 is
gX) =1+ X+ X0 +X+ X2+ X+ X501 + X% + X%
1 X2 xt x4 xB gy xS,

Hence, the (1, 2)th-order EG code of length 63 is a (63, 48) cyclic code. Later we
will show that this code is two-step orthogonalizable and is capable of correcting
any combination of two or fewer errors.

Decoding of the (u, s)th-order EG code of length 2" — 1 is based on the
structural properties of the Euclidean geometry EG(m, 2°). From Definition 8.3
we know that the null space of the code contains the incidence vectors of all the
(u + 1)-flats of EG(m, 2*) that do not pass through the origin. Let F*) be a p-flat
passing through the point > ~2. From (8.27) we know that there are

2(171—/,4)3 -1

J= ~1 8.30
21 (8:30)

(1 + 1)-flats not passing through the origin that intersect on F, The incidence
vectors of these J (u + 1)-flats are orthogonal on the digits at the locations that
correspond to the pointsin (), Therefore, the parity-check sums formed from these
J incidence vectors are orthogona!l on the error digits at the locations corresponding
to the points in F), If there are [J/2] or fewer errors in the received vector, the
sum of errors at the locations corresponding to the points in F* can be determined
correctly. Let us denote this error sum with S(F). In this manner the error sum
S(F®™)y can be determined for every u-flat F® passing through the point a?" 2.
This forms the first step of orthogonalization.

We then use the error sums S(F®)’s corresponding to all the u-flats F* that
pass through the point «?" 2 for the second step of orthogonalization. Let F*~1)
be a (. — 1)-flat passing through the point «>"" ~2. From (8.27) we see that there are

2(mfpd+l)s -1
J1 = T 1>1J

u-flats not passing through the origin that intersect on F*“~. The error sums
corresponding to these J; pu-flats are orthogonal on the error digits at the locations
corresponding to the points in F“~ D Let S(F®~D) denote the sum of error digits
at the locations corresponding to the points in F®~Y, Then, S(F®~D) can be
determined from the J; error sums S(F%))’s that are orthogonal on S(F*~ ). Since
Ji > J,if there are no more than | J/2| errors in the received vector, the error sum
S(F®=Dy can be determined correctly. In this manner the error sum S(F®~D) can
be determined for every (1 — 1)-flat F#*~1) passing through the point &®" 2 but not
the origin. This completes the second step of orthogonalization.

The error sums S(F*“~DYys now are used for the third step of orthogonalization.
Let F*=2 be a (u — 2)-flat passing through the point «?" =2 but not the origin.
From (8.27) we see that there are

Z(m —u4+2ys 1

]2:TT*-“*1>J1>J
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error sums S(F*Dy’s orthogonal on the error sum S(F#~2). Hence, §(F*~2)
can be determined correctly. The error sums S(F#~2Y’s are then used for the next
step of orthogonalization. This process coniinues uniil the error sums corresponding
1o all the 1-flats (lines) passing through the point ¢ =2 but not the origin are
determined. There are

oms _

T 25 —1

>Jp1 > > d > J

such error sums orthogonal on the error digit exns 5 at the location o?" 2. Thus.
eans 3 can be determined correctly from these orthogonal error sums provided that
there are no more than | J/2] errors in the received vector. Because the code is
cyclic, other ervor digiis can successively be decoded in the same manner.

Because the decoding of each error digit requires p + 1 steps of orthogo-
nahzation, the (u, s)th-order EG code of length 27° — 1 is therefore (u + 1)-step
majority-logic decodable. The code is capable of correcting

2(171—/1)5 -1 1
S 8.31
L L 20— 1) 2J (831)

or fewer errors. Therefore, its minimum distance is at least
2igp A1 =2°@UTHIDS 28 1Y), (8.32)

Note that at cach step of orthogonalization we need only J orthogonal error sums
to determine an error sum for the next step. For p = 0, a (0, s)th-order EG code is
one-step majority-logic decodable.

FAAMPLE 8.19

Letm =2,5 = 2and p = 0. Consider the (0, 2)th-order EG code of length 15. From
Example 8.17 we know that this code is the (15, 7) BCH code (also a type-1 DTI
code). The null space of this code contains the incidence vectors of all the 1-flats
(lines) in EG(2, 2%) that do not pass through the origin. To decode e14, we need to
determine the incidence vectors of ihe 1-flat passing through the point o', where o
is a primitive element in GF(2%). There are

such incidence vectors, which are given in Example 8.16. These four vectors are
orthogonal on the digit position o'4. In fact, these are exactly the four orthogonal
vectors wi, wo, w3, and wy given in Example 8.1.

EXAMPLE 8.20

Let m = 4,5 = 1, and p = 1. Consider the (I, 1)th-order EG code of length
2* —1 = 15. Let a be a primitive element of GF(2%) given by Table 2.8. Let / be
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a nonnegative integer less than 15. It follows from Theorem 8.3 that the generator
polynomial g(X) of this code has o’ as a root if and only if

0< W@ <2

Note that /9 = h. From the preceding condition we find that g(X) has the following
roots: o, o2, a3, o, o, a®, &®, &2, !0, and «12. From Table 2.9 we find that

g =1+X+XH1+X+ X2+ X>+ XHA + X + X?)
1+ X+ X2 xY x5+ x84 x10

It is interesting to note that this EG code is actually the (15, 5) BCH code studied in
Example 8.12.

The null space of this code contains the incidence vectors of all the 2-flats of
the EG(4, 2) that do not pass through the origin. Now, we will show how to form
orthogonal check-sums based on the structure of EG(4, 2). First, we treat GF(2%) as
the geometry EG(4, 2). A 1-flat passing through the point a'* consists of the points
of the form ' + aa’ with a € GF(2). There are thirteen 1-flats passing through o™
but not the origin, «® = (; they are

{0513,0514}, {alz’au}’ {0111,0514}{0[10,0(14}, {0(9.0114}. {018,0614},

{a7!a14}_ {aﬁ,a14}, {as’am}’ fot. a4y, {a37a14}7 {azyam}’ {a,am}»
For each of these 1-flats, there are

B 2(4—1)-1 -1

J = —-1=6
2t -1

2-flats not passing through the origin that intersect on it. Each of these 2-flats consists
of the points of the form «'* + aa’ + ba/, with a and b in GF(2). The six 2-flats that
intersect on the 1-flat {3, 1%} are

(ot @10, o3, o4 {a7 alz.o{w‘am} {a9 ol 13 a14}
(@0 b, a3, o) {al & ol? a14}‘ {a3 of 13 O[14}.
The incidence vectors of these six 2-flats are

o ol o o o & o ol o of olf @ll g2 o13 14
wi=®0 0 0 0 1 0 0 0 0 0 1 0 0 1 D
wp=0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
w3=(© ¢ 0 0 0 0 0 0 0 1 O 1 0 1 1
wy=(1 0 0 0 0 0 0 0 1 0 0 0 0 1 1)
ws=0 1 0 0 0 1 0 0 0 0 O 0 0 1 1)
weg=(0 0 0 1 0 0 1 0 0 0 0 0 0 1 1.

