CHAPTER 5

Cyclic codes form an important subclass of linear block codes. These codes are
attractive for two reasons: first, encoding and syndrome computation can be imple-
mented easily by employing shift registers with feedback connections (known as
linear sequential circuits); and second, because they have considerable inherent
algebraic structure, it is possible to devise various practical methods for decoding
them. Cyclic codes are widely used in communication systems for error control.
They are particularly efficient for error detection.

Cyclic codes were first studied by Eugene Prange in 1957 [1]. Since then,
progress in the study of cyclic codes for both random-error correction and burst-
error correction has been spurred by many algebraic coding theorists. Many
classes of cyclic codes have been constructed over the years, including BCH
codes, Reed—Solomon codes, Euclidean geometry codes, projective geometry codes,
quadratic residue codes, and Fire codes, which will be discussed in later chapters.
Excellent expositions of cyclic codes can be found in [2-5]. References [6-9] also
provide good coverage of cyclic codes.

5.1 DESCRIPTION OF CYCLIC CODES

If we cyclically shift the components of an n-tuple v = (vg, v1, - - - , vy—1) one place
to the right, we obtain another n-tuple,

1
V( ) = (U1, Y0, -+« Un—2),

which is called a cyclic shift of v. If the components of v are cyclically shifted i places
to the right, the resultant n-tuple is

i
V( )= (Un—is Un—igls """ Unel, U0, V1, 00 Up—i=1)-

Clearly, cyclically shifting v i places to the right is equivalent to cyclically shifting v
n — 1 places to the left.

DermiTION 5.1 An (1, k) linear code C is called a cyclic code if every cyclic
shift of a codeword in C is also a codeword in C.

The (7, 4) linear code given in Table 5.1 is a cyclic code.
To develop the algebraic properties of a cyclic code, we treat the components
of a codeword v = (vg, vy, - -+ , v,_1) as the coefficients of a polynomial as follows:

V(X)) =v+un X+ U2X2 4+t U”AlX"—I,

Thus, each codeword corresponds to a polynomial of degree n —1 orless. If v, # 0,
the degree of v(X) is n — 1; if v,_; = 0, the degree of v(X) is less than n — 1. The
correspondence between the codeword v and the polynomial v(X) is one-to-one. We
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TABLE 5.1: A (7, 4) cyclic code generated by g(¥) =14+ X + X°.

Messages Code vectors Code polynomnrials
(0000} 0000060 0=0-g(X)

(1000) 1101000 1+‘V X =1-gX)
(0100) 0110100 X+X*4+X =X.gX
(

(1100) 1011100 1+X2+}V’+XJ‘ 14+ X) - g(X)
0010) 0011010 z<2¢v3+v5-x2 2(X)

(1010) 1110010 1+X+X4+X=0+X% 800
(0110) 0101110 X+ X +X'+X =X +X% gX)
(1110) 1000110 1+X4+X5:(1+X+X2).g(x)

(©001) 0001101 X+ x*+x0=x% gX

(1001 1100101 1+X+x*+ X0 =01+ gX)

(0101 0111001 X+ X2+ X3+ V6—(v X% . g(X)

(1101) 1010001 14+ X24+X0=Q04+Xx+X%% X

(0011 0010111  X?+ X*+X° + X0 = (X2 + X% - g(X)

(1611) 1111111 14+ X+ X2+ X3+ x4 4 X5 + X6
=(1+X>+ X% gX

(0111) 0100011 X+X5+1V6 (X + X2 4+ X3 - g(X)

(1111) 1001011 1+ X3+ x>+ %6

=(1+X+X>+ X gX)

shall call v(X) the code polynomial of v. Hereafter, we shall use the terms codeword
and code poiynomial interchangeably. The code polynomial that corresponds to
codeword v is

V“)(X) = Uit Vi1 X A+ U IVI ! +vpX' + l)lXH_1 R S xnL

There exists an imﬂ'estmg algebraic relationship between v(X) and v (X0, Multi-
plying v(X) by X', we obiain

X = vX + o X v X ey, x0T
The preceding equation can be manipulated into the following form:
XV =g+ og i1 X+ v X uoX o o X0
Ui (T D v XX+ D+ F v XX+ (50)
= q(X)(X" + 1) + v (X),

where q(X) = vy—j + vy_ip1 X + -+ v,_1 X'~1. From (5.1) we see that the code
polynomial v\ (X) is simply the remainder resulting from dividing the polynomial
Xiv(X) by X" + 1.

Next, we prove a number of important algebraic properties of a cyclic code that
make possible the simple implementation of encoding and syndrome computation.

TreoreM 5.1 The nonzero code polynomial of minimum degree in a cyclic
code C is unique.
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Proof. Let g(X) =go+g1X +---+ g-1X" "1 + X" be a nonzero code poly-
nomial of minimum degree in C. Suppose that g(X) is not unique. Then,
there exists another code polynomial of degree r, say g'(X) = g, + g1 X +
o+ g/ X"t 4 X" Because C is linear, g(X) + g(X) = (g0 + gp) + (81 +
gi)X + -+ (g1 + g,’._l)X"‘1 1s a code polynomial of degree less than r. If
g(X)+¢'(X) # 0, then g(X)+g'(X) is a nonzero code polynomial of degree less
than the minimum degree r. This is impossible. Therefore, g(X) + ¢'(X) = 0.
This implies that g'(X) = g(X). Hence, g(X) is unique. Q.E.D.

ToEOREM 5.2 Let g(X) = go + g1 X + --- + g1 X ! + X" be the nonzero
code polynomial of minimum degree in an (n, k) cyclic code C. Then, the
constant term go must be equal to 1.

Proof. Suppose that go = 0. Then,
gX) =g X+ X+ g X 4 X
=X(g+aX+ g1 XA XT.

If we shift g(X) cyclically n — 1 places to the right (or one place to the left),
we obtain a nonzero code polynomial, g1 + g2 X + -+ + g1 X" 72 4+ X", of
degree less than r. This is a contradiction to the assumption that g(X) is the
nonzero code polynomial with minimum degree. Thus, gg # 0. Q.E.D.

It follows from Theorem 5.2 that the nonzero code polynomial of minimum
degree in an (n, k) cyclic code C is of the following form:

gX) =1+ X+ o X"+ +g X T+ X" (5.2)

Consider the (7, 4) cyclic code given in Table 5.1. The nonzero code polynomial of
minimum degree is g(X) = 1 + X + X3,

Consider the polynomials Xg(X), ng(X), e ,X”"‘“lg(X), of degrees r +
1,742, ---,n—1,respectively. It follows from (5.1) that Xg(X) = g (X), X?g(X) =
g@(X), -, X" 1g(X) = g" "D (X); that is, they are cyclic shifts of the code
polynomial g(X). Therefore, they are code polynomials in C. Since C is linear, a
linear combination of g(X), Xg(X),--- , X”_"_lg(X),

V(X) = uog(X) + ur Xg(X) + -+ upy_ 1 X" Lg(X) 53)
= (o + w1 X + -+ 1y X" Hg(X), '

Is also a code polynomial, where u; = 0 or 1. The following theorem characterizes
an important property of a cyclic code.

THEOREM 5.3 Letg(X) = 1+g X+-- +g,_1 X "' + X" be the nonzero code
polynomial of minimum degree in an (n, k) cyclic code C. A binary polynomial
of degree n — 1 or less is a code polynomial if and only if it is a multiple of g(X).

Proof. Let v(X) be a binary polynomial of degree n — 1 or less. Suppose that
v(X) is a multiple of g(X). Then,

v(X) = (ap+arX + - +a, 1 X" ""HgXx)
= apg(X) + a; Xg(X) + -+ a,_, 1 X" lg(X).
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Because v(X) is 2 linear combination of the code polynomials g(X), Xg(X), - - -,
X"r=lg(X), it is a code polynomial in C. This proves the first part of the
theorem—that if a polynomial of degree n — 1 or less is a multiple of g(X), it
is a code polynomial.

Now, let v(X) be a code polynomial in C. Dividing v(X) by g(X), we
obtain
v(X) = a(X)g(X) + b(X),

where either b(X) is identical to zero, or the degree of b(X) is less than the
degree of g(X). Rearranging the preceding equation, we have

b(X) = v(X) + a(X)g(X).

It follows from the first part of the theorem that 2(X)g(X) is a code polynomial.
Because both v(X) and a(X)g(X) are code polynomials, b(X) must also be a
code polynomial. If b(X) s 0, then b(X) is a nonzero code polynomial whose
degree is less than the degree of g(X). This contradicts the assumption that
g(X) is the nonzero code polynomial of minimum degree. Thus, b(X) must be
identical to zero. This proves the second part of the theorem—that a code
polynomial is a multiple of g(X). Q.E.D,

The number of binary polynomials of degree n — 1 or less that are multiples of
g(X) is 2" It follows from Theorem 5.3 that these polynomials form all the code
polynomials of the (n, k) cyclic code C. Because there are 2F code polynomials in
C, then 2" must be equal to 2F. As a result, we have r = n — k [i.e., the degree of
g(X) is n — k]. Hence, the nonzero code polynomial of minimum degree in an (n, k)
cyclic code is of the following form:

gXy=1+g X+ ngz 4+t gn_qu”_kkl + xnk,
Summarizing the preceding results, we have the following theorem:

TurorEM 54 In an (s, k) cyclic code, there exists one and only one code
polynormial of degree n — &,

gX)=1+gX+&X + - + g X 4 X" (5.4)

Every code polynomial is a multiple of g(X), and every binary polynomial of
degree n — 1 or less that is a multiple of g(X) is a code polynomial.

It follows from Theorem 5.4 that every code polynomial v(X) in an (n, k) cyclic
code can be expressed in the following form:

v(X) = u(X)g(X)
= (o + 11 X + -+ + w1 X Hg(X).

If the coefficients of w(X), ug, uy, -+, ur_1, are the k information digits to be
encoded, v(X) is the corresponding code polynomial. Hence, the encoding can be
achieved by multiplying the message w(X) by g(X). Therefore, an (n, k) cyclic code
is completely specified by its nonzero code polynomial of minimum degree, g(X),
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given by (5.4). The polynomial g(X) is called the generator polynomial of the code.
The degree of g(X) is equal to the number of parity-check digits of the code. The
generator polynomial of the (7, 4) cyclic code given in Table 4.1is g(X) = 1+ X+ X°.
We see that each code polynomial is a multiple of g(X).

The next important property of a cyclic code is given in the following theorem.

TueoREM 5.5 The generator polynomial g(X) of an (n, k) cyclic code is a
factor of X" + 1.

Proof. Muitiplying g(X) by X* results in a polynomial X*g(X) of degree x.
Dividing X*g(X) by X" + 1, we obtain

Xrg(X) = (X" +1) + g (X), (5.5)

where g (X) is the remainder. It follows from (5.1) that g (X) is the code
polynomial obtained by shifting g(X) to the right cyclically & times. Hence,
g% (X) is a multiple of g(X), say g*(X) = a(X)g(X). From (5.5) we obtain

X" +1= (X" +aX)}gX).
Thus, g(X) is a factor of X" + 1. Q.E.D.

At this point, a natural question is whether, for any »n and k, there exisis an
(n, k) cyclic code. This question is answered by the following theorem.

THEOREM 5.6 If g(X) is a polynomial of degree n — k and is a factor of X" 41,
then g(X) generates an (n, k) cyclic code.

Proof. Consider the k polynomials g(X), Xg(X), - - -, X*"1g(X), all of degree
n — 1 or less. A linear combination of these k polynomials, '
v(X) = agg(X) + a1 Xg(X) + - + a1 X g(X)
= (ap + a1 X + - + a1 X Hg(X),
is also a polynomial of degree n — 1 or less and is a multiple of g(X). There are
a total of 2¢ such polynomials, and they form an (n, k) linear code.
Let v(X) = vg +v1 X +--- 4+ v,_1 X"~ ! be a code polynomial in this code.
Multiplying v(X) by X, we obtain
Xv(X) = voX + 11 X2 4 + v, X T4 v, 1 X"

- U”_.l(X" + D+ (o +vpX 4o U,7_2X”71)

=, (X" + 1)+ v X),
where vV (X) is a cyclic shift of v(X). Since both Xv(X) and X" +1 are divisible
by g(X), v (X) must be divisible by g(X). Thus, v (X) is a multiple of g(X)
and is a linear combination of g(X), Xg(X), --- , X*~!g(X). Hence, v\V (X) is

also a code polynomial. It follows from Definition 5.1 that the linear code
generated by g(X), Xg(X), -- -, X"'_lg(X) is an (n, k) cyclic code. Q.E.D.
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Theorem 5.6 says that any factor of X" + 1 with degree n — k generates an
(n, k) cyclic code. For large n, X" + 1 may have many factors of degree n — k.
Some of these polynomials generate good codes, and some generate bad codes.
How to select generator polynomials to produce good cyclic codes is a very difficult
problem, and coding theorists have expended much effort in searching for good
cyclic codes. Several classes of good cyclic codes have been discovered, and they can
be practically implemented.

EXAMPLE 5.1

The polynomial X7 4 1 can be factored as follows:
7 o 8% 3 2 3
X' +1=0+X0+X+ XA+ X"+ X7).

There are iwo factors of degree 3, and each generates a (7, 4) cyclic code. The
(7. 4) cyclic code given by Table 5.1 is generated by g(X) = 1 + X + X3. This code
has a minimum distance of 3 and it is a single-error-correcting code. Notice that the
code is not in systematic form. Each code polynomial is the product of a message
polynomial of degree 3 or less and the generator polynomial g(X) = 1+ X + X°, For
example, letw = (1 010) be the message to be encoded. The corresponding message
polynomial is m(X) = 1 + X2. Multiplying u(X) by g(X) gives us the following code
polynomial:

v(X) =1+ XA+ X + X%
=1+X+X>+Xx°

or the codeword (1110010).

