CHAPTER 6

les

The Bose, Chaudhuri, and Hocquenghem (BCH) codes form a large class of
powerful random error-correcting cyclic codes. This class of codes is a remarkable
generalization of the Hamming codes for multiple-error correction. Binary BCH
codes were discovered by Hocquenghem in 1959 [1] and independently by Bose and
Chaudhuri in 1960 [2]. The cyclic structure of these codes was proved by Peterson
in 1960 [3]. Binary BCH codes were generalized to codes in p™ symbols (where
p is a prime) by Gorenstein and Zierler in 1961 [4]. Among the nonbinary BCH
codes, the most important subclass is the class of Reed—Solomon (RS) codes. The
RS codes were discovered by Reed and Solomon in 1960 {5} independently of the
work by Hocquenghem, Bose, and Chaudhuri.

The first decoding algorithm for binary BCH codes was devised by Peterson
in 1960 [3]. Then, Peterson’s algorithm was generalized and refined by Gorenstein
and Zierler [4], Chien [6], Forney [7], Berlekamp [8, 9], Massey {10, 11}, Burton
[12], and others. Among all the decoding algorithms for BCH codes, Berlekamp’s
iterative algorithm, and Chien’s search algorithm are the most efficient ones.

In this chapter we consider primarily a subclass of the binary BCH codes that is
the most important subclass from the standpoint of both theory and implementation.
Nonbinary BCH codes and Reed—Solomon codes will be discussed in Chapter 7.
For a detailed description of the BCH codes, and their algebraic properties and
decoding algorithms, the reader is referred to [9] and [13-17].

6.1 BINARY PRIMITIVE BCH CODES

For any positive integers m(m > 3) and 1 (r < 2m-1} there exists a binary BCH code
with the following parameters:

Block length: n=2"-1,
Number of parity-check digits: n —k < mzr,
Minimum distance: dymin = 2t + 1.

Clearly, this code is capable of correcting any combination of + or fewer errors in
a block of n = 2" — 1 digits. We call this code a t-error-correcting BCH code. The
generator polynomial of this code is specified in terms of its roots from the Galois
field GF(2™). Let « be a primitive clement in GF(2™). The generator polynomial
g(X) of the r-error-correcting BCH code of length 2" — 1 is the lowest-degree
polynomial over GF(2) that has

a0t a3, oY (6.1)

as its roots [i.e., gle') = 0 for 1 < i < 2r]. It follows from Theorem 2.11 that
g(X) has «,a?, ---, o and their conjugates as all its roots. Let ¢,;(X) be the

194

Section 6.1 Binary Primitive BCH Codes 195

minimal polynomial of o'. Then, g(X) must be the least conmumon multiple (LCM) of
@ (X)), (X)), -+ . @y (X), that s,

g(X) = LCM{¢ (X). ¢2(X). - -+, o, (X)) (6.2)
If i is an even integer, it can be expressed as a product of the following form:
i=i2,

. ; 0ol .) o
where i’ is an odd number, and [> 1. Then, o' = (&')* is a conjugate of o' , and
therefore o’ and o' have the same minimal polynomial; that is,

@ (X) = ¢, (X0.

Hence, every even power of « in the sequence of (6.1) has the same minimal
polynomial as some preceding odd power of « in the sequence. As a resuli, the
generator polynomial g(X) of the binary r-error-correcting BCH code of length
2" — 1 given by (6.2) can be reduced to

g(X) = LCM{(X), $3(X), -, o1 (XD} (6.3)

Because the degree of each minimal polynomial is m or less, the degree of g(X) is
at most mt; that is, the number of parity-check digits, n — k, of the code is at most
equal to mr. There is no simple formula for enumerating n — &, but if 7 is small, n — k
is exactly equal to ms [9, 18]. The parameters for all binary BCH codes of length
2" — 1 with m < 10 are given in Table 6.1. The BCH codes just defined are usually
calied primitive (or narrow-sense) BCH codes.

TABLE 6.1: BCH codes generated by primitive
elements of order less than 210,

n kot 7 k 1 n k £
7 4 11127 50 131|255 71 29
15 11 1 43 14 63 30
7 2 36 14 55 31

5 3 29 21 47 42

31 26 1 22 23 45 43
21 2 15 27 37 45

16 3 8 31 29 47

11 5| 255 247 1 21 55

6 7 239 2 13 59

63 57 1 231 3 9 63
51 2 223 41511 502 1

45 3 215 5 493 2

39 4 207 6 484 3

36 5 199 7 475 4

30 6 191 8 466 5

24 7 187 9 457 6

(continued overleaf)

196 Chapter 6

Binary BCH Codes

TABLE 6.1: (continued)

n k t n k t n k t
18 10 179 10 448 7
i6 11 171 11 439 8
10 13 163 12 430 9
7 15 155 13 421 10

127 120 1 147 14 412 11
113 2 139 18 403 12
106 3 131 19 394 13

99 4 123 21 385 14
92 5 115 22 376 15
8 6 107 23 367 16
787 99 24 358 18
71 9 91 25 349 19
64 10 87 26 340 20
57 11 79 27 331 21

511 322 221 511 166 47 | 511 10 121
313 23 157 51] 1023 1013 1
304 25 148 53 1003 2
295 26 139 54 993 3
286 27 130 55 983 4
277 28 121 58 973 5
268 29 112 59 963 6
259 30 103 61 953 7
250 31 94 62 943 8
241 36 85 63 933 9
238 37 76 85 923 10
229 38 67 87 913 11
220 39 58 91 903 12
211 41 49 93 893 13
202 42 40 95 883 14
193 43 31 109 873 15
184 45 28 111 863 16
175 46 19 119 858 17

1023 848 18 | 1023 553 52 | 1023 268 103
838 19 543 53 258 106
828 20 533 54 249 107
818 21 523 55 238 109
808 22 513 57 228 110
798 23 503 58 218 111
788 24 493 59 208 115
778 25 483 60 203 117
768 26 473 61 193 118
758 27 463 62 183 119
748 28 453 63 173 122
738 29 443 73 163 123

Section 6.1 Binary Primitive BCH Codes 197

TABLE 6.1: (continued)

7 k f | m k il n k 4
728 30 433 74 153 125
718 31 423 75 143 126
708 34 413 77 133 127
698 35 403 78 123 170
688 36 393 79 21 171
678 37 383 82 111 173
668 38 378 &3 101 175
658 39 368 85 91 181
648 41 358 86 86 183
638 42 348 87 76 187
628 43 338 &9 66 189
618 44 328 90 56 191
608 45 318 91 46 219
598 46 308 93 36 223
588 47 298 94 26 239
578 49 288 95 16 147
573 50 278 102 i1 255
563 51

From (6.3), we see that the single-error-correcting BCH code of length 2" — 1
is generated by

(X)) = ¢ (X).
Because o is a primitive element of GF(2™), ¢(X) is a primitive polynomial of

degree m. Therefore, the single-error-correcting BCH code of length 2™ — 1 is a
Hamming code.

EXAMPLE 6.1
Let o be a primitive element of the Galois field GF(2%) given by Table 2.8 such that

1+ o+ a* = 0. From Table 2.9 we find ihat the minimal polynomials of «, o, and

OZS are

@1(X):1+X+X4N
G =1+ X+ X+ X+ x4,

and)
d(X) =1+ X+ X~,

respectively. It follows from (6.3) that the double-error-correcting BCH code of
length n = 2* — 1 = 15 is generated by

g(X) = LCM{¢; (X). 93 (X}

198 Chapter 6 Binary BCH Codes
Because ¢ (X) and ¢5(X) are two distinct irreducible polynomials,
g(X) = ¢1(X)93(X)
=A+X+XH1+ X+ X+ X3+ x4
=14+ X+ x%+ x7 + x5

Thus, the code is a (15, 7) cyclic code with dp,i, > 5. Since the generator polynomial
is a code polynomial of weight 5, the minimum distance of this code is exactly 5.
The triple-error-correcting BCH code of length 15 is generated by

g(X) = LCM{¢{(X), ¢3(X), ¢s(X)}
=1+ X+XHA+ X+ X2+ X + XHA+ X + X?)
=14+ X+ X+ X+ X+ x84+ x10,

This triple-error-correcting BCH code is a (15, 5) cyclic code with d,,;, > 7. Because
the weight of the generator polynomial is 7, the minimum distance of this code is
exactly 7.

Using the primitive polynomial p(X) = 14+ X + X, we may construct the
Galois field GF(29), as shown in Table 6.2. The minimal polynomials of the elements

TABLE 6.2: Galois field GF(2°) with p(a) =1 +a +a = 0.

0 (000000)
1 (100000)
o (010000)

o? (001000)
o (000100)
ot (000010)
o (000001)
(110000)

2 (011000)
2+ o (001100)
4ot (0600110)
a (000011)
(110001)
(101000)
a o (010100)
(001010)

« (000101)
+at (110010)
+ @ (011001)

o3 (111100)
+at (011110)
o +at + @ (001111)

R N . N SRR TR N
—
R

—
o
I~

+
943

—
+
Q
+
Qm

—
(SN)
—
R
[
(V5]

TR
R
[*]
W
+
Q
N
+
[

— =
~l o\
—_
+

H
o
R R R R

R R QR R QL R LK R R R RRKRLRRRKRR KRR R —O
8
+ + +
R R & R
[CE T ST ST S
+ 4+
S Q
W

Section 6.1 Binary Primitive BCH Codes 199

TABLE 6.2: (continued)

Pt et b

R
N B
=

R
by b B b
[N - NV

R R 8 R R
33
S

(9%
(=)

Q
=

[

Q

R R R
L)t L
GoBE®

Q
9%
>

QR R R
W L W
O o QA

R
£
S

B - e S
~ Oy b B W
++ o+

0

o e O R B & Y R Y T e S

[= RN T o’ SR B o N S S VS S N == v
R R @ R 2 R Q
e
QR R L R R

Q@QQQQQ%QQQQQQQQQQQQ__QQQ
o

e

+ o 4ot + & (110111)
o? +a* + & (101011)
+ o + o (100101)
+ ot {100010)
+ o (010001)
2 (111000)
2B (011100)
o @ 4ot (001110)
o ot 4+ @ (000111)
(110011)
2 + o (101001)
+ o (100100)
ot (010010)
2 + @ (001001)
+ o (110100)
2 + ot (011010)
2 o’ + o (001101)
+ o 4+ ot (110110)
2 + ot o+ & (011011)
2 4+ &l + o (111101)
L (101110)
+ o+t + & (010111)
+ ot + & (111011)
+ + o (101101)
+ o+ ot (100110)
+ ot + & (010011)
2 + o (111001)
2 4 ol (101100)
+ o + o (010110)
2 + ot od (001011)
+ o + @ (110101)
2 + ot (101010)
+ o + o (010101)
2 + ot (111010)
2+ + @ (011101)
e (111110)
I T A e (011111)
T - A (111111)
L A B B (101111)
+ @+t 4+ D (100111)
+ ot + @ (100011)
+ o (100001)

63 _

]

200 Chapter6

Binary BCH Codes

TABLE 6.3: Minimal polynomials of the elements in

GF(2).