Clearly, these six vectors are orthogonal on digits at locations «'® and o’%.
Let r be the received vector. The parity-check sums formed from these six
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orthogonal vectors are

Ag = Wi -7 =eq + e+ e13 + e
Ap =Wy r=e7+ep +estey
Ay = W3 -7 =eg +e11 +e13 + ey
Apg=wra-r =ey+eg +e13+ewy
Ajs=wis-1 =¢; +es +epnten
Al =W r =e3 +eq +e13+ e

We see that these siz check-sums orthogonal on {e.,, e14) are exacily the same
check sums given in Example 8.12. Thus, we can determine the error sum e13 + eq4
corresponding to the 1-flat {3, o} from these six check-sums.

In the same manner we can determine the error sums corresponding to the
other twelve 1-flats passing through o'*. Because J = 6, we need to determine only
six error sums corresponding to any siz 1-flats passing through o'*. We then use
these error sums to determine eqy. Thus, the (1, ith-order EG code of length 15 is
a two-step majority-logic decodable code.

Except for certain special cases, there is no simple formula for enumerating the
number of parity-check digiis of EG codes. Complicated combinatorial expressions
for the number of parity-check digits of EG codes can be found in [17] and [18]. One
special case is u = m — 2. The number of parity-check digits for a (m — 2, s)th-order
EG code of length 27" — 1 is

5
;1—/(:(’”“ Yo (8.33)
m ))

This result was obtained independently by Smith [19] and by MacWilliams and
Mann [20].

For s = 1, we obtain another special subclass of EG codes, which happens to
be the class of RM codes of length 27 — 1 in cyclic form [11, 21-29]. A pth-order
cyclic RM is simply a (u, 1)th-order EG code. If we add an overall parity bit to each
codeword of this code, we obtain the u-th order RM code of length 2 presented
in Section 4.3. Let o be a primitive element of the Galois field GF(2™). Let /i be a
nonnegative integer less than 2. It follows from Theorem 8.3 that the generator
polynomial g(X) of the uth-order cyclic RM code of length 27 — 1 has o as a root
if and only if

O <Woh) <m—pu~—1 (8.34)

The uth-order cyclic RM code of length 2 — 1 has the {ollowing parameters:

yza
[ m
=N
](_2,_,4 ( ; )},
i=0

iy = 2"7H = 1,
] — 2717——/1; _ 2

Because J = din — 1, cyclic RM codes are completely orthogonalizable. The cyclic
structure of RM codes was proved independently by Kasami et al. [21, 22] and
Kolesnik and Mironchikov [23].
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Except for RM codes and other special cases, EG codes in general are not
completely orthogonalizable. For moderate-length n, the error-correcting capability
of an EG code is slightly inferior to that of a comparable BCH code; however,
the majority-logic decoding for EG codes is more simply implemented than the
decoding for BCH codes. Thus, for moderate n, EG codes provide rather effective
error control. For large-length n, EG codes become much inferior to the comparable
BCH codes, and the number of majority-logic gates required for decoding becomes
prohibitively large. In this case, BCH codes are definitely superior to the EG codes
in error-correcting capability and decoding complexity. A list of EG codes with
n < 1023 is given in Table 8.6. See [24] for a more extensive list.

TABLE 8.6: A list of EG codes.

m s j n k J ML
31 1 7 4 2 1
4 1 2 15 11 2 1
4 1 1 15 5 6 3
2 2 0 15 7 4 2
5 1 3 31 26 2 1
5 1 2 31 16 6 3
5 1 1 31 6 14 7
6 1 4 63 57 2 1
6 1 3 63 42 6 3
6 1 2 63 22 14 7
6 1 1 63 7 31 15
3 2 1 63 48 4 2
3 2 0 63 13 20 10
2 3 0 63 37 8 4
7 1 5 127 120 2 1
7 1 4 127 99 6 3
7 1 3 127 64 14 7
7 1 2 127 29 30 15
7 1 1 127 8 62 31
8 1 6 255 247 2 1
8 1 5 255 219 6 3
8 1 4 255 163 14 7
8 1 3 255 93 30 15
8 1 2 255 37 62 31
8 1 1 255 9 126 63
4 2 2 255 231 4 2
4 2 1 255 127 20 10
4 2 0 255 21 84 42
2 4 0 255 175 16 8
S 1 7 511t 502 2 1
9 1 6 511 466 6 3
9 1 5 511 382 14 7
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TABLE 8.6: (continued)

m s n n k J ML
9 1 4 511 256 30 15
9 1 3 511 130 62 31
9 1 2 511 46 126 63
9 1 1 511 10 254 127
3 3 1 511 448 8 4
3 3 0 511 139 72 36

10 1 8 1023 1013 2 1

10 1 7 1023 968 6 3

10 1 6 1023 848 14 7

10 1 5 1023 638 30 15

10 1 4 1023 386 62 31

10 1 3 1023 176 126 63

100 1 2 1023 56 254 127

6 1 1 1023 11 516 255
5 2 3 1023 988 4 2
5 2 2 1023 748 20 10
5 2 1 1023 288 84 42
5 2 0 1023 31 340 170
2 5 0 1023 781 32 16

A very special subclass of EG codes is the subclass of codes with m = 2 and
@ = 0. A code in this subclass is a (0, s)th-order EG code of length n = 2%° — 1. The
null space of this code contains the incidence vectors of all the lines in EG(2, 2°)
not passing through the origin. It follows from (8.30) that 2° check-sums orthogonal
on any code digit can be formed. Therefore, the minimum distance of the code is at
least 25 + 1. It follows from (8.29) that the generator polynomial g(X) of this code
has !, o2, ..., «? and their conjugates as roots. The polynomial X2~ + 1 can be
factored as follows:

KT = T E D xP

The first factor, X2 1+ 1, has o¥ = 1,02 11 2@+ ... o@D a5 ali its
roois. Then, the second factor, v(X) = 1+ X' ~1 4 x2@=b 4 . 4 x2@ =D pag
al,a?, .. a® asroots. Therefore, v(X) must be a multiple of g(x) (or divisible by
g(X)) and hence it is a code polynomial of the (0, s)th-order EG code of length
n = 2% — 1. This code polynomial v(x) has a weight of exactly 2° + 1. This weight
together with the bound that the minimum distance of the code is at least 2° 4+ 1
imply that the minimum distance of the (0, s)th-order EG code of length n = 2% —1
is exactly 2° + 1. Therefore, the code is one-step completely orthogonalizable. It
foliows from (8.33) that the number of parity-check digits of the (0, s)th-order EG
code constructed based on the two-dimenstonal Euclidean geometry EG(2, 2¢) is

n—k=3 -1 (8.35)
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It is interesting to note that a (0, s)th-order EG code of length n = 2% — lisalsoa
type-I DTI code given in Section 8.2.

