CHAPTER 7

Nonbinary BCH Codes,
Reed-Solomon Codes, and
Decoding Algorithms

This chapter presents nonbinary BCH codes with symbols from GF(g) and their
decoding aigorithms. The most important and popular subclass of nonbinary BCH
codes is the class of Reed-Solomon codes. Even though Reed—Solomon codes
form a subclass of BCH codes, they were constructed independently using a totally
different approach by Reed and Solomon in 1960 [1], the same year as BCH codes
were discovered. The relationship between Reed—Solomon codes and BCH codes
was proved by Gorenstein and Zierler in 1961 [2]. The minimum distance of a
Reed-Solomon code is equal to the number of its parity-check symbols plus one.
Reed-Solomon codes are very effective in correcting random symbol errors and
random burst errors, and they are widely used for error control in communication
and data storage systems, ranging from deep-space telecommunications to compact
discs. Concatenation of these codes as outer codes with simple binary codes as inner
codes provides high data reliability with reduced decoding complexity.

Decoding of a nonbinary BCH code or a Reed-Solomon code requires
determination of both the locations and the values of the symbol errors. The
first error-correction procedure for nonbinary BCH and Reed-Solomon codes was
found by Gorenstein and Zierler [2], and it was later improved by Chien [3] and
Forney [4]. But Berlekamp’s iterative decoding algorithm [5] presented in the previ-
ous chapter was the first efficient decoding algorithm for both binary and nonbinary
BCH codes. In 1975 Sugiyama, Kasahara, Hirasawa, and Namekawa showed that the
Euclidean algorithm for finding the greatest common divisor of two polynomials can
be used for decoding BCH and Reed—Solomon codes [6]. This Euclidean decoding
algorithm is simple in concept and easy to implement. BCH and Reed-Solomon
codes can also be decoded in the frequency domain. The first such frequency-domain
decoding algorithm was introduced by Gore [7], and it was later much improved
by Blahut [8]. All the preceding decoding algorithms can be modified for correcting
both symbol errors and erasures.

Reed—Solomon codes have been proved to be good error-detecting codes {9],
and their weight distribution has been completely determined [10]-{12].

Good treatment of nonbinary BCH and Reed-Solomon codes and their
decoding algorithms can be found in [5] and [13--20].

7.1 g-ARY LINEAR BLOCK CODES

Consider a Galois field GF(g) with ¢ elements. It is possible to construct codes
with symbols from GF(q). These codes are called g-ary codes. The concepts and
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Section 7.1 g-ary Linear Block Codes 235

properties developed for the binary codes in the previous chapters apply to ¢-ary
codes with few modifications.
Consider the vector space of all the ¢" n-tuples over GF(q):

(vo, vy, -, Vp—1)

with v; € GF(g) for 0 <i < n. The vector addition is defined as follows:

A
(MOs Uy, -, ul‘l—l) + (UOv Vi, s vn—l) = (MO + Vg, U1 + Vi, »r- s Hp—1 + vll—l)»

where the addition u; + v; is carried out in GF(g). The multiplication of a scalar in
GF(q) and an n-tuple (vg, v1, -+, v,—1) over GF(g) is given as follows:

A
a-(o, v, p—1) =(@-vp,a V1, , 4 Uyo1)

where the product a - v; is carried out in GF(g). The inner product of two n-tuples,
(ug, u1, -+, uy_1) and (v, v1, -+ - , V—1), is defined as follows:

n—1
A
(g, 1, -+ up-1) - (vo, V1, -+ V1) = E up - Vi
=0

where addition and multiplication are carried out in GF(g).

DerFiNITION 7.1 An (5, k) linear block code with symbols from GF(g) is simply
a k-dimensional subspace of the vector space of all the n-tuples over GF(g).

A g-ary linear block code has all the structures and properties developed for
binary linear block codes. A g-ary linear block code is specified either by a generaior
matrix or by a parity-check matrix over GF(¢). Encoding and decoding of ¢-ary
linear codes are the same as for binary linear codes, except that operations and
computations are performed over GF(q).

A g-ary (n, k) cyclic code is generated by a polynomial of degree n — k over
GF(q),

gX)=go+ g1 X+ 4 gup XU 4 xnk

where go # 0 and g; € GF(g). The generator polynomial g(X) is a factor of X" — 1.
A polynomial v(X) of degree n — 1 or less over GF(g) is a code polynomial if and
only if v(X) is divisible by the generator polynomial g(X).

In this chapter we present two important classes of cyclic codes over GF(g)
whose constructions are based on an extension field of GF(¢). Construction of an
extension field of GF(q) is similar to the construction of an extension field of GF(2).

A polynomial f(X) with coefficients from GF(g) is called monic if the
coefficient of the highest power of X is 1. A polynomial p(X) of degree m over
GF(q) is said to be irreducible if it is not divisible by any polynomial over GF(g) of
degree less than m but greater than zero. An irreducible polynomial p(X) of degree
m over GF(qg) is called primitive if the smallest positive integer n for which p(X)
divides X" —1lisn =¢™ — 1.

For any positive integer m, a Galois field GF(¢™) with ¢™ elements can be
constructed from the ground field GF(q). The construction is exactly the same as the
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construction of GF(2™) from GF(2). The construction of GF(¢™) is based on a monic
primitive polynomial p(X) of degree m over GF(q). Let « be a root of p(X). Then,

m__
0,1, a, &2, -, a?" 2

form all the elements of GF(¢™), and «?" ~! = 1. The element « is called a primitive
element. Every element g in GF(¢™) can be expressed as a polynomial in o,

B =ao+aa +ae® + -+ ay_1a™

where a; € GF(q) for 0 <i < m. Then, (ap, a1, - - - , a»—1) 1S a Vector representation
of B. Therefore, every element in GF(¢™) has three forms: power (0 is represented
by ¢®), polynomial, and vector forms.

The elements in GF(g™) form all the roots of X¢" — X. Let § be an element in
GF(g™). The minimal polynomial of 8 is the monic polynomial ¢(X) of the smallest
degree over GF(q) that has § as a root; that is, ¢(8) = 0. Just as in the binary case,
$(X) isirreducible. Let e be the smallest nonnegative integer for which 8¢° = 8. The
integer ¢ is called the exponent of g and e < m. The elements 8, g9, ,8‘12, e ﬂqe—l
are conjugates. Then,

e—1 )
$(X) = [(x - 1),
=0

and ¢(X) divides X¢" — X.

7.2 PRIMITIVE BCH CODES OVER GF(g)

The binary BCH codes defined in Section 6.1 can be generalized to nonbinary codes
in a straightforward manner. Let ¢ be a primitive element in GF(g™). The generator
polynomial g(X) of a r-error-correcting primitive g-ary BCH code is the polynomial

of the smallest degree over GF(g) that has «, o, -, astoots. For 1 <i < 21,
let ¢; (X) be the minimal polynomial of &'. Then,
g(X) = LCM{¢1(X), ¢o(X), - -+ . 9, (XD} (7.1)

Because each ¢, (X) divides X9" ~1 — 1, g(X) divides X¢" ~! — 1. Since « is a primitive
elementin GF(¢™), $1(X) is a primitive polynomial of degree m. Hence, the smallest
positive integer n for which ¢ (X) divides X" — 1 is n = ¢™ — 1. This result implies
that g™ — 1 is the smallest positive integer for which g(X) divides X4"~! — 1. Because
the degrec of each ¢, (X) is m or less, the degree of g(X) is 2m¢ or less. Similar to the
way we proved the BCH bound for the minimum distance of a binary BCH code,
we can prove that the minimum distance of the g-ary BCH code generated by g(X)
of (7.1) is lower bounded by 2r + 1.

Summarizing the foregoing results, we see that the g-ary BCH code generated
by the polynomial g(X) of (7.1) is a cyclic code with the following parameters:

Block length: n = ¢ — 1,
Number of parity-check symbols: n — k < 2mz,

Minimum distance: dy;, > 2t + 1.
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This code is capable of correcting ¢ or fewer random symbol errors over a span
of g™ — 1 symbol positions. For ¢ = 2, we obtain the binary primitive BCH codes.
Similar to the binary case, the matrix over GF(¢™),

1 o« o2 gt
1 0[2 (0[2)2 . (0[2)”*1
H = 1 053 (013)2 . (Ol?))n—l
i O{ZI (a21)2 . (OJZI.)n*l

is a parity-check matirix of the 7-error-correcting primitive g-ary BCH code generated
by the polynomial g(X) of (7.1).