Given the generator polynomial g(X) of an (n. k) cyclic code, we can put
the code into systematic form (i.e., the rightmost k digits of each codeword are
the unaltered information digits, and the leftmost n — k digits are parity-check
digits). Suppose that the message to be encoded is w = (ug. uy, -+ . ugp—1). The
corresponding message polynomial is

wX) =ug+ui X 4+ +up_ XL
Multiplying m(X) by X"~*, we obtain a polynomial of degree n — 1 or less:
X" (X)) = ug X" F b R oy x L
Dividing X"“*u(X) by the generator polynomial g(X), we have
X" Fu(x) = a(X)g(X) + b(X) (5.6)

where a(X) and b(X) are the quotient and the remainder, respectively. Because the
degree of g(X) is n — k, the degree of b(X) must be n — k — 1 or less; that is,

(X)) =bg+D01 X+ -+ bn—/<_1X”_k_1,
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Rearranging (5.6), we obtain the f{ollowing polynomial of degree n — 1 or less:
b(X) + X" u(X) = a(X)g(X). (5.7)

This polynomial is a multiple of the generator polynomial g(X) and therefore it is a
code polynomial of the cyclic code generated by g(X). Writing out b(X) + X" *u(X),
we have

b(X) + X”—klm(X) =by+ b1 X+ + bn_k_lxn—k—l

(5.8)
FupX" R g X gy XL
which corresponds to the codeword
(bo, b1, -+, by—k—1, uo, U1, - L Ug—1).
We see that the codeword consists of k unaltered information digits (ug, 11, - - - , ux_1)

followed by n — k parity-check digits. The n — k parity-check digits are simply
the coefficients of the remainder resulting from dividing the message polynomial
X"*u(X) by the generator polynomial g(X). The preceding process yields an
(n, k) cyclic code in systematic form. In connection with cyclic codes in systematic
form, the following convention is used: the first n — k symbols, the coefficients
of 1, X, -+, X" %1 are taken as parity-check digits, and the last k symbols, the
coefficients of Xn—k xn—k+l ... ,X”_l, are taken as the information digits. In
summary, encoding in systematic form consists of three steps:

Step 1. Premultiply the message u(X) by X",

Step 2. Obtain the remainder b(X) (the parity-check digits) from dividing
X"~*w(X) by the generator polynomial g(X).

Step 3. Conf]l{bine b(X) and X" *u(X) to obtain the code polynomial b(X) +
X" *u(Xx).

EXAMPLE 5.2

Consider the (7, 4) cyclic code generated by g(X) =1+ X + X>. Letu(X) =1+ X3
be the message to be encoded. Dividing X*u(X) = X3 + X% by g(X),

X?+X (quotient)

X3+ X +1x° X3
X6 +X4—|— X3
X4
x4 +X24+X

X?+X (remainder)

we obtain the remainder b(X) = X -+ X2. Thus, the code polynomial is v(X) = b(X)+
X3u(X) = X + X% + X3+ X%, and the corresponding codewordis v =(0111001),
where the four rightmost digits are the information digits. The 16 codewords in
systematic form are listed in Table 5.2.
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TABLEB.2: A

Generator and Parity-Check Matrices of Cyclic Codes

{7, 4} cyclic code in systematic form generated by g(X) =

1+ X+ X

Message  Codeword

(0000) (0000060) O:O-g(X)

(1000) (1101600) 1+Xx+ ~g(§{

(6100) (0110100) X+ X%+ X* = XgX)

(1100) (1011100 1+ X%+ "3+ X4 =1+ XgX)
0010y (1110010) 1+ X4+ X2+ X =1+ X)HgX)
(1010)  (0011010) X2+ X3 + X° = X2g(X)

(0110) (1000110) 14+ X4+ X5 =1+ X+ XHgX)
(1110) (©101110) X4 X3+‘”%—75«(V+mX%gX
(6001) (1010001 1+x + X0 = (14 X+ XHgx
(1601  (0111001) X+ x? l—X3+_‘Y6:(Z+X3)g(X)
(010D (110010D 1<+Y~%V4 X0 = (14 XeX)
(1101) (0001101 X3+ X4+ X8 = XX

(0011) (0100011 X+ ;§5+x6 = (X 4 X%+ XHgx)
(1011  (1001011) -+_*z3+x5 + X =1+ X+ /(2~}—X3)g(X)
(0111 (0010111) X2+ X4+ X+ Vé—(x?u%%(
(1111 A11111D) 1+ x4+ X2+ 23+ x4 4 x5 + %6

= (14 X2+ X)g(X)

wn—k
En— ]\ £

vk

GENERATOR AND

i)
PARF

FY-CHEC

Consider an (n, k) cyclic code C with generator polynomial g(X) = go+g1 X +-
. In Section 5.1 we showed that the k code polynomials g(X), X g(}/)
lg(X) span C. If ihe n-tuples corresponding to these k code polynomials are

K MATRICES OF CYCLIC CODES
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used as the rows of a k x n matrix, we obtain the following generator matrix for C:

20 51 &
0 g0 & &
0 0 g0 21 &
G =
K

(Note that go = gn—1 = 1.) In general, G

En—k 0 0 6 - - 0
En—k 0 6 - - 0
’ En—k 0 0
0 g0 &1 82 En—k

(5.9)

3 is not in systematic form; however, we can

put it into systematic form with row operations. For example, the (7, 4) cyclic code
given in Table 5.1 with generator polynomial g(X) = 1 + X -+ X° has the following
matrix as a generator matrix:

1101000
6 11061060
g6 0110610
0 00611 01
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Clearly, G is not in systematic form. If we add the first row to the third row, and
if we add the sum of the first two rows to the fourth row, we obtain the following
matrix:

G =

[ o R =
= e s O

0
0
1
0

O P =
oo O -
OO RO
—_ OO o

which is in systematic form. This matrix generates the same code as G.
Recall that the generator polynomial g(X) is a factor of X" + 1, say

X" +1=gX)h(X), (5.10)
where the polynomial k(X) has degree k and is of the following form:
W(X) = ho+h X +-- + X

with hg = hx = 1. Next, we want to show that a parity-check matrix of C may
be obtained from h(X). Let v = (vp, vy, -+, v,~1) be a codeword in C. Then,
v(X) = a(X)g(X). Multiplying v(X) by h(X), we obtain
v(X)h(X) = a(X)g(X)h(X)
=a(X)(X"+1) (5.11)
= a(X) + X"a(X).
Because the degree of a(X) is k — 1 or less, the powers X*, X*+1 ... x"~1 do not
appear in a(X) + X"a(X). If we expand the product v(X)h(X) on the left-hand side

of (5.11), the coefficients of X*, x**+! ... X"~1 must be equal to zero. Therefore,
we obtain the following n — k equalities:

k
> hivui ;=0 forl<j<n-—k (5.12)
i=0

Now, we take the reciprocal of h(X), which is defined as follows:
XRX™Y 2 by + by X s X2 4 -+ ho XK (5.13)

We can casily see that X¥h(X 1) is also a factor of X" + 1. The polynomial X*h(X 1)
generates an (n, n — k) cyclic code with the following (n — k) x n matrix as a generator
matrix:

h hia heo . . . . . hg 0 . N ¢
0 hk hk—l hk—Z . . . . . hO O . . . O
H=]0 0 he  hiq hi—p - - : . Chg - - - 0
0 0 : . 0 hy heq iy - - - - - hg
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It follows from the n — k equalities of (5.12) that any codeword v in C is orthogonal
to every row of H. Therefore, H is a parity-check matrix of the cyclic code C, and
the row space of H is the dual code of C. Since the parity-check matrix H is obtained
from the polynomial h(X), we call W(X) the parity polynomial of C. Hence, a cyclic
code is also uniquely specified by its parity polyvnomial.

Besides deriving a parity-check matiix for a cyclic code, we have also proved
another important property, which is stated in the following theorem.

TurorEM 5.7 Let C be an (n, k) cyclic code with generator pelynomial g(X).

The dual code of C is also cyclic and is generated by the polynomial X h(x 1y,
where h(X) = (X" + 1) /8(X).

EXAMPLE 5.3

Consider the (7, 4) cyclic code given in Table 5.1 with generator polynomial
g(X) = 1 + X + X>. The parity polynomial is

X7 +1
g(Xx)
=1+ X+ X2+ x*

h(X) =

The reciprocal of h(X) is
hxh=x'0+x x4+ x7Yh
=1+ X2+ 00+ x%
This polynomial X*h(X 1) divides X7 +1 : (X7 + H/X*h(x~H = 1+ X2 + X3
If we construct all the codewords of the (7, 3) code generated by X*h(X~!) =
14+ X%+ %3 + x* we will find that it has a minimum distance of 4. Hence, it is

capable of correcting any single error and simultaneously detecting any combination
of double errors.

We also can easily form the generator matrix in systematic form. Dividing
X"~k+1 by the generator polynomial g(X) fori =0,1,--- , k — 1, we obtain

an/(‘!—f = al(}()g(}() *{"H}),(}()7 (515)
where b; (X) is the remainder with the following form:
o (XY = bjg + by X + -+ + bz’,n—k—lxn_k~1.

Because b;(X) + X"+ fori =0.1,--- , k — 1 are multiples of g(X), they are code
polynomials. Arranging these k code polynomials as rows of a &k x n matrix, we
obtain

boo bo1 bpp -+ bopr-1 1 0 0 0
b1o b1 b -+ blu—k-1 0 1 0 0
G=1{ bo ba bn - by, 0 01 01, (516

br1o br—11 b1z 0 bkig-r 00 G -1
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which 1s the generator matrix of C in systematic form. The corresponding parity-
check matrix for C is

100 -~ 0 bgo b1o b e br-1,0
6010 --- 0 bot b1y b S br—1.1
H=| 0 01 - 0 boz b1p by bi-12
0 00 1 boni-1 brp—k-1 P2p—ik—1 -+ br-1n-ik—1
(5.17)
EXAMPLE 5.4

Again, consider the (7, 4) cyclic code generated by g(X) = 1+ X + X°. Dividing
X3, x4, XS, and Xx° by g(X), we have

X*=gX)+(1+X),

X4 = Xg(X) + (X + X5,

X0 =(X*+DgX) + 1+ X + X%,
X0 = (X* + X + DgX) + (1 + X2).

Rearranging the preceding equations, we obtain the following four code polynomials:

voX)=1+ X + X3,

vi(X) = X + Xx? + X
wX)=1+ X + X? X,

v3(X) =1 + X° + X6©.

Taking these four code polynomials as rows of a 4 x 7 matrix, we obtain the following
generator matrix in systematic form for the (7, 4) cyclic code:

1101000
G:0110100
1110010
1 01 06 0 01

which is identical to the matrix G’ obtained earlier in this section.

5.3 ENCODING OF CYCLIC CODES

As shown in Section 5.1, encoding of an (n, k) cyclic code in systematic form
consists of three steps: (1) multiplying the message polynomial u(X) by X"~%; (2)
dividing X" ku(X) by g(X) to obtain the remainder b(X); and (3) forming the
codeword b(X) + X" u(X). All three steps can be accomplished with a division
circuit that is a linear (n — k)-stage shift register with feedback connections based
on the generator polynomial g(X) =1+ g1 X + oXP 4+ g XLk,
Such a circuit is shown in Figure 5.1. The encoding operation is carried out as
follows:
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Gate b=

A
Message X" fu(X) &m,l\;&}o\ Codeword
N NN

=0
Parity-check
digits

FIGURE 5.1: Encoding circuit for an (1, k) cyclic code with generator polynomial
g(X) =1+ g1X2 44+ gn—k—lxn_k_l 4 -k

Step 1. Turn on the gate. The & information digits ug, w1, -+, up_1 Joruw(X) =
ug +uy X + - + 11 X*~1 in polynomial form] are shifted into the
circuit and simultaneously into the communication channel. Shifting
the message u(X) into the circuit from the froni end is equivaleni to
premultiplying w(X) by X", As soon as the complete message has
entered the circuit, the n — k digits in the register form the remainder,
and thus they are the parity-check digits.

Step 2. Break the feedback connection by turning off the gate.

Step 3. Shift the parity-check digits out and send them into the channel.
These n — k parity-check digits by, by. - -+ . b, _y_1, together with the k
information digits. form a complete codeword.

EXAMPLE 5.5

Consider the (7, 4) cyclic code generated by g(X) = 1+ X + X, The encoding circuit
based on g(X) is shown in Figure 5.2. Suppose that the message uw = (1011) is to
be encoded. As the message digits are shifted into the register the contents of the
register change as follows:

Imput Register comtemts

000 (initial state)

1 110 (first shift)

1 101 (second shift)
0 100 (thixrd shift)

1 100 (fourth shift)

After four shifts, the contents of the register are (1 00). Thus, the complete codeword
is (1001011), and the code polynomial is 1 + X> + X° + X°,

Encoding of a cyclic code can also be accomplished by using its parity
polynomial h(X) = ho+h1 X +- -+ 7 XX Letv = (v, v1. - - - , v,_1) be a codeword.
We have shown in Section 5.2 that the components of v satisty the n — & equalities
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Gate

1
| — /
Message X k(X)) ] Codeword
el
Parity-check
digits

FIGURE 5.2: Encoder for the (7, 4) cyclic code generated by g(X) =1+ X + X°.

kN

FIGURE 5.3: Encoding circuit for an (n, k) cyclic code based on the parity polynomial
h(X)=1+hn X+ -+ X~

() ~(+)

hk* ! hk——Z

Input
—Gae e e b e

tm—3-0 Qutput to channel

of (5.12). Since hy, = 1, the equalities of (5.12) can be put into the following form:

k-1
Vnpkj = hivy_j forl<j<n-k (5.18)
=0

which is known as a difference equation. For a cyclic code in systematic form, the
components vy_i, Up—k+1, - ,» Up—1 Of each codeword are the information digits.
Given these k information digits, (5.18) is a rule for determining the n — k parity-
check digits, vg, vy, -, v—z—1. An encoding circuit based on (5.18) is shown in
Figure 5.3. The feedback connections are based on the coefficients of the parity
polynomial k(X). (Note that iy = h; = 1.) The encoding operation can be described
in the following steps:

Step 1. Initially, gate 1 is turned on and gate 2 is turned off. The k information
digits w(X) =ug+u X +--- + up_1 X*1 are shifted into the register
and the communication channel simultaneously.

Step 2. As soon as the k information digits have entered the shift register,
gate 1is turned off and gate 2 is turned on. The first parity-check digit,

Vp—j—1 = hovp_1 +hivg_p + -+ + A 1vn—k
=up-1+hug—2 + -+ hp_quo,

is formed and appears at point P.
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gister s shified once. The first parity-check digit is shified into
nnel and is also shifted into the register. Now, the second
ef‘k digit,

Uy k=2 = hovu—2 + vy 3+ A v
=g +mup-3+ - F oo + v,

15 formed at P.
Step 4. Step 3 is repeated until n — k parity-check digits have been formed and
shifted into the channel. Then, gate 1 is turned on and gate 2 is turned
off. The next message is now ready to be shifted into the register.

The preceding encoding circuit employs a k-stage shiit register. Comparing the
two encoding circuits presented in this section, we can make the following remarlk:
for codes with more parity-check digiis than message digits, the k-stage encoding
circuil is more economical; otherwise, the (1 —k)-stage encoding circuit is preferable.

EXAMPLE

The pariiy polynomial of the (7, 4) cyclic code generated by g(X) =1+ X + X3 is

. X+ L ,,
W)y = — " =1 X X2 xt
T+ X+ X3
The encoding circuit based on h(X) is shown in Figure 5.4. Each codeword is of the
form v = (vg, v1. V2, V3, Ui. U3, V), where vs, vg, vs, and vg are message digits, and
v, V1, and vy are parity-check digits. The difference equation that determines the
parity-check digits is

It

v =1-v_;+1ve;+1 w5, +0 vg_;
=v7_; + Ve + Vs forl < ;<3

Suppose that the message to be encoded is (1 0 1 1). Then, v3 = 1,1 = 0, v5 =
1. v = 1. The first parity-check digit is

v =v5Fvs+u =14+1+0=0
The second parity-check digit is

vy=vs+u+vs=14+04+1=0.