EXAMPLE 8.21

Consider the (0, 6)th-order EG code of length n = 22%¢ — 1 = 4095 constructed
based on the lines in EG(2, 2°) not passing through the origin. This code is a
(4095, 3367) cyclic code with a minimum distance of 65 and a rate of 0.83. Let
o be a primitive element of GF(2!?). The generator polynomial of this code has
al,a?, - a® as roots. It is one-step completely orthogonalizable and can correct
up to 32 errors with one-step majority-logic decoding, either type I or type II. The
error performance of this code on an AWGN channel with BPSK signaling and
one-step majority-logic decoding is shown in Figure 8.10. At the BER of 1077, it
achieves a 4-dB coding gain over the uncoded BPSK. The majority-logic decoder for
this code can easily be implemented in hardware with a feedback shift register of 728
flip-flops and a majority-logic circuit with 64 inputs. This hardware implementation
can achieve very high decoding speed and is quite suitable for high-speed optical
networks operating at 10 Gbits or for high-speed satellite communications. Consider
the NASA standard (255, 223, 33) RS code over GF(28). For binary transmission,
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FIGURE 8.10: Bit-error performance of the (4095, 3367) (0, 6)th-order EG code with
majority-logic decoding.
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each code symbol is expanded into an §-bit byte. This symbol-to-binary expansion
results in a {2040, 1784) binary code. At the receiving end, the received digits are
grouped back into symbols in GF(2%) for decoding. From Figures 7.3 and 8.10 we see
that the (4095, 3367) (0, 6)th-order EG code outperforms the (255, 223, 33) RS code
by more than 0.5 dB at the BER of 107°. Even though the (4095, 3367) EG code is
twice as long as the (255, 223, 33} RS code in binary form, ifs decoding complexity
is much simpler, because majority-logic decoding requires only simple binary logic
operations, whereas decoding of the (255,223, 33) RS code with algebraic decoding
algorithms requires computations in GF(2%) to find the error-location polynomial
and the error-value enumerator. The (4095, 3367) EG code can also be decoded
with several other hard- or soft-decision decoding methods to achieve better error
performance at the expense of increasing decoding complexity. This topic will be
discussed in Chapter 17.

EG codes were first studied by Rudolph [3]. Rudolph’s work was later extended
and generalized by other coding theorists [24-30]. Improvements for decoding EG
codes were suggested by Weldon [31] and by Chen [32]. Chen proved that any EG
code can be decoded in no more than three steps. Chen’s decoding algorithm is
based on further structure of the Euclidean geometry, which is not covered in this
introductory book.

There are several classes of generalized EG codes [24, 28-30, 34] that all
contain EG codes as subclasses. We will not cover these generalizations here;
however, we present a simple generalization using parallel fiats next.

8.7 TWOFOLD EG CODES

Let F and F; be any two parallel p-flats in EG(m, 2°). We say that F and F form
a (u, 2)-frame in EG(m, 2%), denoted by {F, F1}. Because F' and F; do not have any
point in common, the (u, 2)-frame {F, Fy} consists of 2**1 points. Let F> be another
w-flat parallel to F and Fy. Then, the two (u, 2)-frames {F, F1} and {F, F>} intersect
on F.Let L be a (u + 1)-flat that contains the u-flat F. Then, L contains 2° — 1 other
w-flats that are parallel to F. Each of these 2° — 1 p-flats together with F forms a
(0. 2)-frame. There are 2° — 1 such (i, 2)-frames that intersect on F. Clearly, these
25 —1 (u, 2)-frames are all contained in the (1 +1)-flat L. Any point in L but cutside
Fis in on one and only one of these 2° — 1 (u, 2)-frames. Because there are

2(711*/1)5 -1
25 —1
(o + 1)-flats that intersect on F, there are
2(1717/1)s -1 o
(ZS - 1) . ——'—ZT - 2(”1*1”5 - 1 (836)

(1. 2)-frames that intersect on F. Any point outside # is in on one and only one of
these (u, 2)-frames. We say that these (i, 2)-frames are orthogonal on the u-fiat F.
If F does not pass through the origin, there are

20m=ms 2 (8.37)

(1, 2)-frames that are orthogonal on ¥ and do not pass through the origin.
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Again, we regard the Galois field GF(2™) as the geometry EG(m, 2°). Let o
be a primitive element of GF(2™). For any (2™ — 1)-tuple

V= (UO! Vi, -y UZ’”"’vZ)

over GF(2), we again number its components with the nonzero elements of GF(2™)
as usual (i.e., v; is numbered with o for 0 < i < 2™ — 1). For each (u, 2)-frame Q
in EG(@m, 2), we define its incidence vector as follows:

VQ = (U07 Vi, =y U2””—2)1
where the ith component is

oo |1 o' is a point in Q,
"7 ] 0 otherwise.

DerinvitioN 84 A (i, s)th-order twofold EG code of length 27° — 1 is the
largest cyclic code whose null space contains the incidence vectors of all the
(i, 2)-frames in EG(m, 2°) that do not pass through the origin.

We now state a theorem (without proof) [34] that characterizes the roots of
the generator polynomial of a (u, s)th-order twofold EG code.

TeeoreEM 8.4 Let o be a primitive element of the Galois field GF(2™). Let
h be a nonnegative integer less than 2™° — 1. The generator polynomial g(X)
of the (u, s)th-order twofold EG code of length 2™ — 1 has o as a root if and
only if

0 < max Wa (hD) < (m — w)(2° - 1). (8.38)

O<l<s

EXAMPLE 8.22

Letm =2,s = 3, and u = 1. Consider the (1, 3)th-order twofold EG code of length
63. Let o be a primitive element of GF(2%) given by Table 6.2. Let 4 be a nonnegative
integer less than 63. It follows from (8.38) that the generator polynomial g(X) of the
(1, 3)th-order twofold EG code of length 63 has o” as a root if and only if

0 < max Wzg(h(l)) < 7.
0</<3

The nonnegative integers less than 63 that satisfy this condition are
1, 2,3, 4,5,6,8,9, 10, 12, 16, 17, 20, 24, 32, 33, 34, 40, 48.

Thus, the generator polynomial g(X) has the following roots:

ay, a27a3’a4’a5’a67a8’a9’a1q au7

am’awvam’amyaw’a%,ay’am’a%'

From Table 6.3 we find that:

1. The roots «,a?,a?, o8, o1 and «3% have the same minimal polynomial,

¢ (X)=1+X + X°.



Section 8.7 Twotold EG Codes 321

7. The toots o2, 00, 1%, a?* o*® and ¢ have the same minimal polynoimial,
$3(X) = 1 X + X2 4+ X% 4 x°,
3. The roots o, o', o?0 o*0 o7, and o* have the same minimal polynomial,

Gs(X) =14+ X + X> + X° + %5,
Therefore,
g(X) = ¢ (X) - $3(X) - 5(X)
=1 X x2 e e xS xT o x% x5 4 x4 xl7 oy x18

Therefore, the (1, 3)th-order twofold EG code of length 63 with m = 2 is a (63, 45)
cyclic code. In fact, it is the (63, 45) BCH code with a minimum distance equal to 7.

To decode the (i, s)th-order twofold EG code of length 27 — 1, we first form
the parity-check sums from the incidence vectors of all the (u, 2)-frames in EG
(m, 2%) that do not pass through the crigin (note that these incidence vectors are in
ihe null space of ihe code). Let FW be a pu-fiat that passes through the point ¢?” ~2,
From (8.37) we see that there are

J o= 2mmis g (8.39)

(u, 2)-frames not passing through the origin that are orthogonal on F*). The
incidence vectors of these (u, 2)-frames are orthogonal on the digits at the locations
that correspond to the points in F), Therefore, the parity-check sums formed from
these J incidence vectors are orthogonal on the error digits at the locations that
correspond to the points in FU, Let S(F™) denote the sum of error digits at the
locations corresponding to the points in FU, Then, we can correctly determine this
error sum, S(F%), from the J check-sums orthogonal on it provided that there are
no more than ;
_nm—p)s=1 _
[2 ] 2 1

errors in the received vector. In this manner we can determine the error sums,
S(FMY's that correspond to all the p-flats passing through the point «®" =2, This
completes the first step of orthogonalization. After this step, the rest of orthogonal-
ization steps are the same as those for a (i, s)th-order EG code. Therefore, a total
of u + 1 steps of orthogonalization are needed to decode a (. s)th-order twofold
EG code.