7.3 REED-SOLOMON CODES

The special subclass of g-ary BCH codes for which m = 1 is the most important
subclass of g-ary BCH codes. The codes of this subclass are called the Reed-Solomon
(RS) codes in honor of their discoverers, Irving S. Reed and Gustave Sclomon [1].
RS codes have been widely used for error control in both digital communication
and storage systems.

Let « be a primitive element in GF(q). The generator polynomial g(X) of a
r-error-correcting RS code with symbols from GF(q) has «, a2, -+, a? as all its
roots. Because o is an element of GF(q), its minimal polynomial ¢,(X) is simply

X — o', Then, it follows from (7.1) that

g(X) =X —a)(X —a?) - (X ~a?)
(72)
=g+ @ X +oX 4+ gy XP 4+ x¥

with g; € GF(q) for 0 < i < 2r. Since o, a?,--- , 0" are roots of X471 — 1, g(X)
divides X¢~1 — 1. Therefore, g(X) generates a g-ary cyclic code of lengthn = ¢ — 1
with exactly 2¢ parity-check symbols. It follows from the BCH bound that the
mintmum distance of the code is at least 2¢ 4 1; however, the generator polynomial
g(X) is a code polynomial and has 2¢r + 1 terms. None of the coefficients in g(X)
can be zero, otherwise the resulting codeword would have weight less than 27 + 1,
which would contradict the BCH bound on the minimum distance. Therefore, g(X)
corresponds to a codeword of weight exactly 2r + 1. This implies that the minimum
distance of the RS code generated by the polynomial g(X) of (7.2) is exactly 27 + 1,
and the code is capable of correcting ¢ or fewer symbol errors. In summary, a
t-error-correcting RS code with symbols from GF(g) has the following parameters:

Block length: n = ¢ — 1,
Number of parity-check symbols:n — k = 2r,
Dimension: k = ¢ — 1 — 21,

Minimum distance: dy;,;n = 2t + 1.
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Thus, we see that RS codes have two important features: (1) the length of the
code is one less than the size of the code alphabet, and (2) the minimum distance is
one greater than the number of parity-check symbols. Codes with minimum distance
one greater than the number of parity-check symbols are called maximum distance
separable (MDS) codes. RS codes form the most important class of MDS codes.

EXAMPLE 7.1

Let « be a primitive element in GF(2%) constructed based on the primitive poly-
nomial p(X) =1+ X + X (see Table 6.2). Consider the triple-error-correcting RS

code with symbols from GF(2%). The generator polynomial g(X) of this code has

o, o, 03, o, as, and o as all its roots; hence,

gX) =X +a)(X +a?)(X +a®)(X + o) (X + o) (X + o)
— a21 +(x10X —1—0155X2 +O{43X3 +ot48X4 +a59X5 + X6.

The code is a (63, 57) triple-error-correcting RS code over GF(2°).

Encoding of a RS code is similar to that of the binary case. Let
aX)=ag+ o X +aX?+ -+ ap_ X1

be the message to be encoded, where k = n — 2¢. In systematic form, the 2¢
parity-check symbols are the coefficients of the remainder b(X) = bg + b1 X +--- +
by_1 X%~ ! resulting from dividing the message polynomial X% a(X) by the generator
polynomial. In hardware implementation, this is accomplished by using a division
circuit as shown in Figure 7.1. As soon as the message a(X) has entered the channel
and the circuit, the parity-check symbols appear in the register.

The weight distribution of Reed—Solomon codes has been completely deter-
mined [10]-[12]. For a r-error-correcting RS code of length ¢ — 1 with symbols from
GF(q), the number of codewords of weight i is given by

-1 ' 2t L '
A = (" l. )q*”{(q N D (;)wz’ ~ g, (7.3)
j =0

for2r+1<i=<gqg-1

Suppose a g-ary RS code is used for error detection on a discrete memoryless
channel with g inputs and g outputs. Let (1 — ¢) be the probability that a transmitted
symbolis received correctly and ¢ /(g —1) be the probability that a transmitted symbol
is changed into each of the ¢ — 1 other symbols. Using the weight distribution given
by (7.3), it can be shown that the probability of undetected error for a RS code is [9]

2t—1

PuE) =g ¥ El +3° (q ; 1)<q2’ ) (q%l)
i=0

g—1—i
x <1_qu1) —qZ'(1—e)‘1—1}.

(7.4)
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____ denotes a multiplier that multiplies a field element from GF(g) by a fixed
* element g; from the same field

denotes a storage device that is capable of storing a field element b, from
GF(q)

? -

g g212

N R W WY

Parity digits
—-0
X*a(X) So—3
° Qutput

A4

Message

FIGURE 7.1: Encoding circuit for a g-ary RS code with generator polynomial g(X) =
g+ 81X+ X2+ + gy 1 X4 x%

It also has been shown in [9] that P,(E) < ¢~ and decreases monotonically as ¢
decreases from (g — 1)/g to 0. Hence, RS codes are good for error detection.

Let i be a nonnegative integer less than 7. Suppose a r-error-correcting g-ary
RS code is used to correct all error patterns with A or fewer symbol errors. Let
P,(E, )) denote the probability of undetected error after correction. It has also been
proved in [9] that

A
PuE 1) =) (q R 1> [q"z’ (g 1) — "1 — ey

h=0
min{2t—1,4—1—h}

g—1—h e\ g g—1—h—1
: % ( ! ) (qj) (1 q— 1> Rh,z(S)],

(7.5)

where

min{2r—1-1,h}

j h—j
Rpi(e) = Z (=Dt (?) (1 - qMZZHH) (1 g i 1) (1 - qul)

j=0

(7.6)

for 0 <[ < 2r. It is easy to check that P,(E) given by (7.4) can be obtained from
P,(E, A) of (7.5) by setting » = 0. In [9] it is shown that the probability P,(E, A) of
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undetected error after decoding decreases monotonically from

A
~1
@ =am (1 e (.7
h=0

as ¢ decreases from (¢ — 1)/¢ to 0. Therefore, we have the following upper bound
on P,(E, A) from (7.7):

X
PE, M) <q™ ) (‘1 B 1)@ - (7.8)

h=0

for0<e <(g—-1)/q.

The preceding results on error probabilities indicate that RS codes are effective
for pure error detection or simultaneous error correction and detection.

Consider the set of codewordsina (g — 1, — 1 — 2¢) g-ary RS code whose [
leading information symbols are identical to zero, with 0 </ < g — 1 — 2¢. Deleting
these [ zero-information symbols from each codeword in the set, we obtain a
shortened (¢ —1—1, ¢ —1 =2t —1) RS code. The minimum distance of this shortened
RS code is still 21 + 1. Hence, the shortened code is also a MDS code. Encoding and
decoding of a shortened RS code are the same as those for the original RS code of
natural length (see Section 5.10).

Two information symbols can be added to a RS code of length ¢ — 1 without
reducing its minimum distance. The extended RS code has length ¢ + 1 and the
same number of parity-check symbols as the original code. For a ¢-error-correcting
RS code of length g — 1, the parity-check matrix takes the form

1 o a2 ... o2

1 a2 (a2)2 . (a2)q—2
H =

1 o (0[21)2 .. (CIZ[)q—Z

Then, the parity-check matrix of the extended RS code is

e e}
[emc B

Hy = S H . (79)

_—
o O

This code is called a doubly extended RS code and is also a MDS code. The
preceding result was first obtained by Kasami, Lin, and Peterson [11, 21] and later
independently by Wolf [22]. If we delete the first column of Hj, we obtain a singly
extended RS code of length ¢, which is again a MDS code.

In all practical applications of RS codes for error control, g is set to 2™, and
code symbols are from the Galois field GF(2™).
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7.4 DECODING OF NONBINARY BCH AND RS CODES:
THE BERLEKAMP ALGORITHM

In this and the next three sections, we present various algorithms for decoding
nonbinary BCH and RS codes.
Let

V(X)) =vo+ X+ o, Xt
be the transmitted code polynomial, and let
HX)=rg+mX+ - +r_ X"

be the corresponding received polynomial. Then, the error patiern added by the
channel is

e(X) =r(X) — v(X)
=epter X+ +e X7
where e; = r; — v; is a symbol in GF(g). Suppose the error pattern e(X) contains
v errors (nonzero components) at locations X/, X2 .. (X0 with 0 < j; < j» <
- < j, <n—1.Then,

e(X) = ej X + e, X2 4 - e X (7.10)

where e, ej,, -+ - , e, are error values. Hence, to determine e(X), we need to know
the error locations X/’s and the error values ¢;,’s (i.e., we need to know the v pairs
(X7, ej)’s).

