CHAPTER 4

Important Linear Block Codes

This chapier presents several classes of important linear block codes that were
discovered in the early days of error-correcting codes. The first class of linear block
codes for error correction was discovered by Richard W. Hamming in 1950 [1], two
years after Shannon published his landmark paper, which asserted that by proper
encoding of information, errors induced by a noisy channel or storage medium can be
reduced to any desired level withoui sacrificing the rate of information iransmission
or storage. Hamming codes have a minimum distance of 3 and therefore are
capable of correcting any single error over the span of the code block length.
The weight enumerator of Hamming codes is known. Hamming codes are perfect
codes and can be decoded easily using a table-lookup scheme. Good codes with a
minimum distance of 4 for single-error correction and double-error detection can
be obtained by properly shortening the Hamming codes. Hamming codes and their
shortened versions have been widely used for error control in digital communication
and data storage systems over the years owing to their high rates and decoding
simplicity.

The second class of linear block codes consiructed in the early days for error
correction and detection was the class of Reed—Muller codes. Reed—Muller codes
were first discovered by David E. Muller in 1954 {9] for switching-circuit design and
error detection. It was Irwin S. Reed, also in 1954 [10], who reformulated these
codes for error correcticn and detection in communication and data storage systems
and devised the first decoding algorithm for these codes. Reed—Muller codes form
a large class of codes for multiple random error correction. These codes are simple
in construction and rich in structural properties. They can be decoded in many ways
using either hard-decision or sofi-decision decoding algorithms. The Reed decoding
algorithm for Reed—Muller codes is a majority-logic decoding algorithm that can
easily be implemented. Several soft-decision decoding algorithms for Reed—Muller
codes have been devised that achieve very good error performance with low decoding
complexity.

Also presented in this chapter is the (24, 12) Golay code with minimum
distance 8. This code has many interesting siructural properties and has been
extensively siudied by many coding theorists and mathematicians. It has been
used for error control in many communication systems, especially by U.S. space
communication programs.

Several additional code construction methods are also presented in this chapter.
These construction methods allow us to construct long, powerful codes from short
component codes.
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4.1 HAMMING CODES

For any positive integer m > 3, there exists a Hamming code with the following
parameters:

Code length: n=2"-1,
Number of information symbols: &k =2" —m — 1,
Number of parity-check symbols: n —k =m,
Error-correcting capability: t =1 (dyin = 3).

The parity-check matrix H of this code consists of all the nonzero m-tuples as its
columns. In systematic form, the columns of i are arranged in the following form:

H:[Hm Q]y

where 1, is an m x m identity matrix, and the submatrix (Y consists of 27" —m — 1
columns that are the m-tuples of weight 2 or more. For example, let m = 3. The
parity-check matrix of a Hamming code of length 7 can be put in the form

1001011
H=] 0161110
0010111

which is the parity-check matrix of the (7, 4) linear code given in Table 3.1 (see
Example 3.3). Hence, the code given in Table 3.1 is a Hamming code. The columns
of (@ may be arranged in any order without affecting the distance property and
weight distribution of the code. In systematic form, the generator matrix of the
code is

G = [ QT EZ’”*W*I ]7

where Q7 is the transpose of Q, and Im_,,_1 isa 2" —m —1) x (2" —m — 1) identity
matrix.

Because the columns of H are nonzerc and distinct, no two columns add to
zero. It follows from Corollary 3.2.1 that the minimum distance of a Hamming code
is at least 3. Since H consists of all the nonzero m-tuples as its columns, the vector
sum of any two columns, say Iy, and h;, must also be a column in H, say Iy;. Thus,

hy + Hn_,- + by = 0.

It follows from Corollary 3.2.2 that the minimum distance of a Hamming code is
exactly 3. Hence, the code is capable of correcting all the error patterns with a single
error or detecting all the error patterns of two or fewer errors.

If we form the standard array for the Hamming code of length 2™ — 1, all
the (2" — 1)-tuples of weight 1 can be used as coset leaders (Theorem 3.5). The
number of (2" — 1)-tuples of weight 1 is 2" — 1. Because n — k = m, the code
has 2™ cosets. Thus, the zero vector 0 and the (27 — 1)-tuples of weight 1 form
all the coset leaders of the standard array. Thus. a Hamming code corrects only
error patierns of single error and no others. This is a very interesting structure.
A r-error-correcting code is called a perfecr code if its standard array has all the
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error patterns of ¢+ or fewer errors and no others as coset leaders. Thus, Hamming
codes form a e:i s of single-error-correcting perfect codes [2]. Perfect codes are
rare. Besides the Hamming codes, the only other nontrivial binary peirfect code is
the (ZJ 12} ¢ Co / code (see Section 5.9) [j—S]
Hamming codes can easily be decoded with the table-lookup scheme described
n5e ‘-m 3.5. The decoder for a Ham ””;"Tg code of length 27 -1 can be implemented
in the same meanner as that for the (7, 4) Hamming code given in Example 3.9.
‘A/e may delete any / columns from ane parity-chieck matrix Tn" of a Hamming
code. This deletion results in an m x (2" —[ ~1) matriz . Using H' as a parity-check

1atrix, we obiain a shortened Hamming code with the following parameters:

1Y

Code lengih: n=2"-1-1

Number of informaiion symbols: k=2" —m -] -1
Humber of parity-check symbols: n -k =m

Error-correcting capability: dyiin > 3.

if we delete columns from H pmnemy we may obtain a shortened Hamming code
with a minimum distance of 4. For example, if we delete from the submairixz O all

the columns of even weight, we obtain an m x 27"~ matrix,

H =[L Q ].
where ) consists of 7 =l _ m columns of odd weight. Because all the columns of I
have odd weight, no three columns add to zero; however, for a column by of weight

3in @, there exist three Cohjmns ., hy, and Iy in 1, such thathy +h; + by +hy = 0.
Thus, the shortened Hamming code with ' as a parity-check matrix has a minimum
distance of exactly 4.

e distance-4 shortened Hamming code can be used for correcting all ervor
patterns of single error and srmjhameous]'ty deteciing all ervor patterns of double
errors. When a single error occurs during the transmission of a code vector, the
resultant syndrome is nonzero, and it contains an odd number of 1’s; however, when
double errors occur, the syndrome is also nonzero, but it contains an even number
of 1's. Based on these facts, decoding can be accomplished as follows:

ﬁ'lé.?'

1. If the syndrome s is zero, we assurae that no error occurred.

=)

s

If s is nonzero and it contains an odd number of 1’s, we assume that a single
error occurred. The ervor pattern of a single error that corresponds to s is
added to the received vector for error correction.

3. If s is nonzero and it contains an even number of 1’s, an uncorrectable error
patiern has been detected.

The weight disiribution of a Hamming code of length » = 2" — 1 is known [2].
The number of code vectors of weight 7, A;, is simply the coefficient of 7' in the
expansion of the following polynomial:

1
Az) = ;?{“1 +2)" 4l = (1 = H IRy (4.1)

This polynomial is the weight enumerator for the Hamming codes.
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EXAMPLE 4.1

Letm = 3. Then,n = 2> — 1 = 7, and the weight enumerator for the (7, 4) Hamming
code is

AR =5+ +70 -1 =2y =1+73 + 74 + 2.

Hence, the weight distribution for the (7,4) Hamming code is Ag = 1, A3 = Ay =7,
and A7 = 1.

The dual code of a (2" — 1,2™ — m — 1) Hamming code is a (2™ — 1, m) linear
code. This code has a very simple weight distribution; it consists of the all-zero
codeword and 2" — 1 codewords of weight 2”1, Thus, its weight enumerator is

B =14+ @" -2, (4.2)

If a Hamming code is used for error detection over a BSC, its probability of
an undetected error, P,(E), can be computed either from (3.35) and (4.1) or from
(3.36) and (4.2). Computing P, (E) from (3.36) and (4.2) is easier. Combining (3.36)
and (4.2), we obtain

PJE)=2""{1+ 2" — DA -2p)?" 1 - - py¥" L. (4.3)

The probability P, (E) for Hamming codes does satisfy the upper bound 2~ "% =
27" for p < % (ie., P,(E) <27} [6,7], as can be shown by using the expression of
(4.3) (see Problem 4.3). Therefore, Hamming codes are good error-detection codes.

4.2 A CLASS OF SINGLE-ERROR-CORRECTING AND DOUBLE-ERROR-DETECTING
CODES

Single-error-correcting and double-error-detecting (SEC-DED) codes have been
widely used for error control in communication and computer memory systems. In
this section we present a class of SEC-DED codes that are suitable and commonly
used for improving computer memory reliability. This class of codes was constructed
by Hsiao {8]. The most important feature of this class of codes is their fast encoding
and error detection in the decoding process, which are the most critical on-line
processes in memory operations.