We can easily check that at each decoding step there are atleast J = 20715 2
error sums orthogonal on an error sum for the next step. Thus, the (u, s)th-order
twofold EG code of length 2* — 1 is capable of correcting.

tyr = E J = 20mmms=l g (8.40)

or fewer errors with majority-logic decoding. It has been proved [34] that the
minimum distance of the (u, s)th-order twofold EG code of length 279 — 1 is exactly
20m=ws _1 Therefore, the class of twofold EG codes is completely orthogonalizable.
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EXAMPLE 8.23

Consider the decoding of the (1, 3)th-order twofold EG of length 63 with m = 2
and s = 3. In Example 8.22 we showed that this code is a (63, 45) cyclic code (also
a BCH code). The null space of this code contains the incidence vectors of all the
(1, 2)-frames in EG(2,2%) that do not pass through the origin. Regard GF(2%) as
the geometry EG(2,2%). Let « be a primitive element of GF (2%) (use Table 6.2).
From (8.26) we see that there are nine lines in EG(2, 2%) that intersect at the point
o%2. Eight of these lines do not pass through the origin. From (8.37) we see that for
each of these eight lines there are six (1, 2)-frames intersecting on it. The incidence
vectors of these six (1, 2)-frames are in the null space of the code, and they will
be used to form parity-check sums for decoding the error digit eg; at location &2
Because J = 6, we need to find only six lines in EG(2, 23) that intersect at the point
«®? and do not pass through the origin.

Let 8 = a”. Then, 0,1, 8, B2, B>, B*, B°, and (87 = 1) form a subfield GF(23)
of the field GF(2%) (use Table 6.2). Then, each line in EG(2, 2*) that passes through
a5 consists of the following points:

of? + 77ocj

where n € {0, 1. 8, 82, B3, 8%, B°, BO}. Six lines passing through the point o2 are as
follows:

Li= {0[11, ()(16, 0[18, 0[24, Ol48, 0558, 0(59, Ol62}.

Ly, = {0(1’ O[7’ (1317 Ol41. 0142, 0145, 0(57, 0162,}

Lz = {0123, a33’ 01347 0137, 0549, 0{54, c'!56’ a62}

Ly = {0[2, 0612, 0119, OZZI, C\(27, 0551,0561. 0162}

Ls = {Olo, 013, 0115, (XZO’ a22’ 0128, O(SZ, 0162}
Lg = {019,6{10, Ol13, 0(25, C130’ Ol32, 0[387 0l62 )

k]

For each of these lines we form six (1, 2)-frames intersecting on it. A (1, 2)-frame
that contains the line {¢ + no/} is of the form

{® + na'}, (@ + o + nal}),

where o is not in {«% + na’}. Line L consists of the points {«% + na}. The point
a? is notin L,. Then, the line {o¢% + o + na} is parallel to {«? + na}. Thus,

(1% + na), (@ 4 + nad)

forms a (1, 2)-frame containing the line L;. This (1, 2)-frame consists of the following
points:

2 /) , L
{OJM,0(16,0616,0521,()(24,0[31.()[3‘,o(35,0547,0(48,0552,0(34,asg,asg,aéo,a62}.

In this manner, for each line L;, we can form six (1, 2)-frames orthogonal on it. The
incidence vectors of these 36 (1, 2)-frames are given in Tables 8.7A through 8.7F.
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TABLE 8.7A: Polynomials orthogonal on {ey1, €16, €18, €24, €43, €53,
€59, €62}

wi (XY = (11,16, 18, 21, 24, 31, 32, 35, 47, 48, 52, 54, 58, 59, 60, 62)
wip(Xy = (11,12, 16, 18, 22,23, 24,26, 38, 43, 45, 48, 51, 58, 59, 62)
wis(X) = (0, 6,11, 16, 18, 24, 30, 40, 41, 44, 48, 56, 58, 59, 61, 62)
wa(X) = (4,5,8,11. 16, 18,20, 24, 25,27, 33, 48, 57, 58, 59, 62)
wis(X) = (3,11, 13 14,16, 17,18,24,29, 34,36, 42, 48, 58, 59, 62)
we(X) = (2,7,9,11,15, 16, 18,24, 39, 48, 49, 50, 53, 58, 59, 62)

*In Tables 8.7 A through 8.7F, the integers inside the parentheses are powers
of X.

TABLE 8.78: Polynomials orthogonal on {ej. e7, e31, eaq, 4. eus,

€57, ea2}.

w1 (X) = (1,7,13,23,24,27,31, 39,41, 42, 44, 45, 46, 52, 57, 62)
wip(X) = (1,7,22,31,32,33,36,41, 42, 45, 48, 53, 55, 57, 61, 62)
wys(X) = (0,1,7,12,17,19, 25, 31, 41, 42, 45, 49, 57, 59, 60, 62)
wou (X)) = (1,5,6,7,9,21,26,28, 31,34, 41,42, 45,57, 58, 62)
wys(X) = (1,3,7.8,10,16,31, 40, 41, 42, 45, 50, 51, 54, 57, 62)
wo(X) = (1,4,7,14,15,18, 30, 31, 35, 37, 41, 42, 43, 45, 57, 62)

TABLE 8.7C: Polynomials orthogonal on {es, €33, €34, €37. €49, €54,
56, €62}

wi(X) = (4,9,11,17,23,33, 34,37, 41, 49, 51, 52, 54, 55, 56, 62}
wi(X) = (5,15, 16, 19,23, 31, 33, 34, 36, 37, 38, 44, 49, 54, 56, 62)
wis(X) = (1,13, 18, 20,23, 26, 33, 34, 37,42, 43, 46, 49, 54. 56, 58, 62)
wag (X)) = (0.2.8.23,32,33,34,37,42, 43, 46, 49, 54, 56, 58, 62}
was(X) = (14, 23,24, 25,28, 33,34, 37, 40, 45, 47. 49, 53, 54, 56, 62)
wag(X) = (6,7,10,22,23,27,29,33,34, 35,37, 49, 54, 56, 59, 62)

TABLE 8.7D: Polynomials orthogonal on {ep, 14, €19, €21, €27. €51,

€1. €62}

wy (X) = (2,7,8,11,14, 19,21, 23,27, 28, 30, 36, 51, 60, 61, 62)
Wy (X) = (0,2, 4 19,21, 24,27, 34, 35, 38, 50, 51, 55, 57, 61, 62)
wi3(X) = (2,14,15.19,21,25,26,27,29, 41, 46, 48, 51, 54. 61, 62)
waa (X)) = (1,2,3,9,14,19,21, 27,33, 43,44, 47, 51, 59, 61, 62)
wys(X) = (2,6,14,16,17,19, 20, 21, 27, 32, 37, 39, 45, 51, 61, 62)
wie(X) = (2,5,10,12,14, 18,19, 21, 27, 42, 51, 52, 53, 56, 61, 62)