Elements Minimal polynomials
o, 02, ot o10, o 1+ X+ X6
a3,056,0(120[24,0[480533 1+X+ XZ + X4 + X6
0[5, 0(10, 0520, 0140‘ 0117, 0[34 1+ X+ X2 4 XS + X6
0(7, O{M, 0628, 0156, 0149, 0[35 14+ X3 + X6
019,0(18,()(36 1+ X2 + X3

all’aZZ 0144, 25’(150’0{37 1+ XZ + X3 4 XS + X6
0613,0l26, 52, 41,0119, 38 1+X+X3+X4+X6
0115, 0{30, Ol60, 0557, 0(51, 0539 14+ X2 + X4 + XS + X6
0[21,C¥42 1+ X +X2

0123,0146, 29,C¥58,01537O(43 1+ X+ X4 + XS =+ X6
o o, a® 1+X+Xx3

0131,6162, 61 Oé59,0[55,0647 1+ XS + X6

TABLE 6.4: Generator polynomials of all the BCH codes of length 63.

n k t g(X)

63 57 1 g (X)=1+X+X
51 2 X)) =01+X+X50+X+Xx2+x*+ X5
45 3 BX) =1+X+X*+X°+ X5 (X)
39 4 gi(X) = (1+ X + XS)g3(X)
36 50 gs(X) =0+X+X)gX)
30 6 g(X)=(1+X2+X>+ X4+ XOg5(X)
24 7 g (X) =1+ X+ X3+ X* + X%gs(X)
18 10 gio(X) = (14 X2+ X* + X° + X9g(X)
16 11 g11(X) = (1 + X + XH)gio(X)
10 13 g3(X) =14+ X+ X4+ X+ XOg(X)

7 15 g15(X) = (1 + X + X)gi3(X)

in GF(2°) are listed in Table 6.3. Using (6.3), we find the generator polynomials of all
the BCH codes of length 63, as shown in Table 6.4. The generator polynomials of all
binary primitive BCH codes of length 2" — 1 with m < 10 are given in Appendix C.

It follows from the definition of a ¢-error-correcting BCH code of length
n = 2™ — 1 that each code polynomial has «, &2, -- -, @* and their conjugates as
roots. Now, let v(X) = vg + v1 X + - - - + v,_1 X"~ ! be a polynomial with coefficients
from GF(2). If v(X) has a,a?,---,a? as roots, it follows from Theorem 2.14
that v(X) is divisible by the minimal polynomials ¢{(X), ¢,(X), -, ¢, (X) of
o, 02, a?h Obviously, v(X) is divisible by their least common multiple (the

generator polynomial),

g(X) = LCM{¢1(X), ¢(X). -+, ¢, (X)}.

Section 6.1 Binary Primitive BCH Codes 201

Hence, v(X) is a code polynomial. Consequently, we may define a r-error-correcting
BCH code of length n = 2" — 1 in the following manner: a binary n-tuple v =
(v, v1, v2, - -+ , Uy1) is a codeword if and only if the polynomial v(X) = vy + 1 X -+
v+ v,_1 X"V has o, a2, .-+, o as roots. This definition is useful in proving the
minimum distance of the code.

Let v(X) = vg + 1 X + -+ 4+ v, X" ! be a code polynomial in a f-error-
correcting BCH code of length n = 2" — 1. Because «' is a root of v(X) for
1 <i <21, then

V(') = vo + via’ + v 4 v, 0TV =0, (6.4)
This equality can be written as a matrix product as follows:

1
O(i‘
Wouvge)| ¢ =0 (6.5)

a(n—])i

for 1 < i < 2t. The condition given by (6.5) simply says that the inner product of

(0. V1, - vy—p) and (1, af @, ... a® V') is equal to zero. Now, we form the
following matrix:
1 o 012 013 . all—l
1 (Q,Z) (012)2 (0[2)3 . (aZ)nfl
He| 1 @) @? @33 (edy=1 (6.6)
1 (O{Zf) (0[2r)2 (0121)3 . (aZI)n—l
It follows from (6.5) that if v = (vg. vy, -+, u;_1) is a codeword in the t-error-
correcting BCH code, then
v -H' =0, (6.7)
On the other hand, if an n-tuple v = (vg, vy, - - - , v,) satisfies the condition of (6.7),

it follows from (6.5) and (6.4) that, for 1 < i < 2¢,¢' is a oot of the polynomial
v(X). Therefore, v must be a codeword in the ¢-error-correcting BCH code. Hence,
the code is the null space of the matrix H, and H is a parity-check matrix of the code.
If for some i and j, o/ is a conjugate of o, then v(e/) = 0 if and only if v(a') = 0
(see Theorem 2.11); that is, if the inner product of v = (vg, vy, - -+ , v, 1) and the ith
row of Hl is zero, the inner product of v and the jth row of H is also zero. For this
reason, the jth row of H can be omitted. As a result, the H matrix given by (6.6) can
be reduced to the following form:

1 o 012 0(3 L. Oln—l
L@ @ @) @y
H=11 @) @7 (@3 - @yt | (6.8)

;l (O{2f71) (aZTfl)2 (0(21~1)3 . (OIZI‘f.l)n—l

202 Chapter 6 Binary BCH Codes

Note that the entries of H are elements in GF(2™). We can represent each element
in GF(2™) by an m-tuple over GF(2). If we replace each entry of H with its
corresponding m-tuple over GF(2) arranged in column form, we obtain a binary
parity-check matrix for the code.

EXAMPLE 6.2

Consider the double-error-correcting BCH code of length n = 2* — 1 = 15. From
Example 6.1 we know that this is a (15, 7) code. Let « be a primitive element in
GF(2%). Then, the parity-check matrix of this code is

H_|:1 o 052 o Ol4 055 Ol6 Ol7 058 059 alO o1l 0112 0613 a14:l

1 o3 Ol6 0[9 al? 0(15 al® o2l O(24 a2’ 0130 a3 0136 0139 a*2

[by (6.8)]. Using Table 2.8 and the fact that «'> = 1, and representing each entry of
H with its corresponding 4-tuple, we obtain the following binary parity-check matrix
for the code:

rt+ 6 6 010601101011 17
061ro0o0110106111100
6 61 0601101011110
- 6001060110101 111
10001 1000110001
0601100011 00¢011
0010100101 0O0101
+r 0111101111011 11]

Now, we are ready to prove that the r-error-correcting BCH code just defined
indeed has a minimum distance of at least 27 + 1. To prove this, we need to show that
no 2t or fewer columns of H given by (6.6) sum to zero (Corollary 3.2.1). Suppose
that there exists a nonzero codeword v = (vg, vy, - -+ , vy,—1) With weight § < 2¢. Let
vj,,Vj, -, Uj; be the nonzero components of v (i.e, v;, = vj, = --- = vj; = 1).
Using (6.6) and (6.7), we have

0=v H'
Tl (@®)t o (@D]
ol (a2 .. (a2
al? (@B o (@)
= Wy, Vs ey V) -

al () (@)

=(1,1,---,1).

Section 6.1

O[j]
O[j2
O{j}

CVJ“S

(a)1y?
(@h2)?
(@)

()

Binary Primitive BCH Codes

(O[jl)27
(‘o(.iz)ZY
(O[jj;)27

(O!js)21

The preceding equality implies the following equality:

Ay

ol
a2
al?

s

b

(@/)?
(af2y?
(ah)?

(w2

(aj))fS
(@2)°
(Ol.fs)é

@iy

203

(6.9)

where the sccond matrix on the left s a § x § square matrix. To satisfy the equality

of (6.9), the determinani of the § x § matrix must be zero; that is,

ol (alh)?
ol (a2)?
ot (al)?
alt (l)?

Taking out the common factor from

obtain

g titts)

1
1
1

1

(@/h)?
(@)?
(@)

(O(A}IX)5

cach row of the foregoing determinant, we

ol
o/?
o3

als

w61
PACE YV
a(§~l)j3

8=

=0.

(6.10)

The determinant in the preceding equality is a Vandermonde determinant that is
nonzero. Therefore, the product on the left-hand side of (6.10) cannot be zero.
This is a contradiction, and hence our assumption that there exists a nonzero
codeword v of weight § < 27 is invalid. This implies that the minimum weight of the
t-error-correcting BCH code defined previously is at least 2r + 1. Consequently, the
minimum distance of the code is at least 2r + 1.

The parameter 2¢ + 1 is usualily called the designed distance of the r-error-
correcting BCH code. The true minimum distance of a BCH code may or may not
be equal to its designed distance. In many cases the true minimum distance of a

204 Chapter 6 Binary BCH Codes

BCH code is equal to its designed distance; however, there are also cases in which
the true minimum distance is greater than the designed distance.