SEC-DED codes that have the features described can be constructed by
shortening Hamming codes presented in the previous section. Construction begins
with a Hamming code of length 27 — 1 and minimum distance 3. Let H be its
parity-check matrix. Delete columns from H such that the new parity-check matrix
H satisfies the following requirements:

1. Every column should have an odd number of 1’s.
2. The total number of 1’s in the Hy matrix should be a minimum.

3. The number of 1's in each row of Hy should be made equal, or as close as
possible, to the average number (i.e., the total number of 1’s in Hy divided by
the number of rows).
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TABLE 4.1: Parameters of a list of Hsiao’s codes.

Total number Average number

n k n-£%k of I’s im HI of 1’s per row
12 8 4 16 4
14 9 5 32 6.4
15 10 5 35 7
16 11 5 40 8
22 16 6 54 9
26 20 6 66 11
36 24 6 86 143
3% 32 7 103 14.7
43 36 7 117 16.7
47 40 7 157 22.4
55 48 7 177 253
72 64 8 216 27
80 72 8 256 32

8 80 8 296 37
96 88 8 336 42

104 96 8 376 47
112 104 8 416 52
120 112 8 456 57
128 120 8 512 64
130 121 9 446 49.6
137 128 9 481 53.5

The first requirement guarantees the code generated by Hy has a minimum distance
of at least 4. Therefore, it can be used for single-error correction and double-error
detection. The second and third requirements yields minimum logic levels in forming
parity or syndrome bits, and less hardware in implementation of the code. Hsiao [8]
provided an algorithm to construct Hp and found some optimal SEC-DED codes.
Several parity-check matrices in systematic form for message (or data) lengths of
16, 32, and 64 are given in Figure 4.1. The parameters of a list of Hsiao’s codes are
given in Table 4.1.

In compuier applications, these codes are encoded and decoded in paralle}
manner. In encoding, the message bits enter the encoding circuit in parallel, and the
parity-check bits are formed simultaneously. In decoding, the received bits enter
the decoding circuit in parallel, the syndrome bits are formed simultaneously, and
the received bits are corrected in parallel. Single-error correction is accomplished
by the table-lookup decoding described in Example 3.9. Double-error detection is
accomplished by examining the number of 1’s in the syndrome vector s. If the
syndrome s contains an even number of 1’s, then either a double-error pattern or a
multiple-even-error pattern has occurred.

Consider the parity-check matrix of the (72, 64} SEC-DED code given in
Figure 4.1(c}. Each row contains 27 ones. If three-input X-OR gates are used to
form syndrome bits, each syndrome bit is formed by a three-level X-OR tree with
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H, =

[ 01000000
00100000
00010000
Hy = | 00001000
00000100
00000010
| 00000001

110000000
01000000
00100000
00010000
00001000
00000100
00000010
| 00000001

Hy =

01100100
10010010
00001001
00001000
11001000
00111000
00000111

111111
11110000
00110000
11001111
01101000
01100100
00000010
00000001

1000001001100100111100 |
0100000011111010001010
0010001110111001100000
0001001110000111010001
0000100001001111000111
0000010100010000111111 |

HQ:

11111111
01100100
10010010
00001001
00001000
11001000
00111000

00001111
11111111
11110000
00000000
10001000
01000100
00100010
00010001

00000111
11111t
01100100
10010010
00001001
00001000
11001000

00001111
00000000
11111111
11110000
10001000
01000100
00100010
00010001

(2)

(®)

00111000
00000111
11111111
01100100
10010010
00001001
00001000

(e)

00001100
11110011
00001111
11111111
10000000
01000000
00100110
00010110

(d)

Important Linear Block Codes

11601000
00111000
00000111
11111111
01100100
10010010
00001001

01101000
01100100
00000010
00000001
11111111
11110000
11001111
00110000

[100000010001010100000100000111100011011 ]
010000000010000000111110111000101100001
001000000010110111100001001001010100110
000100011111111000000011010010001000100
000010001101100111111110000100000001000
000001000100001001001001111112110010000
01000000111000001010010000100000011111111

00001000
11001000
00111000
00000111
1111111
01100100
10010010

10001000
01000100
00100010
00010001
00001111
1111111
00000000
11110000

00001001
(00001000
11001000
00111000
00000111
11111111
01100100

10001000
01000100
00100010
00010001
00000000
00001111
11
11110000

10010010 |
00001001
00001000
00001000
11001000
00000111
11111111 |

10000000 |
01000000
00100110
00010110
11116011
00001100
00001111
11111111 |

FIGURE 4.1: (a) Parity-check matrix of an optimal (22, 16) SEC-~-DED code;
(b) parity-check matrix of an optimal (39, 32) SEC-DED code; (c) parity-check
matrix of an optimal (72, 64) SEC-DED code; (d) parity-check matrix of another
optimal (72, 64) SEC~-DED code.
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13 gates. The eight X-OR trees for generating the eight syndrome bifs are identical.
These provide uniform and minimum delay in the error-correction process.

4.3 REED-MULLER CODES

Reed-Muller (RM) codes form a class of multiple-error-correction codes. These
codes were discovered by Muller in 1954 [9], but the first decoding algorithm for
these codes was devised by Reed, also in 1954 [10]. They are simple in construction
and rich in structural properties. They can be decoded easily in several ways using
either hard- or soft-decision algorithms.

For any integers m and r with 0 < r < m, there exists a binary rth-order RM
code, denoted by RM(r, m), with the following parameters:

Code length: n = 2",
Dimension: k(r,m) =1+ (1) + (3} + -+ (7).

-
Minimum distance: dyin = 27",

1 . . . .
where (V) = Gt is the binomial coefficient. For example, let m = 5 and r = 2.

Then, n = 32, k(2.5) = 16, and d,,iy = 8. There exists a (32, 16) RM code with a
minimum distance of 8.

For1 <i < m,letv; be a 2"-tuple over GF(2) of the following form:

\yih—_(0...0‘1...1’0.“07 ...... 11) (4/{)
R e S e’
2i=1 2i—1 i~ 20—t

which consists of 2 ~'+1 alternating all-zero and all-one 2/ ~-tuples. For m = 4, we
have the following four 16-tuples:

v4=(00000060011111111,
v3=(00001111006001111),
vp=(0011001100110011),
vi=(0101010101010101).

Leta = (ag,ay, -+ ,a,_1) and b = (bg, by, --- . b, 1) be two binary n-tuples.
We define the following logic (Boolean) product of a and b:

A
a-b=(aq-bo,a1-by, - . ap-1 by_1),

where - denotes the logic product (or AND operation), i.c.,a; - b; = 1 if and only
ifa; =b; = 1. Form =4,

v3-v2 =(0000001100000011).

For simplicity, we use ab for a - b.
Let vg denote the all-one 2"-tuple, vo = (1,1, --- ,D. Forl <ij <ip < -+ <
i1 < m, the product vecior
ViyVip -+ Vi
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is said to have degree [. Because the weights of vy, vo, - - - , v, are even and powers
of 2, the weight of the product v;, v;, - - - v;, is also even and a power of 2, in fact, 27~/

The rth-order RM code, RM(r, m), of length 2" is generated (or spanned) by
the following set of independent vectors:

GrM(r,m) = {vg, ¥1, V2, -+, Vi, V1V2, V1V3,  +, Vi1 Vi1,
(4.5)
-, up to products of degree r}.

wm=re(7) s (3) ()
(rym)=1+ 1 -+ 5 -

vectors in Grym (1, m). Therefore, the dimension of the code is k(r, m).

If the vectors in GryM(r, m) are arranged as rows of a matrix, then the matrix
is a generator matrix of the RM(r, m) code. Hereafter, we use Grm(r, m) as the
generator matrix. For 0 <1 < r, there are exactly () rows in Grm(r, m) of weight
27-1 Because all the vectors in Gry(r, m) are of even weight, all the codewords
in the RM(r, m) code have even weight. From the code construction we readily see
that the RM(r — 1, m) code is a proper subcode of the RM(r, m) code. Hence, we

have the following inclusion chain:

There are

RM(@0, m) c RM(1,m) C - C RM(r, m). (4.6)

Furthermore, RM codes have the following structural property: the (m — r — 1)th-
order RM code, RM(im — r — 1, m), is the dual code of the rth-order RM code,
RM(r, m) (see Problem 4.9). The zeroth-order RM code is a repetition code and the
(m — 1)th-order RM code is a single-parity-check code.