To decode the code, the incidence vectors of the 36 (1, 2)-frames given in
Tables 8.7A through 8.7F are used to form parity-check sums. Let S(L;) denote
the sum of error digits at the locations corresponding to the points on line L; for
1 <i < 6. Then, for each error sum S(L;), there are six parity-check sums orthogonal
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TABLE 8.7E: Polynomials orthogonal on {ey, e3, e15, €29, €22, €23,

€53, e}

ws1(X) = (0,3,6,11, 13,15, 19, 20, 22, 28, 43,52, 53, 54, 57, 62)
wsp(X) = (0,3,8,9,12, 15, 20, 22, 24, 28, 29, 31, 37, 52, 61, 62)
ws3(X) = (0,1, 3,15, 20, 22,25, 28, 35, 36, 39, 51, 52, 56, 58, 62)
wsq(X) = (0, 3,15, 16, 20,22, 26,27, 28, 30, 42,47, 49, 52, 55, 62)
wss(X) = (0,2,3,4,10, 15, 20, 22, 28, 34, 44, 45, 48, 52, 60, 62)
wse(X) = (0,3,7,15,17, 18, 20, 21, 22, 28, 33, 38, 40, 46, 52, 62)

TABLE 8.7F: Polynomials orthogonal on {eg, e1g, e13. €35, €30, €32,

e3s, eg2 )

wei (X) = (3,5, 9,10, 11, 13, 25, 30, 32, 35, 38, 45, 46, 49, 61, 62)
wer(X) = (9,10,13,17,25,27, 28, 30, 31, 32, 38, 43, 48, 50, 56, 62)
we3(X) = (0,1, 4,9,10, 13, 16, 21, 23, 25, 29, 30, 32, 38, 53, 62)
Wea (X) (8,9,10, 13,18, 19,22, 25,30, 32, 34, 38, 39, 41, 47, 62)
Wes(X) (7,9,10,12,13, 14, 20, 25, 30, 32, 38, 44, 54, 55, 58, 62)
Wee(X) (2,9,10, 13,25, 26, 30, 32, 36, 37, 38, 40, 52, 57, 59, 62)

on it. Thus, S(L;) can be determined correctly provided that there are three or fewer
errors in the error vector.

The error sums S(L1), S(L3), S(L3), S(Lyg), S(Ls),and S(Lg) are orthogonal on
eg2. Consequently, eg; can be determined from these error sums. Thus, the (1, 3)th-
order twofold (63, 45) EG code is two-step majority-logic decodable. Because its
minimum distance dy,;, = 7 and J = 6, it is completely orthogonalizable.

There is no simple formula for enumerating the number of parity-check digits
for a general twofold EG code; however, for 4 = m — 1, the number of parity-check
digits for the (m — 1, s)th-order twofold EG code of length 2™ — 1 is [34]

5 kY
n—k= (m + 1) - ( " ) . (8.41)
m m—1

A list of twofold EG codes is given in Table 8.8. We see that the twofold EG
codes are more efficient than their corresponding RM codes and are comparable
to their corresponding BCH codes. For example, for error-correcting capability
t = 7, there is a two-step majority-logic decodable (255, 191) twofold EG code;
the corresponding RM code is a (255, 163) code that is five-step majority-logic
decodable (using Chen’s decoding algorithm [32], it may be decoded in two steps);
the corresponding BCH code is a (255, 199) code. Twofold EG codes form a special
subclass of multifold EG codes presented in [30] and [34].
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TABLE 8.8: Twofold EG codes*.

mo s n i k J iy
3 2 1 63 24 14

2 3 1 63 45 6 3
4 2 1 255 45 62 31
4 2 2 255 17 14 7
2 4 1 255 191 14 7
3 3 1 511 184 62 31
3 3 2 511 475 6 3
5 2 1 1023 76 254 127
5 2 2 1023 438 62 31
5 2 3 1023 868 14 7
2 5 1 1023 813 30 15

*The (63, 24) and (63, 45) codes are BCH
codes.

PROJECTIVE GEOMETRY AND PROJECTIVE GEOMETRY CODES

Like Euclidean geometry, a projective geometry may be constructed from the
elements of a Galois field. Consider the Galois field GF(2/"TD%) that contains
GF(2°) as a subfield. Let o be a primitive element in GF(20"T1%). Then, the powers

ofa, a0 ol - 2" =2 form all the nonzero elements of GF(27+15), Let
2(771—1—1)5 -1
n=to e =2 20m7Ds 20 1 (8.42)

Then, the order of 8 = " is2* — 1. The 2° elements 0, 1, 8, B2.-- -, B2 form the
Galois field GF(2°),

Consider the first n powers of a:

r={al o? a1

No element o' in T' can be a product of an element in GF(2*) and another
clement o/ in I' [i.e., o # 5o/ for n € GF(2)]. Suppose that o' = no’. Then,
o'~/ = . Because ° ~! = 1, we obtain «~/?@ =1 = 1. This is impossible, since
(i — )2 —1) < 20+Ds 1 and the order of o is 20"+1¥ — 1. Therefore, we conclude
that for o’ and o/ in I', & # ne/ for any n € GF(2°). Now, we partition the nonzero
elements of GF(20"+1) into n disjoint subsets as follows:

{O[O, ,30[0, 620{07 . '32\'—2050}7
{O(l7 ,30(1. ,82011, oo ﬂZ“—2al}.

{02, pa?, B2a?, -, B¥ a2,

{Cl”_l. ﬁa’1_1<ﬁ20(’7_1, ‘62"720[”—1}7
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where § = ", a primitive element in GF(2°). Each set consists of 2° — 1 clements,
and each element is a multiple of the first element in the set. No element in one set
can be a product of an element of GF(2*) and an element from a different set. Now,
we represent each set by its first element as follows:

(ai) é {ai7 ﬁaiv Tt 132’\*2061'}’

with 0 < i < n. For any o/ in GFQQU*+D%) if o/ = B! . o' with0 < i < n, then o/
is represented by (). If each element in GF(2""*+1*) is represented as an (m + 1)-
tuple over GF(2%), then (') consists of 2° — 1 (m + 1)-tuples over GF(2*). The
(m +1)-tuple for o' represents the 25 — 1 (m +1)-tuples in (a'). All the (m + 1)-tuples
representing the elements in («') are multiples of the (m + 1)-tuple representing o .
The (m + 1)-tuple over GF(2°) that represents («') may be regarded as a point in a
finite geometry over GF(2¥). Then, the points

(0[0)7 (al)v (062), ] (an_l)

are said to form an m-dimensional projective geometry over GF(2°), denoted by
PG(m, 2°) [15, 16]. In this geometry, the 2° — 1 elements in {&!, o', - -, B D'}
are considered to be the same point in PG(m, 2°). This is a major difference between
a projective geometry and a Euclidean geometry. A projective geometry does not
have an origin.

Let (&) and (a/) be any two distinct points in PG(m, 2°). Then, the line (1-flat)
passing through (or connecting) (o') and (a/) consists of points of the following
form:

(ma' + nal), (8.43)

where 71 and 1y are from GF(2°) and are not both equal to zero. There are 25?2 -1
possible choices of 51 and 7, from GF(2%) (excluding i, = np = 0); however, there
are always 2° — 1 choices of 1 and 7 that result in the same point. For example,

ma' +mal, Bma’ + pmal, - BT Pma’ + B2 el
represent the same point in PG(m, 2*). Therefore, a line in PG(m, 2°) consists of

@)Y-1_
e =241
2 -1 *

points. To generate the 2* + 1 distinct points on the line {(n1a’ + npa/)}, we simply
choose 11 and 75 such that no choice (11, n;) is a multiple of another choice ( 17’1, 1)
[i.e., (n1, m) # (8n}, 8ny) for any 8 € GF(2')].