As with binary BCH codes, the syndrome is a 27-tuple over GF(¢"):

(51, S20 -+ 5 S21)
with § = r{e?) for 1 <i < 21. Because r(X) = v(X) + e(X), we have
Si =v(e') +e(@) = e(a). (7.11)

From (7.10) and (7.11), we obtain the following set of equations that relate the error
locations and error values to the syndrome of the received polynomial v(X):

Sy = ej]ozj‘ + ejzozjz 4+ 4 ej”ocj"
. 4 5
S2 — ejIO(Z]l + ejzazjz 4+ Ej”O[dj’
(7.12)
Sor = e;, 0t fepa® 2 4 e o,

Forl<i<w,let

A i A
Bi = al and & = €
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which are simply the error-location numbers and error values. With the preceding
definitions of 8; and §;, we can simplify the equations of (7.12) as follows:

S1=81p1+&b+ - +88)

S =818 + 828+ + 58,82
(7.13)

Sor = 8187 + 585 + -+ 8,82

For decoding a g-ary BCH code or a RS code, the same three steps used
for decoding a binary BCH code are required; in addition, a fourth step involving
computation of error values is required. Therefore, the decoding consists of the
following four steps:

Compute the syndrome (51, Sz, -+, Sp).
Determine the error-location polynomial ¢ (X).
Determine the error-value evaluator.

ElD ol A

Evaluate error-location numbers and error values and perform error
correction.

As with binary BCH codes, the error-location polynomial o (X) is defined as

o(X)=(01-pX1-5X)-1-8X)

(7.14)
=00+ 01X +mnX 4+ +0,X",
where o9 = 1. The error-location numbers are the reciprocals of the roots of ¢ (X).
From (7.13) and (7.14), it is possible to obtain the following set of equations that
relates the coefficients o;’s of ¢ (X) and the syndrome components S;’s:

Syp1 + 018y + 0281+ -+ 0,8 =0

Ssp2F+ oS+ oS, +-- 4+ oS =0
(7.15)

Sy + 018521+ 028—2+ -+ 0uS-y =0.

(These equalities will be derived later.) These equations are known as the generalized
Newton’s identities. Our objective is to find the minimum-degree polynomial o (X)
whose coefficients satisfy these generalized Newton’s identities. Once we have found
o (X), we can determine the error locations and error values.

We can compute the error-location polynomial o (X) iteratively in 2r steps
with Berlekamp’s algorithm presented in Section 6.2. At the pth step, we determine
a polynomial of minimum degree

e (X) = o + o X 4+ o Xl



Section 7.4 Decoding of Nonbinary BCH and RS Codes 243

whose coefficients satisfy the following u — I, identities:
Sje1+ 0008, +o 0’;&“)31 =0

St 42+ 01(M)Sz,1+1 +oee ok UziM)SZ =0

(7.16)
The next step is to find a new polynomial of minimum degree
@-(#‘FU (X) = o.él)H‘l) + O,}(M'FDX N Ul(/i‘:'l)xluﬂ
"
whose coefficients satisfy the following (1 + 1) — 1 identities:
(u+1) (u+1)
Shuar+t T 61# Shyar T+ Gl/il 51 =0
+1 +1
Sl/x+1+2 + Ul(/l )Szu+1+1 oot O-l(::l )Sz =0
(7.17)

(u+1) (n+1)
S,H_1 + 0 Sy 4+ 61/1+| S#H_;“+I =0.

We continue the foregoing process until 27 steps have been completed. At the 2:th
step, we have
o (X) =@ (X),

which is the true error-location polynomial provided that the number of errors in
e(X) does not exceed the error-correcting capability 7. In this case, the coefficients
of o (X) satisfy the set of generalized Newton’s identities given by (7.15).

Suppose we have just completed the uth step and found the solution ¢ ) (X).
To find 6 #*+D(X), we first check whether the coefficients of ¢ (¥ (X) satisfy the next
generalized Newton’s identity; that is,

9

St + 01 S 4+ 0 S0, =0 (7.18)

If yes, s “tD(X) = ¢ (X) is the minimum-degree polynomial whose coefficients
satisfy the generalized Newton’s identities of (7.17). If not, we add a correction term
to ¢ W (X) so that its coefficients satisfy the set of generalized Newton’s identities of
(7.17). To test the equality of (7.18), we compute the discrepancy,

dy = Spp1+ oS+ + S, (7.19)

Ifd, =0, weset
O'(M+1>(X) — O.(IU(X).

If d,, # 0, we need to adjust ) (X) to satisfy the equalities of (7.17). We make the
correction as follows: we go back to the steps prior to the pth step and determine a
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TABLE 7.1: Berlekamp’s iterative procedure for
finding the error-location polynomial of a g-ary

BCH code.

’ o (X) dy I, n—1,

-1 1 1 0 -1
0 1 St 0 0
1 1—-85X
2
3
2t

polynomial ¢ ) (X) such that d, # 0 and p — [, has the largest value, where [, is the
degree of ¢*)(X). Then,

oW (X) = 0 W (X) — dud, X P60 (X), (7.20)

and ¢ “+D(X) is the solution at the (u + 1)th step of the iteration process.

As with binary BCH codes, to find o (X), we fill out Table 7.1 (reproduction of
Table 6.5).

We can determine the roots of ¢ (X) in GF(¢™) by substituting the elements
of GF(g™) into ¢ (X) cyclically. If o (') = 0, then ' is a root of o (X), and

— m_1__;
ol = o 1—i

is an error-location number. We can do this systematically with Chien’s search.

EXAMPLE 7.2

Consider a triple-error-correcting RS code with symbols from GF(2*). The generator
polynomial of this code is

g(X) = (X + ) (X + o)X + ) (X + (X + o)X + )
:ot6 +a9X+a6X2 —{—a4X3 —!—a14X4+a10X5 +X6.

Let the all-zero vector be the transmitted codeword, and let r = (000 «” 002000
00«*00) be the received vector. Thus, r(X) = o’ X° + &> X° + a* X 12.

Step 1. We compute the syndrome components as follows (using Table 2.8):

Si=1@) =a® +ao +a =a'?

S =r@?) =aP+14+aB =1,

S=r@®) =a+a®+al =o't

Sq = H‘(Ol4) =ot + al? +- o = alo,

Ss=r@)=a +a +a*=0,

S¢ = r(a6) = ol 4 o + o= o2,
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TABLE 7.2: Steps for finding the error-location polynomial of
the (15,9) RS code over GF(2%).

I e WX dy Iy w1,

-1 1 1 0 -1
0 1 a2 0 0
1 1+ax of 1 O(take p = —1)
2 14a%% 1 1 1(take p = 0)
3 1+a°X+a3x? o2 1(take p = 0)
4 1+4a*X +a?x? ) 2(take p = 2)
S 1+a’X+a*%%+a%3 0 3 2(take p = 3)
6 14+d’X+o*X*+ax3 — — —

Step 2. To find the error-location polynomial o (X)), we fill out Table 7.1 and
obtain Table 7.2. Thus, 6 (X) =1 + ¢’ X + a*X? + a®X3.

Step 3. By substituting 1, «, o2, .. ol into o(X), we find that o oz , and
a2 are roots of ¢ (X). The rec1procals of these roots are ozlz, oz6, and
o3, which are the error-location numbers of the error pattern e(X).
Thus, errors occur at positions X3, %0, and X2

Next, we need to determine the error values, by finding the error-value
evaluator. We define the syndrome polynomial S(X) as follows:

o<
=5 §;x/7h
j=1

Note that only the coefficients of the first 2¢ terms are known. For 1 < j < oo, we
also define

(7.21)

Sp=Y &b, (7.22)
[=1

The first 2r such §;’s are simply the 2r equalities of (7.13). Combining (7.21)
and (7.22), we can put §(X) in the following form:

S(X) = Z x/71 ZS;,@,

j=1
. (7.23)
= Z&ﬁz > o(Bx)IT
=1 j=1

Note that

=5 = 2607 (729
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It follows from (7.23) and (7.24) that

S(X) = (7.25)

Consider the product ¢ (X)S(X),
c(X)$SX) =1+ X+ +0,X") S|+ HX+ HBX>+--1)
=81+ (S +015)X + (S3+ 015 + 02 SDX” + -+ (7.26)
(S2t + 01801 + -+ 0uSp )X

Using (7.25), we can also put o (X)S(X) in the following form:

i=1 -1

v

- Z 2 5”8’ Ha —BiX) (7.27)

= Zazﬂz H (1B X).