EXAMPLE 4.2

Let m = 4 and r = 2. The second-order RM code of length n = 16 is generated by
the following 11 vectors:

v 1111111111111111
V4 0000000011111111
s 0000111100001111
v, 0011001100110011
Vi 0101010101010101
V3V4 0000000000001111
Va4 0000000000110011
V1V 0000000001010101
Vo3 0000001100000011
v1v3 0000010100000101
Vivy 0001000100010001

This is a (16, 11) code with a minimum distance of 4.

With the preceding construction, the generator matrix Grm(r, m) of the
RM(r, m) code is not in systematic form. It can be put in systematic form with
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elementary row and column operations; however, RM codes in nonsystematic form
have many interesting and useful structures that reduce decoding complexity. This
topic will be discussed in a later chapier.

The Reed decoding algorithm for RM codes is best explained by an example.
Consider the second-order RM code BM(2, 4) of length 16 given in Example 4.2.
Suppose

{ag, a4. a3, a2, at, as4, a4, did, 623, 413, G12)

is the message to be encoded. Then, the corresponding codeword is

(bo. b1 by, -+, bi5) = agvg 4+ a4v4 + az3vs +apvy +ayvy
T A34V3Vy - @24V V. + 14V V4
23793 + @13V1V3 4 @12V 97,

Moie that the sum of the first four components of each generator vector is
zero except the vecior vyvo. The same is true for the other three groups of four
consecuiive Omnﬂwems As a result, we have the following four sums that relaie
the information bit ¢, to the code biis:

ayy = by + by + by + b3,
a12 = by + bs -+ bg + by,
a2 = bg -+ by + bio + biy.
aip = big +byz + big + bis.
Th e four sums give four independent determinations {or mconsuuulons) of the

es
inf orm mation bit ayp from the code bits. If the codeword (bg. by, . bys) 1s transmitted
d there is a single transmission error in the received vector, the error can aifect

only one determination of ayp. As a result, the other three {majority) determinations
of ayy will give the correct value of aq,. This is the basis for decoding RM codes.

Letw = (rg,r1, -, ri5) be the received vector. In decoding aq,, we form the
foliowing sums:

Al =rg+r +r+rs,
Ay =1yt s+ 16+,
Az =13+ r9+rig + it

Ag =rpp+ri3 i s

which are obtained by replacing the code bifs with the corresponding received bits
in the four independent determinations of ayy. These sums are called check-sums,
which are simply the estimates of ayp. Then, ay) is decoded based on the following
majority-logic decision rule: ayy is taken io be equal to the value assumed by the
maiority in {A1, Ay, Az, Aq}. If there is a tie, a random choice of the value of a1; is
made. Tt is clear that if there is only one error in the received vector, ap5 is always
decoded correctly.
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Similar independent determinations of information bits ay3, az3, a4, a4, and
az4 can be made from the code bits. For example, the four independent determina-
tions of a3 are:

a13 = by + b1 + ba + bs,
a1z = by + by + b + b7,
a13 = bg + by + b1 + b13,
a3 = bio + b11 + bia + bis.

At the decoder, we decode a3 by forming the following four check-sums from the
received bits using the preceding four independent determinations of aj3:

Ar=ro+ri+ritrs,
Ay =ry+r3+re+r7,
Az =rg+r9+rip+ris,
Ag =rp+ru +ria+rs.

From these four check-sums we use the majority-logic decision rule to decode ays.
If there is a single transmission error in the received sequence, the information bits
a1y, di3, a3, di4, az4, and as4 will be decoded correctly.

After the decoding of ay2, a13, a23, a4, a4, and azg, the vector

a34V3V4 + az4v2V4 + a14V1V4 + a23V2V3 + a13Viv3 + apvivy

is subtracted from r. The result is a modified received vector:

@O _ (O @ 1)
¥ "(ro ST 15)

=T — a34V3V4 — A4V2V4 — A14V1V4 — G23V2V3 — a13¥1V3 — dpviva.
In the absence of errors, ¥ is simply the following codeword:

agvg + asv4 + azvy + avo + a1vy = (b(l) bgl), e (1))

We note that starting from the first component, the sums of every two consecutive
components in vq, v4, v3, and v, are zero; however, the sum of every two consecutive
components of vy is equal to 1. As a consequence, we can form the following
eight independent determinations of the information bit a; from the code bits b(()l)

through b(l)

a; = b(()l) + bil), a) = bél) + b(l)

=50 b0 ay = b 4 b§11>7

ay = b(l) WO, 4y = b(l) +5),

b0 WD, oyl oD

Similar independent determinations of ay, az, and a4 can be formed. In decoding
ay, we form the following check-sums from the bits of the modified received vector



Section 4.3 Reed-Muller Codes 109
r'D and the preceding eight independent determinaiions of ay:

AL = ;O 1O 4D =D D

1 _ (1) e @ D (1)
Ay =y iy, Ay =gyt
a (1) (1) W _ W, )
Ay =y Ag =y T
Ail) _ <1>+r<1> Aéh _ 1(-11)+ e

From these check-sums we decode ¢y by using the majoriiy-logic decision rule.
Similarly, we can decode the information bits a;, a3, and a4.

Afier the decoding of a1, az, a3, and a4, we remove the effect of a1, a, a3, and
a; from rM) and form the following modified received vector:

2 2y (D 2
H“():(l”é,rf Lo ())

715
= [‘f(]) — A4V4 — aA3V3y — (V) — a1Vy.
In the absence of errors, r® is the following codeword:

t]

agvg = {(ag, ag. - -+ , do).

This result gives 16 independent determinations of ag. In decoding ag, we simply
set ag to the value taken by the majority of the bits in r®. This step completes the
entire decoding.

The demonstrated decoding is referred to as majority-logic decoding. Because
it consists of three steps (or levels) of decoding, it is called three-step majority-logic
decoding. It can easily be implemented using majority-logic elements.

If there is only one error in the received vector r, the information bits
ayn, ais, a4, 23, az4, and asq will be correctly decoded. Then, the modified received
vector r'V) will still contain a single error at the same location. This single error
affects only one of the eight check-sums for g;, with 1 < i < 4. The other seven
check-sums give the correct value of g;. Therefore, the information bits ay, a7, a3,
and a4 will be correctly decoded. As a result, the next modified received vector )
will contain only one error (still at the same location), and the information bit ag
will be correctly decoded.

If there are two transmission errors in r, these two errors may affect two
check-sums for information bit «;;. In this case, there is no majority in the four
check-sums; two check-sums take 0, and two other check-sums take 1. A choice
between these two values as the decoded value of a;; may result in an incorrect
decoding of g;;. This incorrect decoding affects the subsequent levels of decoding
and results in error propagation. Consequently, the decodings of a1, a2, a3, a4, and
ap are very likely to be incorrect. Because the code guarantees correcting any single
error but not two errors, its minimum distance is at least 3 but less than 5. Since all
the codewords have even weight, the minimum distance of the code must be 4.

We have used an example to introduce the concepts of majority-logic decoding
and the multiple-step decoding process of the Reed algorithm. Now we are ready
to present the general algorithm for decoding RM codes. The major part of the
decoding is to form check-sums at each decoding step.
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Consider the rth-order RM code, RM(r, m). Let

a= (aOv A1y 5 Qs Q125 5 m—Tmy " Q12 s " s Qe r kL m—r 42, - ,m)
be the message to be encoded. The corresponding codeword is
b - (bO» bl» R brl~—1)

= ag¥p + E a; Vi, + § ai, ai, Vi Vi,
1<i;=<m 1<i|<ir<m (47)

4+ ... 4 Z i iy Vi Vig Vi, -
I<ij<ip < <iy<m

Let v = (ro.71, -+ ,rq_1) be the received vector. Decoding of RM(r, m) code
consists of r 4+ 1 steps. At the first step of decoding, the information bits a; ;,..;,
corresponding to the product vectors v; v, - - - v;, of degree r in (4.7) are decoded
based on their check-sums formed from the received bits in r. Based on these
decoded information bits, the received vector ¥ = (rg, r(, -+ -, rn—1) is modified.
Let rM) = (r(gl), rfl), e rlgljl) denote the modified received vector. At the second
step of decoding, the bits in the modified received vector r') are used to form
the check-sums for decoding the information bits ¢;,;,..;, , that correspond to the
product vectors v; v;, - - - v;,_, of degree r —1in (4.7). Then, the decoded information
bits at the second step of decoding are used to modify r'l). The modification results
in the next modified received vector r® = (ré2), r{z), - ”;52—)1) for the third step of
decoding. This step-by-step decoding process continues until the last information
bit ag that corresponds to the all-one vector vg in (4.7) is decoded. This decoding
process is called (+ + 1)-step majority-logic decoding [2, 11].