Binary BCH codes with length n # 2" — 1 can be constructed in the same
manner as for the case n = 2™ — 1. Let B be an element of order n in the field
GF(2™). We know that n is a factor of 2" — 1. Let g(X) be the binary polynomial of
minimum degree that has

5”32,...’52'

as roots. Let Wi(X), ¥(X), - -, ¥y (X) be the minimal polynomials of
B, B%. .-, B respectively. Then,

g(X) = LCM {¥((X), Wo(X), - -, W, (XD}

Because 8" = 1,8, 82, --- , 8% are roots of X + 1. We see that g(X) is a factor of
X" +1. The cyclic code generated by g(X) is a r-error-correcting BCH code of length
n. In a manner similar to that used for the case n = 2" — 1, we can prove that the
number of parity-check digits of this code is at most mz, and the minimum distance
of the code is at least 2¢ + 1. If § is not a primitive element of GFQ2™), n # 2™ — 1,
and the code is called a nonprimitive BCH code.

EXAMPLE 6.3

Consider the Galois field GF(2°) given in Table 6.2. The element g = o has order
n=21.Lett =2. Let g(X) be the binary polynomial of minimum degree that has

p. 8% 8. 8*

as roots. The elements g, 2, and 8% have the same minimal polynomial, which is

U(X)=1+X+Xx*+ X"+ X5
The minimal polynomial of g2 is

Wy(X) =1+ X>+ X2
Therefore,
g(X) = W (X)W3(X)
=14+ X+ X'+ X0+ x4+ x5+ x°.

We can check easily that g(X) divides X?! + 1. The (21, 12) code generated by g(X)
is a double-error-correcting nonprimitive BCH code.

Now, we give a general definition of binary BCH codes. Let 8 be an element of
GF(2"). Let Iy be any nonnegative integer. Then, a binary BCH code with designed
distance dy is generated by the binary polynomial g(X) of minimum degree that has
as roots the following consecutive powers of :

,610 ,B[”+1, . ,310-4—([(}—2

Section 6.2 Decoding of BCH Codes 205

For 0 <i < dp — 1, let ¥;(X) and n; be the minimum polynomial and order of Bloti,
respectively. Then,

g(X) = LCM{Wo(X), W (X)), - -+, Wy, (X))}
and the length of the code is
n=LCM{ng, ny, -+, ngy—2}

The BCH code just defined has a minimum distance of at least dy and has no more
than m(dy — 1) parity-check digits (the proof of these is left as an exercise). Of
course, the code is capable of correcting [(dg — 1)/2] or fewer errors. If we let
lo = 1,dy = 2t + 1, and § be a primitive element of GF(2™), the code becomes a
t-error-correcting primitive BCH code of length 2 — 1. Iflg = 1. dy = 2r + 1, and B
is not a primitive element of GF(2™), the code is a nonprimiiive ¢-error-correcting
BCH code of length »n that is the order of 8. We note that in the definition of
a BCH code with designed distance dp. we reguire that the generator polynomial
g(X) has dy — 1 consecutive powers of a field element § as roots. This requirement
guarantees that the code has a minimum distance of at least dy. This lower bound on
the minimum distance is called the BCH bound. Any cyclic code whose generator
polynomial has d — 1 consecutive powers of a field element as roots has a minimum
distance of at least d.
In the rest of this chapier, we consider only the primitive BCH codes.

6.2 DECODING OF BCH CODES

Suppose that a codeword v(X) = vg + v X + VX% 4 4 v, X7 is transmitted,
and the transmission errors result in the following received vector:

r(X) =rg+rX +rX 4+ XL
Let e(X) be the error pattern. Then,
r(X) = v(X) 4 e(X). (6.11)

As usual, the first step of decoding a code is to compute the syndrome from the
received vector r(X). For decoding a r-error-correcting primitive BCH code, the
syndrome is a 2¢-tuple:

S=(51,%. S =r-H, (6.12)

where H is given by (6.6). From (6.6) and (6.12) we find that the /th component of
the syndrome is
S; =r(a)
=rg+ra +ra¥ + o 4oV (6.13)
for 1 <i < 2¢. Note that the syndrome components are elements in the field GF(2™).
We can compute from r(X) as follows. Dividing r(X) by the minimal polynomial

@, (X) of &', we obtain
r(X) = 2, (X)¢; (X) +b; (X),

206 Chapter 6 Binary BCH Codes

where b; (X) is the remainder with degree less than that of ¢, (X). Because ¢, (a') = 0,
we have

S; =v(a') =b;(a’). (6.14)

Thus, the syndrome component S; can be obtained by evaluating b; (X) with X = o',

EXAMPLE 6.4

Consider the double-error-correcting (15, 7) BCH code given in Example 6.1.
Suppose that the vector

r=(100000001000000)
is received. The corresponding polynomial is
r(X) =1+ X%
The syndrome consists of four components:
S = (51, 52, 53, S4).
The minimal polynomials for «, o?, and a* are identical, and
$1(X) =y (X) = ¢u(X) =1+ X + x*.
The minimal polynomial of o is
$3(X) =1+ X+ X2+ x>+ x*%
Dividing r(X) = 1+ X8 by ¢1(X) = 1 + X + X*, we obtain the remainder
by (X) = X%
Dividing n(X) =1+ X8 by (X) =1+ X + X2 4+ X3 + X* we have the remainder
b3(X) =1+ X°.

Using GF(2*) given by Table 2.8 and substituting «, 2, and «* into by (X), we obtain

Substituting o> into b3 (X), we obtain

S3=1+a9:1+a+a3:a7.

Thus,

S = (az, a4, oc7,oz8).

Section 6.2 Decoding of BCH Codes 207

Because al, o2, -+, a? are roots of each code polynomial, v(a') = 0 for

1 < i < 2r. The following relationship between the syndrome and the error pattern
foliows from (6.11) and (6.13):

S = e(a’) (6.15)

for 1 < i < 2. From (6.15) we see that the syndrome S depends on the error
pattern e only. Suppose that the error pattern e(X) has v errors at locations
X X2 K that s,

where 0 < j1 < jo < -+- < ju < n. From (6.15) and (6.16) we gbtain the following
set of equations:

Sl o Cle -+ O{.fl 4o O[j"
2 = (@ + (@ 4 4 ()
Sz = ((l,jl)?’ - (a.72)3 Ao 4 (O{-f")3 (617)

Sor = (@Y 4 (@Y o ()

where o/t o, ... /v are unknown. Any method for solving these equations is a
decoding algorithm for the BCH codes. Once we have found alt, a2, ... ol the
powers ji, j2, -+, ju tell us the ervor locations in e(X), as in (6.16). In general, the
equations of (6.17) have many possible solutions (2¢ of them). Each solution yields
a different error pattern. If the number of errors in the actual error pattern e(X)
is r ot fewer (i.e., v < 1), the solution that yields an error pattern with the smallest
number of errors is the right solution; that is, the error pattern corresponding to
this solution is the most probable error pattern e(X) caused by the channel noise.
For large 1, solving the equations of (6.17) directly is difficult and ineffective. In the
following, we describe an effective procedure for determining ol forl=1,2,---,v
from the syndrome components 5;’s.
For convenience, let

B =al (6.18)

for 1 <1 < v. We call these elements the error location numbers, since they iell
us the locations of the errors, Now, we can express the equations of (6.17) in the
following form:

Si=8+ph+ -+ B

So=p+H+ B
(6.19)

Su =B+ B+ + B

208 Chapter6 Binary BCH Codes

These 2t equations are symmetric functions in By, £z, - - - , Bv. which are known as
power-sum symmetric functions. Now, we define the following polynomial:

(X)) 2 A+ AX)A+ X)L+ BX)

(6.20)
=oyp+01X +uX> 4+ +0,X".
The roots of o (X) are g 1, ,32—1, - ,3;1, which are the inverses of the error-location
numbers. For this reason, o (X) is called the error-location polynomial. Note that o (X)
is an unknown polynomial whose coefficients must be determined. The coefficients
of ¢ (X) and the error-location numbers are related by the following equations:

og=1

o1 =P+ B+ + By

oy =PB1Br+ B3+ + Bu-1By (6.21)
oy = B1B2--- Bu.

The o;'s are known as elementary symmetric functions of 8;’s. From (6.19) and (6.21),
we sec that the o;’s are related to the syndrome components §;’s. In fact, they are
related to the syndrome components by the following Newton’s identities:

S1+o01=0
Sy 40181 + 205 =0
S5+ 018 + 0951 + 303 =0

(6.22)
Sy +018-1+ -+ 0,151 +vo, =0
Spp1+oiSe oS +0,51 =0

For the binary case, since 1 + 1 =2 = 0, we have

. oo for odd i,
"9 =10 foreveni.

If it is possible to determine the elementary symmetric functions o1, 03, - - - , oy, from
the equations of (6.22), the error-location numbers B1, 82, -+ , By can be found by
determining the roots of the error-location polynomial o (X). Again, the equations
of (6.22) may have many solutions; however, we want to find the solution that yields
a o (X) of minimal degree. This o (X) will produce an error pattern with a minimum
number of errors. If v < ¢, this ¢ (X) will give the actual error pattern e(X). Next,
we describe a procedure to determine the polynomial ¢ (X) of minimum degree that
satisfies the first 21 equations of (6.22) (since we know only S| through $5,).

Section 6.3 lterative Algorithm for Finding the Error-Location Polynomial o (X) 209

At this point, we outline the error-correcting procedure for BCH codes. The
procedure consisis of three major sieps:

1. Compute the syndrome S = (51, 55, - . S2) from the received polynomial
r(X).

2. Determine the error-location polynomial o (X) from the syndrome components

81,89, 5o

Determine the error-location numbers 1. f2.--- . 8, by finding ithe roots of

o (X), and correct the errors in r(X).

12

The first decoding algorithm that carries out these three steps was devised by
Peterson [3]. Steps 1 and 3 are quite simple; step 2 is the most complicated part of
decoding a BCH code.