=1 i=1,i#l

We define

Zo(X) = Zalﬁl H (11— BiX). (7.28)

I=1 i=1,i5#l

Note that Zo(X) is a polynomial of degree v — 1. From (7.26), (7.27), and (7.28), we
see that Zo(X) must be equal to the first v terms from X% to X1 in 6 (X)S(X) of
(7.26); that is,

Zo(X) = Sl+(SZ+01S1)X+(53+01S2+02S1)X2 029)
+oo o (SyH oSy + - F o SPXUTL

Because the degree of Zy(X) is v — 1, the coefficients of powers from XV to X 2t=1jp
the expansion of o (X)S(X) ((7.26)) must be zero. Setting these coefficients to zero,
we have exactly the same set of equations as (7.15).

Next, we show that the error values can be determined from Zy(X) and ¢ (X).
Substituting ,Bk‘l in Zo(X) (given by (7.28)), we have

ZoBH =) ap ] a-pBH
=1 i=1,i#l (730)

=&b [] -8B

i=1.i5%k



Section 7.4 Decoding of Nonbinary BCH and RS Codes 247
We take the derivative of o (X) in (7.14),

o d
o' (X) = E&‘ﬂ“ — BiX)
. (7.31)
=-> 8 ] a-sx.
=1 =l
Then,
dBH==p || a-8B. (7.32)
i=1,isk
From (7.30) and (7.32), we find that the error value §; at location f is given by
~Za(B1
S = ——0(@ (7.33)
a’' (B )

This expression was derived by Forney [4]. The polynomial Zg(X) is called the
error-value evaluator.
A slightly different error-value evaluator is defined as

Z(X) 2 6 (X) + XZo(X)
=1+ (85 +0D)X + (S2 + 0151 + 02) X* (7.34)
Fo Sy oSy o+ o)XY
Then,
—Z(B )
[Tic1im = BB

The expression for evaluating 8§, was derived by Berlekamp [5].

8/( -

(7.35)

EXAMPLE 7.3

Consider the triple-error-correcting RS code of length 15 given in Example 7.2,
where we assumed that the all-zero codeword was transmitted, andr = (000’ 00¢a°
00000 a*00) was received. Using the Berlekamp algorithm, we find that

o(X)y=1+a’X +e*X? +0°X%3

and error-location numbers are «'2, a®, and o>. The errors occur at X3, X6, and X12.

Now, we are ready to evaluate the error values at these positions. From (7.29) we
find that

Zo(X) = S1 + (S + 015X + (83 + 015 + 0251 X>
=a? + 1+ a7a®)X + (@ +d7 + aa!D)x?
=a? + A +aHX + @+ + ) X?

= o1? +aX.
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Output
KX ‘ ' . utpu
| Buffer register r(X) | \+ -/
T X)) - e(X)
e(X)
Syndrome
computation
o(X) Chien search Gate
circuit

o(X) Register [<——> 1 0is field

arithmetic

Z(X) Register processor

Zy(X) Error-magnitude
computation

FIGURE 7.2: A general organization of a ¢g-ary BCH decoder.

(The computations are carried out in GF(2*) given by Table 2.8.) Using (7.33), we
obtain the error values at locations X3, X°, and X12:

ﬂZO((x_3) al? 4 qo3 o« 7
= @) dltaba )l +alad) o *
B —Zo(a™®) _ a2 4+ aa® _ o’ 3
T e ® o1 +ala O +al2a6 1 *
—Zo(a_lz) al? + qa12 b 4
e = =a”.

@12 o1+ a1 +abe 12) a2
Thus, the error pattern is
e(X) =o' X> + X0 + a'x1,

which is exactly the difference between the received vector and the transmitted
vector. The decoding is completed by taking r(X) — e(X).

A general organization of a BCH decoder is shown in Figure 7.2.

7.5 DECODING WITH THE EUCLIDEAN ALGORITHM

In the expansion of o(X)S(X) ((7.26)), only the coefficients of the first 2¢ terms
(X% to X¥~1) are known. Let
[0 (X)S(X)]os
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denote the first 27 terms of o (X)S(X). Then,

o (X)S(X) — [ (XS]

is divisible by X . This simply says that if o (X)S(X) is divided by X?, the remainder
is [0 (X)S(X));;. Mathematically, this statement is expressed as follows:

o (X)S(X) = [0 X)S(X) ] modXx*. (7.36)
In fact,
Zo(X) = [e XS (7.37)
Therefore, we have
o GOS(X) = Zo(X) modX* (7.38)

which is called the key equation in decoding of BCH codes [5].

Any method of solving the key equation to find ¢ (X) and Zy(X) is a decoding
method for g-ary BCH codes. If the number of errors v during the transmission of a
code polynomial v(X) is less than or equal to 1, (i.e., v < t), then the key equation
has a unique pair of solutions, (¢ (X), Zo(X)), with

deg Zo(X) < dego(X) <1, (7.39)

where deg f(X) denotes the degree of polynomial f(X). We have already presented
Berlekamp’s algorithm for solving the key equation, which is a very effective method
for practical implementation and has been widely used.

There is another method for solving the key equation that is much easier to
understand. This method is based on the Euclidean algorithm for finding the greatest
common divisor (GCD) of two polynomials.

Consider two polynomials, a(X) and b(X), over GF(g). Assume that

deg a(X) > deg b(X).

Let GCD[a(X), b(X)] denote the greatest common divisor of a(X) and b(X). Then,
we can find GCD[a(X), b(X)] by iteratively applying the division algorithm as
follows:

a(X) = q(30b(X) + r1(X)
b(X) = g (X)ri(X) + ry(X)
r(X) = g3(X)r(X) + ry(X)

(7.40)
ri2(X) = qi(X)r; 1(X) + ri(X)

rp—2(X) = gn(X)rp—1(X) + ra(X)
Fp—1(X) = q11+1(X)rll(X)v
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where ¢;(X) and r;(X) are the quotient and the remainder, respectively, at the ith
step of the iterative division. The iteration stops when the remainder is identical to
zero. Then, the last nonzero remainder r,,(X) is the GCD of a(X) and b(X) (may be
different by a constant scalar ¢); that is,

rm(X) = cGCDJa(X), b(X)],
where ¢ € GF(g). Note thatfor1 <i <n,
deg r;_1(X) > deg r; (X).
From (7.40), it is possible to show that
GCD[a(X), b(X)| = f(X)a(X) + g(X)b(X), (7.41)

where f(X) and g(X) are polynomials over GF(g) [Euclid’s algorithm].
In fact, we can express the remainder at each division step as follows:

r(X) = fi(X)a(X) + g1(X)b(X)
ra(X) = fo(X)a(X) + g2(X)b(X)

(7.42)
ri(X) = fi(X)a(X) + g (X0Ob(X)
m(X) = fa(X)a(X) + gn(X)b(X).
From (7.41) and (7.42), we have
FOO = fa (0
(7.43)

g(X) = crg (X).

From (7.40) and (7.42), we obtain the following recursive equations for finding r; (X),
fi(X), and g; (X):

ri(X) = ri—2(X) — qi (X)ri—1(X)
[i(0) = fi—2(X) — qi(X) fi—1(X) (7.44)
8i(X) = gi—2(X) — qi(X)gi-1(X)
for 1 <i < n. The initial conditions for the recursion are
r-1(X) = a(X),
ro(X) = b(X),
f-1(X) = go(X) = 1,
fo(X) = g-1(X) =0.

(7.45)
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TABLE 7.3: Steps for finding the GCD of X3 + 1
X? + 1 given in Example 7.4.

i ri(X) g (X))  fi(X) gi(X)
-1 X341 — 1 0

0 x2+1 — 0 1

1 XxX+1 X 1 X

2 0 X+1 X+1 X24+X+1

An important property of Euclid’s algorithm is
deg a(X) = deg g; (X) +deg r; _1(X). (7.46)

We see that as i increases, the degree of r,_1(X) decreases, and the degree of g, (X)
increases. This result will be used for solving the key equation.