Now, we need to know how to form check-sums for decoding at each step. For
1<ii<ip<- - <i-; <mwith0 <! <r, we form the following index set:

SE e 12 by 22 g 2 e, e (0, Y forl < j <r 1)
(4.8)

which is a set of 2"~/ nonnegative integers less than 2™ in binary form. The exponent
set{ip —1,ip—1,---,i,;—1}isasubsetof {0,1,.-- ,m —1}. Let E be the set of
integersin {0, 1,--- ,m — 1} butnotin {iy — 1,ip —1,--- ,i,—; — 1}; that is,

ES(01, - m=T\{i—Lig—1,- i, —1} .
={ g2 Jm=rst}h
where 0 < j1 < jo < -+ < jm—rs1 <m — 1. We form the following set of integers:
SCEd; 2 +dp2h o dy, 2 dy € {0, 1 for 1 <1 <m—r +1}.
(4.10)
Note that there are 2"+ nonnegative integers in $¢, and
SN s ={0}.

Forl=r,S={0},and S ={0,1, ... ,2™ —1}.
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For 0 <1 = r, suppose we have just completed the /th step of decoding. The
decoded information bits are . We form the following modified received
vector:

12Ty

L u-1 _ 5 # - K
=T ). ZRNRNR (15 (CURER (N (4.11)

I<iy<<i, oy <m

r

where 1 is the modified received vector for the Ith siep of decoding, and 1@ =1
For each integer ¢ € §¢, we form the following sei of integers (called indices):

A
B=g-+S .
(4.12)
={g-+s:5€S}
Then, the check-sums for decoding the information biis a;,;,..;,_, are
(4.13)

for g € $¢. Because there are 2" integers 4 in 5¢, we can form 2" 7 check-sums
for decoding each information bit a; 4,..; .

At the first step of decoding, ! = 0 and 2"~ check-sums can be formed for
decoding each information bit @;;,..;,. H there are 2m=r=1 _ 1 or fewer errors in
the received vector r, then more than half (majority) of the check-sums assume the
value of 4; ;,..;, and hence the decoding of a; ;,...;, is correct, using the majority-logic
decision rule; however, if r contains 277 7"~! or more ervors, there is no guarantee
that a majority of the check-sums will assume the vaine of g;5,..;.. In this case,
majority-logic decision may result in an incorrect decoding. For example, consider
an error pattern with 2"~ ~! errors such that each error appears in a different check-
sum. In this case, half of the 277" check-surns assume the value 0, and the other hall
assume the value 1. There is no clear majority. A random choice of the two values
may result in an incorrect decoding of 4; ;,...;,. Now, consider another error pattern
of 2m=7=1 L 1 errors such that each error appears in a different check-sum. In this
case, 2" "1 1 (majority) of the check-sums assume the opposite value of aj,i,...,
and majority-logic decision based on the check-sums results in incorrect decoding
of aj ..., Note that the number of check-sums is doubled at each subsequent
decoding step. If there ave 2"~ — 1 or fewer errors in the received vector r,
then majority-logic decision based on check-sums results in correct decoding at
each step. This implies that the minimum distance of the RM(r, m) code is at least
2@l 1y 41 = 27" — 1. Because the codewords in RM(r, m) have even
weights, the minimum distance is at least 277", however, each product vector of
degree r in the generator matrix Grpm(r, m) has weight 277" and is a codeword.
Therefore, the minimum distance of the code is exactly 27 7.

The Reed decoding algorithm for RM codes is simply a multistage decoding
algorithm in which the decoded information at each stage of decoding is passed
down for the next stage of decoding.

EXAMPLE 4.3

Consider the second-order RM code of length 16 with m = 4 given in Example 4.2.
Suppose we want to construct the check-sums for the information bit ayy. Because
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i1 = 1 and iy = 2, we obtain the following sets:

S = f{eo + 12t 1 co, 1 € {0, 1}

=1{0,1,2,3},
E=1{0,1,2,3}\{0,1}
={2,3},
S¢ = {dh2% + d32° 1 do, ds € {0, 11}
= {0, 4, 8,12}.

Then, the index sets for forming the check-sums for a1, are

Bi=0+5=10,1,23},
By=4+5=14,567),

By =8+5 =189, 10,11},
By =12+ 8 = {12, 13, 14, 15}.

It follows from (4.13) with [ = 0 that the four check-sums for ay, are
A(10) =jyo+r+ryt+rs,
AéO) =r4+ 715+ ret 1,
Aém =rg 4 ry -+ rip t 1.
0
Af; =iyt s,

Now, consider the check-sums for ajs3. Because i1 = 1 and i = 3, we obtain the
following sets:

S =1lcg+ 2% : co, 3 € 10,11}

=1{0,1, 4,5},
E=1{0,1,2,3}\{0,2}
= {1,3},
S = {d12 +d32% : dy, ds € {0, 1}}
= 10,2, 8, 10}.

The index sets for constructing the check-sums for a3 are

B =0+S5=1{0,1,4,5},
B, =2+ S5=1{2,3.6,7},
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By =845=1{8.9,12, 13},
By =10+ 5 ={10,11,14,15}.

From these index sets and (4.13), we obtain the following check-sums for aq3:

0
A() rg+#r +ra+trs,
A0
5, =i+ rstreti,
0
A(s) =78+ F9 2 T3,

(W]
Ayt =0t g s

Using the same procedure, we can form the check-sums for information bits
aa, ap3, a4, and asq.
To find the check-sums for ai, a2, as, and a4, we first form the modified received
vector 11 based on (4.11):
asop
=r—= Z Ilhvll Vi,

I<iy<iy=d

Suppose we want to form the check-sums for «3. Because iy = 3. we obtain the
following sets:

S ={2% 1 er € {0.1}} = {0, 4},
=1{0.1,2,3}\ {2} = {0, 1,3},
={do+ d\2 + d32% 1 dg, dy, d3 € {0,1})
=1{0,1,2.3.8.9,10, 11}.

Then, the index seis for forming the check-sums of a3 are

={0,4}, Bs={812},
Bz ={1,5}, Bg=1{9, 13},
={2,6}, B7={10,14},
B4 =1{3,7}, Bs={11,15}.
It follows from (4.13) with / = 1 that we obtain the following eight check-sums:
(H (1) (1) (1) (ORI ¢
A =rg iy As =iy g
O] (1) (1 (1 (1> 1)
Ay =t AgT =1 g

a <1> ey a (1) 1)
Ay =y  Frg . Ay =g gy
(1 _ (1) (b O (b (1)
Ay =ry Frg. Ag =Ty s

Similarly, we can form the check-sums for ay, ar, and aq.
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107 l
o 1
107! = -
107 -
Z 107
= | |
g 107 E
[oF) E 3
g2 107 -
$ E = uncoded BPSK 3
z ool T ‘RM(16,11,4) ]
E —=— RM(32,6,16) E
7L o iRMG2 16, 8) 1
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FIGURE 4.2: Bit-error performances of some RM codes with majority-logic decoding.

Error performances of some RM codes of lengths up to 64 using majority-logic
decoding are shown in Figure 4.2.

4.4 OTHER CONSTRUCTIONS FOR REED-MULLER CODES

Besides the construction method presented in Section 4.3, there are other methods
for constructing RM codes. We present three such methods in this section. These
methods reveal more structures of RM code that are useful in constructing trellis
diagrams and soft-decision decodings.

Let A = [a;;] be an m x m matrix and B = [b;;] be an n x n matrix over
GF(2). The Kronecker product of A and B, denoted by A ® B, is the mn x mn matrix
obtained from A by replacing every entry «;; with the matrix g;;B. Note that for
a;j =1,a;jB = B,and for a;; = 0, a;; B is an n x n zero matrix. Let

1 1
Goy :[ 0 1 j| (4.14)

be a2 x 2 matrix over GF(2). The twofold Kronecker product of G 3 7, is defined as

1 1t 11

al 11 11 01 01
G(22’22) == [ 1 }@ l: 0 1 ] = 0 0 1 1 (415)

0 0 0 1
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The three-fold Kronecker product of G, ) is defined as

11

>
O =
o =

[E QN
| IR

o =
—
e N e B 1

OO0 O =
CO D e =
O =D

(4.16)

OO D = = i

cCoOoOR OO
OO DD
OO RO RO

OO OoO OO0 O
OO DD
OO OO DO
o ) fed e e ek el e

Similarly, we can define the m-fold Kronecker product of G2.2y. Let n = 2, We use
G (n.my to denote the m-fold Kronecker product of G2y Gy i8 2 2™ x 27" matrix
over GF(2). The rows of Gy, ) have weights 20 21 22 . 2™ and the number of
rows with weight 2" is (Mfor0<i<m.