EXAMPLE 8.24

Let m = 2 and s = 2. Consider the projective geometry PG(2, 2%). This geometry
can be constructed from the field GF(2°), which contains GF(22) as a subfield. Let

AR

__ 22 2 _
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Let o be a primitive of GF(2%) (use Table 6.2). Let § = o?!. Then 0,1,8, and 82 form
the field GF(22). The geometry PG(2, 22) consisis of the following 21 points:

@), (@Y, @), @), (@), @), @5,
@), @%, @), @9, @, @), @),
(0[14)’ (0[15)7 (0616), (0617), (0518), (0119)’ (O[ZO)t

Consider the line passing through the point () and () that consists of five poinis
of the form (no + me??), with 11 and 7, from GF(2%) = {0.1, 8. 82}. The five
distinct points are

(@),

(0120),

@+ = @h = ()= @),
@+ = @+a'h = @ = (B = @,

@+ p%®) = (@+a) = @),

Thus, {(a), (o)), (@), (@), (@?0)} is the line in PG(2, 2°) that passes through the
points (&) and («?).

Let (a!) be a point not on the line {(71 +m2a/}}. Then, the line {0 +p07))
and the line {(n ¢ + ma’)} have (o) as a common peint (the only common point).
We say that they intersect at («/). The number of lines in PG(m, 2%) that intersect
at a given point is

oms _

=142 4420 8.4

S =Yt (8.44)

Let (&), (&), -+, (&/v+1) be p + 1 linearly independent points (i.e., mall +

mal2 4+ 77M+1o/ﬂ+' =0ifandonlyifyy =m = -+ = n,41 = 0). Then, a u-flat
in PG(m, 2°) consists of points of the form

(ol + ma + -+ nﬂ+1alf‘+‘ ). (8.45)

where 5; € GF(2*), and not all 51,71, -+, nu41 are zero. There are 2(4+Ds — 1

choices for ny, m2, -+, Nuy1 (n = m = -+ = Nu41 = 0 is not allowed). Because

there are always 2° — 1 choices of 5 to 17,1 resulting in the same point in PG(m, 2°),
there are

2(M+1)S _ 1

S — R, E IR, 7 8 46

s _ | F20 A4+ ( )

points in a u-flat in PG(m, 2°). Let o'+ be a point not in the ji-fat:
{(7710{1; + 7720/2 + ... 4 77M+1051/H’1)}.

Then, the p-flat {(na!t + ma + -+ + n,loz’/‘ + 77M+1oz1ﬂ+')} and the p-flat {(no”t +
mal2 44 77,101[“ + 77M+1Otll'+‘ )} intersect on the (u — 1)-flat {1/t + a2 4 -+ +
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;malﬂ)}. The number of u-flats in PG(m, 2%) that intersect on a given (u — 1)-flat in
PG(m, 2} is
o(m—p+l)s _ 1
— =Tt 20m=ps (8.47)

Every point outside a (u — 1)-flat F' is in one and only one of the p-flats intersecting
on F.

Letv = (vg, v1,- -+, v,—1) be an n-tuple over GF(2), where
2(m+1)5 -1
- — 1425 4.1 0m5
n=to =12 et

Let o be a primitive element in GF(20"+19). We may number the components of v
with the first n powers of « as follows: v; is numbered o for 0 < i < n. As usual,
o' is called the location number of v;. Let F be a u-flat in PG(m, 2°). The incidence
vector for F is an n-tuple over GF(2),

VE = (0, V1, "+, Un—1),
whose ith component

= 1 if (a')is a pointin F,
"7 1 0 otherwise.

DerFmniTION 8.5 A (u, s)th-order binary projective geometry (PG) code of
length n = (2U"+D% — 1)/(2% — 1) is defined as the largest cyclic code whose
null space contains the incidence vectors of all the p-flats in PG(m, 2°).

Let & be a nonnegative integer less than 20**Ds — 1 and 4 be the remainder
resulting from dividing 2’k by 207"+Ds _ 1 Clearly, ¥ = h. The 2*-weight of A,
Wos (h), is defined by (8.28). The following theorem characterizes the roots of the
generator polynomial of a (u, s)th-order PG code (the proof is omitted). The proof
of this theorem can be found in [27, 35], and [36].

TueEorEM 8,5 Let o be a primitive element GF(a™11D%). Let h be a nonneg-
ative integer less than 207D — 1. Then, the generator polynomial g(X) of a
(u, s)th-order PG code of length n = 2"tV — 1)/(2% — 1) has " as a root if
and only if 4 is divisible by 2° — 1, and

0 < max Wa (hD) = j(2° — 1), (8.48)

O<l<s

with0 < j <m— pu.

EXAMPLE 8.25
Letm =2,5s =2, and u = 1. Consider the (1, 2)th-order PG code of length
2(2-1—1)'2 -1

n—ﬁ:ZL
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Let « be a primitive element of GF(2%). Let h be a nonnegative integer less than 63.
It follows from Theorem 8.5 that the generator polynomial g(X) of the (1, 2)th-order
PG code of length 21 has o’ as a root if and only if 4 is divisible by 3, and

Dy —2;
0< Onglajé Woa(h') =3,
with 0 < j =< 1. The integers that are divisible by 3 and satisfy the pre-
ceding condition are 0, 3, 6, 9, 12, 18, 24, 33, 36, and 48. Thus, g(X) has
o = 1,03 0% % al?, 18 o2 o33 o3¢, and o"® as roots. From Table 6.3 we
find that (1) o b o'?, 0?4, o, and o*® have the same minimal polynomial,
1) =14 X + X2 + X* + x5 and (2) «°, &'%, and &% have ¢g(X) = 1+ X% + X3
as their minimal polynomial. Thus,

00 = (14 X3 (X)o(X)
=1+ X2+ x*+ x6 + x7 4+ x1°.

Hence, the (1, 2)th-order PG code of length 21 is a (21, 11} cyclic code. It 1s
interesting to note that this code is the (21, 11) difference-set code considered in
Example 8.9.

Decoding PG codes is similar to decoding EG codes. Consider the decoding
of a (i, s)th-order PG code of length n = (2¢"*1$ — 1)/(2% —1). The null space of
this code contains the incidence vectors of all the pu-flats of PG(m, 2°). Let F (u=1)
be a (u — 1)-flat in PG(m, 2°) that contains the point (¢"~!). From (8.47) we see that
there are

2(711*/x+l)s -1
7= 25 -1

p-flats intersecting on the (u — 1)-flat F**~D. The incidence vectors of these J
un-flats are orthogonal on the digits at the locations corresponding to the points in
FU=D Therefore, the parity-check sums formed from these J incidence vectors are
orthogonal on the error digits at the locations corresponding to the points in F#~ 1.
Let S(F*~Yy denote the sum of error digits at the locations corresponding to the
points in #*~ D, Then, we can correctly determine this error sum, §(F*~ 1), from
the J check-sums orthogonal on it provided that there are no more than

7 2(771—/x+1)s -1
LzJ T2 -1
errors in the received vector. In this manner we can determine the error sums,
S(F=Dyg corresponding to all the (u — 1)-flats that contain the point (o ~1). We
then use these error sums to determine the error sums, S(F*“~2))’s, corresponding to
all the (1 —2)-flats that contain (" ~1). We continue this process until the error sums,
S(FDys, corresponding to all the 1-flats that intersect on (1) are formed. These
error sums, S(F®)’s, are orthogonal on the error digit ¢,_; at the location o™~ 1.