EXAMPLE 7.4

Let a(X) = X3 + 1 and b(X) = X? + 1 be two polynomials over GF(2). Euclid’s
algorithm for finding the GCD[X? + 1, X? + 1] is shown in Table 7.3. We see that
last nonzero remainder is

rnX)y=X+1,

which is the GCD of X3 + 1 and X% + 1.

Solving the Key Equation [6]
We can express the key equation in the following form:
a(X)S(X) = QXX + Zo(X). (7.47)
Rearranging (7.47), we have
Zo(X) = —Q(X) X + 6 (X)S(X). (7.48)

Setting a(X) = X% and b(X) = S(X), we see that (7.48) is exactly in the form given
by (7.41). This suggests that 6 (X) and Zg(X) can be found by the Euclidean iterative
division algorithm for the two polynomials:

a(X) = XZr,
(7.49)
b(X) = S(X),
where
SX)=8+5HX+ S3X2 4ot SZ;XZI_I,
Let

Zy' (X) = ri(X)
o (X)) = g;(X) (7.50)
Q) = fi(X).
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Then, it follows from (7.49) and (7.50) that we can put (7.42), (7.44), and (7.45) in
the following forms:

Zg>(X) =y D (X)X 1+ aD(X)S(X), (7.51)
and
Z)(X) =2y 7 (X) - ¢:(X)Z{ P (X),
e (X)) =072 (X) — ;(X)a I (X), (7.52)
yOX) = pT2X) - Xy,
with

Z(()_l)(X) — X2t’
ZY(X) = 8(X),

y X =X =1,
yOx) =P x) =0.

To find ¢ (X) and Z(X), we carry out the iteration process given by (7.52) as
follows: at the ith step,

1. We divide Zg _2)(X) by Zg _1)(X) to obtain the quotient ¢;(X) and the
remainder Zg) (X).
2. We find ¢V (X) from

D (X) =" (X) - :(X)e D (X).
Iteration stops when we reach a step p for which
deg Z (X) < dega®@(X) <1. (7.53)
Then,
Zo(X) = 2 (X),
o(X) =0 (X).

If the number of errors is ¢ or less, there always exists a step p for which the
condition given by (7.53) holds. It is easy to see that

o <2t

Note that ¢ (X) = ¢ (X) found by the foregoing algorithm may be different from
o (X) defined by (7.14) by a constant scalar in GF(g™); however, it gives the same
roots.

The iteration process for finding o (X) and Zy(X) can be carried out by setting
up and filling Table 7 .4.
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TABLE 7.4: Euclidean’s iteraiive procedure for
finding the error-location polynomial and
error-value evaluator.

i |z | e | o
—1 x* — 0

0 S(X) — 1

1

2

EXAMPLE 7.5
Consider the triple-error-correcting RS code of length n = 15 over GF(2%) whose
generator polynomial has o, o?, &, &%, &, and o as roots; that is,
g(X) = (X + a)(X + D)X +&®)(X + o)X + &)X + ).
Suppose the received polynomial is
r(X)=a X3 + o't x10.
The syndrome components are

7

b

S1 =r{a) = at? + o =
S =1@?) = o + o = a2,
3= 1(0®) = o2 + a*l = of
Sy =re®) = o!® + a1 = o2
14

El

S5 :11"(0[5) —d +a=a
S = r(a®) = a!® + o!t = o1,
Hence, the syndrome polynomial is
S(X) = o +a2X +aSX% + 02X + o4 x4 + o X5,
Using the Euclidean algorithm, we find
o(X) =o't +abx + X2
= all(l +al?X + ozBXZ),

and
Zo(X) = o + a*X,
as shown in the Table 7.5.
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TABLE 7.5: Steps for finding the error-location polynomial and error-value
evaluator of the RS code given in Example 7.5.

i z3) (x) gi (X) i (X)
-1 X0 — 0
0 S(X) — 1
1 a8 +aPX+a’X2+a5X3 +abx? a+aX a+aX
2 o +a?X ol +o8x | all +a8X +a%X2

From o (X), we find that the roots are «° and «!2. Hence, the error location
numbers are o0 and o3. The error values at these locations are

—Zo(a™3) o3+ a?a3 1 7
63 f— f— = — =u,
0_/(0[~3) all. (x3(1 + (){1006_3) 018
_Zo(a—lo) 0[3 + Ol2 _a—l() O{4 1
e10 = = —_ = 0.

O/(a—lo) T ot ~a10(1 +(X3O!_10) T o8

Therefore, the error polynomial is e(X) = o’X> 4+ « X%, and the decoded
codeword v(X) = r(X) — e(X) is the all-zero codeword.

107" T T I E
r -~ Uncoded BPSK |
r —#= RS (255,239, 17)
> -o- RS (255,223,33)
1072 E
107 E
] r ]
5
~ r
8 L N
1077 ~
~
~
~ B
\\
\\
Y
\\
107° | N
» s g
- ]
{. X
107° [ | .

E,/Ny (dB)

FIGURE 7.3: Error performances for (255, 223, 33) and (255, 239, 17) RS codes.
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The two most commonly used RS codes for error control in data communica-
tion and storage systems are the (255, 223, 33) and the (255, 239, 17) RS codes over
GF(2%). The (255, 223, 33) RS code is also a NASA standard code for space and
satellite communications. Both codes are decoded with either the Berlekamp algo-
rithm or the Euclidean algorithm. Their error performances with BPSK transmission
over the AWGN channel are shown in Figure 7.3.

7.6 FREQUENCY-DOMAIN DECODING

So far, BCH and RS codes have been decoded in the time domain; however, these
codes also can be decoded in the frequency domain. In this section, we first give a
spectral description of these codes and then present a frequency-domain decoding
algorithm for them {8, 17].

Consider the Galois field GF(g) with characteristic p (see Section 2.2). Let 1 be
the unit element of GF(q). Then, p is the smallest positive integer such that the sum

p
Dl=1+1+...4+1=0
i=1

P
For any nonnegative integer n, the sum

i

Yl=l4l4.. . +1=2,
N mrre— e
i=1 n
where A is the remainder resulting from dividing n by p. Mathematically, we write
A = n(modulo p). (7.54)

Note that 2 is an element in GF(g).

Let v(X) = vo+viX+...+v,1 X"t bea polynomial over GF(g), where
n divides ¢ — 1, and n # 1. Let o be an element of order n in GF(¢g™).

Then, o = 1 and is a root of X" — 1. The Galois field Fourier transform
of v(X) is defined as the polynomial

VX)) =Vo+ViX+...+ V1 X"t (7.55)

over GF(g™), where for 0 < j < n,
Vi =v(a)) = Z vias (7.56)
i=0

The coefficient V; is called the jth spectral component of V(X).
Given V(X), the polynomial v(X) can be determined by taking the inverse
Fourier transform of V(X), as shown in Theorem 7.1.
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THEOREM 7.1 Let V(X) = Vo + V1 X + ... + V,_1 X! be the Galois field
Fourier transform of v(X) = vg + v1 X + ... + v,_1 X"~ L. Then,
1 .
C_ A\
vi n(modulo p) @)
n—1 N (757)

1
[ — V —iJ
n(modulo p) ;) e

Proof. Factor X" — 1 as
X' 1=X-DX" T+ X" 2+, +X+1D.

Because « is a root of X” — 1, and o # 1, « must be a root of X"~1 + X"~2 4
..+ X + 1; that is,

l4+a+...+a" 2+ 1 =0.

For any integer r that is not a multiple of n (i.e., r % O(modulo p)), (&))" =1,
and hence ¢ is also a root of X" — 1. Since o’ # 1, o must be a root of
xm1 4 x7=2 1 4 X 41, and hence

n—1

> a7 =0. (7.58)

Now, consider V(o). It follows from (7.55) and (7.56) that

n--1 n—1
V™) = Za_” Z v
j=0 =0

(7.59)

~S Tt

=0 j=0

It follows from (7.58) that for [ # i, the second sum on the right side of (7.59)
isequal to 0. For [ = i, the second sum becomes 1 +1+...4+1 = n(modulo p).
Consequently, (7.59) becomes

V(a™") = v; - n(modulo p). (7.60)

Note that p divides ¢ and does not divide ¢™ — 1. Because »n is a factor of
m — 1, then n and p are relatively prime. Therefore, n(modulo p) # 0. It then
follows from (7.60) that

1 .
b= V(&)

n(modulo p)

This completes the proof. Q.E.D.
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The polynomials v(X) and V(X) form a transform pair. V(X) is the spectium
polynomial (or simply spectrum) of v(X). From (7.56) and (7.57), we readily see that
the transform pair have the following properties:

1. The jth spectral component V; is zero if and only if &/ is a root of v(X).
2. The ith component of v(X) is zero if only if o~ is a root of V(X).