The generator matrix Grv (v, m) of the rth-order RM code RM(r, m) of length

n = 2 consists of those rows of G, ,, with weights equal to or greater than
27", These rows are the same vectors given by (4.3), except they are a different
permutation.

EXAMPLE 4.4

Let m = 4. The fourfold Kronecker product of Gy 2) is

G(24.24) =

OO O OO R OO0 0D
OO O RP O DODOR OO0, OO0
OO =, OO P OO = OO R

DO O OO OO D OO OOo O
O D DO DO O DD OO0 O
DO DO D DO DD OO OO O
DO O DO OO OO OO0
DO DD DD OO OO, OO0 D
SO OO OO OO OO
SO OO OO OO D
S OO OO OO O M R e e
DO O DD OO OO0 O
OO OO PO OO0 OO0 PO
DO OR R OO0 O
O O O O O O OO
I T N R N Y e e e e e e
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The generator matrix GrM (2, 4) of the second-order RM code, RM(2, 4), of length
16 consists of the rows in G 1416, With weights 22, 2%, and 2*. Thus, we obtain

[

[S=y

GrM(2,4) =

SO OO DO OO0 O
O D DO OO OO
SO DO OO O RO
OO O DO OO O
OO OO P OO
OO OO OO O
SO ORPR OO OO O
OO OO0 OO Ok
O PR OMm O OO OO
O P OO D e
P OO RrRPR OO, OO0 O
= O R e D R e O O ke
R O R OO RO e
O ey

OO OO s e

SO OO OO

which is exactly the same matrix given in Example 4.2, except for the ordering of
the rows.

Let w = (ug.u1,...,uy—1) and v = (vg, vy, ..., v,-1) be two n-tuples over
GI(2). From w and v we form the following 2n-tuple:

A
jjw -+ v = (ug, 1, ..., Uy_1, 4o + V0, U1 + V1, ...y U] + Up_1). 4.17)

For i = 1,2, let C; be a binary (n, k;) lincar code with generator matrix G; and
minimum distance d;, respectively. Assume that d» > d;. We form the following
linear code of length 2n:

C=1C11C) + G2

(4.18)
={luu+vl:ueC)andve Cy}.
C is a binary (2n, k1 + k) linear code with generator matrix
G = [ @ 5217 } (4.19)
where @ is a k» x n zero matrix. The minimum distance dp;, (C) of C is
dmin (C) = min{2d;, dp}. (4.20)

To prove this, let x = |uju + v) and y = |w'|u’ + v/| be two distinct codewords in C.
The Hamming distance between x and y can be expressed in terms of Hamming
weights as follows:

dx,y) =wu+u)+wu+u +v+v), (4.21)

where w(z) denotes the Hamming weight of z. There are two cases to be considered,
v=v andv # v. If v =¥, since x # y, we must have w # w', In this case,

dx,y)=w@u+w) +wk+u). (4.22)
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Because w + w is a nonzers codeword in Cy. w(uw + ') > 4. Then, it follows from
{4.22) that

d{x,y) > 2d. (4.23)

Itv £ v, we have

dx.y) > w+u) -+ wv+v) — w + )
(4.24)
= w(v +v).

Since v + v is a nonzero codeword in Oy, w(v 4+ ') > da. From (4.24) we have

d(g,y) > dy. (4.25)
Inegualities (4.23) and (4.25) imply that
d(x,v) > min{2d,, d2}. (4.26)

Because x and y are two arbitrary different codewords in C, the minimum distance
dnin(C) must be lower bounded as follows:

Aoin (C) > min{2dy. da ). (4.27)

Let wg and vg be two minimum-weight codewords in C; and C,. respectively.
Then, w(uwy) = di and w(vg) = dy. The vector |uglugl is a codeword in C with
weight w{lmplug|) = 2d;. The vector |0|vg| is also a codeword in C with weight
w(|0|vo]) = do. From (4.27) we see that d;,, (C) must be either 2dy or da. Therefore,
we conclude that

iin (C) = min{2dy. do ). (4.28)
The preceding construction of a code from two component codes is called

the |uju + v|-construction [12, 13] which is a powerful technique for constructing
powerful long codes from shost codes.

EXAMPLE 4.5

Let € be the binary (8, 4) linear code of minimum distance 4 genevaied by

o
11111111
G| 00001111
=30 01100 11
6 1010101

Let C; be the (8, 1) repetition code of minimum distance 8 generaied by

Go=[1 1111 111]
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Using |wjm + vi-construction, we obtain a (16, 5) binary linear code of minimum
distance 8 with the following generator matrix,

_ | G1 Gy
o= T &

111111+ 11 1111111
0606000111 1000601111
=40 01100611001 106011
6010101t o0o101010101
6 0000O06O0OOI1T 1111111

RM codes of length 2" can be constructed from RM codes of length 2!
using the |u|u + v]-construction [12]. For m > 2, the rth-order RM code in |nju + v|-
construction is given as follows:

RM(r,m) = {juju+v]:u € RM(r,m — 1) and

(4.29)
v e RM(r —1,m — 1)}
with generator matrix
. | Grm(r.m —1) Grmir,m — 1)
Grmlr, m) = |: 0 Grg(r — L — 1) :i . (4.30)

The matrix of (4.30) shows that a RM code can be constructed recursively from
short RM codes by a sequence of |uju+ v|-constructions. For example. the rth-order
RM code RM(r, m) of length 2™ can be constructed from RM codes RM(r, m — 2),
RM(r — 1.m — 2), and RM(r — 2, m — 2) of length 2m=2 The generator matrix in
terms of component codes is given as follows:

GrMmir,m —2)  Grm(r,m —2) GrMm(r,m —2) GrMm(r,m —2)

G= 0 Grm{r —1,m —2) 0 Grm(r =1, m —2)
o 0 0 Grm(r —1,m —2) Gam(r — 1, m —2)
0 0 0 Grm(r —2,m —2)

(4.31)

The recursive structure of RM codes is very useful in analyzing and constructing
their trellises {15, 16]. This structure also allows us to devise multistage soft-decision
decoding schemes for RM codes that achieve good error performance with reduced
decoding complexity. This topic will also be discussed in a later chapter.

Consider a Boolean function f(X, X», ..., X,;) of m variables, X, X5, ...,
X, that take values of 0 or 1 {12, 14]. For each combination of values of X1, X3, ...,
and X,,, the function f takes a truth value of either O or 1. For the 2" combinations
of values of X, X2, ..., X,;, the truth values of f form a 2"-tuple over GF(2).

For a nonnegative integer / less than 2, let (b, by2, . .. . biy) be the standard
binary representation of /, such that [ = by + bpp2 + bi32% + -+ b2~ For a
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given Boolean function f(Xy, Xo, ..., X,n), we form the following 2" -tuple (iruih
vector):
‘V(f) = (UO, 17 N /) A UZ”’—I) (432)
where N
v = flbi. b, ..., b)) (4.33)

and (b1, byz, . . ., byy) 1s the standard binary representation of the index integer /.
We say that the Boolean function f(X1, Xs, .... X,) represents the vector v. We use
the notation v(f) for the vector represented by (X, Xo...., X). For 1 <i <m,
consider the Boolean function

f(Xls Xy, Xm) = X (434)

It 15 easy to see that this Boolean function represents the vector v; defined by (4.4).
For 1 < i, j < m, the function

f(XleXZs”me) :Xin (435}
represents the logic product of v; and v;, represented by g (X1, X2, ..., X)) = X; and
h(Xy, Xz, ..., X)) = X;, respectively. For 1 < iy <ip < .- < i, < m, the Boolean
function

f(X X, X)) = Xi]Xig "'Xi,. (436)
represents the logic product of v; , v;,, ..., and v;,. Therefore, the generator vectors

of the rth-order RM code of length n = 27 (the rows in Gry(r, m)) are represented
by the Boolean functions in the following set:

B(r,my=1{1,X%X{,X2..... X X1 X0, X1 X3, o0, X1 X,
(4.37)
. up to all products of r variables}.

Let P(r, m) denote the set of all Boolean functions (or polynomials) of degree » or
less with m variables. Then, RM(r, m) is given by the following set of vectors [12]:

RM(r, m) = {(v(f): f € P(r,m)}. (4.38)

The Boolean representation is very useful in studying the weight distribution
of RM codes [18, 20].