= =———=>-0 Qutput to channel

FIGURE 5.4: Encoding circuit for the (7, 4) cyclic code based on its parity polynomial
W(X) =14 X+ X%+ X
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The third parity-check digit is
UQ:U4—%—U3—{~U2:O—!—1+0:1.

Thus, the codeword that corresponds to the message (1011)1s (100101 1).

5.4 SYNDROME COMPUTATION AND ERROR DETECTION

Suppose that a codeword is transmitted. Letr = (rg, ri, -+, ,_1) be the received
vector. Because of the channel noise, the received vector may not be the same as the
transmitted codeword. In the decoding of a linear code, the first step is to compute the
syndromes =r - HT, where His the parity-check matrix. If the syndrome is zero,ris a
codeword, and the decoder accepts r as the transmitted codeword. If the syndrome is
notidentical tozero, ris not acodeword, and the presence of errors has been detected.

We have shown that for a linear systematic code the syndrome is simply
the vector sum of the received parity-check digits and the parity-check digits
recomputed from the received information digits. For a cyclic code in systematic
form, the syndrome can be computed easily. The received vector r is treated as a
polynomial of degree n — 1 or less,

r(X) =ro+rX +rX*+- - F o XL
Dividing r(X) by the generator polynomial g(X), we obtain
r(X) = a(X)g(X) + s(X). (5.19)

The remainder s(X) is a polynomial of degree n —k — 1 or less. The n — k coefficients
of s(X) form the syndrome s. It is clear from Theorem 5.4 that s(X) is identical to
zero if and only if the received polynomial ¥(X) is a code polynomial. Hereafter, we
will simply call s(X) the syndrome. The syndrome can be computed with a division
circuit as shown in Figure 5.5, which is identical to the (n — k)-stage encoding circuit,
except that the received polynomial r(X) is shifted into the register from the left
end. The received polynomial r(X) is shifted into the register with all stages initially
set to 0. As soon as the entire r(X) has been shifted into the register, the contents in
the register form the syndrome s(X).

2l Gate "ﬂ—=

©» O ©
r(X) (I—) sy __b,(+>__,, s ——>®——b> eoo —P@_}E_

Received
vector

FIGURE 5.5: An (n — k)-stage syndrome circuit with input from the left end.
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Because of the cyclic structure of the code, the syndrome s(X) has the following
property.

TrEorEM 5.8 Let s(X) be the syndrome of a received polynomial r(X) =
ro+r X 4 +r,_1 X"} Then, the remainder s (X) resulting from dividing
Xs(X) by the generator polynomial g(X) is the syndrome of r'V (X), which is a

cyclic shift of r(X).
Proof. 1t follows from (5.1) that r(X) and r'V(X) satisty the following rela-
tionship:

Xr(X) =y (X" + 1) + 1D (). (5.20)
Reairanging (5.20), we have

(X0 = rp (X7 4+ 1) + Xr(0). (5.21)
Dividing both sides of (5.21) by g(X) and using the fact that X" +1 = g(COh(X),
we obtain

e(X)g(X) + p(X) = rp—1g(Xh(X) + X[a(X)g(X) + s(X)], (5.22)

where p(X) is the remainder resulting from dividing V(X)) by g(X). Then,
p(X) is the syndrome of r' (X).

Rearranging (5.22), we obtain the following relationship between p(X)
and Xs(X):

Xs(X) = [e(X) + ry1h(X) + Xa(X)]g(X) + p(X). {5.23)

From (5.23) we see that p(X) is also the remainder resulting from dividing
Xs(X) by g(X). Therefore, p(X) = sV (X). This completes the proof. Q.E.ID.

It follows from Theorem 5.8 that the remainder s')(X) resulting from dividing
X's(X) by the generator polynomial g(X) is the syndrome of r)(X), which is the ith
cyclic shift of r(X). This property is useful in decoding cyclic codes. We can obtain
the syndrome s (X) of vV (X) by shifting (or clocking) the syndrome register once
with s(X) as the initial contents and with the input gate disabled. This is because
shifiing the syndrome register once with s(X) as the initial contents is equivalent to
dividing Xs(X) by g(X). Thus, after the shift, the register contains s’ (X). To obtain
the syndrome s (X) of r(X), we simply shift the syndrome register i times with
s(X) as the initial contents.

EXAMPLE 5.7

A syndrome circuit for the (7, 4) cyclic code generated by g(X) =1+ X + X3
is shown in Figure 5.6. Suppose that the received vector is r = (0010110). The
syndrome of r is s = (101). Table 5.3 shows the contents in the register as the
received vector is shifted into the circuit. At the end of the seventh shift, the register
contains the syndrome s = (101). If the register is shifted once more with the input
gate disabled, the new contents will be s = (1 0 0), which is the syndrome of
r(X) = (0001011), a cyclic shift of r.
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Input v
i Gate +

FIGURE 5.6: Syndrome circuit for the (7, 4) cyclic code generated by g(X) =1+
X+X°.

TABLE 5.3: Contents of the syndrome

register shown in Figure 5.6 with r =
(0010110) as input.

Shift Input Register contents

000 (initial state)
000

100

110

011

011

111

101 (syndrome s)
— 100 (syndrome s)
— 010 (syndrome s®)

O 0 1 ON N B W0 e
SO = O PO

We may shift the received vector ¥(X) into the syndrome register from the
right end, as shown in Figure 5.7; however, after the entire r(X) has been shifted into
the register, the contents in the register do not form the syndrome of r(X); rather,
they form the syndrome s" % (X) of r®~®(X), which is the (n — k)th cyclic shift
of r(X). To show this, we notice that shifting ¥(X) from the right end is equivalent
to premultiplying r(X) by X"~X. When the entire ¥r(X) has entered the register,
the register contains the remainder p(X) resulting from dividing X" kp(X) by the
generator polynomial g(X). Thus, we have

X"7kp(X) = a(X)g(X) + p(X). (5.24)
It follows from (5.1) that r(X) and r” % (X) satisfy the following relation:
X" e (X) = b(XOX" + 1) + "0 (X). (5.25)
Combining (5.24) and (5.25) and using the fact that X" + 1 = g(X)h(X), we have
r (X)) = [BOORX) + a(X)]g(X) + p(X).

This equation says that when ¥ =% (X is divided by g(X), p(X) is also the remainder.
Therefore, p(X) is indeed the syndrome of r =0 (X).
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] Gate <=

s

(X

m>é=> 000

Received vector

FIGURE 5.7: An (n — k)-stage syndrome circuit with input from the right end.

Let v(X) be the transmitted codeword, and lete(X) = eg+e; X +- - -+e,_1 X"~ 1
be the error pattern. Then, the received polynomial is

r(X) = v(X) + e(X). {(5.26)

Because v(X) is a multiple of the generator polynomial g(X), combining (5.19)
and (5.26), we have the following relationship between the error pattern and the
syndrome:

e(X) = [a(X) + B(X)]g(X) + s(X), (5.27)

where b(X)g(X) = v(X). This shows that the syndrome is equal to the remainder
resulting from dividing the error pattern by the generator polynomial. The syndrome
can be computed from the received vector; however, the error pattern e(X) is
unknown to the decoder. Therefore, the decoder has to estimate e¢(X) based on the
syndrome s(X). If e(X) is a coset leader in the standard array and if table-lookup
decoding is used, e(X) can correctly be determined from the syndrome.

From (5.27) we see that s(X) is identical to zero if and only if either the error
pattern e(X) = 0 or e(X) is identical to a codeword. If e(X) 1s identical to a code
polynomial, e(X) is an undetectable error patiern. Cyclic codes are very effective for
detecting errors, random or burst. The error-detection circuit is simply a syndrome
circuit with an OR gate whose inputs are the syndrome digits. If the syndrome is not
zero, the output of the OR gate is 1, and the presence of errors has been detected.

Now, we investigate the error-detecting capability of an (n, k) cyclic code.
Suppose that the error patiern e(X) is a burst of length n — k or less (i.e., errors are
confined to n — k or fewer consecutive positions). Then, we can express e(X) in the
following form:

e(X) = X/B(X),

where 0 < j <n — 1, and B(X) is a polynomial of degree n — k — 1 or less. Because
the degree of B(X) is less than the degree of the generator polynomial g(X), B(X)
is not divisible by g(X). Since g(X) is a factor of X" + 1, and X is not a factor
of g(X), g(X) and X/ must be relatively prime. Therefore, ¢(X) = X/B(X) is not
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divisible by g(X). As a result, the syndrome caused by e(X) is not equal to zero. This
implies that an (s, k) cyclic code is capable of detecting any error burst of length
n — k or less. For a cyclic code, an error pattern with errors confined to i high-order
positions and / — i low-order positions is also regarded as a burst of length [ or less.
Such a burst is called an end-around burst. For example,

e = (1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 )

— — s —— — >

is an end-around burst of length 7. An (n, k) cyclic code is also capable of detecting
all the end-around error bursts of length # — k or less (the proof of this is left as a
problem). Summarizing the preceding results, we have the following property:

TrEOREM 5.9 An (n, k) cyclic code is capable of detecting any error burst of
length n — k or less, including the end-around bursts.

In fact, a large percentage of error bursts of length n — k + 1 or longer can be
detected. Consider the bursts of length n — k - 1 starting from the ith digit position
and ending at the (i + n — k)th digit position (i.e., errors are confined to digits
i, €itl, " s €itn—k, With ¢; = e;1,_ = 1). There are 2n—k=1 guch bursts. Among
these bursts, the only one that cannot be detected is

e(X) = X'g(X).

Therefore, the fraction of undetectable bursts of length n — &k + 1 starting from the
ith digit position is 2~~*~D_ This fraction applies to bursts of length n — k + 1
starting from any digit position (including the end-around case). Therefore, we have
the following result:

Tueorem 5.10 The fraction of undetectable bursts of length n — k + 1 is
2—(11—Ic—1).

For [ > n — k + 1, there are 2/~2 bursts of length [ starting from the ith digit
position and ending at the (i + ! — 1)th digit position. Among these bursts, the
undetectable ones must be of the following form:

e(X) = X'a(X)g(X).

where a(X) =ag+ a1 X +--- + al_(,1</¢),1Xlﬁ(n_k)_l, with ap = a;_y—y-1 = 1. The
number of such bursts is 2/~"~%~2 Therefore, the fraction of undetectable bursts
of length [ starting from the ith digit position is 2~ =%, Again, this fraction applies
to bursts of length { starting from any digit position (including the end-around case),
which leads to the following conclusion:

TrEOoREM 5.11 For! > n — k 4 1, the fraction of undetectable error bursts of
length [ is 2~ 0,

The preceding analysis shows that cyclic codes are very effective for burst-error
detection.
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The (7, 4) cyclic code generated by g(X) = 1 + X 4 X> has a minimum distance of
3. It is capable of detecting any combination of two or fewer random eirors or any
burst of length 3 or less. It also detects many bursts of length greater than 3.

LIC CODES

Decoding of cyclic codes consists of the same three steps as for decoding linear
codes: syndrome computation, association of the syndrome with an error pattern,
and error correction. It was shown in Section 5.4 that syndromes for cyclic codes
can be computed with a division circuit whose complexity is linearly proportional
io the number of parity-check digits (i.e., n — k). The error-correction step is simply
adding (modulo-2) the error pattern to the received vector. This addition can be
performed wiih a single EXCLUSIVE-OR gate if correction is carried out serially
(i.e., one digit at a time); n EXCLUSIVE-OR gates are required if correction is
carried out in parallel, as shown in Figure 3.8. The association of the syndrome with
an errov patiern can be completely specified by a decoding table. A siraightforward
approach io the design of a decoding circuii is via a combinational logic circuit
that implements the table-lookup procedure; however, the limit to this approach
is that the complexity of the decoding circuit tends to grow exponentially with the
code length and with the number of errors that are going to be corrected. Cyclic
codes have considerable algebraic and geometric properties. If these properties are
properly used, decoding circuits can be simplified.

The cyclic structure of a cyclic code allows us to decode a received vector
PX)=rg+mX +mXt4+ 4, Xt serially. The received digits are decoded
one ai a fime, and each digit is decoded with the same circuitry. As soon as the
syndrome has been computed the decoding circuit checks whether the syndrome
s(X) corresponds {0 a correctable error pattern e(X) = eg +e1 X + -+ + ¢, X"
with an error at the highest-order position e, ey = 1). If s(X) does not
correspond to an ervor pattern with e, _; = 1, the received polynomial (stored in a
buffer register) and the syndrome regisier are cyclically shifted once simultanecusly.
Thus, we obtain (X)) = r,_y +r0X + - + ra_2 X" and the new contents in
the syndrome register form the syndrome sV (%) of r'V)(X). Now, the second digit
ra_a of 1(X) becomes the first digit of r'(X). The same decoding circuit will check
whether sV (¥) corresponds to an error pattern with an error at location X1,

If the syndrome s(X) of r(X) does correspond to an error pattern with an
error at location X1 (i.e., ey—1 = 1), the first received digit r,,_; is an erroneous
digit, and it must be corrected. The correction is carried out by taking the sum
ru—1 @ e,—1. This correction results in a modified received polynomial, denoted
by 1(X) = rg+rX + A rp2X" % 4+ (re_1 @© e,—1) X" The effect of the
error digit e¢,-1 on the syndrome is then removed from the syndrome s(X), by
adding the syndrome of &/(X) = X" 1 1o s¢X). This sum is the syndrome of the
modified received polynomial r)(X). Now, ri(X) and the syndrome register are
cyclically shified once simultaneously. This shift results in a received polynomial
rr(ll) (X) = (p_1 Dey_1) +7r0X + -+ + ry_2X" 1. The syndrome sgl’(}{) of rfﬁh(X) is
the remainder resulting from dividing X[s(X) + X"~1] by the generator polynomial
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g(X). Because the remainders resulting from dividing Xs(X) and X" by g(X) are
s(D(X) and 1, respectively, we have

sV X)) =sDoo + 1.

Therefore, if 1 is added to the left end of the syndrome register while it is shifted,
we obtain sgl) (X). The decoding circuitry proceeds to decode the received digit r,;, 5.
The decoding of r,,_, and the other received digits is identical to the decoding of
rp—1. Whenever an error is detected and corrected, its effect on the syndrome is
removed. The decoding stops after a total of » shifts. If e(X) is a correctable error
pattern, the contents of the syndrome register should be zero at the end of the
decoding operation, and the received vector r(X) has been correctly decoded. If the
syndrome register does not contain all 0’s at the end of the decoding process, an
uncorrectable error pattern has been detected.