Now, we are ready to characterize BCH and RS codes in the frequency domain.
Consider a primitive g-ary ¢-error-correcting BCH code of length n = ¢ — 1 whose
generator polynomial g(X) has o, ¢, ..., a? as roots. Recall that a polynomial
v(X) of degree n — 1 or less over GF(g) is a code polynomial if and only if v(X)
is divisible by g(X). This is equivalent to saying that v(X) 1s a code polynomial if
and only if v(X) has o, o2, ..., a* astoots. Let v(X) = vg + 1 X + ... + v, X"}
be a code polynomial in a primitive g-ary r-error-correcting BCH code of length
n=g"—1and let V(X) = Vo + V1 X + ...+ V,_1 X1 be its Fourier transform.
1t follows from the first property of the transform pair (v(X), V(X)) that the 2s
consecutive spectral components of V(X) from position X to position X* are zero;
thatis, Vi = Vo = ... = V5, = 0. Consequently, a primitive g-ary r-error-correcting
BCH code of length n = ¢™ — 1 is the set of polynomials of degree n — 1 or less over
GF(q) whose Fourier transforms have 2¢ consecutive zero spectral components from
position X to position X%/, This description is a frequency-domain characterization
of a BCH code.

For ag-ary RS code, both v(X) and its Fourier transform ¥V (X) are polynomials
over GF(g). In the frequency domain, a ¢-error-correcting RS code with symbols
from GF(q) consists of all the polynomials

VX)) =Vo+ VX +...+V,1X"!
of degree of n — 1 or less for which

Vi=Vo=...=Vy =0.

EXAMPLE 7.6

Again, we consider the triple-error-correcting RS code of length 15 over GF(2%)
with generator polynomial

g(X) = (X + a)(X + o)X + o) (X + oHX + ) (X + o)
= af + ¢ + abx? + ot X3 + oM x4 -+ at0x3 + x6.

Substituting X with o for0<i < 15in g(X), we obtain the Fourier transform
of g(X):

G(X) = 0[5 +O£11X7 +01X8 +0510X9 +Ol3X10 + 0[7X11 +O£9X12 +067X13 +OI4X14.

(Table 2.8 for GF(2*) is used for computations.) Because g(X) has « to a® as roots,
G(X) has zero spectral components from X'to X% thatis,G1 = G2 = ... = G = 0.
Now, consider the code polynomial

v(X) = (X3 + X + Dg(X), (7.61)
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which has « to «® and «19 as roots. The Fourier transform of v(X) is
V(X) = o +aBX7 a8 4 o2X% £ o® XM 4 o 10X12 4 x13 4 o8 x4,

We see that V(X)) has seven zero spectral components at locations X 1 to X% and X19.

Before we discuss decoding of BCH and RS codes in the frequency domain,
we present an important property of Galois field Fourier transforms. Let

a(X) =ap+ aIX‘+ a1 XM7Y
b(X) =bp+ b1 X + ...+ by X"
be two polynomials over GF(q). We define the following product of a(X) and b(X):
e(X) 2 a(X)-bx)
= co+aX+.. .+ 1 XL
where ¢; = a; - b; for0 <i < n.Let
AX)=Ag+ A X +.. . +A, 1 X"
and
B(X)=By+BiX +...+ B X"

be the Fourier transforms of a(X) and b(X), respectively. Then, the Fourier trans-
form of the product polynomial ¢(X) = a(X) - b(X) is the convolution of A(X) and
B(X) given in Theorem 7.2.

TueoreMm 7.2 The Fourier transform of ¢(X) = a(X) - b(X) is given by
C(X)=Co+C1X +...+ Cu X7,
where for0 < j < n,

1 n—1

C/= ArBi. 7.62
7™ n(modulo p) ];) KBk (7:62)

Proof. Taking the Fourier transform of ¢(X), we have

n—1 n—1

Cj = ZC,‘O{U = Za,’b,‘aij. (763)
i=0 i=0
Expressing a; in terms of the inverse transform of A(X), we have
1 n—1 .
g = —— Y Ak (7.64)

n{modulo p) P
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Combining {7.63) and (7.64), we have

n—1 n—1
1 .
Ci=————) Ay bV 7.65
7 n(modulo p) Z ! Z “ (7.65)
k=0 i=0
however,
n—1 o
Zbial(]#() = Bj . (7.66)
i=0
From (7.65) and (7.66), we have
1 n—1
Cj=——""— Z ArBj . (7.67)

n(modulo p) P

This completes the proof. Q.E.D.

Now, we consider decoding of BCH and RS codes in the frequency domain.
Letr(X) =rg+r X +...+r,_1 X"} be the received polynomial, where n = ¢™ — 1.
Then, r(X) = v(X)+e(X), where v(X) and e(X) are the transmitted code polynomial
and the error polynomial, respectively. The Fourier transform of r(X) is

R(X)=Ro+ R X+...+ R X",

where

R; =r(a)) = Zria”. (7.68)

=0

Let V) = Vo+ VX +... + V1 X" L and EX) = Eg+ E1\X + ...+ E,_1 X!
be the Fourier transforms of v(X) and e(X), respectively. Then,

R(X) = V(X) + E(X),
with

Ry =V, +E; (7.69)

2

for 0 < j < n. Because v(X) i1s a code polynomial that has o, a~, .. ., a? as roots,

then
V=0 (7.70)
for 1 < j < 2r. From (7.69) and (7.70), we find that for 1 < j < 2r,
R;=FE;. (7.71)
Let S = (81, $2, ..., $) be the syndrome of r(X). Then, for 1 < j <2,
S; =r(ad). (7.72)



260 Chapter 7 Nonbinary BCH Codes
It follows from (7.68), (7.71), and (7.72) that
Rj=E;=S; =r(a)) (7.73)

for 1 < j < 2t. This result says that the 2¢ spectral components Ry, Rp, ..., Ry, of
R(X) are the 2t syndrome components and are equal to the 2r spectral components
Eq, Ey, ..., Ey of the Fourier transform E(X) of the error polynomial e(X). If we can
determine the spectral components Eg, Eo11, .. ., Ey—1, then E(X) is determined,
and the inverse transform of E(X) gives the error polynomial e(X). Decoding is
accomplished by subtracting e(X) from r(X).

Suppose there are v < ¢ errors, and

e(X) =e;, X +ep X2+ ... e, X (7.74)
The error-location numbers are then a/!, /2, ..., a/*. The error-location polyno-
mial is
o(X)=(1—-a"X)(1 —a”X)...(1 —a/"X).
=gs+o1X+...+0,X",
which has o=/, ™72, ..., @~/ as roots. Hence, for 1 <i < v,

o(a ) =0. (7.75)

Note that ¢ (X) is a polynomial over GF(g™). We may regard o (X) as the Fourier
transform of a polynomial

AMX)=do+MX + .. 4 A XL

over GF(q), where

j=

(@) (7.76)

n(modulo p) ’

for 0 < j < n. It follows from (7.75) and (7.76) thatfor 1 <i < v,
Ay =0. (7.77)

Consider the product AM(X) - e(X) = Z’j’-;(l) Lj - e;X as defined earlter in this
section. From (7.74) and(7.77), we readily see that

AMX) - e(X) = 0; (7.78)

thatis, 4; -e; = 0 for 0 < j < n — 1. Taking the Fourier transform of A(X) - e(X)
and using (7.62; Theorem 7.2) and (7.78), we have

n—1
Y okEj ;=0 (7.79)
k=0

for 0 < j < n. Since the degree of o (X) is v, oy = 0 for k > v. Then, (7.79) becomes

ook +O’1EA]'_1—|—...+O'UE]‘_V =0 (7.80)
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for 0 < j < n—1.Because op = 1, the preceding equation can be put in the following
form:

Ei=—(oEj1+oEi2+...+0,Ejy) (7.81)

for 0 < j < n. Since E{, Ey, ..., Ey; are already known (see (7.73)), it follows from
(7.81) that we obtain the following recursive equation for computing Ey,.1 to E,_1:

Eipe = —(01Epy 1+ 0B+ +0vE—y) (7.82)
forr+1<1<n—1-—r1 Setting j = v in (7.81), we obtain
Ey, = —(01Ey_1 +02Ey_2 + ...+ 0, Ep).
From this equation, we find that

1
Ey = —;(EU+O‘1EV_1 +...+o,1Eq). (7.83)
v

From (7.82) and (7.83), we can determine the entire [E(X). Taking the inverse
transform of V(X) = R(X) — E(X), we obtain the decoded code polynomial v(X),
which completes the decoding.