4.5 THE SQUARING COMNSTRUCTION OF CODES

Consider a binary (n, k) linear code C with generator matrix G. For 0 < &y <k, let
Cy be an (n, ky) linear subcode of C that is spanned by k1 rows of G. Partition C into
2Kk cosets of C;. This partition of C with respect to C is denoted by C/Cy. As
shown in Section 3.5, each coset of C; is of the following form:

vl ={wi+u:uney} (4.39)

with 1 <1 < 2575 where for v; % 0, v; is in C but not in €y, and for v; = 0, the
coset § @ C is just the subcode Cy itself. The codeword v, is called the leader (or
representative) of the coset v; & C;. We also showed in Section 3.5 that any codeword
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in a coset can be used as the coset representative without changing the composition
of the coset. The all-zero codeword 0 is always used as the representative for Cy.
The set of representatives for the cosets in the partition C/C1 is denoted by [C/C1],
which is called the coset representative space for the partition C/Cj. Because all the
cosets in C/C; are disjoint, C1 and [C/C1] have oaly the all-zero codeword ¢ in
common; that is, C; N [C/C1] = {8}. Then, we can express C as the sum of the coset
representatives in [C/C1] and the codewords in 1 as follows:

C=[C/Cil@Ci 2 v+u:ve[C/Cilue ). (4.40)

The preceding sum is called the direct-sum of [C/Cq] and Cj.

Let G1 be the subset of k| rows of the generator matrix G that generates the
linear subcode C;. Then, the 2% codewords generated by the k — k; rows in the
set G \ G| can be used as the representatives for the cosets in C/Cy. These 2¢—%
codewords form an (n, k — k7) linear subcode of C.

Let C; be an (n, ky) linear subcode of €1 with 0 < ky < k. We can further
partition each coset v; @ C1 in the partition C/C; based on C; into 2¥17%2 cosets of
(y; each coset consists of the following codewords in C:

v ® (wy @ C2) = vi+w, +tu:me Gy} (4.41)

with1 </ <2F % and 1 < g < 28% where for w, # 0, w, is a codeword in Cy but
not in Cp. We denote this partition C/C;/C,. This partition consists of 2k—k2 cosets
of €. Now, we can express C as the following direct-sum:

C=[C/Ci][C1/C)® Ch. (4.42)

Let C1, Ca, ..., Cp be a sequence of linear subcodes of C with dimensions
ki, ko, ..., ky, respectively, such that

C2C12C22"'2Cm (443)

and
k>ki>kp>-- >k, >0. (4.44)

Then, we can form a chain of partitions,
C/C1,C/C1/Co ..., C/C1/Cof -+ [ Chy, (4.45)
and can express C as the following direct-sum:
C=[C/C]D[C1/C)® - D[Cy1/Cr] ® Cri. (4.46)

We now present another method for constructing long codes from a sequence
of subcodes of a given short code. This method is known as the squaring construc-
tion [15].

Let Cg be a binary (n, ko) linear block code with minimum Hamming dis-
tance dg. Let C1, Co, ..., C,; be a sequence of subcodes of Cy such that

CoDC1DCD---DCy. (447)
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For 0 <i < m, let Gy, k;, and d; be the generator matrix, the dimension, and the
minimum distance of the subcode C;, respectively. We form a chain of partitions as
follows:

Co/C1, Co/C1/Ca, ..., Co/CL) | Cim. (4.48)

For 0 <i < m,let G;;;41 denote the generator matrix for the coset representative
space [C;/Ci41]. The rank of G, /4 is

Rank(G;/;41) = Rank(G;) — Rank(G;41). (4.49;

Without loss of generality, we assume that Gy D Gy D Gy D -+ D Gy, Then, for
0<i<m,

Gijitr = Gi\Giq1. (4.50)

One-level squaring construction is based on € and the partition Co/Cy. Let
a = (dg, a1, ....a,_1) and b = (bp, by, ....b,_1) be two binary n-tuples, and let
(a, b) denote the Zn-tuple (ap, a1, ..., a,-1. bo. b1. ..., by_1). We form the following
set of 2n-tuples:

|Co/Cy 2 2 {a+x,b+x):a be Candx e [Co/Ci]). (4.51)
Then, [Cy/Cy 12 is a (2n, kg + k) linear block code with minimum Hamming distance
Dy £ min{2dy. 4y). (4.52)

The generator matrix for |Co/Cy [2is given by

Gy 0
G=| 0o & |. (4.53)
Gost - Gos

Let My and M> be two matrices with the same number of columns. The matrix

[ oM
o[}

is called the direct-sum of M, and M;, denoted by M = M| & M,. Then, we can
express the generator matrix for the one-level squaring construction code |Cq/Cy|?
in the following form:

GC=L®G o (1.1)®Gon, (4.54)

where ® denotes the Kronecker product, @ the direct-sum, /; the identity matrix of
dimension 2,

L® Gy :[ %1 (21 ] (4.55)

and

(1, 1) ® Goj1 = [Goy1 Gopl- (4.56)
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Now, we extend the one-level squaring construction to a two-level squaring

construction. First, we form two codes, U 2 |Co/C11% and V = |C1/C3)?, using one-
level squaring construction. It is easy to see that V is a subcode of U. The two-level
squaring construction based on the partitions Co/Cq, C1/Cs, and Cy/C1/C; gives
the following code:

ICo/C1/Cal* 2 (a+x,b+x%) :a,beVandxe[U/V])
={a@a+x,b+x):abe|C/C) (4.57)
and x € [[Co/C1[* / |C1/ C2 ]},

which is simply the code obtained by one-level squaring construction based on V and
U/V. This code is a (4n, kg + 2k1 + k2) linear block code with minimum Hamming
distance

D> 2 min{ddy, 241, dy). (4.58)

Let Gy, Gy, and Gy v denote the generator matrices for U, V, and [U/V],
respectively. Then, the generator matrix for |[U/V 2 is

Gy 0
G=| o Gv |. (4.59)
Gyyv Guyyy

We put Gy and Gy in the form of (4.53) and note that Gy/v = Gy\Gy. Then,
we can put the generator matrix G of |Co/C1/Ca|* = [U/V|? given by (4.59) in the

following form:

Gy 0 0 0
0 Go 0 0
0 0 Gy 0
0 0 0 Gy
G= 4.60
Gos1 Gopr Gosr Gogt (4.60)
Gip Gip Gip Gip
0 0 Gipp Gip
L 0 Gip 0 Gip2 |
We can express this matrix in the following compact form:
11 11
GC=L4®Gd1IIDH®Gy1®| 0 0 1 1 @Gy (4.61)
0 1 01
Note that
11 11
(111and | 0 0 1 1
01 01

are the generator matrices of the zeroth- and first-order RM codes of length 4.
Higher-level squaring construction can be carried out recursively in a similar
manner. For m > 2, let

m—1
Un = |Co/C1/ [ Cni)
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A m—1
Vin = |C]/C2/ st "/Cm‘z

denote the iwo codes obtained by (n — 1)-level squaring construction. The code
obtained by m-level squaring construction is given by [15]:

{Co/Cr/ - /C,”I2 ={a+xb+x)abe Vyandxe[Un/ Vall (4.62)

S
>4

T

The generator matrix is given by {15, 16]:

G = ]’2111 & 6";” @ Zﬁl GRM(T? in\; ® GZ'/)'—'rlv (463)
O<r<m

where I denoctes the identity matrix of dimension 2™, and Gupm(r,m) is the
generator matrix of the rth-order RM code, RM(r, m), of length 2/,

RM codes are good examples of the squaring construciion. Long RM codes
can be construcied from short RM codes iteratively using the squaring construction
[15, 16]. From the construction of RM codes given in Section 4.2, we find that for
0<i<r,

RiM(r,m) D BM(r -1, m) D - D RM((r — i, m). (4.64)

Consider the RM code RM(r, m). As shown in Section 4.4, this code can be obtained
from RM(r, m — 1) and RM(r — 1, m — 1) codes using the |u|u -+ v|-construction. Tt
follows from (4.30) that the generator matrix for the RM(r, m) code can be expressed
as follows:

C Gam(r.om — 1) Gamr,m — 1) \
5 roHL) = . .C
GrM(r, i) _ 0 GrmG —1,m = 1) (4.63)
We define

Appr/r—1,m—1) 2 Gpm@r, m — IN\Gry(r — 1, m — 1). (4.66)

Note that Apm(r/r — 1.m — 1) consists of those rows in Gpryi(r, m — 1) but not
in Gpm(r — 1, m — 1) and it spans the coset representative space [RM(r,m — 1)/
RM@r — 1, m — 1)]. Now, we can pui Gpy(r, m — 1) in the following form:

Grum(r,m —1) = ( Gruv(r —1,m —1) }

4
| Armr/r—~1.m —1) (4.67)