A general decoder for an (n, k) cyclic code is shown in Figure 5.8. It consists of
three major parts: (1) a syndrome register, (2) an error-pattern detector, and (3) a
buffer register to hold the received vector. The received polynomial is shifted into
the syndrome register from the left end. To remove the effect of an error digit on
the syndrome. we simply feed the error digit into the shift register from the left end
through an EXCLUSIVE-OR gate. The decoding operation is as follows:

L Gate
¥
r(X) Gate 5 Buffer register Q\
Received I | Corrected
vector vector

Eaa Feedback connection

Gate |=e—

-—-—-——-><+>—!> Syndrome register

e o e

e
Error pattern detection circuit Gate

Syndrome modification

FIGURE 5.8: General cyclic code decoder with received polynomial r(X) shifted into
the syndrome register from the left end.
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Step 1. The syndrome is formed by shifting the entire received vector info
the syndrome register. The received vector is simulianeously stored
in the buffer register.

Step 2. The syndrome is read into the detector and is iested for the corre-
sponding error pattern. The detector is a combinational logic circuit
that is designed in such a way that its output s 1 if and only if the
syndrome in the syndrome register corresponds to a correciable error
pattern with an error at the highesi-order position X", That is, if
a 1 appears at the output of the detector, the received symbol in
the rightmost stage of the buffer register is assumed 0 be erroneous
and must be corrected; if a 0 appears at the output of the detector,
the received symbol at the righimost stage of the buffer register is
assumed to be error-iree, and no correciion is necessary. Thus, the
output of the detector is the estimated error value for the symbol to
come out of the buffer.

Step 3. The first received symbol is read out of the buffer. At the same time,
the syndrome register is shifted once. If the first received symbol is
detected to be an erronecus symbol. it is then correcied by the output
of the detector. The output of the detector is also fed back {o the
syndrome register to modify the syndrome (i.e., to remove the error
etfect from the syndrome). This operation results in a new syndrome,
which corresponds to the altered received vector shifted one place to
the right.

Step 4. The new syndrome formed in step 3 is used to detect whether the
second received symbol (now at the rightmost stage of the buffer
register) is an erroneous symbol. The decoder repeats steps 2 and 3.
The second received symbol is corrected in exactly the same manner
as the first received symbol was corrected.

Step 5. The decoder decodes the received vector symbol by symbol in the
manner outlined until the entire received vector is read oui of the
buffer register.

The preceding decoder is known as a Meggiti decoder [11], which applies
in principle to any cyclic code. But whether it is practical depends entirely on its
error-pattern detection circuit. In some cases the error-pattern detection circuits are
simple. Several of these cases are discussed in subsequent chapters.

EXAMPLE 5.9

Consider the decoding of the (7, 4) cyclic code generated by g(X) = 1+ X + X3,
This code has a minimum distance of 3 and is capable of correcting any single error
over a block of seven digits. There are seven single-error patterns. These seven
error patterns and the all-zero vector form all the coset leaders of the decoding
table. Thus, they form all the correciable error patierns. Suppose that the received
polynomial v(X) = ro +r1 X + X% + X3 4+ 1y X% 4+ rsX° + rg X0 is shifted into
the syndrome register from the left end. The seven single-error patterns and their
corresponding syndrome are listed in Table 5.4.
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TABLE 5.4: Error patterns and their syndromes with the
received polynomial r(X) shifted into the syndrome register
from the left end.

Error pattern Syndrome Syndrome vector
e(X) s(X) (505 515 52)
eg(X) = X° s(X) =1+ X? (101)
es(X) = X° s(X) =14+ X+ X2 (111)
es(X) = X4 s(X) = X + X2 (011
e3(X) = X3 s(X)=1+X (110)
er(X) = X2 s(X) = X2 (001)
e1(X) = X1 s(X)=X 010)
eo(X) = x° s(X)=1 (100)

We see that eg(X) = X° is the only error pattern with an error at location X 6
When this error pattern occurs, the syndrome in the syndrome register will be (1
0 1) after the entire received polynomial r(X) has entered the syndrome register.
The detection of this syndrome indicates that rg is an erroneous digit and must be
corrected. Suppose that the single error occurs at location X' [i.e., e;(X) = X'] for
0 < i < 6. After the entire received polynomial has been shifted into the syndrome
register, the syndrome in the register will not be (101); however, after another 6 — i
shifts, the contents in the syndrome register will be (101), and the next received
digit to come out of the buffer register will be the erroneous digit. Therefore,
only the syndrome (101) needs to be detected, and this can be accomplished
with a single three-input AND gate. The complete decoding circuit is shown in
Figure 5.9. Figure 5.10 illustrates the decoding process. Suppose that the codeword
v=(100101D) Jorv(X) =1+ X+x5+ X6] is transmitted and r = (1011011)
[or r(X) = 1+ X% + X3 + X° + X% is received. A single error occurs at location
X?. When the entire received polynomial has been shifted into the syndrome and
buffer registers, the syndrome register contains (00 1). In Figure 5.10, the contents
in the syndrome register and the contents in the buffer register are recorded after
each shift. Also, there is a pointer to indicate the error location after each shift. We
see that after four more shifts the contents in the syndrome register are (101), and
the erroneous digit r; is the next digit to come out from the buffer register.

The (7, 4) cyclic code considered in Example 5.9 is the same code considered in
Example 3.9. Comparing the decoding circuit shown in Figure 3.9 with the decoding
circuit shown in Figure 5.9, we see that the circuit shown in Figure 5.9 is simpler than
the circuit shown in Figure 3.9. Thus, the cyclic structure does simplify the decoding
circuit; however, the circuit shown in Figure 5.9 takes a longer time to decode a
received vector because the decoding is carried out serially. In general, there is a
trade-off between speed and simplicity, as they cannot be achieved at the same time.

The Meggitt decoder described decodes a received polynomial r(X) = rg +
X+ -+ r,_1 X" from the highest-order received digit r,, 1 to the lowest-order
received digit rg. After decoding the received digit r;, both the buffer and syndrome
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Buffer register
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FIGURE 5.9: Decoding circuit for the (7, 4) cyclic code generated by g(X) = 14+ X+ X°.

registers are shifted once to the right. The next received digit to be decoded is r;_.
It is possible to implement a Meggitt decoder to decode a received polynomial in the
reverse order (i.e., to decode a received polynomial from the lowest-order received
digit rg to the highest-order received digit r,_1). After decoding the received digit r;,
both the buffer and syndrome regisiers are shifted once to the left. The next received
digit to be decoded is r;, 1. The details of this decoding of a received polynomial in
reverse order are left as an exercise.

To decode a cyclic code, the received polynomial r(X) may be shifted into the
syndrome register from the right end for computing the syndrome. When r(X) has
been shifted into the syndrome register, the register contains s”*~%)(X), which is the
syndrome of r"0(X), the (n — k)th cyclic shift of r(X). If s 0 (X) corresponds
to an error pattern e(X) with ¢,_; = 1, the highest-order digit r,,_; of r(X) is
erroneous and must be correcied. In r" =% (X), the digit »,_; is at the location
X7=k=1 SWhen r,_; is corrected, the error effect must be removed from s 0 (X).
The new syndrome, denoted by S(l""k) (X). is the sum of s 0 (%) and the remainder
p(X) resulting from dividing X" %! by the generator polynomial g(X). Because the
degree of X" %1 is less than the degree of g(X),

/t')(X) — }/H*k—-l.

Therefore,
Sgn-vk)(x) — S(”_k)(X) + ank—I’
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FIGURE 5.10: Error-correction process of the circuit shown in Figure 5.9.

which indicates that the effect of an error at the location X”~! on the syndrome can
be removed by feeding the error digit into the syndrome register from the right end
through an EXCLUSIVE-OR gate, as shown in Figure 5.11. The decoding process
of the decoder shown in Figure 5.11 is identical to the decoding process of the
decoder shown in Figure 5.8.



Section 5.5

G

Decoding of Cyclic Codes 161

ate

Buffer register

=)

r(X) =
> Gate F—:>
Received
vector

[
, j
Feedback connection

: SO

H o 00 I

N Y

Corrected
vector

Syndrome register

m>é4_ﬁ
A

Syndrome J

modification
Gate

A

Error pattern detection circuit

€

FIGURE 5.11: General cyclic code decoder with received polynomial r(X) shifted into
the syndrome register from the right end.

EXAMPLE 5.10

Again, we consider the decoding of the (7, 4) cyclic code generated by g(X) =
1+ X + X3, Suppose that the received polynomial r(X) is shifted into the syndrome
regisier from the right end. The seven single-error patterns and their corresponding
syndromes are listed in Table 5.5.

We see that only when e(X) = X° occurs, the syndrome is (001) afier the
entire polynomial r(X) has been shifted into the syndrome register. If the single
error occurs at the location X' with i # 6, the syndrome in the register will not be

TABLE 5.5: Error patierns and their syndromes with the
received polynomial r(X) shifted into the syndrome
register from the right end.

Error pattern Syndrome Syndrome vector
e(X) O ) (50, 51, 52)
e(X)=x° ¥ (x)=x? 001
e(X)=%> sBxX)=X 010)
e(X)=x" O =1 (100)
e(X)=x> D) =1+x2 (101)
e() =% X)) =1+X+X° (111)
e =% PN =X+x? 011
e(X)=x" Px)=1+%X (110
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FIGURE 5.12: Decoding circuit for the (7, 4) cyclic code generated by g(X) =
1+ X+ Xx3.

(001) after the entire received polynomial r(X) has been shifted into the syndrome
register; however, after another 6 — i shifts, the syndrome register will contain
(001). Based on this result, we obtain another decoding circuit for the (7, 4) cyclic
code generated by g(X) =1+ X + X3, as shown in Figure 5.12. We see that the
circuit shown in Figure 5.9 and the circuit shown in Figure 5.12 have the same
complexity.

5.6 CYCLIC HAMMING CODES

The Hamming codes presented in Section 4.1 can be put in cyclic form. A cyclic
Hamming code of length 2™ — 1 with m > 3 is generated by a primitive polynomial
p(X) of degree m.

In the following we show that the cyclic code defined previously is indeed
a Hamming code, by examining its parity-check matrix in systematic form. The
method presented in Section 5.2 is used to form the parity-check matrix. Dividing
XM+ by the generator polynomial p(X) for 0 <i < 2" — m — 1, we obtain

Xm+i = &; (X)p(X) + b,‘ (X), (528)
where the remainder b; (X) is of the form
b (X) =big+ b1 X + -+ bi,m—lxmﬁl.

Because X is not a factor of the primitive polynomial p(X), X"+ and p(X) must
be relatively prime. As a result, b; (X) # 0. Moreover, b; (X) consists of at least two
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terms. Suppose that b; (X) has only one term, say X/ with 0 < j < m. It follows from
(5.28) that _ _
Xm—l—z =g (X)p(X) + X/

Rearranging the preceding equation, we have
X (X 4 1) = 8 (Op(X).

Because X/ and p(X) are relatively prime, the foregoing equation implies that p(X)
divides X'~/ + 1; however, this is impossible since m +i — j < 27 — 1, and p(X) is
a primitive polynomial of degree m. [Recall that the smallest positive integer n such
that p(X) divides X" + 115 2" — 1.] Therefore, for 0 <i < 2™ —m — 1, the remainder
bb; (X) contains at least two terms. Next we show thatfori # j, bi(X) # b;(X). From
(5.28) we obtain

by (30) + X" = 2 GOP(X),
b (X) + X" = a;(X)p(X).

Suppose that b; (X) = b; (X). Assuming thati < j and combining the preceding two
equations above we obtain the following relation:

XX 1) = [ (X) + 8, GO p(X).

This equation implies that p(X) divides X/~ + 1, but this is impossible, since i # j
and j —i < 2™ — 1. Therefore, b; (X) 3 b; (X).

Let H = [1,, @] be the parity-check matrix (in systematic form) of the
cyclic code generaied by p(X), where [, 1s an m x m identity mairix and Q is an
m X (2" —m — D)y matriz. Letb; = (bjo, bi1, -+ -, b; ,—1) be the m-tuple corresponding
to b; (X). It follows from (5.17) that the mairix Q has the 2" — m — 1 b;’s with
0<i<?2™—m—1 as all its columns. It follows from the preceding analysis that
no two columns of Q are alike, and each column has at least two 1’s. Therefore, the
matrix H is indeed a parity-check matrix of a Hamming code, and p(X) generates
this code.

The polynomial p(X) = 1 4+ X + X° is a primitive polynomial. Therefore, the
(7, 4) cyclic code generated by p(X) = 1 + X + X° is a Hamming code. A list of
primitive polynomials with degree > 3 is given in Table 2.7.

Cyclic Hamming codes can easily be decoded. To devise the decoding circuit,
all we need to know is how to decode the first received digit. All the other received
digits will be decoded in the same manner and with the same circuiiry. Suppose thata
single error has occurred at the highest-order position, X" 2, of the received vector
r(X) [i.e., the error polynomial is e(X) = X*" ~2]. Suppose that r(X) is shifted into the
syndrome register from the right end. After the entire r(X) has entered the register,
the syndrome in the register is equal to the remainder resulting from dividing
X™ . X" =2 (the error polynomial preshifted m times) by the generator polynomial
p(X). Because p(X) divides X2" 1 + 1, the syndrome is of the following form:

s(X) = Xm—l.

Therefore, if a single error occurs at the highest-order location of r(X), the resul-
tant syndrome is (0,0, ---,0,1). If a single error occurs at any other location of
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FIGURE 5.13: Decoder for a cyclic Hamming code.
r(X), the resultant syndrome will be different from (0,0, ---,0,1). Based on this
result only a single m-input AND gate is needed to detect the syndrome pattern
(0,0, ---,0,1). The inputs to this AND gate are 5,51, --- .5, _, and 5,,_1, where s;

is a syndrome digit and s/ denotes its complement. A complete decoding circuit for
a cyclic Hamming code is shown in Figure 5.13. The decoding operation is described
in the following steps:

Step 1.

Step 2.

Step 3.

Step 4.

The syndrome is obtained by shifting the entire received vector into
the syndrome register. At the same time, the received vector is stored
in the buffer register. If the syndrome is zero, the decoder assumes that
no error has occurred, and no correction is necessary. If the syndrome
is not zero, the decoder assumes that a single error has occurred.
The received word is read out of the buffer register digit by digit.
As each digit is read out of the buffer register the syndrome register
is shifted cyclically once. As soon as the syndrome in the register
is (0,0,0,---,0,1) the next digit to come out of the buffer is the
erroneous digit, and the output of the m-input AND gate is 1.

The erroneous digit is read out of the buffer register and is corrected by
the output of the m-input AND gate. The correction is accomplished
by an EXCLUSIVE-OR gate.

The syndrome register is reset to zero after the entire received vector
is read out of the buffer.