The error-location polynomial can be computed by using the Berlekamp
iterative algorithm. The decoding counsists of the following steps:

1. Take the Fourier transform R(X) of r(X).

2. Find o (X).

3. Compute E(X).

4, Take the inverse transform v(X) of ¥V(X) = R(X) — E(X).

A transform decoder is depicted in Figure 7.4.

EXAMPLE 7.7

Again, consider the (15, 9) RS code over GF(2*) given in Example 7.2. Suppose a
code polynomial v(X) is transmitted, and r(X) = o X3 + 3 X0 4 a* X2 is received.
The Fourier transform of r(X) is

R(X) = o2X 4+ X% + X3 + o10%* + o125
X7 £ oMx® g ol0x0 4 gl2xlt
1 x12 4 G lAx13 4 10514
The coefficients of powers X to X° give the syndrome components; that is, $; = «!2,
S =1,8 =a¥ S = a'% S5 =0, and S = o!?. They are also the spectral
components E1, E», Es, E4, Es, and E¢ of the error spectral polynomial I£(X). Using

the Berlekamp algorithm based on the syndrome (51, S, S3, S4, S5, S6), we find the
error-location polynomial

c(X)=1+a’X +a*X% +abx3
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¥(X) | Transform 81,83, 0r Sy
computer

1 o(X)

Buffer
register Recursive
extension

E(X)
y

@

+

L V(X)

Inverse v(X)
transform f——————p
computer

FIGURE 7.4: A transform decoder for a g-ary BCH or RS code.

(see Example 7.2). From (7.82), we obtain the following recursion equation for
computing spectral components E7 to E14 of E(X):

Ej3=01E0 + 0pFL 1 + o3k
= 017El+2 + 0(4El+1 + 016E1

for 4 < < 11. We compute the spectral component Ey from

1
Ey = 0—(53 +o01Ey + 02Eq)
3

=a %E;+a’E; +a*Ey)
= a5 + o7 + o)
=0.
The resultant error spectral polynomial is
E(X) = o2X + X2 4+ aMX3 + a10%% 1+ ¢12x6
+X7 + a4 x84 o10x° 4 ol2x1l
LX12 4 glax13 o 1014
We find that E(X) = R(X), and V(X) = 0. Therefore, the decoded codeword is the

all-zero codeword. The inverse transform of E(X) is e(X) = o’ X3 + o3 X0 + o*X12.
This is exactly the same result as given in Example 7.2.
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7.7 CORRECTION OF ERRORS AND ERASURES

A g-ary t-evror-correcting BCH (or RS) code can be used to correct all combinations
of v symbol errors and e symbol erasures provided that the inequality

v4e/2 <t (7.84)

holds. Each of the decoding algorithms presented in the last three sections can be
modified to do the job.

Suppose the received polynomial r(X) contains v symbol errors at positions
X, X, ... X% and e symbol erasures at positions X/1, X2 ... X/ Because
the erased positions are known, decoding is to find the locations and values of
the errors and the values of the erased symbols. The erasure-location numbers
corresponding to the erased positions X/t, X7, ... XJe are at, a2, ... ale. We
form the erasure-location polynomial:

800 = ]~ ol x). (7.85)
=1

Now, we fill the ¢ erased positions in r(X) with zeros (or arbitrary symbols from
GF(q)). This substitution of ¢ zeros into the erased positions in r(X) can introduce
up to ¢ additional errors. Let r*(X) denote the modified received polynomial. Let

v
o () £ []a - ax) (7.86)
k=1
be the error-location polynomial for the errors in r(X) at positions X1, X2, ... | X'v,
Then, the error-location polynomial for the modified received polynomial r*(X) is
y(X) = o (X)B(X), (7.87)
for which (X) is known. Now, decoding is to find ¢ (X) and the error-value evaluator

Zin(X) for r*(X).
We compute the syndrome polynomial

S(X) =81+ X + - + S X* 1
from the modified received polynomial r*(X). Then, the key equation becomes

o (X)B(X)S(X) = Zo(X)mod X (7.88)
The decoding problem is to find the solution (6 (X), Zo(X)) of this equation such

that ¢ (X) has minimum degree v, and deg Zy(X) < v + e. Since $(X) and §(X) are
known, we can combine them. Let

T(X) 2 [B(X)SC0)]a (7.89)

=T+ DX+ + Ty X* 1
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denote the polynomial that consists of the 2r terms of #(X)S(X) from X 0to x2-1,
Then, we can write the key equation of (7.88) as

o (X)T(X) = Zo(X)mod X . (7.90)

This key equation may be solved by using either Euclid’s or Berlekamp’s algorithm.
The Euclidean algorithm for error/erasure decoding consists of the following:

1. Compute the erasure-location polynomial (X) using the erasure information
from the received polynomial r(X).

2. Form the modified received polynomial ¥*(X) by replacing the erased symbols
with zeros. Compute the syndrome polynomial $(X) from r*(X).

3. Compute the modified syndrome polynomial T(X) = [B(X) S(X)}a.
4. Set the following initial conditions:

Z5P () = x¥, Z0X) = T(X),
o V(X)=0, and 6@ Xx)=1.

5. Execute the Euclidean algorithm iteratively as described in Section 7.5 until a
step p is reached for which

t+e/2, for even e,

t+(e—1)/2, forodde. (7.91)

deg Z(()p)(X) < {
Then, set ¢ (X) = ¢ (X), and Zo(X) = ZJ (X).
6. Find the roots of ¢ (X) and determine the error locations in r(X).

7. Determine the values of errors and erasures from Zg(X) and p(X) =
o (X)B(X). The error values are given by

—Zy(a™)
= 7.92
RETCRD (752
for 1 < k < v, and the values of the erased symbols are given by
ey ZICED
fjl - )’/(Ol_j[) (793)

for1 <[ < e, where y’(X) is the derivative of the overall error/erasure-location
polynomial y(X) = ¢ (X)B(X); that is,

iy = 4
y(X)—de(X)

v-t-e ) v+e )
=—a) o [] d-a/X). (7.94)
=1 i=1,il

{a is the constant # 1 that may appear in ¢ (X) when the Euclidean algorithm
is used).
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EXAMPLE 7.8

Again consider the triple-error-correcting RS code of length 15 over GF(2%)
generated by g(X) = (X + o) (X + a®)(X + &) (X + a*)(X + &>)(X + ). This code
is capable of correcting all combinations of two or fewer errors and two or fewer
erasures. Suppose the all-zero codeword is transmitted, and the received vector is

r=(000 %00 00a00a’00),
where x denotes an erasure. The received polynomial is
r(X) = )X+ X0 +ax? +atx2,
Because the erased positions are X> and X5, the erasure-location polynomial is
B(X) = (1+e*X)(1 +a°X)
=1+a?X +a’X°

Replacing the erased symbols with zeros, we obtain the following modified received
polynomial:
r*(X) = aX’ + ot X1

The syndrome components computed from r*(X) are

Si=r@) =0  S=r"(@H=0

S =) =atl, $5=r*’) =1,

S =r @) =a, S5 =1’ =ab
The syndrome polynomial is then

S(X) = o +ollX +°x2 4+ x4 + 8%,
and the modified syndrome polynomial is

T(X) = [COSCOLs
=o® + oM X + o X + 3% + oM Xt + X0,
Using the Euclidean decoding algorithm, we set the initial conditions as follows:
Z&V 00 = X6, 2 (0 =T,
cVX)=0, and ¢@X) =1.