Replacing Grv(r, m — 1) in (4.65) with the expression of (4.67) and performing row
operations, we put Grp(r, m) in the following form:

Gam(r— 1, m—1) 0
GrMm(r.m) = 0 Grm(r —1.m ~1) : (4.68)
Arm@/r—1,m -1y Arpm@G/r—1.m-1)

This is exactly the generator matrix form of one-level squaring construction. There-
fore, the rih-order RM code of length 27" can be constructed from the rth-order and
(r — 1)th order RM codes of length 21 that is,

RM(r, m) = [RM@. m - 1)/RMG — 1, m — 1)|2 . (4.69)
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Because
RM(r,m — 1) = [RM(r,m — 2)/RM{@ — 1. m — 2)|2

and
RM(r—1,m —1) = [RM( —1,m — 2)/RM(r —2,m — 2)|?,

then we can construct RM(r, m) from RM(r, m — 2), RM(r — 1, m — 2), and RM(r —
2, m — 2) using two-level squaring construction; that is,

RM(r, m) = [RM(r, m — 2)/RM(r — 1, m — 2)/RM(r —2,m — 2)[¥ . (4.70)

Repeating the preceding process, we find that for 1 < u < r, we can express the
RM(r, m) code as a u-level squaring construction code as follows:

RM(@r,m) = [RM(r,m — w)/RM{@r ~1,m — )/ /RM@r — p, m — W . (4.71)

A problem related to the construction of codes from component codes is code
decomposition. A code is said to be decomposable if it can be expressed in terms of
component codes. A code is said to be u-level decomposable if it can be expressed
as a p-level squaring construction code from a sequence of subcodes of a given code,
as shown in (4.62). From (4.71) we see that a RM code is p-level decomposable.

A p-level decomposable code can be decoded in multiple stages: component
codes are decoded sequentially one at a time, and decoded information is passed
from one stage to the next stage. This multistage decoding provides a good trade-off
between error performance and decoding complexity, especially for long codes.

RM codes also can be constructed from Euclidean geometry, which is discussed
in Chapter 8. This construction reveals more algebraic and geometric structures of
these codes, especially the structures and the number of minimum-weight codewords.
There is a one-to-one correspondence between a minimum-weight codeword of the
rth-order RM code, RM(r, m), and an (m — r)-dimensional flat in m-dimensional
Euclidean geometry, EG(m, 2), over GF(2). This correspondence gives the number
of minimum-weight codewords of the RM(r, m) code [12, 17]

m—r—1

) 2171—1' -1
AZHI*/' = 2] ﬂ (m) . (472)

i=0

In fact, these minimum-weight codewords span (or generate) the code; that is the
linear combinations of these minimum-weight codewords produce all the codewords
of the RM(r, m) code.

The weight distribution of several subclasses of RM codes and all RM codes
of lengths up to 512 have been enumerated {12, 18-21]. The first-order RM code,
RM(1, m). has only three weights, 1, 2m=1 and 2™. The number of codewords of
these weights are

AO = A2m = 1, 4 73
A2m—] — 2)11+1 —2 ( ' )
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The second-order RM code, RM(Z, i) has the following weight distribution:

AO = A2m = 1,
m |
(2 =1 ,
Agu—t ggnoi— = 2D ﬂ,_,7 AL ), forl<l<|2] (4.74)

[T @ =D 2

L%J Hm (21 . 1)
Aget = 207 E022 5 3 i Liznar € = D)

I—1 ﬂi:](ZZI -1

Because the (m — r — Dth-order RM code, RM(m — r — 1. m), is the dual code of
the rth-order RM code, RM(r, m), the weight distributions of the RM@n — 2, m)
and RM(m — 3, m) codes can be derived from (4.73), (4.74), and the MacWilliams
identity of (3.32).

EXAMPLE 4.6

The weight distribution of the (32, 16) RM code. RM(2, 5), is
10 8 | 12 ] 16 | 20 |24 3

4 | 1] 620 | 13888 | 36518 | 13888 | 620 | 1

[

This code is a self-dual code.

RM codes form a remarkable class of linear block codes. Their rich structural
properties make them very easy to decode by either hard- or soft-decision decoding.
Various soft-decision decoding algorithms for these codes have been devised, and
some will be discussed in later chapters. Other classes of codes are more powerful
than RM codes—for the same minimum distance, these codes have higher rates:
however, the low decoding complexity of RM codes makes them very attractive
in practical applications. In fact, in terms of both error performance and decoding
complexity, RM codes often outperform their corresponding more powerful codes.

The (m — 2)th-order RM code of length 2" is actually the distance-4 extended
Hamming code obtained by adding an overall parity bit to the Hamming code of
length 2™ — 1.

4.6 THE (24, 12) GOLAY CODE

Besides the Hamming codes, the only other nontrivial binary perfect code is the
(23, 12) Golay code constructed by M. J. E. Golay in 1949 [3]. This code has a
minimum distance of 7 and is capable of correcting any combination of three or
fewer random errors in a block of 23 digits. The code has abundant and beautiful
algebraic structure, and it has become a subject of study by many coding theorists
and mathematicians; many research papers have been published on its structure and
decoding. The Golay code is the most extensively studied single code. In addition
to having beautiful structure, this code has been used in many real communication
systems for error control. This code in its cyclic form will be studied in Chapter 5.
The (23, 12) Golay code can be extended by adding an overall parity-check bit
to each codeword. This extension results in a (24, 12) code with a minimum distance
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of 8. This code is capable of correcting all error patterns of three or fewer errors
and detecting all error patterns of four errors. It is not a perfect code anymore;
however, it has many interesting structural properties and has been widely used for
error control in many communication systems, especially in the U.S. space program.
It served as the primary Voyager error-control system, providing clear color pictures
of Jupiter and Saturn between 1979 and 1981.

In this section we study the (24, 12) Golay code and its decoding. A generator
matrix in systematic form for this code is as follows [12, 23, 24]:

G = [ P Ip ],
where I, is the identity matrix of dimension 12 and

(100011101101 ]
000111011011
001110110101
011101101001
111011010001
110110100011
P=11901101000111 | (4.75)
011010001111
110100011101
101000111011
010001110111
(111111111110 |

The P matrix has the following properties: (1) it is symmetrical with respect to its
diagonal; (2) the ith column is the transpose of the ith row; (3) P - PT = 1I;,, where
P7 is the transpose of P; and (4) the submatrix obtained by deleting the last row
and last column is formed by cyclically shifting the first row to the left 11 times
(or cyclically shifting the first column upward 11 times). It follows from the second
property that

P’ =P.

Consequently, the parity-check matrix in systematic form for the (24, 12) extended
Golay code is given by

H=[Ip P ]
(1, PJ.

It can be proved that the code is self-dual [see Problem 4.18].

A simple decoding algorithm for the (24, 12) Golay code can be devised using
the properties of the P matrix {23]. For 0 < i < 11, let p; denote the ith row of
P and u®” the 12-tuple in which only the ith component is nonzero. For example,
u® =000001000000). We readily see that

(4.76)

pi = u® . P. (4.77)

Let e = (x,y) be an error vector, where x and y are binary 12-tuples. Suppose a
codeword v is transmitted, and a correctable error pattern ¢ = (x, y) occurs. Then,
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the received vector is r = v + e. The syndrome of r is
s=r-H =(@+e) H =e H.
It follows from (4.76) and PT = P that

Lo T
s:(x.y)-[ &DZJ

=x-Ip+y-P (4.78)
=x+y-P

Using the property P - PT = Ij,, we can express y in terms of x, s, and P as follows:
y=(s+x) P (4.79)

In the following, we first show that a correctable error pattern for the (24, 12)
Golay code can be expressed in terms of P, p;, u'), and s. We then present a decoding
algorithm for the code.

For any correctable error pattern with weight w(e) < 3, we have the foliowing
four possibilities:

(1) w(x) <3 and w(y) =0,
2y wx) <2and w(y) =1,
G wx) <land wy) =2.
(4) w(x) = 0 and w(y) = 3.

Theses four possibilities define four different types of correctable error patierns.
For 0 < j < 3, let e) = (x, y), for which w(y) = j, and w(x) < 3 — j. Suppose
e = e, It follows from (4.78) that s = x and w(s) = w(x) < 3. In this case,

e = (s, 0,

where 0 is the all-zero 12-tuple. Suppose e = el and y = u”). Then, it follows from
(4.78) that |
s=x+u? . P=x+p.