The cyclic Hamming code presented here can be modified to correct any
single error and simultaneously to detect any combination of double errors. Let
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g(X) = (X + Dp(X), where p(X) is a primitive polynomial of degree m. Because
both X + 1 and p(X) divide X*" ! + 1 and since they are relatively prime, g(X) must
also divide X2"~1 4 1. A single-error-correcting and double-error-detecting cyclic
Hamming code of length 2" — 1 is generated by g(X) = (X 4+ Dp(X). The code has
m + 1 parity-check digits. We show next that the minimum distance of this code is 4.

For convenience, we denote the single-error-correcting cyclic Hamming code
by €7 and denote the cyclic code generated by g(X) = (X + DHp(X) by C;. In fact,
C, consists of the even-weight codewords of C; as all its codewords, because any
odd-weight code polynomial in Cy does not have X + 1 as a factor. Therefore, an
odd-weight code polynomial of Cy is not divisible by g(X) = (X + Dp(X), and it is
not a code polynomial of Co; however, an even-weight code polynomial of €y has
X + 1 as a factor. Therefore, it is divisible by g(X) = (X + Dp(X), and it is also a
code polynomial in Cy. As a result, the minimum weight of C; is at least 4.

Next, we show that the minimum weight of C; is exactly 4. Let i, j, and k
be three distinct nonnegative integers less than 2 — 1 such that X' + X/ + X* is
not divisible by p(X). Such integers do exist. For example, we first choose i and j.
Dividing X' + X/ by p(X), we obtain

X'+ X =aXpX) +b(X),

where b(X) is the remainder with degree m — 1 or less. Because X " 4+ X/ is not
divisible by p(X),b(X) # 0. Now, we choose an integer k such that when X* is
divided by p(X), the remainder is not equal to b(X). Therefore, X T4 X7 + X% is not
divisible by p(X). Dividing this polynomial by p(X), we have

X+ X4 X = e(X)p(X) + d(X). (5.29)

Next, we choose a nonnegative integer / less than 2" — 1 such that when X! is divided
by p(X), the remainder is di(X); that is,

X' = £(Xp(X) + d(X). (5.30)

The integer [ cannot be equal to any of the three integers i, j, or k. Suppose that
I =i.From (5.29) and (5.30} we would obtain

X7 x5 = (%) + 10)pX).

This result implies that p(X) divides X*=7 4+ 1 (assuming that j < k), which is
impossible, since k — j < 2" — 1, and p(X) is a primitive polynomial. Therefore,
I # i. Similarly, we can show that / # j and / # k. Using this fact and combining
(5.29) and (5.30), we obtain

X4+ X 4 X+ X = [e(X) + 10O p(X0).

Because X +1is a factor of X'+ X/ + X* 4 X" and it is not a factor of p(X), e(X) +#(X)
must be divisible by X + 1. As a result, X' + X/ 4 X* 4 X' is divisible by g(X) =
(X + Dp(X). Therefore, it is a code polynomial in the code generated by g(X). It has
weight 4. This proves that the cyclic code €, generated by g(X) = (X + 1)p(X) has
a minimum weight (or distance) of 4. Hence, it is capable of correcting any single
error and simultaneously detecting any combination of double errors.
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Because the distance-4 Hamming code €, of length 2 — 1 consists of the
even-weight codewords of the distance-3 Hamming code C; of length 2™ — 1 as its
codewords, the weight enumerator A;(z) for C; can be determined from the weight
enumerator Ai(z) for Ci. Az(z) consists of only the even power terms of Aq(z).
Therefore,

A (@) = A1) + AL (-2)] (5.31)

(see Problem 5.8). Since A;(Z) is known and is given by (4.1), A(z) can be
determined from (4.1) and (5.31):

1
A ——e | n 1 — 7\ 25(1 — 2\(n—1)/2 , 5.32
2(2) 2(n+1){( +2)"+ A~z +2n(1 —z%) 1 (5.32)
where n = 2" — 1. The dual of a distance-4 cyclic Hamming codeisa 2" — 1, m + 1)
cyclic code that has the following weight distribution:

BO == 1, BZ”’71—1 == 2]” - 1, B2m—] = 2]71 - 1, BZHI_l = 1

Therefore, the weight enumerator for the dual of a distance-4 cyclic Hamming
code is

By) =1+ Q" — D" Ly — 2" 42" (5.33)

If a distance-4 cyclic Hamming code is used for error detection on a BSC, its
probability of an undetected error, P, (E), can be computed from (3.33) and (5.32)
or from (3.36) and (5.33). Computing P,(E) from (3.36) and (5.33), we obtain the
following expression:

Po(E)=2""D(1 422" — (1 - py( —2p)2" Tlpd = 2p)¥ = (1 = 2L
(5.34)

Again, from (5.34), we can show that the probability of an undetected error for the
distance-4 cyclic Hamming codes satisfies the upper bound 27079 = 2-+D (see
Problem 5.21).

Distance-3 and distance-4 cyclic Hamming codes are often used in communi-
cation systems for error detection.

5.7 ERROR-TRAPPING DECODING

In principle, the general decoding method of Meggitt’s applies to any cyclic code, but
refinements are necessary for practical implementation. If we put some restrictions
on the error patterns that we intend to correct, the Meggitt decoder can be
practically implemented. Consider an (n, k) cyclic code with generator polynomial
g(X). Suppose that a code polynomial v(X) is transmitted and is corrupted by
an error pattern e(X). Then, the received polynomial is r(X) = v(X) + e(X). We
showed in Section 5.4 that the syndrome s(X) computed from r(X) is equal to the
remainder resulting from dividing the error pattern e(X) by the generator g(X) [i.e.,

e(X) = a(X)g(X) + s(X)] Suppose that errors are confined to the n — k high-order

positions, X*, X*+1 ... x1=Tofr(X)[ie.,e(X) = et X  +ep 1 XF o e, X771
If r(X) is cyclically slnfted n — k times, the errors will be confined to n — k low-order
parity positions, X0, X!, ... x"=%=1 of ¥"=0(X). The corresponding error pattern
is then

e(’zik)(X) =e + ek-HX +o- en—an_k_1
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Because the syndrome s"~9(X) of r~%(X) is equal to the remainder resulting
from dividing e”~® (X) by g(X) and since the degree of e~ (X) is less than n — k,
we obtain the following equality:

s =TI = e Fepn X b e XL
Multiplying s""~0(X) by X*, we have

Xk (%) = e(X)
=X+ X 4 e, x" L

This result says that if errors are confined to the n — k high-order positions of the
received polynomial #(X), the error pattern e(X) is identical to X s""~0(X), where
s"=K(Xy is the syndrome of r™ ) (X), the (n — k)th cyclic shift of r(X). When
this event occurs, we simply compute s (xy and add X*s" (X to r(X). The
resultant polynomial is the transmitted code polynomial.

Suppose that errors are not confined to the n — k high-order positions but
are confined to n — k consecutive positions, say X/, X'T1 ... x@=+i-1 of p(x)
(including the end-around case). If r(X) is cyclically shifted n — i times to the right,
errors will be confined to the n — k low-order position of r"=D(X), and the error
pattern will be identical to X's"" =9 (X), where s” 7 (X) is the syndrome of r"~" (X).

Now, suppose that we shift the received polynomial r(X) into the syndrome
register from the right end. Shifting r(X) into the syndrome register from the right
end is equivalent to multiplying r(X) by X" X, After the entire r(X) has been shifted
into the syndrome register, the contents of the syndrome register form the syndrome
s (xy of r"~M(X). If the errors are confined to n — k high-order positions,
Xk xkHL oo X7V of p(X), they are identical to s” 7% (X); however, if the errors
are confined to n—k consecutive positions (including end-around) other than the n—k
high-order positions of r(X), after the entire r(X) has been shifted into the syndrome
register, the syndrome register must be shifted a certain number of times before its
contents are identical to the error digits. This shifting of the syndrome register until
its contents are identical to the error digits is called error trapping [14]. If errors are
confined to n — k consecutive positions of r(X) and if we can detect when the errors
are trapped in the syndrome register, errors can be corrected simply by adding the
contents of the syndrome register to the received digits at the n — k proper positions.

Suppose that a r-error-correcting cyclic code is used. To detect the event that
the errors are trapped in the syndrome register, we may simply test the weight of
the syndrome after each shift of the syndrome register. As soon as the weight of
the syndrome becomes 1 or less, we assume that errors are trapped in the syndrome
register. If the number of errors in r(X) is 1 or less and if they are confined to n — k
consecutive positions, the errors are trapped in the syndrome register only when the
weight of the syndrome in the register becomss ¢ or less. This result can be shown
as follows. An error pattern e(X) with r or fewer errors that are confined to n — k
consecutive positions must be of the form e(X) = X/B(X), where B(X) has r or
fewer terms and has degree n — k — 1 or less. (For the end-around case, the same
form would be obtained after a certain number of cyclic shifts of e(X).) Dividing
e(X) by the generator polynomial g(X), we have

XTB(X) = a(X)g(X) +s(X),
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where s(X) is the syndrome of X/B(X). Because s(X) + X/B(X) is a multiple of
g(X),1tis a code polynomial. The syndrome s(X) cannot have weight ¢ or less unless
s(X) = X/B(X). Suppose that the weight of s(X) is ¢ or less, and s(X) # X/B(X).
Then, s(X) + X/B(X) is a nonzero code polynomial with weight less than 2r + 1.
This is impossible, since a t-error-correcting code must have a minimum weight of
at least 2¢ + 1. Therefore, we conclude that the errors are trapped in the syndrome
register only when the weight of the syndrome becomes ¢ or less.

Based on the error-trapping concept and the test just described, an error-
trapping decoder can be implemented as shown in Figure 5.14. The decoding
operation can be described in the following steps:

Step 1. The received polynomial r(X) is shifted into the buffer and syndrome
registers simultaneously with gates 1 and 3 turned on and all the other
gates turned off. Because we are interested only in the recovery of
the k information digits, the buffer register has to store only the &
received information digits.

Step 2. Assoon as the entire r(X) has been shifted into the syndrome register,
the weight of the syndrome in the register is tested by an (n — k)-input
threshold gate whose output is 1 when ¢ or fewer of its inputs are 1;
otherwise, 1t is zero.

a. If the weight of the syndrome is 7 or less, the syndrome digits in the
syndrome register are identical to the error digits at the n — k high-
order positions XX, X**1, ... X"~ of r(X). Now, gates 2 and 4 are
turned on and the other gates are turned off. The received vector
is read out of the buffer register one digit at a time and is corrected
by the error digits shifted out from the syndrome register.

r(X)

————b@ k-bit buffer register @ Ga

te 2
Input Output

{

Syndrome register

Threshold gate

FIGURE 5.14: Error-trapping decoder.
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b. If the weight of the syndrome is greater than ¢, the errors are not
confined to the n — k high-order positions of r(X), and they have
not been trapped in the syndrome register. Go to step 3.

The syndrome register is cyclically shifted once with gate 3 turned
on and other gates turned off. The weight of the new syndrome is
tested. (a) If it is 7 or less, the errors are confined to the iocations
Xk=1 xk ... X2 ofr(X), and the contents in the syndrome register
are identical to the errors at these locations. Because the fivst received
digit r,_1 is error-free, it is read out of the buifer register with gate
2 turned on. As soon as r,.1 has been read out, gaie 4 is turned on
and gate 3 is turned off. The contents in the syndrome register are
shifted out and are used to correct the next n — k received digits to
come out from the buffer register. (b) If the weight of the syndrome
is greater than 7, the syndrome register is shifted once more with gate
3 turned on.

The syndrome register is continuously shifted until the weight of its
contents drops to ¢ or less. If the weighi goes down to 7 ot less at
the end of the ith shift, for 1 < i < k, the first i received digits,

Frimis Tn—itls ** > 'u—1, i the buffer are error-free, and the contents
in the syndrome register are identical to the errors at the locations
Xkt xk=i+l .. xn=i=l Agsoon as the i error-free received digits

have been read out of the buffer register, the contents in the syndrome
register are shifted out and are used to correct the nexi n — k received
digit to come out from the buffer register. When the k received
mformation digits have been read out of the buffer register and have
been corrected, gate 2 is turned off. Any nonzero digits left in the
syndrome register are errors in the parity part of r(X), and they will
be ignored.

If the weight of the syndrome never goes down to ¢ or less by
the time the syndrome register has been shifted k times, either an
error pattern with errors confined to n — k consecutive end-around
locations has occurred or an uncorrectable error pattern has occurred.
The syndrome register keeps being shifted. Suppose that the weight
of its contenis becomes 7 or less at the end of k + [ shifts with
1 <1 <n —k. Then, errors are confined to the # — k consecutive end-

around locations, X", xn— 1 ... xn—1 x0 xl ... xn—k-l-1 of
r(X). The [ digits in the [ leftmost stages of the syndrome register
match the errors at the  high-order locations X"/, x"~/+1 ... xn-1

of r(X). Because the errors at the n — k —/ parity locations are not
needed, the syndrome register is shifted n —k —/ times with all the gates
turned off. Now, the [ errors at the locations X", xn—+1 ... xn-1
of ¥(X) are contained in the [/ rightmost stages of the syndrome
register. With gates 2 and 4 turned on and other gates turned off, the
received digits in the buffer register are read out and are corrected by
the corresponding error digits shifted out from the syndrome register.
This completes the decoding operation.



170 Chapter 5 Cyclic Codes

Py . A AN G ol
Gate 1 k-bit buffer register + Gate 2
Input [t £ N 7 Output

Gate 3 @te 4

Syndrome register

090

Threshold gate

FIGURE 5.15: Another error-trapping decoder.

If the weight of the syndrome never drops to r or less by the time the syndrome
register has been shifted a total of n times, either an uncorrectable error pattern has
occurred or errors are not confined to n — k consecutiive positions. In either case,
errors are detected. Except when errors are confined to the n — k consecutive end-
around positions of r(X), the received information digits can be read out of the buffer
register, corrected, and delivered to the data sink after at most & cyclic shifts of the
syndrome register. When an error pattern with errors confined to n — k consecutive
end-around locations of r(X) occurs, a total of n cyclic shifts of the syndrome register
is required before the received message can be read out of the buffer register for
corrections. For large n and n — k, the number of correctable end-around error
patterns becomes big, which causes an undesirably long decoding delay.