Since ¢t = 3 and e = 2, the algorithm terminates when deg Zo(X) < 4. Executing the
algorithm, we obtain Table 7.6. The error-location polynomial is

o(X) =a(l +aX +a%x%
=al+a’X)(1 +aX).
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The two roots of ¢ (X) are a~” and o~ 12, The reciprocals of these two roots give the
error locations, o® and «!2. The error-value evaluator is

Zo(X) = o + oBX + aX? +aX3.
The overall error/erasure-location polynomial is
y(X) =a(XOBX)
=a(l+ X1+ X)(1 +”X)(1 +a'?X),
and its derivative is
Y'(X) =o*1 +a®X)1 4+ X)A + a'?X)

+od’1+*X)A+a"X)1 4+ o'2X)

+a01+’X) 1+ X)(1 + a2 X)

+ a1+ X+ o)1 + a7 X).
It follows from (7.92) and (7.93) that the error values at positions X° and X'2 are

~Zy@™”) _ ab
g = ——m7 = ———— — a,
° T e o2

. ~Zo@™?) o’ o1l ot
2= =~ = = s
yl(a 12) Oé14

and the values of the erased symbols at positions X> and X° are

A CI
P= ey —@d
 —Zye™® 0
6= sy —17"

Then, the estimated error polynomial is
e(X) = aX’ +a*x12.

Subtracting e(X) from r*(X), we obtain the decoded code polynomial v(X) = 6,
which is the transmitted code polynomial.

EXAMPLE 7.9
Consider the (63, 55, 9) RS code generated by

g(X) = (X + a)(X + a2)(X 4+ &) (X + o)X + ) (X + )X + o) (X + )
— X8 +a43X7 +a59X6 —|—ot31X5 +a10X4+O{40X3 —|—0114X2 +()l7X+(X36.
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TABLE 7.6: Steps for finding the error-location polynomial and error-value
evaluator of the RS code given in Example 7.6.

i z )y 4; (X) & (X)
-1 x6 — 0
0 T(X) — 1
1| o’ +ePX+X2+a9%3 +68x4 | o4 X D ¢
o + X +aX? 4+ ax? o +a’X | a+a®X +a"X?

This code is capable of correcting all combinations of three or fewer errors and two
or fewer erasures. Suppose the all-zero codeword is transmitted, and the received
vector is

r=(000000a0000000000000¢>70006000 % 000
00*000000000000000000 % 060000000).
The received polynomial is
r=al5%0 4 03X 4 (1) X% + o X3 + () X5,
Because the erased positions are X28 and X3, the erasure-location polynomial is
BX) = (1+a®X)(1+a>X)
14 a% - 8%

Replacing the erased symbols with zeros, we obtain the following modified received
polynomial:
The syndrome components computed from r*(X) are

$1 =r* (@) =ab? S5 =r"@) =a®,
=1 =a, S =1 =0d",
S3 = H“*(Oé3) =1, S7 = H“*(Ol7) = 0558,
Sy =1t =a??, S5 =r*@®) = a8

The syndrome polynomial is then
S(X) = aP® X + X2+ a2 + o X+t X + o8 X + oY,
and the modified syndrome polynomial is
T(X) = [BX)SO o
=a® + oYX tax? + oM X3 + a2 X + o0 X + a0x0 + B X

Using the Euclidean decoding algorithm, we set the initial condition as follows:

ZsV (0 = x5, Z0(x) = T(X),
oCV(x)=0, and ¢@X)=1.
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TABLE 7.7: Steps finding the error-location polynomial and error-value evaluator
of the (63,55,9) RS code over GF(2%) given in Example 7.9.

i z) (x) g; (X) o (X)
-1 x8 — 0

0 T(X) _ 1

1 ()[46 =+ Ol48X + 0158X2 + 0630X3 (127 + OllSX 0627 + OllSX

+O{25X4 -I-OKSXS +0512X6

2 Ol57 +C¥31X+O{56X2+0l44X3 0622+(X36X O(38+0l44X+Ol51X2
+C{17X4+0119X5

3 a3+0153X+a3OX2 O{48—I-O(56X 0647+O(22X+Ol42X2+Ol44X3
+0624X3 +Ol13X4

Since t = 4 and e = 2, the algorithm terminates when deg Zo(X) < 5. Executing the
algorithm, we obtain Table 7.7. The error-location polynomial is
o(X) = aT(1 +aBX + a%8x2 + o50x3)
=a 1+ 51 + ¥ X)(1 + 34 X).
The three roots of o (X) are @ %, & =20, and & 3. The reciprocals of these three roots
give the error locations, ®, &2°, and «3*. The error-value evaluator is
Zo(X) = o + B X + a®x2 + o2 X3 + oBx4,

The overall error/erasure-location polynomial is

y(X) =0 (XHBX)
=aY1+a’X)1 4+ P X)) + B X)1 + X1 +73X)
— 0" 4 oY +a8X2 1+ o™X 4 a2x 4 a82X5,
and its derivative is
V(X) = o2 + ¢ X2 4 o2x4
The error values at positions X, X0, and X3 are
——ZO(Ol_6) a2
b= — = — = .
6 y’(a_6) Ol24
B —Zo(a“zo) . ob .
0= m ~@ =
——ZO(O{_34) 6(61

ey = ———— = —/— =,
y/(a 34) o>7
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and the values of the erased symbols at positions X2 and X3 are

—Zo(a_zg) 0
f= Y8y  o® 0,

—Zo(O{_53) 0
3= = =0

Y ®) o«
Then, the estimated error polynomial is
e(X) = a5 X0 + o7 x%20 4ot x4,

Subtracting e(X) from r*(X), we obiain the decoded code polynomial v(X) = 0,
which is the transmitted code polynomial.

PROBLEMS

7.1 Consider the triple-error-correcting RS code given in Example 7.2. Find the code
polynomial for the message

aX)=1+X +aXx*+a’X8

7.2 Using the Galois field GF(2°) givenin Appendix A, find the generator polynomials
of the double-error-correcting and triple-error-correcting RS codes of length 31.

7.3 Using the Galois field GF(2°) given in Table 6.2, find the generator polynomials
of double-error-correcting and triple-error-correcting RS codes of length 63.

7.4 Consider the triple-error-correcting RS code of length 15 given in Example 7.2.
Decode the received polynomial

r(X) =a*x3+ %8 + o3 x 1

using the Berlekamp algorithm.

7.5 Continue Problem 7.4. Decode the received polynomial with the Euclidean
algorithm.

7.6 Consider the triple-error-correcting RS code of length 31 constructed in Prob-
lem 7.2. Decode the received polynomial

r(X) = o +a? X1 4 o X%

using the Euclidean algorithm.

7.7 Continue Problem 7.6. Decode the received polynomial in the frequency domain
using transform decoding.

7.8 For the same RS code of Problem 7.6, decode the following received polynomial
with two erasures:

HX) = X+ 00X + )X + o2 xH

with the Euclidean algorithm.
7.9 Prove that the dual code of a RS code is also a RS code.
7.10 Prove that the (2™ —1, k) RS code with minimum distance d contains the primitive
binary BCH code of length 2" — 1 with designed distance d as a subcode. This
subcode is called a subfield subcode.
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7.11

7.12

7.13

Let o be a primitive element in GF(2™). Consider the (2" — 1, k) RS code of
length of 2" ~ 1 and minimum distance d generated by

2(X) = (X —a)(X —a?)...(X —ai7h).
Prove that extending each codeword v = (v, v1, - -+ , von_3) by adding an overall

parity-check symbol
om_2

Voo = — Z v
i=0

produces a (2™, k) code with a minimum distance of d + 1.

Consider a ¢-symbol error-correcting RS code over GF(2™) with the following
parity-check matrix:
1 « o? e o1
1 C(2 ((12)2 . (aZ)n—l
H= ,
i Ol‘ZI (aZ.t)Z (a21.~)11~1

where n = 2" — 1, and « is a primitive element in GF(2™}. Consider the extended
Reed-Solomon code with the following parity-check matrix:

0 1
00
Hi=|: ' H
00
1 0

Prove that the extended code also has a minimum distance of 2¢ + 1.

LetalX) =ag+ @ X+ + a1 X*1bea polynomial of degree k — 1 or less
over GF(2™). There are (2™)* such polynomials. Let & be a primitive element
in GF(2™). For each polynomial a(X), form the following polynomial of degree
2™m — 2 or less over GF(2™):

v(X) =al) +a(@X +a@HX>+ . +a@® x> 2

Prove that the set {v(X)} forms the (2" — 1, k) RS code over GF(2™). (Hint: Show
that v(X) has «, a2, .. @2 k1 ag roots). This original definition of a RS code is
given by Reed and Solomon [1].
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