Thus, we can determine the value of e,_1. A total of 1 steps of orthogonalization
are required to decode ¢,_1. Because the code is cyclic, we can decode other error
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digits in the same manner. Thus, the code is u-step decodable. At the rth step of
orthogonalization with 1 < r < u, the number of error sums, S(F® 7tDys that are
orthogonal in the error sum corresponding to a given (i — r)-flat F“=7) is

Z(m—anr)s -1
R

Therefore, at each step of orthogonalization, we can always correctly determine
the error sums needed for the next step provided that there are no more than
[J/2] errors in the received vector. Thus, the pth-order PG code of length n =
Qm+Ds _1y/25 — 1) is capable of correcting

J 2(rn4/,c+1)s -1
L = M - LWJ (8.49)

or fewer errors with majority-logic decoding. Its minimum distance is at least

2y +1 =205 4. 42542 (8.50)

EXAMPLE 8.26

Consider the decoding of the (1, 2)th-order (21, 11) PG code with m = 2 and s = 2.
The null space of this code contains the incidence vectors of all the 1-flats (lines) in
PG(2,2%). Let « be a primitive element in GF(2%). The geometry PG(2, 2%) consists
of 21 points, (&) to (%), as given in Example 8.24. Let 8 = «?!. Then, 0, 1, 8, and
B? form the field GF(2?).

There are 22 4+ 1 = 5 lines passing through the point (%), namely,

{ma® +me®)} = (@), @), @), @), @)},
(et +ma} = (@b, @), @), @), @)},
{ma® + ™) = (@), @), @), (@), @)},
(e +ma} = (@), @), @'®), @), @)},

{ma” +ma®)) = (@), @), @), @), (@™},
The incidence vectors of these lines (in polynomial form) are

wi(X)=1 +X> +X7 +x7 4+ x%
W2(X) =X + Xll e X14 + X15 3 X20,
w3(X) = X2 + X% + x8 4 x10 4 x20
wa(X) = X + X6 4 X164 x19 4 x20,
WS(X) — X9 + X12 + X13 + X18 + XZO.

These vectors are orthogonal on digit position 20. They are exactly the orthogonal
vectors for the (21, 11) difference-set code given in Examples 8.9 and 8.10.
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TABLE 8.9: PG codes.

m s § n k J I
2 2 1 21 i1 5 2
2 3 1 73 45 9 4
3 2 2 85 68 5 2
3 2 1 35 24 21 10
2 4 1 273 191 i7 8
4 2 3 341 315 5 2
4 2 2 341 195 21 10
4 2 1 341 45 85 47
3 3 2 585 520 9 4
3 3 1 585 184 73 36
2 5 1 1057 813 33 16
5 2 4 1365 1328 5 2
5 2 3 1365 1063 21 10
5 2 2 1365 483 85 21
5 2 1 1365 76 341 170
2 6 1 4161 3431 65 32
6 2 5 5461 5411 5 2
6 2 4 5461 4900 21 10
6 2 3 5461 3185 85 47
6 2 2 5461 1064 341 170
6 2 1 5461 119 1365 682

For u = 1, we obtain a class of one-step majority-logic decodable PG codes.
For m = 2. a (1, s)th-order PG code becomes a difference-set code. Thus, the
difference-set codes form a subclass of the class of (1, s)th-order PG codes. For
s = 1,a (1, 1)th-order PG code becomes a maximum-lengih code.

There is no simple formula for enumerating the number of parity-check digits
for a general (u, s)th-order PG code. Rather complicated combinatorial expressions
for the number of parity-check digiis of PG codes can be found in [17] and [18];
however for u = m — 1, the number of parity-check digits for the (m — 1, s)th-order
of PG code of length n = 20"+Ds — 1)/(2° — 1) is

1 )
n—k:1+(’”+ ) _ (8.51)

m

This expression was obtained independently by Goethals Delsarte [35], Smith [19],
and MacWilliams and Mann [20]. A list of PG codes is given in Table 8.9.

PG codes were first studied by Rudolph [3] and were later extended and
generalized by many others [19, 24, 25, 27, 35, 36].

8.9 REMARKS

In this chapter we considered only finite geometries over Galois field GF(2%) and the
construction of majority-logic decodable codes based on these geometries. Finite
geometries over Galois field GF(p®), where p is a prime, can be constructed in
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exactly the same way, simply by replacing 2 with p and GF(2°) with GF(p*).
Construction of codes based on the flats and points in these finite geometries results
in a much larger class of majority-logic decodable codes. Construction of finite
geometries over GF(p®) and their application to the construction of low-density
parity-check codes will be discussed in Chapter 17.

PROBLEMS
81

8.2

8.3

8.4

8.5

8.6

8.7

Consider the (31, 5) maximum-length code whose parity-check polynomial is
p(X) = 1+ X% + X°. Find all the polynomials orthogonal on the digit position
X30 Devise both type-I and type-II majority-logic decoders for this code.

P = {0, 2,3} is a perfect simple difference set. Construct a difference-set code
based on this set.

a. What is the length n of this code?

b. Determine its generator polynomial.

¢. Find all the polynomials orthogonal on the highest-order digit position X"~ 1,
d. Construct a type-I majority-logic decoder for this code.

Example 8.1 shows that the (15, 7) BCH code is one-step majority-logic decodable
and is capable of correcting any combination of two or fewer errors. Show that
the code is also capable of correcting some error patterns of three errors and
some error patterns of four errors. List some of these error patterns.

Consider an (11, 6) linear code whose parity-check matrix is

10000111111
6100011 0100
H=)0 01 0 01010120
000100116001
0 000610O0O0CI1 11

(This code is not cyclic.)

a. Show that the minimum distance of this code is exactly 4.

b. Let € = (e, €1, €2, €3, ey, €5, €6, €7, €3, €9, €1g) be an error vector. Find the
syndrome bits in terms of error digits.

c. Construct all possible parity-check sums orthogonal on each message error
digite; fori =5,6,7,8, 9, 10.

d. Is this code completely orthogonalizable in one step?

Let m = 6. Express the integer 43 in radix-2 form. Find all the nonzero proper

descendants of 43.

Let o be a primitive element of GF(2%) given by Table 2.8. Apply the affine

permutation Z = a>¥ + &!! to the following vector of 16 components:

Location Numbers

a® a@ al aZ 053 0{4!, aS aﬁ o ob a9 aw 0‘11 0612 “13 0614

w=(¢¢ 1 1 0 6 1 0 1 0 1 1 0 0 0 0 1

What is the resultant vector?