Itis possible to implement the error-trapping decoding in a different manner so
that the error patterns with errors confined to n —k consecutive end-around locations
can be corrected as fast as possible. This can be done by shifting the received vector
r(X) into the syndrome register from the left end, as shown in Figure 5.15. This
variation is based on the following facts. If the errors are confined to n — k low-order
parity positions X 0 xt ..., x" %1 of ¢(X), then after the entire r(X) has entered
the syndrome register, the contents in the register are identical to the error digits at
the locations X 0, x1, ... xn k1 of r(X). Suppose that the errors are not confined
to the n — k low-order positions of r(X) but are confined to n — k consecutive
locations (including the end-around case), say X7, X1 ... x@=0+i-1 Aftern —i
cyclic shifts of r(X), the errors will be shifted to the n — k low-order positions of
r"=)(X), and the syndrome of r®~"(X) will be identical to the errors confined to
positions X!, X1 ... x®=0+-1 of y(X). The operation of the decoder shown in
Figure 5.15 is as follows:

Step 1. Gates 1 and 3 are turned on and the other gates are turned off. The
received vector r(X) is shifted into the syndrome register and simulta-
neously into the buffer register (only the k received information digits
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are stored in the buffer register). As soon as the entire r(X) has been
shifted into the syndrome register, the contents of the register form
the syndrome s(X) of #(X).

The weight of the syndrome is tested. (a) If the weight is 7 or less,
the errors are confined to the (# — k) low-order parity positions
x0 xb ... X"k of r(X). Thus, the k received information digits
in the buffer register are error-free. Gate 2 is then turned on, and the
error-free information digits are read out of the buffer with gate 4
turned off. (b) If the weight of the syndrome is greaier than 7, the
syndrome register is then shifted once with gaie 3 turned on and the
other gates turned off. Go to siep 3.

The weight of the new contents in the syndrome register is tested.
(a) If the weight is r or less, the errors are confined to the position
xn=b x0 xl oo xnh2 of 1(X) (end-around case). The leftmost
digit in the syndrome regisier is identical to the error at the position
X"~1 of r(X); the other n — k — 1 digits in the syndrome register match
the errors at parity positions X0, X1, ..., X"~¥=2 of r(X). The output
of the threshold gate turns gate 3 off and sets a clock to count from 2.
The syndrome register is then shifted (in step with the clock) with gate
3 turned off. As soon as the clock has counted to n — k, the contents of
the syndrome register will be (00 - - - 01). The rightmost digit matches
the error at position X =1 of #(X). The k received information digits
are then read out of the buffer, and the first received information
digit is corrected by the 1 coming out from the syndrome register. The
decoding is thus completed. (b) If the weight of the contents in the syn-
drome register is greater than 7, the syndrome register is shifted once
again with gate 3 turned on and other gates turned off. Go to step 4.
Step 3(b) repeats until the weight of the contents of the syndrome
register drop to r or less. If the weight drops to ¢ or less after the ith
shift, for 1 <i < n-—k, the clock starts to count from i + 1. At the same
time the syndrome register is shifted with gate 3 turned off. As soon as
the clock has counted to n — k, the rightmost i digits in the syndrome
register match the errors in the fivst { received information digits in
the buffer register. The other information digits are error-free. Gates
2 and 4 are then turned on. The received information digits are read
out of the buffer for correction.

If the weight of the contenis of the syndrome register never drops
to ¢t or less by the time that the syndrome register has been shifted
n — k times (with gate 3 turned on), gate 2 is then turned on, and the
received information digits are read out of the buffer one at a time.
At the same time the syndrome register is shifted with gate 3 turned
on. As soon as the weight of the contents of the syndrome register
drops to 1 or less, the contents maich the errors in the next n — k digits
to come out of the buffer. Gate 4 is then turned on, and the erroneous
information digits are corrected by the digits coming out from the
syndrome register with gate 3 turned off. Gate 2 is turned off as soon
as k information digits have been read out of the buffer.
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With the implementation of the error-trapping decoding just described, the
received information digits can be read out of the buffer register after at most n — k
shifts of the syndrome register. For large n — k, this implementation provides faster
decoding than the decoder shown in Figure 5.14; however, when n — k is much
smaller than k, the first implementation of error trapping is more advantageous in
decoding speed than the one shown in Figure 5.15.

The decoding of cyclic Hamming codes presented in Section 5.6 is actually an
error-trapping decoding. The syndrome register is cyclically shifted until the single
error is trapped in the rightmost stage of the register. Error-trapping decoding is most
cffective for decoding single-error-correcting block codes and burst-error-correcting
codes (decoding of burst-error-correcting codes is discussed in Chapter 20). It is
also effective for decoding some short double-error-correcting codes. When error-
trapping decoding is applied to long and high-rate codes (small n — k) with large
error-correcting capability, it becomes very ineffective, and much of the error-
correcting capability is sacrificed. Several refinements of this simple decoding
technique [12]-[19] have been devised to extend its application to multiple-error-
correcting codes. One of the refinements is presented in the next section.

EXAMPLE 5.11

Consider the (15, 7) cyclic code generated by g(X) = 1 + X* + X% + X7 + x8. This
code has a minimum distance of d,,,;, = 5, which will be proved in Chapter 6. Hence,
the code is capable of correcting any combination of two or fewer errors over a
block of 15 digits. Suppose that we decode this code with an error-trapping decoder.

FIGURE 5.16: Ring arrangement of code digit positions.
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FIGURE 5.17: Error-trapping decoder for the (15, 7) cyclic code generated by g(X) =
T+ X5+ x5+ X7+ X8

Clearly, any single error is confined to n — k = 8§ consecutive positions. Therefore,
any single error can be trapped and corrected. Now, consider any double errors
over a span of 15 digits. If we arrange the 15 digit positions X° to X4 as a ring, as
shown in Figure 5.16, we see that any double errors are confined to eight consecutive
positions. Hence, any double errors can be trapped and corrected. An error-trapping
decoder for the (15, 7) cyclic code generated by g(X) =1+ X4 + X6 + X7 + x% is
shown in Figure 5.17.

5.8 IMPROVED ERROR-TRAPPING DECODING

The error-trapping decoding discussed in Section 5.7 can be improved to correct
error patterns such that, for each error pattern, most errors are confined to n — &
consecutive positions, and fewer errors are outside the (n — k)-digit span. This
improvement needs additional circuitry. The complexity of the additional circuitry
depends on how many errors outside an (n — k)-digit span are to be corrected. An
improvement proposed by Kasami [17] is discussed here.

The error pattern e(X) = eg+e1 X + X2+ +e, 1 X" ! that corrupted the
transmitted codeword can be divided into two parts:

ep(X) =ep+ e X+ -+ enfk~1X"_k_l
e/ (X) =eni X" 4. e, XL

where e;(X) contains the errors in the message section of the received vector, and
e, (X) contains the errors in the parity section of the received vector. Dividing e; (X)
by the code generator polynomial g(X), we obtain

er(X) = q(X)g(X) + p(X), (5.35)
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where p(X) is the remainder with degree n — k — 1 or less. Adding e,(X) to both
sides of (5.35), we obtain

e(X) = e, (X) +e/(X) = q(X)g(X) + p(X) +e,(X). (5.36)

Because e,(X) has degree n — k — 1 or less, p(X) + e,(X) must be the remainder
resulting from dividing the error pattern e(X) by the generator polynomial. Thus,
p(X) + e,(X) is equal to the syndrome of the received vector r(X),

s(X) = p(X) +e,(X). (5.37)
Rearranging (5.37), we have
e, (X) =s(X) + p(X). (5.38)

That is, if the error pattern e;(X) in the message positions is known, the error
pattern e, (X) in the parity positions can be found.

Kasami’s error-trapping decoding requires finding a set of polynomials
[; (X)]ﬁyzl of degree k — 1 or less such that, for any correctable error pattern

e(X), there is one polynomial ¢ ;(X) such that X" k¢ ;(X) matches the message

section of e(X) or the message section of a cyclic shift of e(X). The polynomials

¢ ;(X)’s are called the covering polynomials. Let p;(X) be the remainder result-

ing from dividing X" *¢ ;(X) by the generator polynomial g(X) of the code.
The decoding procedure is as follows:

Step 1. Calculate the syndrome s(X) by entering the entire received vector
into the syndrome register.

Step 2. Calculate the weight of the sum s(X) + p;(X) foreachj=1,2,--- ,N
(e, w[s(X) +p;(X)]for j =1,2,--- . N).

Step 3. If, for some [,

wls(X) + 0, 0] =t — wlg;(X)],

then X"~*@,(X) matches the error pattern in the message section of
e(X), and s(X) + p;(X) matches the error pattern in the parity section
of e(X). Thus,

e(X) = s(X) + p,(X) + X" ¢, (X).

The correction is then performed by taking the modulo-2 sum r(X) +
e(X). This step requires N (n — k)-input threshold gates to test the
weights of s(X) + p;(X) forj=1,2,---,N.

Step 4. If ws(X) + p;(X)] > ¢ — wig;(X)] for all j =1,2,..-, N, both
syndrome and buffer registers are shifted cyclically once. Then, the
new contents of the syndrome register, s (X)), is the syndrome
corresponding to e)(X), which is obtained by shifting the error
pattern e(X) cyclically one place to the right.

Step 5. The weight of s X)) + p;(X) is computed for j =1,2,--- , N. If, for
some /,

w[s(X) + p;(X)] < 1 — wlg ()],
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then X" *¢,(X) matches the errors in the message section of eV (X),
and sM(X) + p;(X) matches the errors in the parity section of eV (X).
Thus,

ey = sV X)) + 9,0 + X"y (20).

The correction is then performed by taking the modulo-2 sum ) (X)+
eV (). If
wlsP(X) + 0, (0] > 1 — wlé,; (X)]

forall j =1,2,---, N, both syndrome and buffer registers are shifted
cyclically once again.
Step 6. The syndrome and buffer registers are continuously shifted until
sV (X) (the syndrome after the ith shift) is found such that, for some [,
wls(X) + 0, ()] < 1 — wld; CO.

Then, ‘ ,
e (X) = sV (X) + p)(X) + X" F (X,

where e®(X) is the ith cyclic shift of e(X). If the weight w[s"(X) +
p;(X)] never drops to 1 — w{g;(X)] or less for all j by the time that
the syndrome and buffer registers have been cyclically shifted n — 1
times, an uncorrectable error pattern is detected.

The complexity of a decoder that employs the decoding method just described
depends on N, the number of covering polynomials in {¢ ; (X) }‘]V: . The combinational
logical circuitry consists of N (n —k)-input threshold gates. To find the set of covering
polynomials {¢ ; (X )}1;/:1 for a specific code is not an easy problem. Several methods
for finding this set can be found in [17], [20], and [21].

This improved error-trapping method is applicable to many double- and
triple-error-correcting codes, however, it is still applicable only to relatively short
and low-rate codes. When the code length n and error-correcting capability 1 become
large, the nuraber of threshold gates required in the error-detecting logical circuitry
becomes very large and impractical.

Other variations of error-trapping decoding can be found in [15], [16], and [18].

5.9 THE (23, 12) GOLAY CODE

As pointed out in Section 4.6, the (23, 12) Golay code [22] with a minimum distance
of 7 is the only known multiple-error-correcting binary perfect code. This code can
be put in cyclic form, and hence it can be encoded and decoded based on its cyclic
structure. It is generated either by

g (X) =1+X>+Xx*+ % +x° 4 x104 x11

or by
(X =1+X+X + X4+ x7+x7 4 x'1.

Both g;(X) and g (X) are factors of X2 41 and X + 1 = (1 + X)g (X)g(X).
The encoding can be accomplished by an 11-stage shift register with feedback



176 Chapter 5 Cyclic Codes

connections according to either g;(X) or g (X). If the simple error-trapping scheme
described in Section 5.7 is used for decoding this code, some of the double-error
patterns and many of the triple-error patterns cannot be trapped. For example,
consider the double-error patterns e(X) = X! 4 X?2. The two errors are never
confined to n — k = 11 consecutive positions, no matter how many times e(X) is
cyclically shifted. Therefore, they can never be trapped in the syndrome register
and cannot be corrected. We can also readily sece that the triple-error pattern
e(X) = X° + X' 4 X% cannot be trapped. Therefore, if the simple error-trapping
scheme for decoding the Golay code is used, some of its error-correcting capability
will be lost; however, the decoding circuitry is simple.

There are several practical ways to decode the (23, 12) Golay code up to its
error-correcting capability 1 = 3. Two of the best are discussed in this section. Both
are refined error-trapping schemes.

5.9.1 Kasami Decoder [17]

The Golay code can easily be decoded by Kasami’s error-trapping technique. The

set of polynomials {¢;(X)}_. is chosen as follows:
p J j=1

p1(X) =0, ¢,(X) =X, $s(X)=x5

Let g(X) = 1+ X2+ X* + X° + X6 4+ X10 + X! be the generator polynomial.
Dividing X“erbj (X) by g1(X) for j =1, 2, 3, we obtain the following remainders:

p1(X) =0,
pr(X) =X+ X2+ X+ X0+ x5+ X%,
p3(X) =Xp(X) =X+ X+ X0+ X7 + X%+ x10.

A decoder based on Kasami’s error-trapping scheme is shown in Figure 5.18. The
received vector is shifted into the syndrome register from the rightmost stage; this
is equivalent to preshifting the received vector 11 times cyclically. After the entire
received vector has entered the syndrome register, the syndrome in the register
corresponds to rdD(X), which is the eleventh cyclic shift of r(X). In this case, if the
errors are confined to the first 11 high-order positions X2, X13, ... | X22 of r(X), the
syndrome matches the errors in those positions. The error-correction procedure of
this decoder is as follows:

Step 1. Gates 1, 3, and 5 are turned on; gates 2 and 4 are turned off. The
received vector r{X) is read into the syndrome register and simultane-
ously into the buffer register. The syndrome s(X) = s + 51X + -+ +
510X 10 is formed and is read into three threshold gates.

Step 2. Gates 1, 4, and 5 are turned off; gates 2 and 3 are turned on. The
syndrome is tested for correctable error patterns as follows:

a. If the weight w{s(X)] < 3, all the errors are confined to the 11
high-order positions of r(X), and s(X) matches the errors. Thus, the
erroneous symbols are the next 11 digits to come out of the buffer
register. The output of the threshold gate Tp turns gate 4 on and
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FIGURE 5.18: An error-trapping decoder for the (23, 12) Golay code.

gate 3 off. Digits are read out one at a time from the buffer register.
The digit coming out of the syndrome register is added (modulo-2)
to the digit coming out of the buffer. This corrects the errors.

b. If w[s(X)] > 3, the weight of s(X) 4+ p,(X) is tested. If w(s(X) +
P2 (X)) =2, then s(X) + py(X) = so+ siX 4 séXZ + 53X Xt +
SLXO 4 (X0 4 57 X7+ (X8 + 55X 4 510X 10 is identical to the error
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Step 3.

Step 4.

pattern in the 11 high-order positions of the received word, and a
single error occurs at location X°, where s/ is the complement of
s;. Gate 4 is turned on, and gate 3 is turned off. The counter C
starts to count from 2. At the same time, the syndrome register is
shifted without feedback. The output €, which is 1 when and only
when C counts 3 and 4, is fed into the syndrome register to form
the error pattern s(X) + p,(X). When the counter C counts 8, its
output E is 1, and the leftmost stage of the syndrome register is
set to 1. This 1 is used for correcting the error at location X° in the
received vector r(X). The digits coming out of the buffer are then
corrected by the digits coming out of the syndrome register.