6.3 ITERATIVE ALGORITHM FOR FINDING
THE ERROR-LOCATION POLYNOMIAL ¢ (X

Here we present Berlekamp's iterative algorithim for finding the error-location
polynomial. We describe only the algorithm, without giving any proof. The reader
who is interested in details of this algorithm is referred to Berlekamp [9], Peterson
and Weldon [13], and MacWilliams and Sloane [14].

The first step of iteration is to find a minimum-degree polynomial ¢V (X)
whose coefficients satisty the first Newton’s identity of (6.22). The next step is to
test whether the coefficients of ¢V (X) also satisfy the second Newton's identity of
(6.22). If the coefficients of ¢ 'V (X) do satisfy the second Newton’s identity of (6.22),
we set

0.(2)(}() — 07(1)(}{)‘

If the coefficients of ¢V (X) do not satisfy the second Newton’s identity of (6.22),
we add a correction term to ¢ V(X)) to form ¢@ (X) such that ¢@ (X) has mini-
mum degree and its coefficients satisfy the first two Newton’s identities of (6.22).
Therefore, at the end of the second step of iteration, we obtain a minimum-degree
polynomial ¢ @ (X) whose coefficients satisfy the first two Newton’s identities of
(6.22). The third step of iteration is to find 2 minimum-degree polynomial ¢ (X)
from ¢ (X) such that the coefficients of ¢'*)(X) satisfy the first three Newton’s
identities of (6.22). Again, we test whether the coefficients of ¢® (X) satisty the third
Newton’s identity of (6.22). If they do, we set 3 (X) = ¢ @ (X). If they do not, we
add a correction term to ¢ @ (X) to form ¢ @) (X). Tteration continues until we obtain
o ®(X). Then, 6" (X) is taken to be the error-location polynomial ¢ (X), that is,

7 (X) =@ ().

This o (X) will yield an error pattern e(X) of mmimum weight that satisfies the
equations of (6.17). If the number of errors in the received polynomial r(X) is 1 or
less, then o (X) produces the true error pattern.
Let
¢ (X)) =14+ 0" % + 0, X7+ o X (6.23)

be the minimum-degree polynomial determined at the pth step of iteration whose
coefficients satisfy the first u© Newton’s identities of (6.22). To determine ¢ “T1 (X),

210 Chapter 6 Binary BCH Codes

we compute the following quantity:
dy =S4+ Cfl(mSM + GZ(M)SM_l 4o+ GlimS/H—l—l,u (6.24)

This quantity d,, is called the uth discrepancy. If d, = 0, the coefficients of o) (X)
satisfy the (u + 1)th Newton’s identity. In this event, we set

J(M-H)(X) — O'(I’L)(X).

If d,, # 0, the coefficients of ™ (X) do not satisfy the (1 + 1)th Newton’s identity,
and we must add a correction term to o (X) to obtain ¢ “*t1(X). To make this
correction, we go back to the steps prior to the uth step and determine a polynomial
0 ®)(X) such that the pth discrepancy d, # 0, and p — 1, [1, is the degree of ¢ (? (X)]
has the largest value. Then,

o (X) = 0 (X) + d,dy X B e (X, (6.25)

which is the minimum-degree polynomial whose coefficients satisty the first p + 1
Newton’s identities. The proof of this is quite complicated and is omitted from this
introductory book.

To carry out the iteration of finding ¢ (X), we begin with Table 6.5 and proceed
to fill out the table, where /,, is the degree of ¢ (X). Assuming that we have filled
out all rows up to and including the uth row, we fill out the (u + 1)th row as follows:

1. Ifd, =0, then e “D(X) = ¢ (X), and l,,11 = [,.

2. It d, # 0, we find another row p prior to the uth row such that d, # 0 and
the number p — [, in the last column of the Table has the largest value. Then,
o D (X) is given by (6.25), and

lyyi =max(ly, I, +p — p). (6.26)
In either case,
+1 1
dyii=Sus2+0 VS, 4+ o,fjj S 2t (6.27)
where the ai(“ 5 are the coefficients of ¢+ (X). The polynomial ¢ @ (X) in the

last row should be the required ¢ (X). If its degree is greater than ¢, there are more

TABLE 6.5: Berlekamp’s iterative procedure for
finding the error-location polynomial of a BCH code.

“w o™ (X) d, Iy w1,
-1 1 1 0 -1

0 1 $1 0 0

1

2

2t

Section 6.3 iterative Algorithm for Finding the Error-Location Polynomial o (X) 211

than r errors in the received polynomial r(X), and generally it is not possible to
locate them.

EXAMPLE 6.5

Consider the (15, 5) triple-error-correcting BCH code given in Example 6.1. Assume
that the codeword of all zeros,

v=1(0,0,0,0,0,0.0,0,0,0,0,0,0,0,0),
is transmitted, and the vecior
r=@0006101000000100)

is received. Then, r(X) = X> + X° + X'2. The minimal polynomials for o, o2, and o*
are identical, and

$1(X) = (X)) = ¢y (X) =1+ X + X*.
The elements o and o have the same minimal polynomial,
$3(X) =¢g(X) =14+ X+ X*+ X+ X*.
The minimal polynomial for o is
$s(X) =1+ X + X,

Dividing r(X) by ¢{(X), ¢3(X). and ¢s(X), respectively, we obtain the following
remainders:

by (X) =1,
by(X) =14 X%+ X3, (6.28)
bs(X) = X2,

Using Table 2.8 and substituting «, o?, and o into by (X), we obtain the following
syndrome components:
S1 =8 =84=1.

Substituting o and «% into b3 (X)), we obtain

S3=1+OI6+0[9:(J[10,

Se=1+a?+a®® =0’ (6.29)
Substituting o into bs(X), we have
S5 = al?.

Using the iterative procedure described previously, we obtain Table 6.6. Thus, the
error-location polynomial is

c(X) =X =14+ X+°X>

212 Chapter 6 Binary BCH Codes

TABLE 6.6: Steps for finding the error-location polynomial of
the (15,5) BCH code given in Example 6.5.

I oW (X) dy I w1,

-1 1 1 0 -1
0 1 1 0 0
1 1+X 0 1 0 (take p = —1)
2 1+X o’ 1 1
3 1+ X +aX? 0 2 1 (take p = 0)
4 1+ X +aXx? o0 2 2
5 1+ X +e°X3 0 3 2 (take p = 2)
6 1+ X +a°X3 — — —

We can easily check that o, a9 and a'? are the roots of ¢ (X). Their inverses are

al?, oz5, and &3, which are the error-location numbers. Therefore, the error pattern is
e(X)=x>+x°+ x2

Adding e(X) to the received polynomial ¥(X), we obtain the all-zero vector.

If the number of errors in the received polynomial r(X) is less than the designed
error-correcting capability ¢ of the code, it is not necessary to carry out the 2r steps
of iteration to find the error-location polynomial o (X). Let ¢*)(X) and d,, be the
solution and discrepancy obtained at the uth step of iteration. Let /,, be the degree
of 6™ (X). Chen [19] has shown that if d,, and the discrepancies at the nextr —1, —1
steps are all zero, o "W (X) is the error-location polynomial. Therefore, if the number
of errors in the received polynomial r(X) is v(v < 1), only r + v steps of iteration
are needed to determine the error-location polynomial o (X). If v is small (this is
often the case), the reduction in the number of iteration steps results in an increase
in decoding speed.

The described iterative algorithm for finding o (X) applies not only to binary
BCH codes but also to nonbinary BCH codes.

6.4 SIMPLIFIED ITERATIVE ALGORITHM FOR FINDING
THE ERROR-LOCATION POLYNOMIAL ¢ (X)

The described iterative algorithm for finding ¢ (X) applies to both binary and
nonbinary BCH codes, including Reed—Solomon codes; however, for binary BCH
codes, this algorithm can be simplified to 7-steps for computing o (X).

Recall that for a polynomial f(X) over GF(2),

FHx) = F(XP),

[see (2.10)]. Because the received polynomial ¥(X) is a polynomial over GF(2), we
have
r2(X) = r(X?).

Section 6.4 Simplified lterative Algorithm 213
Substituting o' for X in the preceding equality, we obtain
D0y e
(o) = r(oe”). (6.30)
Because §; = r(o'), and 5y = v(e?) [see (6.13)], we obtain the following relationship
between Sy; and S;:
Sy = 52 (6.31)
Suppose the first Newton's identity of (6.22) holds. Then,
51401 =0

This result says that
o) = 8. (6.32)
It follows from (6.31) and (6.32) that

Sy 4+ 0181 -F 2on = 57+ S1-81+0
! (6.33)

=

The foregoing equality is simply the Newton’s second equality. This result says that
if the first Newton’s identity holds, then the second Newton’s identity alsc holds.
Now, suppose the first and the third Newton’s identities of (6.22) hold: that is,

St+o1 =0, (6.34)

534018 + 6381 + 303 =0. (6.35)
The equality of (6.34) implies that the second Newton’s identity holds:
Sy 401851 + 209 = 0. (6.36)
Then,

($2 +o151 + 20’2)2 =0,

53 +oist=0. (6.37)
It tollows from (6.31) that (6.37) becomes
Sy + 08 =0. (6.38)
Multiplying both sides of (6.35) by 0. we obtain
0183 + ()'IZS2 + 0102851 + 30103 = 0. (6.39)

Adding (6.38) and (6.39) and using the equalities of (6.31) and (6.32), we find that
the fourth Newton’s identity holds:

S+ 0183+ 028 + 0385 + doyg = 0.

214 Chapter 6 Binary BCH Codes

This result says that if the first and the third Newton’s identities hold, the second
and the fourth Newton’s identities also hold.

With some effort, it is possible to prove that if the first, third, - -- , 2r — Dth
Newton’s identities hold, then the second, fourth, - .. , 2rth Newton’s identities also
hold. This implies that with the iterative algorithm for finding the error-location
polynomial o (X), the solution ¢ ®*~1(X) at the (2u — 1)th step of iteration is also
the solution o ®*) (X) at the 2uth step of iteration; that is,

@ (X) = o@D (). (6.40)

This suggests that the (2« — 1)th and the Zuth steps of iteration can be combined.
As a result, the foregoing iterative algorithm for finding o (X) can be reduced to ¢
steps. Only the even steps are needed.