Letm = 6. Then, 2 — 1 can be factored as follows: 20 — 1 =7 x 9. Let J = 9 and
L = 7. Find the generator polynomial of the type-I DTI code of length 63 and
J = 9 (use Table 6.2). Find all the polynomials (or vectors) orthogonal on the
digit position X% (or a%2).
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Find the generaior polynomial of the type-I DTI code of length 63 and 7 = 7.
Find all the polynomials orthogonal on the digit position X2,

Show that the ali-one vector is not a code vector in a maximum-length code.

Let w(X) = vg + v1X + - + van 2 X2 72 be a nonzero code polynomial in the
2" — 1, m) maximum-length code whose parity-check polynomial is p(X). Show
that the other 2" — 2 nonzero code polynomials are cyclic shifts of v(X). (Hint:
Let v\7(X) and v\ (X) be the ith and jth cyclic shifts of v(X), respectively, with
0<i<j<2"—2 Show that v/ (X) # v\/)(X).)

Agrrange the 2™ code vectors of a maximum-length code as rows of 2 2" x (2™ — 1)
array.

2. Show that each column of this array has 2"~! ones and 27" ~! zeros.

Ir. Show that the weight of each nonzero code vector is exactly 2"~ 1,

Example 8.12 shows that the (15, 5) BCH code is two-step majority-logic decod-
able and is capable of correcting any combination of three or fewer errors. Devise
a type-I majority-logic decoder for this code.

Show that the extended cyclic Hamming code is invariant under the affine
permutations.

14 Show that the extended primitive BCH code is invariant under the affine permu-

tations.
Let P = {lp,l1, 02, .... 1>} be a perfect simple difference set of order 27 such that

O<loy<li<b <. - <l <2°Q2°+1).

Construct a vectorof 7 = 2% + 25 + 1 components,

v = (Vg, V1, .- -, Up—1),
whose nonzero components are vy,. vy, ... , v, ; that is,
U]” = ‘[}[l = ... U[}\. = 1

Consider the following n x 2n matrix:
G = [@ ﬂl?]v

where (1) T, is an n x n identity matrix, and (2) @ is an 7 x n matrix whose n rows
are v and »n — 1 cyclic shifts of v. The code generated by G is a (2n, n) linear (not
cyclic) code whose parity-check matrix is

H = (I, Q7.

2. Show that J = 2* 4 1 parity-check sums orthogonal on any message error digit
can be formed.

b. Show that the minimum distance of this codeisd = J +1 = 2% 4+ 2. (This code
is a half-rate quasi-cyclic code [20).)

Prove that if J parity-check sums orthogonal on any digit position can be formed

for a linear code (cyclic or noncyclic), the minimum distance of the code is at least

J+1.

Consider the Galois field GF(2%) given by Table 2.8. Let § = &°. Then, {0, 1, 8, 2}

form the subfield GF(2?) of GF(2*). Regard GF(2*) as the two-dimensional

Euclidean geometry over GF(2%), EG(2, 2%). Find all the 1-flats that pass through

the point o’
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8.18 Consider the Galois field GF(2%) given by Table 6.2. Let § = «?!. Then,
{0,1, 8, %} form the subfield GF(2%) of GF(2%). Regard GF(2°) as the three-
dimensional Euclidean geometry EG(3, 2°).

a. Find all the 1-flats that pass through the point ¢®.
b. Find all the 2-flats that intersect on the 1-flat, {«® + nal, where n € GF(22).

8.19 Regard GF(2%) as the two-dimensional Euclidean geometry EG(2,23). Let
B = o’ Then, {0,1, 8, 82, 8, g%, 8°, 8%} form the subfield GF(2®) of GF(2°).
Determine all the 1-flats that pass through the point !

8.20 Letm =2ands =3.

a. Determine the 23-weight of 47.
b. Determine Omlax3 W3 (470,

¢. Determine all the positive integers /i less than 63 such that

0 < max W)y <2’ -1.
O0<l<3

8.21 Find the generator polynomial of the first-order cyclic RM code of length 25 — 1.
Describe how to decode this code.

8.22 Find the generator polynomial of the third-order cyclic RM code of length 26 — 1.
Describe how to decode this code.

8.23 Letm =2 ands = 3. Find the generator polynomial of the (0, 3)th-order EG code
of length 22*3 — 1. This code is one-step majority-logic decodable. Find all the
polynomials orthogonal on the digit location «% where « is a primitive element
in GF(22*3). Design a type-I majority-logic decoder for this code.

8.24 Letm =3 and s = 2. Find the generator polynomial of the (1, 2)th-order twofold
EG code of length 2°*? — 1. Describe how to decode this code.

8.25 Prove that the (i —2)th-order cyclic RM code of length 2™ — 1 is a Hamming code.
(Hint: Show that its generator polynomial is a primitive polynomial of degree m.)

8.26 Prove that the even-weight codewords of the first-order cyclic RM code of length
2" — 1 form the maximum-length code of length 2 — 1.

8.27 Let 0 < u < m — 1. Prove that the even-weight codewords of the (m — u — 1)th-
order cyclic RM code of length 2 — 1 form the dual of the uth-order RM code of
length 2" — 1. (Hint: Let g(X) be the generator polynomial of the n — u — 1)th-
order cyclic RM code C. Show that the set of even-weight codewords of C is a
cyclic code generated by (X + 1)g(X). Show that the dual of the uth-order cyclic
RM code is also generated by (X + 1)g(X).)

8.28 The pth-order cyclic RM code of length 2 — 1 has a minimum distance of
dpip = 2" % — 1. Prove that this RM code is a subcode of the primitive BCH
code of length 2" — 1 and designed distance 2" # — 1. (Hint: Let g(X)zrm be
the generator polynomial of the RM code and let g(X)pcn be the generator
polynomial of the BCH code. Prove that g(X)gc g is a factor of g(X)gas.)

8.29 Show that extended RM codes are invariant under the affine permutations.

8.30 Letm = 3,s = 2 and u = 2. Find the generator polynomial of the (2, 2)th-order
PG code constructed based on the projective geometry PG(3, 2°). This code is
two-step majority-logic decodable. Find all the orthogonal polynomials at each
step of orthogonalization.

8.31 Let £ bealine in the two-dimensional Euclidean geometry EG(2, 2°) that does not
pass through the origin. Let v/ be the incidence vector of £. For 0 < i < 2% —2,
let Vg) be the ith cyclic shift of v-. Prove that

V(EI) # V.
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8.32 Let £ be a line in the two-dimensional projective geometry PG(2, 2°). Let v, be

the incidence vector of £. For 0 < i < 225 4+ 25 let Wg) be the ith cyclic shift of v.
Prove that

/)
W(LI 75 V.

o]
[ &%)
(28}

.33 Prove that a cyclic shift of the incidence vector of a p-flat in EG(m, 2°) not

)
(%)
LN
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passing through the origin is the incidence vector of another p-flatin EG(m. 2%)
not passing threugh the origin.

4 Consider the cyclic product code whose component codes are the (3, 2) cyclic
code generated by g1(X) = 1 + X and the (7, 4) Hamming code generated by
X))y =1+X+X 3. The component code Cy is completely orthogonalizable
in one step, and the component code C; is completely orthogonalizable in two
steps. Show that the product code is completely orthogonalizable in two steps. (In
general, if one component code is completely orthogonalizable in one step, and
the other component code is completely orthogonalizable in L steps, the product
code is completely orthogonalizable in L steps [37].)
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