¢. Hws(X)] > 3and w[s(X)+ p,(X)] > 2, the weight of s(X) + p3(X)
is tested. If w[s(X) + p3(X)] < 2, then s(X) + p3(X) =s0+ 51X +
séX2 + séX3 +sa X+ 55X° + séX6 + s§X7 +5g X8+ séX9 + siOXlo
is identical to the error pattern in the 11 high-order positions
of the received word and a single error occurs at positions X°.
The correction is the same as step (b), except that counter C
starts to count from 3. If w[s(X)] > 3, w[s(X) + p,(X)] > 2, and
wls(X) + p3(X)] > 2, then the decoder moves to step 3.

Both the syndrome and buffer registers are cyclically shifted once
with gates 1, 4, and 5 turned off and gates 2 and 3 turned on. The new
contents of the syndrome register are s (X). Step 2 is then repeated.
The decoding operation is completed as soon as the buffer register
has been cyclically shifted 46 times. Gate 5 is then turned on and the
vector in the buffer is shifted out to the data sink.

If there are three or fewer errors in the received vector, the vector in the buffer
at the end of decoding will be the transmitted codeword. If there are more than
three errors in the received vector, the vector in the buffer at the end of decoding
will not be the transmitted codeword.

5.9.2 Systematic Search Decoder [23]

This decoding method is based on the fact that every pattern of three or fewer errors
in a block of 23 digits can be cyclically shifted so that at most one of the errors lies
outside a specified 11-digit section of the word. The decoding procedure is as follows:

Step 1.
Step 2.

Step 3.

Compute the syndrome from the received vector.

Shift the syndrome and the received vector 23 times, checking whether
the weight of the syndrome ever falls to 3 or less. If it does, the syn-
drome with weight 3 or less matches the error pattern and correction
can be made.

If it does not, the first received information digit is inverted and step
2 is repeated, checking for a syndrome of weight of 2 or less. If one
is found, the first received information digit was incorrect and the
other two errors are specified by the syndrome. This completes the
decoding.
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Step 4. If no syndrome of weight 2 or less is found in step 3, the first
information digit was originally correct. In this case, this bit must be
reinverted.

Step 5. Repeat step 3 by inverting the second, third, - - - , and twelfth informa-
tion digits. Because not all the errors are in the parity-check section,
an error must be corrected in this manner.

In every pattern of three or fewer errors, there is at least one error that if
corrected, will leave the remaining error or errors within 11 successive positions.
When the digit corresponding to this error is inverted, the remaining errors are
corrected as in ordinary error trapping.

Compared with the Kasami decoder, the systematic search decoder has the
advantage that only one weight-sensing (threshold) gate is required; however, it has
the disadvantage that the clock and timing circuitry is more complex than that of
the Kasami decoder, since 12 different digits must be inverted sequentially. Also,
the Kasami decoder operates faster than the systematic search decoder.

This systematic search technigue can be generalized for decoding other
muliiple-error-correcting cyclic codes.

The weight enumerator for the (23, 12) Golay code is

A(Z) = 1425377 + 50678 + 128871 + 1288712 -+ 50621 + 253710 4 23

If this code is used for error detection on a BSC, its probability of an undetected
error P,(E) can be computed from (3.19). Moreover, P,(E) satisfies the upper
bound 27! [ie., P, (F) < 27117 [24]. Therefore, the (23, 12) Golay code is a good
error-detecting code.

5.10 SHORTENED CYCLIC CODES

In system design, if a code of suitable natural length or suitable number of infor-
mation digits cannot be found, it may be desirable to shorten a code to meet the
requirements. A technique for shortening a cyclic code is presented in this section.
This technique leads to simple implementation of the encoding and decoding for the
shortened code.

Given an (n, k) cyclic code C consider the set of codewords for which the /
leading high-order information digits are identical to zero. There are 28~/ such code-
words, and they form a linear subcode of C. If the ! zero information digits are deleted
from each of these codewords, we obtain a set of 28~ vectors of length n — . These
2k=! shortened vectors form an (n — 1, k — 1) linear code. This code is called a short-
ened cyclic code (or polynomial code), and it is not cyclic. A shortened cyclic code
has at least the same error-correcting capability as the code from which it is derived.

The encoding and decoding tor a shortened cyclic code can be accomplished by
the same circuits as those employed by the original cyclic code. This is so because the
deleted/ leading-zero information digits do not affect the parity-check and syndrome
computations; however, in decoding the shortened cyclic code after the entire
received vector has been shifted into the syndrome register, the syndrome register
must be cyclically shifted / times to generate the proper syndrome for decoding the
first received digit r,_;_,. For large /, these extra [ shifts of the syndrome register
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cause undesirable decoding delay; they can be climinated by modifying either the
connections of the syndrome register or the error-pattern detection circuit.

Letr(X) =rg+r X+ +r,_;-1 X""~1 be the received polynomial. Suppose
that r(X) is shifted into the syndrome register from the right end. If the decoding
circuit for the original cyclic code is used for decoding the shortened code, the proper
syndrome for decoding the received digit r,,_;_1 is equal to the remainder resulting
from dividing X" ~**'r(X) by the generator polynomial g(X). Because shifting r(X)
into the syndrome register from the right end is equivalent to premultiplying r(X)
by X"~*, the syndrome register must be cyclically shifted another [ times after the
entire r(X) has been shifted into the register. Now, we want to show how these extra
[ shifts can be eliminated by modifying the connections of the syndrome register.
Dividing X" ~**z(X) by g(X), we obtain

X (X) = ap(X)g(X) + s (X, (5.39)

where s *+1 (X) is the remainder and the syndrome for decoding the received digit
ra_i1. Next, we divide X"~ by g(X). Let p(X) = pg + 0y X + - - + pp g1 X" 751
be the remainder resulting from this division. Then, we have the following relation:

p(X) = X" 4 ay(X)g(X). (5.40)

Maultiplying both sides of (5.40) by r(X) and using the equality of (5.39), we obtain
the following relation between p(X)r(X) and s" %D (X):

P(X)E(X) = [a1(X) + o (X)r(X)]g(X) + s ) (x). (5.41)

The foregoing equality suggests that we can obtain the syndrome s~ *+D(X) by
multiplying ¥(X) by p(X) and dividing the product p(X)r(X) by g(X). Computing
s¢~k+D (XY in this way, we can avoid the extra [ shifts of the syndrome register.
Simultaneously multiplying ¥(X) by p(X) and dividing p(X)r(X) by g(X) can be
accomplished by the circuit shown in Figure 5.19. As soon as the received polynomial
r(X) has been shifted into the register, the contents in the register form the syndrome
stk (X)), and the first received digit is ready to be decoded.

8u-k-1

Pr—ik-1

——‘ Gate

Input r(X)

FIGURE 5.19: Circuit for multiplying r(X) by p(X) = pg + 01X + - + py g1 X" 1
and dividing p(X)r(X) by g(X) =1+ g1 X +--- + XK,
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Input

Output
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FIGURE 5.20: Decoding circuit for the (31, 26) cyclic Hamming code generated by
g(X) =1+ X%+ X°.

EXAMPLE 5.12

For m = 5, there exists a (31, 26) cyclic Hamiming code generated by g(X) =
1+ X? 4 X°. Suppose that it is shortened by three digits. The resultant shortened
code is a (28, 23) linear code. The decoding circuit for the (31, 26) cyclic code is
shown in Figure 5.20.

This circuit can be used to decode the (28, 23) shortened code. To eliminate
the extra shifts of the syndrome register, we need to modify the connections of
the syndrome register. First, we need to determine the polynomial p(X). Dividing
X3 by g(X) =1 + X? + X°, we have

X4+ 1
X3+ x% 41 x8
X8+X5+X3
X+ x3
X5 +Xx241
X+ xr41

and p(X) = 1+ X? + X3. The modified decoding circuit for the (28, 23) shortened
code is shown in Figure 5.21.

The extra [ shifts of the syndrome register {or decoding the shortened cyclic
code can also be avoided by modifying the error-pattern detection circuit of the
decoder for the original cyclic code.

The error-pattern detection circuit is redesigned to check whether the syn-
drome in the syndrome register corresponds to a correctable error pattern e(X)
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Input ¥ (X) [a;—‘

el 2 OS

-1>{ Gate :

FIGURE 5.21: Decoding circuit for the (28, 23) shortened cyclic code generated by
g(X)=1+X>+X°.

with an error at position X"/~ (i.e., e,_;_1 = 1). When the received digit r,_;_1 is
corrected, the effect of the error digit e, ;1 on the syndrome should be removed.
Suppose that the received vector is shifted into the syndrome register from the right
end. Let p(X) = po + p1 X + -+ + pp_i—1 X""¥~1 be the remainder resulting from
dividing X" !-1 . X"k = x?~k~~1 by the generator polynomial g(X). Then, the
effect of the error digit e¢,_;_1 on the syndrome is removed by adding p(X) to the
syndrome in the syndrome register.

EXAMPLE 5.13

Consider the (28, 23) shortened cyclic code obtained by deleting three digits from
the (31, 26) cyclic Hamming code generated by g(X) = 1 + X% + X°. Suppose
that in decoding this code the received vector is shifted into the syndrome register
from the right end. If a single error occurs at the position X%’ [or e(X) = X?7],
the syndrome corresponding to this error pattern is the remainder resulting from
dividing X°e(X) = X*? by g(X) = 1+ X? + X°. The resultant syndrome is (01 000).
Thus, in decoding the (28, 23) shortened Hamming code, the error-pattern detection
circuit may be designed to check whether the syndrome in the syndrome register
is (01000). Doing so avoids the extra three shifts of the syndrome register. The
resultant decoding circuit with syndrome resetting is shown in Figure 5.22.

Shortened cyclic codes for error detection in conjunction with ARQ protocols
are widely used for error control, particularly in computer communications. In these
applications they are often called cyclic redundancy check (CRC) codes. A CRC
code is, in general, generated by either a primitive polynomial p(X) or a polynomial
g(X) = (X + )p(X). A number of CRC codes have become international standards
for error detection in various contexts. A few standard CRC codes follow:
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X)

I ( X) iy
:> 28-bit buffer register }mmm>@4->

| [ Gate |—(+)

Y

Gate

FIGURE 5.22: Another decoding circuit for the (28, 23) shortened Hamming code
generated by g(X) =1+ X2 4+ X°.

CCITT X-25 (Consultative Committee for International Telegraphy and Tele-
phony, Recommendation X-25)
g =X+ DEP+ XM+ xP+xP e x4+ P+ P+ x4 D)
=X+ xP 4% +1.
ANSI (American National Standards Institute)
gX) =X +DXB+x+ D =x¥ 4 x5 x4+ 1,
IBM-SDLC (IBM Synchronous Data Link Control)
g =X+ DX+ xB o x2 1 x0 x5 o 0 L XS 4 Xt - X34 X 4 1)
=X0 4 xP L XB X+ X XX+ L
TEC TC57
gX) =X+ D2+ x0 X xX8 e X+ XX x4
—x10 xl4 oyl w8 L x6 S oxd
IEEE Standard 502.3
5(X) = X2 + x4 x4 x2 4 x16 4 x12 4 x1
+ X0+ x4 X+ X+ X XX+ L



5141

184 Chapter 5 Cyclic Codes

CYCLIC PRODUCT CODES

The obvious way to implement a product code is to set up the code array and
operate on rows and then on columns (or columns and then rows) in encoding and
decoding, but there is an alternative that can be extremely attractive. In many cases
the product code of cyclic codes is cyclic, and cyclic code implementation is much
simpler.

If the component codes C; and C; are cyclic, and if their lengths, n1 and n;, are
relatively prime, the product code €y x C» is cyclic if the code digits of a code array
are transmitted in a proper order [3, 25, 26]. We start with the upper right corner
and move down and to the left on a 45° diagonal, as shown in Figure 5.23. When we
reach the end of a column, we move to the top of the next column. When we reach
the end of a row, we move to the rightmost digit of the next row.

Because n; and ny are relatively prime, there exists a pair of integers a and b
such that

any +bny = 1.

Let g1(X) and hy (X) be the generator and parity polynomials of the (n1, k1) cyclic
code C1, and let g2(X) and hy(X) be the generator and parity polynomials of the
(n2, k2) cyclic code Cp. Then, it is possible to show [25, 26] that the generator
polynomial g(X) of the cyclic product code of C; and C; is the greatest common
divisor (GCD) of X" — 1 and g; (X?")gy(X9™); that is,

g(X) = GCD[X""2 — 1, g1 (X"")g (X)), (5.42)

and the parity polynomial h(X) of the cyclic product code is the greatest common
divisor of hy (X?"2) and hy(X™"); that is,

h(X) = GCD[hy (X)), hy (X¥)]. (5.43)

The compilexity of the decoder for cyclic product codes is comparable to the
complexity of the decoders for both the (n1, k) code and the (12, kp) code. At
the receiving end of the channel, the received vector may again be rearranged as
a rectangular array. Thus, the decoder can decode each of the row (or column)
codewords separately and then decode each of the column (or row) codewords.

[ S

FIGURE 5.23: Transmission of a cyclic product code.
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Alternatively, in the transmitted codeword, the set of ny digits formed by selecting
every (np)th digit are the n; digits of a codeword of €y permuted in a fixed way.
They can be permuted back ic their original form and corrected by a Meggitt-type
decoder. The digits in the permuted form are a codeword in a related code and can
be decoded directly in this form by a Meggitt-type decoder. Similarly, the column
code C» can be corrected by selecting every (n1)th digit from the large codeword.
Thus, the total equipment required is roughly that required to decode the two
individual codes.

5.92 QUASI-CYCLIC CODES

Cyclic codes possess full cyclic symmetry; that is, cyclically shifting a codeword any
nuinber of symbol positions, either to the right or to the left, resulis in another
codeword. This cyclic symmeiry struciure makes it possible to implement the
encoding and decoding of cyclic codes with simple shift registers and logic circuits.
There are other linear block codes that do not possess full cyclic symmetry but do
have partial cyclic structure, namely, quasi-cyclic codes.

A guasi-cyclic code is a linear code for which cyclically shifting a codeword a
fixed number ng #% 1 ( or a multiple of n9) of symbol positions either to the right or
to the left results in another codeword. It is clear that for ng = 1, a quasi-cyclic code
is a cyclic code. The integer ng is called the shifting constraint. It is clear that the
dual of a quasi-cyclic code is also quasi-cyclic.