The simplified algorithm can be carried out by filling out a table with only ¢
rows, as illustrated in Table 6.7.

Assuming that we have filled out all rows up to and including the uth row, we
fill out the (i + 1)th row as follows:

1. Ifd, = 0, then s “+D(X) = ¢ (X).

2. It d, # 0, we find another row preceding the uth row, say the pth, such that
the number 2p — /, in the last column is as large as possible and d,, # 0. Then,

D (X) = 6 W(X) + dyd 1 X2 e) (X). (6.41)

In either case, /,,11 is exactly the degree of o #TD(X), and the discrepancy at the
(u + Dthstepis

(n+1) (n+1) (u+1)
dLH'l o S2/L+3 + o'lM SZ;H—Z + O.ZM S2;L+l + -+ O.l/il S2M+3—]u+l . (642)

The polynomial ¢’ (X) in the last row should be the required o (X). If its degree
is greater than 7, there were more than ¢ errors, and generally it is not possible to
locate them.

The computation required in this simplified algorithm is half of the computation
required in the general algorithm; however, we must remember that the simplified
algorithm appiies only to binary BCH codes. Again, if the number of errors in the

TABLE 6.7: A simplified Berlekamp iterative
procedure for finding the error-location
polynomial of a binary BCH code.

oW (X) dy I, 2n -1,

1 0 -1
S1 0 0

=

N = O o=

Section 6.5 Finding the Error-Location Numbers and Error Correction 215

TABLE 6.8: Steps for finding the error-location polynomial of the
(15,5) binary BCH code given in Example 6.6.

“ o W) dg Iy 21,

-1 1 1 0 -1
0 1 S1=1 0 0
1 1+5X=14+X S+ 55 =¢> 1 1(takep=-1
2 14+ X+ad%? o0 2 2(take p =0)
3 1+X+e%%3 — 3 3(take p =2)

received polynomial r(X) is less than ¢, it is not necessary to carry out the ¢ steps
of iteration to determine ¢ (X) for a r-error-correcting binary BCH code. Based on
Chen’s result [19], if for some u, d, and the discrepancies at the next [(t —{, —1)/2]
steps of iteration are zero, o (¥)(X) is the error-location polynomial. If the number
of errors in the received polynomial is v(v < 1), only [(r 4+ v}/2] sieps of iteration
are needed to determine the error-location polynomial o (X).

EXAMPLE 6.6

The simplified table for finding ¢ (X) for the code considered in Example 6.5 is given
in Table 6.8. Thus, 6 (X) = ¢ @ (X) = 1+ X +a«° X3, which is identical to the solution
found in Example 6.5.

6.5 FINDING THE ERROR-LOCATION NUMBERS AND ERROR CORRECTION

The last step in decoding a BCH code is to find the error-location numbers that
are the reciprocals of the roots of o (X). The roots of ¢(X) can be found simply
by substituting 1, &, &%, -+ - , 0"~ 1(n = 2" — 1) into ¢(X). Since & = 1,0~/ = o,
Therefore, if o is a root of ¢ (X). o is an error-location number, and the received
digit r,.; is an erroneous digit. Consider Example 6.6, where the error-location

polynomial was found to be
c(X)=1+X +a°X°

By substituting 1. «, o2, - o' into o (X). we find that o, 19, and «!? are roots of
o (X). Therefore, the error-location numbers are «'?, &, and «®. The error pattern is

e(X) = X>+ x>+ x12,

which is exactly the assumed error pattern. The decoding of the code is completed
by adding (modulo-2) e(X) to the received vector r(X).

The described substitution method for finding the roots of the error-location
polynomial was first used by Peterson in his algorithm for decoding BCH codes [3].
Later, Chien |6] formulated a procedure for carrying out the substitution and error
correction. Chien’s procedure for searching for error-location numbers is described
next. The received vector

(X)) =rg+r X+ }‘2X2 R r”_an—l

216 Chapter 6 Binary BCH Codes

is decoded bit by bit. The high-order bits are decoded first. To decode r,, 1, the
decoder tests whether o~ is an error-location number; this is equivalent to testing

whether its inverse, «, is a root of ¢ (X). If « is a root, then
14+ o010+ 0202 4 -+ opa’ = 0.

Therefore, to decode r,_, the decoder forms oya, o902, - -+ , opa”. If the sum
14 o010 + 0202 + -+, oy’ = 0, then o"~ ! is an error-location number, and r,,_; is
an erroneous digit; otherwise, r,_1 is a correct digit. To decode r,_;, the decoder

forms 01011, crzozZZ, ..., o,a” and tests the sum

1+ o0l + ;o + .+ opa

If this sum is 0, then &' is a root of o (X), and r,,_; is an erroneous digit; otherwise,
ry—1 is a correct digit.

The described testing procedure for error locations can be implemented in
a straightforward manner by a circuit such as that shown in Figure 6.1 [6]. The ¢
o -registers are initially stored with oy, 07, - - - , 0y calculated in step 2 of the decoding
(0p411 = Oy42 = -+ = o, = O for v < r). Immediately before r,_1 is read out of the
buffer, the r multipliers @ are pulsed once. The multiplications are performed, and
o1a, 02052, -+, o’ are stored in the o-registers. The output of the logic circuit A is
1if and only if the sum 1 + o + ;ma? + -+ o,a’ = 0; otherwise, the output of A
is 0. The digit r,, is read out of the buffer and corrected by the output of A. Once
ry—1 is decoded, the r multipliers are pulsed again. Now, o1a?, ;mat, - opa?’ are
stored in the o-registers. The sum

1+ o10® + o0t + - + opa®”

is tested for 0. The digit r,_; is read out of the buffer and corrected in the same
manner as r,,_1 was corrected. This process continues until the whole received vector
is read out of the buffer.

©00

Qutput
= O’,»Oc” —-B><D—-—l>

Buffer {

FIGURE 6.1: Cyclic error location search unit.

Section 6.6 Correction of Errors and Erasures 217

The described decoding algorithm also applies to nonprimitive BCH codes.
The 2t syndrome components are given by

S =r(B")
forl <i <72

6.6 CORRECTION OF ERRORS AND ERASURES

If the channel is the binary symmeiric erasure channel as shown in Figure 1.6(b), the
received vector may contain both errors and erasures. It was shown in Section 3.4,
that a code with minimum distance dp;, is capable of correcting all combinations of
v errors and e erasures provided that

2v+te+1 <dpp. (6.43)

Erasure and error correction with binary BCH codes are quite simple. Suppose
a BCH code is designed to correct ¢ errors, and the received polynomial r(X)
contains v (unknown) random errors and e (known) erasures. The decoding can be
accomplished in two steps. First, the erased positions are replaced with 0’s and the
resulting vector is decoded using the standard BCH decoding algorithm. Next, the ¢
erased positions are replaced with 1's, and the resulting vector is decoded in the same
manner. The decodings result in two codewords. The codeword with the smallest
number of errors corrected outside the e erased positions is chosen as the decoded
codeword. If the inequality of {6.43) holds, this decoding algorithm always resulis
in correct decoding. To see this, we write (6.43) in terms of the error-correcting
capability r of the code as

v+e/2 <t (6.44)

Assume that when e erasures are replaced with 0s, ¢* < ¢/2 errors are introduced
in those ¢ erased positions. As a result, the resulting vector contains a total of
v+ e* < 1 errors that are guaranteed to be correctable if the inequality of (6.44)
(or (6.43)) holds; however, if ¢* > ¢/2 then only e — ¢* < ¢/2 errors are introduced
when the e erasures are replaced with 1’s. In this case the resultant vector contains
v+ (e—e™) < rerrors. Such errors are also correctable. Therefore, with the described
decoding algorithm, at least one of the two decoded codewords is correct.

6.7 IMPLEMENTATION OF GALOIS FIELD ARITHMETIC

Decoding of BCH codes requires computations using Galois field arithmetic. Galois
field arithmetic can be implemented more easily than ordinary arithmetic because
there are no carries. In this Section we discuss circuits that perform addition and
multiplication over a Galois field. For simplicity, we consider the arithmetic over
the Galois field GF(2%) given by Table 2.8.

To add two field elements, we simply add their vector representations. The
resultant vector is then the vector representation of the sum of the two field elements.
For example, we want to add o’ and «® of GF(2%). From Table 2.8 we find that
their vector representations are (1 1 0 1) and (1 0 1 1), respectively. Their vector
sumis (1101) +(1011)=(0110), which is the vector representation of .

218 Chapter 6 Binary BCH Codes

ADD

S U YUy

a a a a Register A
0 ! 2 ? |(accumulator)
«—(4—) <a—<+> 4——6) 4—<+>
ag+ by ay + by a+ by asy + by
by by b, b; | Register B

FIGURE 6.2: Galois field adder.

Two field elements can be added with the circuit shown in Figure 6.2. First,
the vector representations of the two elements to be added are loaded into registers
A and B. Their vector sum then appears at the inputs of register A. When register
A is pulsed (or clocked), the sum is loaded into register A (register A serves as an
accumulator).

For multiplication, we first consider multiplying a field element by a fixed
element from the same field. Suppose that we want to multiply a field element in
GF(2*) by the primitive element ¢ whose minimal polynomial is ¢(X) = 14 X + X*.
We can express element S as a polynomial in « as follows:

B = by + bia + bra? + b,

Multiplying both sides of this equality by o and using the fact that o* = 1+ «, we
obtain the following equality:

aB = b3 + (bo + b3)a + bya® + bra®.

This multiplication can be carried out by the feedback shift regisier shown
in Figure 6.3. First, the vector representation (bg, b1, by, b3) of B is loaded into
the register, then the register is pulsed. The new contents in the register form the

b() /';‘L b[b? b3

—/

FIGURE 6.3: Circuit for multiplying an arbitrary element in GF(2*) by a.

Section 6.7 implementation of Galois Field Arithmetic 219

vector representation of af. For example, let 8 = a’ = 1+ o + 3. The vector
representation of 8 is (1 1 0 1). We load this vector into the register of the circuit
shown in Figure 6.3. After the register is pulsed, the new contents in the register
will be (1 0 10), which represents o, the product of o” and «. The circuit shown in
Figure 6.3 can be used to generate (or count) all the nonzero elements of GF(2%).
First, we load (1 00 0) (vector representation of o« = 1) into the register. Successive
shifts of the register will generate vector representations of successive powers of o,
in exactly the same order as they appear in Table 2.8. At the end of the fifteenth
shift, the register will contain {1 6 0 0) again.

As another example, suppose that we want to devise a circuit to multiply an
arbiirary element 8 of GF(2*) by the element o3, Again, we express § in polynomial
form:

B = by + bia + bho’ + baa.

Multiplying both sides of the preceding equation by o, we have
oz3/3’ == b0a3 +- Zmﬁ + bzoe5 +- b3a6
= by’ + by (1 + @) + by(ar + o) + b3 (a” +)

= by + (b1 + b + (b2 + b3)a” + (bo + by)er’.

Based on the preceding expression, we obtain the circuit shown in Figure 6.4, which
is capable of multiplying any element g in GF(2") by . To multiply, we first load
the vector representaiion (bg. by, by, b3) of 8 into the register, then we pulse the
register. The new contents in the register will be the vector representation of o 8.
Next, we consider multiplying two arbitrary field elements. Again, we use GF(2%) for
illusiration. Let 8 and y be two elemenis in GF(2%). We express these two elements
in polynomial form:

B = by + bia + bye® + bae,
Y =g+ oo + czaz + 030/3.
Then, we can express the product Sy in the following form:

By = ((c3Bya + c2f)o + c1BYe + coB (6.45)

ﬂ
| ’
I C;},\ b, G;/L - b ' by —>

FIGURE 6.4: Circuit for multiplying an arbitrary element in GF(2*) by o>.

220 Chapter 6 Binary BCH Codes

This product can be evaluated with the following steps:

1. Multiply ¢38 by @ and add the product to ¢z 8.
2. Multiply (c38)x + 28 by « and add the product to ¢1 8.
3. Multiply ((c38)a + c28) + ¢1 B by « and add the product to cof.

Multiplication by « can be carried out by the circuit shown in Figure 6.3. This circuit
can be modified to carry out the computation given by (6.45). The resultant circuit
is shown in Figure 6.5. In operation of this circuit, the feedback shift register A
is initially empty, and (bg, b1, by, b3) and (cg, c1, ¢2, ¢3), the vector representations
of B and y, are loaded into registers B and C, respectively. Then, registers A
and C are shifted four times. At the end of the first shift, register A contains
(c3by, c3b1, c3by, c3b3), the vector representation of ¢38. At the end of the second
shift, register A contains the vector representation of (c38)o + ¢28. At the end of the
third shift, register A contains the vector representation of ((c3f)a + c28)a + ¢18.
At the end of the fourth shift, register A contains the product 8y in vector form. If
we express the product gy in the form

By = (((coB) + c1pa) + c2Ba®) + 3 pa’,

we obtain a different multiplication circuit, as shown in Figure 6.6. To perform the
multiplication, 8 and y are loaded into registers B and C, respectively, and register
A is initially empty. Then, registers A, B, and C are shifted four times. At the end of

Register A

O—1 =0 : O,

by b, by by | Register B

Register C

Cy (&} 6] C3 <

FIGURE 6.5: Circuit for multiplying two elements of GF(2%).

Section 6.7 Implementation of Galois Field Arithmetic 221

|
| i Register B

- by, ,_,,m;;@> by o b, ——z s

bosmd €3 fmpel € ki € fmil ¢ el

Register C

+
£N

‘ ‘_7\' T@W
L

Register A

FIGURE 6.6: Another circuit for muliiplying two elements of GF(2%).

the fourth shift, register A holds the product 8y . Both multiplication circuits shown
in Figures 6.5 and 6.6 are of the same complexity and require the same amount of
computation fime.

Two elements from GF(2") can be multiplied with a combinational logic circuit
with Zm inputs and m outputs. The advantage of this implementation is its speed;
however, for large m, it becomes prohibitively complex and costly. Multiplication
can also be programmed in a general-purpose computer; it requires roughly 5m
instruction executions.

Let r(X) be a polynomial over GF(2). We consider now how to compute r(a').
This type of computation is required in the first step of decoding of a BCH code. Tt
can be done with a circuit for multiplying a field element by o in GF(2™). Again,
we use computation over GF(2%) for illustration. Suppose that we want to compute

r(o) = rg+rie 40’ + o rigatt, (6.46)

where o is a primitive element in GF(2*) given by Table 2.8. We can express the
right-hand side of {6.46) in the form

pla) = (- - (((rga +r)e -+ rip)a + - - o + 7.

Then, we can compute r(o) by adding an input to the circuit for multiplying
by o shown in Figure 6.3. The resultant circuit for computing r{«) is shown in
Figure 6.7. In operation of this circuit, the register is initially empty. The vector
(ro. 71, - - . r14) 1s shifted into the circuit one digit at a time. After the first shift, the
register contains (ry4, 0, 0, 0). At the end of the second shift, the register contains
the vector representation of riqe + r13. At the completion of the third shift, the

222 Chapter 6 Binary BCH Codes

1(X)
Input C/ O

FIGURE 6.7: Circuit for computing r(«).

o Ol O~

FIGURE 6.8: Circuit for computing ().

register contains the vector representation of (r4 + r13)a + ri2. When the last
digit rg is shifted into the circuit, the register contains r(x) in vector form.
Similarly, we can compute r(e®) by adding an input to the circuit for multi-
plying by o of Figure 6.4. The resultant circuit for computing r(«®) is shown in
Figure 6.8.
There is another way of computing r(c'). Let ¢, (X) be the minimal polynomial
of o'. Let b(X) be the remainder resulting from dividing r(X) by é;(X). Then,

r(e) = ba).

Thus, computing r(e’) is equivalent to computing b(a'). A circuit can be devised
to compute b(a'). For illustration, we again consider computation over GF2%).
Suppose that we want to compute r(«>). The minimal polynomial of a3 is p3(X) =
1+ X + X2+ X3+ X* The remainder resulting from dividing r(X) by ¢3(X) has
the form

B(X) = by + b1 X + 6o X + b3 X°.

Then,
r(a’) = b(a®)
= bg + bra® + bya® + b3’
(6.47)
= by + bia® + by(a? +) + by (e +)
= by + baa + bya® + (by + by + b3)a’.

From the preceding expression we see that r(a®) can be computed by using a
circuit that divides r(X) by ¢5(X) = 1 + X + X2 4+ X* + X* and then combining

Section 6.7 Implementation of Galois Field Arithmetic 223

the coefficients of the remainder b(X) as given by (6.47). Such a circuit is shown
in Figure 6.9, where the feedback connection of the shift register is based on
$3(X) =14 X + X% + X3 + X*. Because «° is a conjugate of 7, it has the same
minimal polynomial as ¢, and therefore r(«®) can be computed from the same
remainder b(X) resulting from dividing r(X) by ¢3(X). To form t(a®), we combine

‘ A
e >%>—>%»C5>>J

(o)
-
FIGURE 6.9: Another circuit for computing (o) in GF(2%).
(X) ‘E ! j j
X
) i (o B
N
]
> pr(a)
L
()
\AJ (o)
&

FIGURE 6.10: Circuit for computing r(e®) and r(e®) in GF(24).

224 Chapter 6 Binary BCH Codes
the coefficients of b(X) in the following manner:
r(@®) = b
= bg + b1a® + bya'? -+ b3a’®
= by + bi(a? +) + by(1 + & + &% + &%) + bze®
= (bo + b2) + baer + (b1 + by)a® + (by + by + ba)r’.

The combined circuit for computing r(e®) and r(®) is shown in Figure 6.10.

The arithmetic operation of division over GF(2") can be performed by first
forming the multiplicative inverse of the divisor 8 and then multiplying this inverse
B! by the dividend, thus forming the quotient. The multiplicative inverse of g can
be found by using the fact that Z“~1 = 1. Thus,

-1 om0
B =5 "

6.8 IMPLEMENTATION OF ERROR CORRECTION

Each step in the decoding of a BCH code can be implemented either by digital
hardware or by software. Each implementation has certain advantages. We consider
these implementations next.

6.8.1 Syndrome Computations

The first step in decoding a t-error-correction BCH code is to compute the 2r
syndrome components Sy, Sz, - - - , Sy, these syndrome components may be obtained
by substituting the field elements «, a2, ..., & into the received polynomial r(X).
For software implementation, o into r(X) is best substituted as follows:

Si=r(@") =rp_1 @)+ 1@ P4 e+
={-- ((rn—lai + }",1*2)0[1‘ + 711—3)ai + o+ rl)ai +ro.

This computation takes n — 1 additions and » — 1 multiplications. For binary BCH
codes, we have shown that Sy; = Sl.z. With this equality, the 2r syndrome components
can be computed with (n — 1)r additions and »n¢ multiplications.

For hardware implementation, the syndrome components may be computed
with feedback shift registers as described in Section 6.7. We may use either the type
of circuits shown in Figures 6.7 and 6.8 or the type of circuit shown in Figure 6.10.
The second type of circuit is simpler. From the expression of (6.3), we see that the
generator polynomial is a product of at most minimal polynomials. Therefore, at
most ¢ feedback shift registers, each consisting of at most m stages, are needed to
form the 2¢ syndrome components. The computation is performed as the received
polynomial r(X) enters the decoder. As soon as the entire r(X) has entered the
decoder, the 2t syndrome components are formed. It takes n clock cycles to complete
the computation. A syndrome computation circuit for the double-error-correcting
(15, 7) BCH code is shown in Figure 6.11, where two feedback shift registers, each
with four stages, are employed.