As an example, consider the (9. 3) code generated by the following generator

matrix:
111 100 110
G=1{ 110 111 100
100 110 111

The eight codewords of this code are listed in Table 5.6. Suppose we cyclically
shifi the fifth codeword in Table 5.6, (001011 010) three symbol positions to the
right. This shift results in the seventh codeword (010001 011) in Table 5.6. If we
cyclically shift the fifth codeword one and two positions to the right, we obtain iwo
vectors, (000101101 and (1000101 10), respectively, which are not codewords
given in Table 5.6. Therefore, the (9, 3) code given in Table 5.6 is a quasi-cyclic code
with shiffing constraint ng = 3. This code also can be encoded with a shift register as
shown in Figure 5.24. Let {cg. ¢|. ¢2) be the message to be encoded. As soon as the

TABLE 5.6: The code-
words of the (9, 3)
guasi-cyclic code.

000 000 000
111 106 1160
110 111 100
100 110 111
601 011 010
011 010 001
010 001 o011
101 101 101
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Gate 2

Input =
2 Gate 1

o
|
u

2

FIGURE 5.24: An encoding circuit for a (9, 3) quasi-cyclic code.

three information symbols have been shifted into the register, gate 1 is deactivated
and gate 2 is activated. The information symbol ¢ and two parity-check symbols
pél) and pg) appear at the output terminals and then are shifted into the channel.
The two parity-check symbols are given by

Pél) =cg +C2,

2
])é):co+cl+cz.

Next, the register is shifted once. The content of the register is now (c2, g, ¢1). The
information symbol ¢; and two parity-check symbols pil) and piz) appear at the
output terminals, and they are shifted into the channel. The parity-check symbols

pih and piZ) are given by

1
P§ "=ct o,
Piz) =g+ g+ .
At this point, the register is shifted once again. The content of the register is now
{c1, €2, o), and the information symbol ¢g and two parity-check symbols p(()l) and
p(()z) appear at the output terminals.
These three symbols are then shifted into the channel. The two parity-check
symbols are given by

1
Pé =cp e,

P(()z) =c¢g+c1+ 2.

This completes the encoding. The codeword has the form

2 (1 2y 2 A
v=pL p co, 0P, pV.er, b o, ),
which consists of three blocks, each of which consists of one unaltered informa-

tion symbol and two parity-check symbols. This form may also be regarded as a
systematic form.
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For an (mng, mkg) quasi-cyclic code with shifting constraint ng, the generator
matrix in systematic form is

Pol Py .. P40
1Pm—l(ﬂ) IP0H T ]Pm~2®
G = , , , , (5.44)
PO BP0 ... Pol

where I and 0 represent the kg x ko identity and zero matrices, respeciively, and P;
is an arbitrary kg x (ng — ko) matrix. Each row (as a sequence of m ko x ng mairices)
is the cyclic shift (to the right) of the row immediately above it, and the row at the
top is the cyclic shift of the bottom row. Each column of G is the downward cyclic
shift of the column on its left (or the upward cyclic shift of the column on its right).
A message for the code consists of m ko-bit blocks, and a codeword consists of m
np-bit blocks. Each of these m ng-bit blocks consists of kg unaltered information
symbols and ng — ko parity-check symbols. The parity-check matrix corresponding
to the generator matrix given by (5.44) is

i S oPT
@IP{ }HPg - OPY
H=| . ] (5.45)
T
(H)PIJI; -1 (H)me -2 ]HP)g

where I and 0 represent the (ng — ko) x (ng — ko) identity and zero matrices,
respectively, and IPI.T is the transpose of P;. Consider the (9, 3) quasi-cyclic code
given previously for which kg = 1 and ng = 3. The parity-check matrix in systematic
form is

101 001 001
011 001 000
o | 001 101 001
= 000 o011 001
001 001 101

| 001 000 011 |

A more general form for the generator matrix of an (mno, mko) quasi-cyclic
code is

GO Gl c G‘rnfl
Gm~1 GO c Gm—Z
e=| S (5.46)
Gy G3 - Gl
(e GZ o GO

where each G; is a kg x ng submatrix. We see that G given by (5.46) displays the
cyclic structure among the rows and columns in terms of the submatrices G;’s. For

0 < j<m, let M = [G;,Gj_1, -, Gj41]" denote the jth column of G (with
Gy = Go). M is an mko x ng submatrix. Then, we can put G in the following form:

G = [MCM Ml» Tt M}n—l]'
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For 0 <! < ny, let Q; be the mky x m submatrix that is formed by taking the /th
columns from Mg, My, --- , M,,,_{. Then, we can put G in the following form:

G, = [QOs Q1,---, Qng—l]'

Each column of {J; consists of mkq bits that are regarded as m kg-bit bytes (a byte
is a group of kg binary digits). In terms of bytes, €, is regarded as an m x m matrix
that has the following cyclic structure: (1) each row is the cyclic shift (to the right)
of the row immediately above it, and the top row is the cyclic shift of the bottom
row; (2) each column is the downward cyclic shift of the column on its left, and the
leftmost column is the downward cyclic shift of the rightmost column. The matrix ¢,
is called a circulant. Therefore, G, consists of ng circulants. Most often, quasi-cyclic
codes are studied in circulant form.

EXAMPLE 5.14

Consider the (15, 5) quasi-cyclic code with parameters m = 5, ng = 3, and kg = 1
that is generated by the following generator matrix:

001 100 010 110 110
110 001 100 010 110
G=| 110 110 001 1060 010
010 110 116 001 100
100 010 110 110 001

My M; M, M; My

This quasi-cyclic code has a minimum distance of 7. In circulant form, the generator
matrix takes the following form:

01011 00111 10000
10101 10011 01000
G =] 11010 11001 00100
01101 11100 00010
10110 01110 00001

Qo Q1 Q;

PROBLEMS

5.1 Consider the (15, 11) cyclic Hamming code generated by g(X) =1+ X + X*.
a. Determine the parity polynomial k(X) of this code.
b. Determine the generator polynomial of its dual code.
¢. Find the generator and parity matrices in systematic form for this code.
5.2 Devise an encoder and a decoder for the (15, 11) cyclic Hamming code generated
by g(X) =1+ X + X%
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Show that g(X) = 1+ X2 + X* + X® + X7 + x10 generates a (21, 11) cyclic code.
Devise a syndrome computation circuit for this code. Let 1(X) = 1 + X° + XV
be a received polynomial. Compute the syndrome of r(X). Display the contents
of the syndrome register after each digit of r has been shifted into the syndrome
computation circuit.

4 Shorten this (15, 11) cyclic Hamming by deleting the seven leading high-order

message digits. The resultant code is an (8, 4) shortened cyclic code. Design a

decoder for this code that eliminates the extra shifts of the syndrome register.

Shorten the (31, 26) cyclic Hamming code by deleting the 11 leading high-order

message digits. The resultant code is a (20, 15) shortened cyclic code. Devise

a decoding circuit for this code that requires no extra shifts of the syndrome

register.

Let g(X) be the generator polynomial of a binary cyclic code of length n.

a. Show thatif g(X) has X + 1 as a factor, the code contains no codewords of odd
weight.

b. If n is odd and X + 1 is not a factor of g(X), show that the code contains a
codeword consisting of all 1's.

¢, Show that the code has a minimum weight of at least 3 if n is the smallest
integer such that g(X) divides X" + 1.

Consider a binary (n, k) cyclic code C generated by g(X). Let

gk(x) — ankg(X—l)

be the reciprocal polynomial of g(X).

a. Show that g*(X) also generates an (n, k) cyclic code.

b. Let C* denote the cyclic code generated by g*(X). Show that C and C* have
the same weight distribution.

(Hint: Show that

VIX)=vg+ X 4+ vy X v, X!
is a code polynomial in C if and only if
X”_lv(/‘(kl) = vy F Vg2 X A+ U1X”*2 + UOXn—l

is a code polynomial in C*.)

Consider a cyclic code C of length n that consists of both odd-weight and even-
weight codewords. Let g(X) and A(z) be the generator polynomial and weight
enumerator for this code. Show that the cyclic code generated by (X +1)g(X) has
weight enumerator

A1(z) = A + A=)

Suppose that the (15, 10) cyclic Hamming code of minimum distance 4 is used for
error detection over a BSC with transition probability p = 10~2. Compute the
probability of an undetected errox, P, (E), for this code.
Consider the 27 — 1,2" — m — 2) cyclic Hamming code C generated by g(X) =
(X + 1)p(X), where p(X) is a primitive polynomial of degree m. An error pattern
of the form

eX) =X+ x'*1
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is called a double-adjacent-error pattern. Show that no two double-adjacent-error
patterns can be in the same coset of a standard array for C. Therefore, the code is
capable of correcting all the single-error patterns and all the double-adjacent-error
patterns.
Devise a decoding circuit for the (7, 3) Hamming code generated by g(X) =
(X +D(X3+ X +1). The decoding circuit corrects all the single-error patterns
and all the double-adjacent-error patterns (see Problem 5.10).
For a cyclic code, if an error pattern e(X) is detectable, show that its ith cyclic
shift ¢/ (X) is also detectable.
In the decoding of an (n, k) cyclic code, suppose that the received polynomial r(X)
is shifted into the syndrome register from the right end, as shown in Figure 5.11.
Show that when a received digit r; is detected in error and is corrected, the effect
of error digit e; on the syndrome can be removed by feeding ¢; into the syndrome
register from the right end, as shown in Figure 5.11.
Let v(X) be a code polynomial in a cyclic code of length n. Let / be the smallest
integer such that

v(X) = v(X).

Show thatif/ s 0, [ is a factor of n.
Let g(X) be the generator polynomial of an (n, k) cyclic code C. Suppose C is
interleaved to a depth of A. Prove that the interleaved code C* is also cyclic and
its generator polynomial is g(X*).
Construct all the binary cyclic codes of length 15. (Hint: Using the fact that X'° +1
has all the nonzero elements of GF(2%) as roots and using Table 2.9, factor X 13 41
as a product of irreducible polynomials.)
Let B be a nonzero element in the Galots field GF(2™), and B # 1. Let ¢(X) be
the minimum polynomial of §. Is there a cyclic code with ¢(X) as the generator
polynomial? If your answer is yes, find the shortest cyclic code with ¢(X) as the
generator polynomial.
Let $; and B, be two distinct nonzero elements in GF(2"). Let ¢1(X) and ¢, (X)
be the minimal polynomials of 1 and 8, respectively. Is there a cyclic code with
g(X) = ¢1(X) - ¢,(X) as the generator polynomial? If your answer is yes, find the
shortest cyclic code with g(X) = ¢1(X) - ¢,(X) as the generator polynomial.
Consider the Galois field GF(2™), which is constructed based on the primitive
polynomial p(X) of degree m. Let « be a primitive element of GF(2"") whose
minimal polynomial is p(X). Show that every code polynomial in the Hamming
code generated by p(X) has « and its conjugates as roots. Show that any binary
polynomial of degree 2" — 2 or less that has « as a root is a code polynomial in
the Hamming code generated by p(X).
Let C; and C; be two cyclic codes of length » that are generated by g;(X) and
g, (X), respectively. Show that the code polynomials common to both Cy and C;
also form a cyclic code 3. Determine the generator polynomial of Cs. If d; and
dy are the minimum distances of C; and C», respectively, what can you say about
the minimum distance of C3?
Show that the probability of an undetected error for the distance-4 cyclic Hamming
codes is upper bounded by 2~ 1,
LetCbea (2" —1,2" —m—1) Hamming code generated by a primitive polynomial
p(X) of degree m. Let C4 be the dual code of C. Then, Cyis a 2™ — 1, m) cyclic
code generated by

hk(x) — XZ’” —m—lh(Xfl).
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where "
XZ -1 +1

h(X) =
0= m
2. Let v(X) be a codeword in Cy and let v (X) be the ith cyclic shift of v(X).
Show that for 1 <i < 2" — 2, v¥0(X) #£ v(X).
b, Show that C; contains the all-zero codeword and 27 — 1 codewords of weight
2171—1-
(Hint: For part (a), use (5.1) and the fact that the smallest integer n such that
X" 4+ 1 is divisible by p(X) is 2" — 1. For part (b), use the result of Problem
3.6(b).)
For an (n, k) cyclic code, show that the syndrome of an end-around burst of length
# — k cannot be zero.

24 Design a Meggitt decoder that decodes a received polynomial r(X) = g +r; X +

5.26

527

5.28

5.29

wvn—1
4

ook, X7 from the lowest-order received digit rg to the highest-order received
digit r,,_1. Describe the decoding operation and the syndrome modification after
each correction.

Consider the (15, 5) cyclic code generated by the following polynomial:

s =14+X+ X+ x4+ X%+ x84 x1°,

This code has been proved to be capable of correcting any combination of three or
fewer errors. Suppose that this code is to be decoded by the simple error-trapping
decoding scheme.

a. Show that all the double errors can be trapped.

b. Can all the error patterns of three errors be trapped? If not, how many error
patterns of three errors cannot be irapped?

Devise a simple eivor-trapping decoder for this code.

Devise a simple error-trapping decoder for the (23, 12) Golay code.

How many error patterns of double errors cannot be trapped?

¢. How many error patterns of three errors cannot be trapped?

Suppose that the (23, 12) Golay code is used only for error correction on a
BSC with transition probability p. If Kasami's decoder of Figure 5.18 is used for
decoding this code, what is the probability of a decoding error? (Hint: Use the
fact that the (23, 12) Golay code is a perfect code.)

Use the decoder of Figure 5.18 to decode the following received polyno-
mials:

a 0(X) =X+ X%

bo r(X) = X4+ xH 4 x2

At each step in the decoding process, write down the contents of the syndrome
register.

Consider the following binary polynomial:

T e

g(X) = (X + Dp(Xx),

where (X3+1) and p(X) are relatively prime, and p(X) is an irreducible polynomial
of degree m with m > 3. Let n be the smallest integer such that g(X) divides
X" + 1. Thus, g(X) generates a cyclic code of length n.
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a. Show that this code is capable of correcting all the single-error, double-
adjacent-error, and triple-adjacent-error patterns. (Hint: Show that these error
patterns can be used as coset leaders of a standard array for the code.)

b. Devise an error-trapping decoder for this code. The decoder must be capable
of correcting all the single-error, double-adjacent-error, and triple-adjacent-
error patterns. Design a combinational logic circuit whose output is 1 when
the errors are trapped in the appropriate stages of the syndrome register.

¢. Suppose that p(X) = 1 + X + X*, which is a primitive polynomial of degree
4. Determine the smallest integer n such that g(X) = (X> + 1)p(X) divides
X"+ 1.

5.30 Let C; be the (3, 1) cyclic code generated by g1(X) =1+ X + X2, and let C; be

the (7, 3) maximum-length code generated by g,(X) = 1+ X + X2 + X*. Find the
generator and parity polynomials of the cyclic product of C; and C,. What is the
minimum distance of this product code? Discuss its error-correcting capability.

5.31 Devise an encoding circuit for the (15, 5) quasi-cyclic code given in Exam-

ple 5.14.
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