The advantage of hardware implementation of syndrome computation is speed;
however, software implementation is less expensive.

Section 5.8 Implemeantation of Error Correction 225

r(X)
Input

= 15-bit buffer register

G(X)=1+xX+Xx"

e

S(X)=1+X+ X+ X+ X

, |
S—E S N

= 153

FIGURE 6.11: Syndrome computation circuit for the double-error-correciing (15, 7)
BCH code.

6.8.2 Finding the Error-Location Polynomial o (X)

For this step the software computation requires somewhat fewer than ¢ additions
and ¢ multiplications to compute each ¢“)(X) and each d,,, and since there are
of each, the total is roughly 212 additions and 2% multiplications. A pure hardware
implementation requires the same total, and the speed depends on how much is done
in parallel. The type of circuit shown in Figure 6.2 may be used for addition, and the
type of circuits shown in Figures 6.5 and 6.6 may be used for multiplications. A very
fast hardware implementation of finding ¢ (X) would probably be very expensive,
whereas a simple hardware implementation would probably be organized much like
a general-purpose computer, except with a wired rather than a stored program.

6.8.3 Computation of Error-Location Numbers and Error Correction

In the worst case, this step requires substituting » field elements into an error-location
polynomial o (X) of degree t to determine its roots. In software this requires ns multi-
plications and nt additions. This step can also be performed in hardware using Chien’s

226 Chapter 6 Binary BCH Codes

searching circuit, shown in Figure 6.1. Chien’s searching circuit requires r multipliers
for multiplying by «, &2, - - -, &, respectively. These multipliers may be the type of
circuits shown in Figures 6.3 and 6.4. Initially, o1, 09, - - - , o; found in step 2 are loaded
into the registers of the + multipliers. Then, these multipliers are shifted n times. At

the end of the Ith shift, the 7 registers contain oo, opa?, - - - , o;a’’. Then, the sum

14010 + o + -+ o0

is tested. If the sum is zero, " is an error-location number; otherwise, «” ! is
not an error-location number. This sum can be formed by using ¢ m-input modulo-2
adders. An m-input OR gate is used to test whether the sum is zero. It takes n clock
cycles to complete this step. If we want to correct only the message digits, only &k
clock cycles are needed. A Chien’s searching circuit for the double-error-correcting
(15, 6) BCH code is shown in Figure 6.12.

For large t and m, the cost for building ¢ wired multipliers for multiplying

a, o, -, a' in one clock cycle becomes substantial. For more economical but
Output
15-bit buffer register r(X) } C

Multiplying by o
initially load with o

Multiplying by o
initially load with o,

FIGURE 6.12: Chien’s searching circuit for the double-error-correcting (15, 7) BCH
code.

Section 6.9 Weight Distribution and Error Detection of Binary BCH Codes 227

slower multipliers, we may use the type of circuit shown in Figure 6.5 (or shown in
Figure 6.6). Initially, o; is loaded into register B, and o is stored in register C. After
m clock cycles, the product o is in register A. To form o;0% o0l is loaded into
register B. After another m clock cycles, o;a” will be in register A. Using this type
of multiplier, nm clock cycles are needed to complete the third step of decoding a
binary BCH code.

Steps 1 and 3 involve roughly the same amount of computation. Because n is
generally much larger than 7, 4ns is much larger than 4%, and steps 1 and 3 involve
most of the computation. Thus, hardware implementation of these steps is essential
if high decoding speed is needed. With hardware implementation, step 1 can be
done as the received polynomial r(X) is read in, and step 3 can be accomplished
as r(X) is read out. In this case the computation time required in steps 1 and 3 is
essentially negligible.

3}

P

5.9 WEIGHT DISTRIBUTION AND ERROR DETECTION OF BINARY BCH CODES

The weight distributions of double-error-correcting, triple-error-correcting, and
some low-rate primitive BCH codes have been completely determined; however,
the weight distributions for the other BCH codes are still unknown. The weight
distribution of a double-error-correcting or a iriple-error-correcting primitive BCH
code can be determined by first computing the weight distribution of its dual code
and then applying the MacWilliams identity of (3.32). The weight distribution of the
dual of a double-error-correcting primitive BCH code of length 27 — 1 is given in

TABLE 6.9: Weight distribution of the dual of a double-
error-correcting primitive binary BCH code of length 27 — 1.

Oddm =3
Weight, i Number of vectors with weight i, B;
0 1
211171 = 2(;71-’—1)/2—1 [2mA2 + 2(m~l)/271](2m _ 1)
Zm—l (21;1 . 2111—1 + 1)(2171 _ 1)
2/17—1 4 2(171+1)/271 [2771~2 . 2(177—1)/2—1](2111 -1

TABLE 6.10: Weight distribution of the dual of a double-error-correcting
primitive binary BCH code of length 2" — 1.

Evenm = 4

Welght, Number of vectors with weight i. B;
0 1
2117—1 _ 2(m+2)/2—1 2(/11—2)/2—1[2(117—2)/2 + 1](2111 _ 1)/3
2171—1 = 2117/2—-1 2(/11—!—2)/2—1(2171/2 + 1)(2117 o 1)/3
om—1 (277172 + D"~ 1)
211171 -+ 2111/2—1 2(111+2)/2~—l(2m/2 —DHem — l)/3

2111—1 4 2(171+2)/2—1 2(111—2)/2—1[2(111—2)/2 _ 1](2117 _ 1)/3

228 Chapter 6 Binary BCH Codes

TABLE 6.11: Weight distribution of the dual of a triple-error-
correcting primitive binary BCH code of length 27 — 1.

Oddm >S5
Weight, i Number of Vectors with weight i, B;
0 1
2111—1 _ 2(171+1)/2 2(171—5)/2[2(171—3)/2 o+ 1](2)71—1 _ 1)(2171 _ 1)/3
Zm—l _ 2(1n—1)/2 2(171—3)/2[2(111—1)/2 + 1](5 . 2111—1 + 4) (Zm _ 1)/3
2m—1 - 22"1—4 +3. 2)7173 -+ 1)(2)71 _ 1)
2m—1 + 2(171—1)/2 2(111——3)/2{2(m~1)/2 m 1](5 . szl * 4) (2771 _ 1)/3
2m~1 + 2(m+1)/2 2(171~5)/2[2(mf3)/2 _ 1](2111—1 _ 1)(2}12 _ 1)/3

TABLE 6.12: Weight distribution of the dual of a triple-error-
correcting primitive binary BCH code of length 2 — 1.

Evenm > 6

Weight, i Number of vectors with weight i, B;
2m—1 _ 2(2%—4)/2—1 [2m—1 + 2(m+4)/2—1](12m — 4" —])/960
2m—1 . 2(77z+2)/2—1 7[2)12—1 a4 2(m+2)/2—1}2m (2171 _ 1)/48

om=l —gm/2-1 20m=L 4 2m/27 1y 3. 2m 4 8)(2" — 1)/15
2m-1 (29-2%m —4.2M 4+ 64)(2" — 1) /64

2=ty g2l 201 —2m/21y (3. 2m 4 8)(2" — 1)/15
2m=1l 4 pm+2)/2-1 T[2m—1 — 2 t22=Tpmm 1Y /48

217771 + 2(m+4)/271 [217171 _ 2(I7H—4)/2—1](2m . 4) (2m _ 1)/960

Tables 6.9 and 6.10. The weight distribution of the dual of a triple-error-correcting
primitive BCH code is given in Tables 6.11 and 6.12. Results presented in Tables 6.9
to 6.11 were mainly derived by Kasami [22]. For more on the weight distribution of
primitive binary BCH codes, the reader is referred to [9] and [22].

If a double-error-correcting or a triple-error-correcting primitive BCH code is
used for error detection on a BSC with transition probability p, its probability of an
undetected error can be computed from (3.36) and one of the weight distribution
tables, Tables 6.9 t0 6.12. It has been proved [23] that the probability of an undetected
error, P,(E), for a double-error-correcting primitive BCH code of length 2" — 1 is
upper bounded by 272" for p < %, where 2m is the number of parity-check digits
in the code. The probability of an undetected error for a triple-error-correcting
primitive BCH code of length 2” — 1 with odd m satisfies the upper bound 273",
where 3m is the number of parity-check digits in the code [24].

It would be interesting to know how a general t-error-correcting primitive
BCH code performs when it is used for error detection on a BSC with transition
probability p. It has been proved [25] that for a r-error-correcting primitive BCH of

i

Section 6.9 Weight Distribution and Error Detection of Binary BCH Codes 229

length 2™ — 1, if the number of parity-check digits is equal to mr, and m is greater
than a certain constant my(r), the number of codewords of weight i satisfies the
following equalities:

0 for0 <i <2
A = (6.48)

(A + g - n/10) (’: >)2~<"~’<> fori > 21,

where n = 2™ — 1, and XA is upper bounded by a constant. From (3.19) and (6.48),
we obtain the following expression for the probability of an undetected error:

n

Pu(E) = (1+ 2o -0 V1027070 57 (Z")p"(l—p)“". (6.49)
1=2t+1

Let e = (2t + 1)/n. Then the summation of (6.49) can be upper bounded as follows
[13]:

n

Z (’;l)Pi(l _ p)n*i < 2—nE(8,p) (650)

i=ne

provided that p < s, where
E(e, p) = H(p) + (¢ — p)H'(p) — H(e)
H(x) = —xlog; x — (1 —x)logy (1 — x),
and 1
H'(x) = log, =
x

E(g, p) is positive for ¢ > p. Combining (6.49) and (6.50), we obtain the following
upper bound on P, (E) for ¢ > p:

PM(E> S (1 + }\‘0 . n—1/10)2—1‘1E(8,p)2*(11*l{)

For p < ¢ and sufficient large n, P,(E) can be made very small. For p > ¢, we can
also derive a bound on P, (E). It is clear from (6.49) that

L —1/10yy—(n—k) . n i1 . =i
P(EY<(Q+hiy-n)2 §<1>P(1) .
Because .
Z(:)p"<1~—p>":1,
i=0
we obtain the following upper bound on P, (E):
Pu(E) < (1+ag-n 1027078, (6.51)

We see that for p > ¢, P, still decreases exponentially with the number of parity-
check digits, n — k. If we use a sufficiently large number of parity-check digits, the
probability of an undetected error P,(E) will become very small. Now, we may

230 Chapter 6 Binary BCH Codes

summarize the preceding results above as follows: For a 7-error-correcting primitive
BCH code of length n = 2™ — 1 with number of parity-check digits n — k = mt
and m > mg(t), its probability of an undetected error on a BSC with transition
probability p satisfies the following bounds:

(1 + ro-n~V10y2-nll=R+EEP] for p < ¢

(1 + Ag - n~1/10)p—n(=R) for p > ¢ (6.52)

P(E) = {

where ¢ = 2t + 1)/n, R = k/n, and Aq 1s a constant.
The foregoing analysis indicates that primitive BCH codes are very effective
for error detection on a BSC.

6.10 REMARKS

BCH codes form a subclass of a very special class of linear codes known as Goppa
codes {21, 22]. It has been proved that the class of Goppa codes contains good
codes. Goppa codes are in general noncyclic (except the BCH codes), and they
can be decoded much like BCH codes. The decoding also consists of four steps:
(1) compute the syndromes; (2) determine the error-location polynomial ¢ (X);
(3) find the error-location numbers; and (4) evaluate the error values (this step is
not needed for binary Goppa codes). Berlekamp’s iterative algorithm for finding
the error-location polynomial for a BCH code can be modified for finding the
error-location polynomial for Goppa codes [26]. Discussion of Goppa codes is
beyond the scope of this introductory book. Moreover, implementation of BCH
codes is simpler than that of Goppa codes, and no Goppa codes better than
BCH codes have been found. For details on Goppa codes, the reader is referred
to [26]-[30].

Our presentation of BCH codes and their implementation is given in the time
domain. BCH codes also can be defined and implemented in the frequency domain
using Fourier transforms over Galois fields. Decoding BCH codes in the frequency
domain sometimes offers computational or implementation advantages. This topic
will be discussed in Chapter 7.

PROBLEMS

6.1 Consider the Galois field GF(2*) given by Table 2.8. The element g = o’ is
also a primitive element. Let go(X) be the lowest-degree polynomial over GF(2)

that has

BB 8, p*
as its roots. This polynomial also generates a double-error-correcting primitive
BCH code of length 15.

a. Determine go(X).
b. Find the parity-check matrix for this code.
¢. Show that go(X) is the reciprocal polynomial of the polynomial g(X)
that generates the (15, 7) double-error-correcting BCH code given in
Example 6.1.
6.2 Determine the generator polynomials of all the primitive BCH codes of length 31.
Use the Galois field GF(2°) generated by p(X) = 1+ X% + X°.

6.3

6.4

6.5

6.6

®.7

6.8

6.9

6.10

611

Bibliography 231

Suppose that the double-error-correcting BCH code of length 31 constructed
in Problem 6.2 is used for error correction on a BSC. Decode the received
polynomials r(X) = X7+ %0 andry(X) =1+ XV + X8,

Consider a -error-correcting primitive binary BCH code of length n = 2™ — 1.
If 2¢ + 1 is a factor of n, prove that the minimum distance of the code is exactly
2t + 1. (Hint: Let n = [(2¢ + 1). Show that (X" + 1)/(X' +1)is a code polynomial
of weight 2r +1.)

Is there a binary f-error-correcting BCH code of length 2” + 1 for m > 3 and
t < 219 If there is such a code, determine its generator polynomial.

Consider the field GF(2%) generated by p(X) = 1+ X + X* (see Table 2.8). Let
« be a primitive element in GF(2% such that pla) = 0. Devise a circuit that is
capable of multiplying any element in GF(2*) by .

Devise a circuit that is capable of multiplying any two elements in GF(2%). Use
pX)=1+ X2+ X to generate GF(2%).

Devise a syndrome computation circuit for the binary double-error-correcting
(31, 21) BCH code.

Devise a Chien’s searching circuit for the binary double-error-correcting (31, 21)
BCH code.

Consider the Galois field GF(25) given by Table 6.2. Let g = o3 1y = 2, and
d = 5. Determine the generator polynomial of the BCH code that has

B2, 8% 8% B°

as its roots (the general form presented at the end of Section 6.1). What is the
length of this code?

Let lp = —t and d = 2¢ + 2. Then we obtain a BCH code of designed distance
2t + 2 whose generator polynomial has

ﬂ*fv...,lg*l’ﬂongl’...,ﬂf

and their conjugates as all its roots.

a. Show that this code is a reversible cyclic code.

. Show that if 7 is odd, the minimum distance of this code is at least 2¢ + 4.
(Hint: Show that =+ and g'*1 are also roots of the generator polynomial.)

BIBLIOGRAPHY
1. A. Hocquenghem, “Codes corecteurs d’erreurs,” Chiffres, 2: 147-56, 1959.

2. R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of Error Correcting Binary
Group Codes,” Inform. Control, 3: 68—79, March 1960.

3. W. W. Peterson, “Encoding and Error-Correction Procedures for the
Bose—Chaudhuri Codes,” IRE Trans. Inform. Theory, I'T-6: 459-70, September
1960.

4. D. Gorenstein and N. Zierler, ““ A Class of Cyclic Linear Error-Correcting Codes
in p™ Symbols,” J. Soc. Ind. Appl. Math.,9: 107-214, June 1961.

5. 1. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,” J.
Soc. Ind. Appl. Math., 8: 300-304, June 1960.

232 Chapter 6 Binary BCH Codes

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

R. T. Chien, “Cyclic Decoding Procedure for the Bose—Chaudhuri—
Hocquenghem Codes,” IEEE Trans. Inform. Theory, IT-10: 357-63, October
1964.

. G.D. Forney, “On Decoding BCH Codes,” IEEE Trans. Inform. Theory, IT-11:

549-57, October 1965.

. E. R. Berlekamp, “On Decoding Binary Bose-Chaudhuri-Hocquenghem

Codes,” IEEE Trans. Inform. Theory, I'T-11: 577-80, October 1965.

. E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.

J. L. Massey, “Step-by-Step Decoding of the Bose—Chaudhuri—Hocquenghem
Codes,” [EEE Trans. Inform. Theory, IT-11: 580-85, October 1965.

J. L. Massey, “‘Shift-Register Synthesis and BCH Decoding,” IEEE Trans.
Inform. Theory, I'T-15: 122-27, January 1969.

H. O. Burton, “Inversionless Decoding of Binary BCH Codes,” IEEE Trans.
Inform. Theory, I'T-17: 46466, July 1971.

W. W. Peterson and E. J. Weldon, Error-Correcting Codes, 2d ed., MIT Press,
Cambridge, 1970.

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,
North Holland, Amsterdam, 1977.

G. C. Clark, J1., and J. B. Cain, Error-Correction Coding for Digital Communi-
cations, Plenum Press, New York, 1981.

R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley
Reading Mass., 1983.

S. B. Wicker, Error Control Systems for Digital Communication and Storage,
Prentice Hall, Englewood Cliffs, N.J., 1995.

H. B. Mann, “On the Number of Information Symbols in Bose—Chaudhuri
Codes,” Inform. Control, 5: 153-62, June 1962.

C. L. Chen, “High-Speed Decoding of BCH Codes,” IEEE Trans. Inform.
Theory, IT-27(2): 254-56, March 1981.

T. Kasami, S. Lin, and W. W. Peterson, “Some Results on Weight Distributions
of BCH Codes,” IEEE Trans. Inform. Theory, IT-12(2): 274, April 1966.

T. Kasami, S. Lin, and W. W. Peterson, “Some Results on Cyclic Codes Which
are Invariant under the Affine Group,” Scientific Report AFCRL-66-622, Air
Force Cambridge Research Labs, Bedford, Mass., 1966.

T. Kasami, “Weight Distributions of Bose—Chaudhuri-Hocquenghem Codes,”
Proc. Conf. Combinatorial Mathematics and Its Applications, R. C. Bose and
T. A. Dowling, eds., University of North Carolina Press, Chapel Hill, 1968.

23

24,

25.

26.

27,

28,

29,

30,

31

Bibliography 233

. S. K. Leung-Yan-Cheong, E. R. Barnes, and D. U. Friedman, “On Some
Properties of the Undetected Error Probability of Linear Codes,” IEEE Trans.
Inform. Theory, IT-25(1): 110-12, January 1979.

G. T. Ong and C. Leung, “On the Undetected Error Probability of Triple-
Error-Correcting BCH Codes,” IEEE Trans. Inform. Theory, IT-37. 673-78,
1991.

V. M. Sidelhikov, “Weight Spectrum of Binary Bose—Chaudhuri-
Hocquenghem Code.” Probl. Inform. Transm.,7(1): 11-17, 1971.

V. D. Goppa, “A New Class of Linear Codes,” Probl. Peredachi Inform., 6(3):
24-30, September 1970.

V. D. Goppa, “Rational Representation of Codes and (L, g) Codes,” Probl
Peredachi Inform., 7(3): 41-49, September 1971.

N. J. Patterson, “The Algebraic Decoding of Goppa Codes,” IEEE Trans.
Inform. Theory, I'T-21:203-7, March 1975.

E. R. Berlekamp, “Goppa Codes,” [EEE Trans. Inform. Theory, IT-19(5):
590-92, September 1973.

Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A Method for
Solving Key Equation for Decoding Goppa Codes,” Inform. Control, 27: 8799,
January 1975.

R. E. Blahut, “Transform Techniques for Error Control Codes,” IBM J. Res.
Dev.,23(3): 299-315 May 1979.