Hence, x = s + py, and w(s + p;) = w(x) < 2. In this case,
e=(s+p;, u')
Suppose e = e or e, and w(x) = 0. It follows from (4.79) that
y=s-P,
and w(s - P) = w(y) = 2 or 3. For this case, we can express e as follows:
e= (0, s-P).

Now, suppose e = e@, and w(x) = 1. If the nonzero component of x is at the ith
position, then x = u”. It follows from (4.79) that

y=(6+u") P
=s-P+ul.P
=s-P+p
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and w(s- P +p;) = w(y) = 2. Consequently, we can express e as follows:
e=@", s P+pp).

A decoding algorithm can be devised for the (24, 12) Golay code based on
the preceding analysis and expressions of correctable error patterns. The decoding
consists of the following steps:

Step 1. Compute the syndrome s of the received sequence .

Step 2. If w(s) < 3, thenset e = (s, 0) and go to step 8.

Step 3. If w(s +p;) < 2 for some row p; in P, then set e = (s + p;, u'’) and go
to step 8.

Step 4. Compute s - P.

Step 5. Hw(s-P)=2or3, thensete = (§,s-P) and go to step 8.

Step 6. If w(s-P +p;) = 2 for some row p; in P, thensete = (w®,s- P +p;)
and go to step 8.

Step 7. If the syndrome does not correspond to a correctable error pat-
tern, stop the decoding process, or request a retransmission. (This
represents a decoding failure.)

Step 8. Set the decoded codeword v* = r + e and stop.

EXAMPLE 4.7

Suppose the (24, 12) Golay code is used for error control. Letr = (10000011010
0110000000001) be the received sequence. To decode r, we first compute the
syndrome s of r:

s=r-H =(111011111100).

Because w(s) > 3, we go to decoding step 3. We find that
s+p1=(11101111110004+(111111111110)
=(000100000010),
and w(s + p11) = 2. So we set
e=(s+pi, ul)
=({00100000010000000000001)
and decode r into
vi=r+e

=(100100110110110000000000).

4.7 PRODUCT CODES

Besides the |ufu + v{ and squaring constructions of codes, another technique for
constructing long, powerful codes from short component codes is the product coding
technique.
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G

Let Cq1 be an (1, k1) linear code, and let Oy be an (13, ky) linear code. Then,
an (nyny, k1ky) linear code can be formed such that each codeword is a rectangular
array of n1 columns and n; rows in which every row is a codeword in {7y, and every
column is a codeword in €, as shown in Figure 4.3. This two-dimensional code is
called the direct product (or simply the produce) of Cq, and C; [25]. The kik, digits
in the upper right corner of the array are inforination symbols. The digits in the
upper left corner of this array are computed from the parity-check rules for Cy on
rows, and the digits in the lower right corner are computed from the parity-check
rules for Oy on columns. Mow, should we compute the check digiis in the lower left
corner by using the parity-check rules for €y on columns or the parity-check rules
for Cq on rows? It turns out that either way yields the same (n — k1) X (12 — k)
check digits (see Problem 4.21}, and it is possible to have ali row codewords in €4
and all column codewords in Cy simulianecusly.

The product code 7 x Cy is encoded in two steps. A message of ki informa-
tion symbols is first arranged as shown in the upper right corner of Figure 4.3. At the
first step of encoding, each row of the information array is encoded into a ecodeword
in C;. This row encoding resulis in an array of ky rows and r{ columns, as shown in
the upper part of Figure 4.3. At the second siep of encoding each of the iy columns
of the array formed at the first encoding step is encoded into a codeword in ). This
results in a code array of ny rows and ny columns, as shown in Figure 4.3. This code
array also can be formed by first performing the coluran encoding and then the row
encoding. Transmission can be carried out either column by column or row by row.

If code €1 has minimum weight d) and code ¢ has minimum weight d,, the
minimum weight of the product code is exacily d)d>. A minimum-weight codeword
in the product code is formed by (1) choosing a minimum-weight codeword in
Cy and a minimum-weight codeword in € and (2) forming an array in which all
columns corresponding to zeros in the codeword from C are zeros, and all columns
corresponding to ones in the codeword from C are the minimum-weight codeword
chosen from C3.

Checks o
Information
on - ka
digits -
TOWS

Checks on

Checks on columns
checks

FIGURE 4.3: Code array for the product code € x (5.
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It is not easy to characterize the correctable error patterns for the product
code; this depends on how the correction is done. One method involves using a
two-step decoding. The decoding is first performed on rows and then on columns.
In this case a pattern will be correctable it and only if the uncorrectable patterns
on rows after row correction leave correctable patterns on the columns. It generally
improves the correction to decode by rows, then columns, then columns and rows
again. This method, of course, increases the decoding delay. This type of decoding
is called iterative decoding [25].

The product code is capable of correcting any combination of [(didy — 1)/2]
errors, but the method described will not achieve this. For example, consider the
product code of two Hamming single-error-correcting codes. The minimum distance
of each is 3, so the minimum distance of the product is 9. A pattern of four errors
at the corners of a rectangle gives two errors in cach of the two rows and two
columns and is therefore not correctable by simple correction on rows and columns.
Nevertheless, simple correction on rows and columns, although nonoptimum, can
be very effective. The complexity of the two-step decoding is roughly the sum of the
complexities of the two component code decodings.

EXAMPLE 4.8

Consider the product of the (5, 4) SPC code € with itself. The product code C; x Cy
is a (25, 16) linear block code € with a minimum distance of 4. Suppose the message
B=(1011000101011101) is to be encoded. This message is read into a
storage buffer and arranged into a 4 x 4 information array, as shown in Figure 4.4.
The first four information symbols form the first row of the information array,
the second four information symbols form the second row, and so on. At the first
step of encoding, a single (even) parity-check symbol is added to each row of the
information array. This results in a 4 x 5 array, as shown in Figure 4.4. In the second
step of encoding a single (even) parity-check symbol is added to each of the five
columns of the array, as shown in Figure 4.4. Suppose this code array is transmitted
column by column. At the received end, the received sequence is rearranged into a
5 x 5 code array column by column, called the received array. Suppose a single error
occurs at the intersection of a row and a column. The erroneous row and column
containing this single error are indicated by parity-check failures, then the error is
corrected by complementing the received symbol (i.e., 0 to 1, and 1 to 0) at the
intersection. All the single-error patterns can be corrected in this manner. Checking
the row and column parity failures cannot correct any double-error pattern, but it
can detect all the double-error patterns. When a double-error pattern occurs, there

FIGURE 4.4: A code array of the product of the (5, 4) SPC code with itself.
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y

Checks e
Information -
on L. k-
X digits -
rOWS

Checks on columns

FIGURE 4.5: Incomplete product of two codes.

ave three possible distributions of the two errors: (1) they are in the same row; (2)
they are in the same column; or (3) they are in different rows and different columns.
In the first case, there are two column parity failures but no row parity failure.
Hence, errors are detected but they cannot be located. In the second case, there
are two row parity failures but no column parity failure. Again, errors are detected
but cannot be located. In the third case, there are two row parity failures and two
column parity failures, so there are four intersecting locations. The two errors are
situated at two opposite diagonal positions, but we cannot determine the positions.

In constructing a two-dimensional product code, if we do not form the
(ny — k1) x (ny — k2) checks on checks in the lower lefi corner of Figure 4.3, we
obtain an incomplete code array, as shown in Figure 4.5. This incomplete product of
two codes results in a (kyny + kony — kiky, kik2) linear block code with a minimum
distance of dy + dr — 1 (see Problem 4.22). The code has a higher rate but smaller
minimum distance than the complete product code.

4.8 INTERLEAVED CODES

Given an (n, k) linear block code C, it is possible to construct a (in, Ak) linear
block code (i.e., a code X times as long with A times as many information symbols)
by interleaving, that is, simply by arranging A codewords in C intoc % rows of a
rectangular array and then transmitting the array column by column, as shown in
Figure 4.6. The resulting code, denoted by C*, is called an interleaved code. The
parameter A is referred to as the interleaving depth (or degree). If the minimum
distance of the base code C is d,;;;;;, the minimum distance of the interleaved code is
also diin.

The obvious way to implement an interleaved code is to set up the code array
and operate on rows in encoding and decoding. In this way, a pattern of errors can
be corrected for the whole array if and only if the patiern of errors in each row
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Transmission
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FIGURE 4.6: Transmission of an interleaved code.

is a correctable pattern for the original code C. The interleaving technique is very
effective for deriving long, powerful codes for correcting errors that cluster to form
bursts. This topic will be discussed in a later chapter.

Interleaving a single code can easily be generalized to interleaving several
different codes of the same length. For 1 < < A, let C; be an (n, k;) linear block
code. Take L codewords, one from each code, and arrange them as A rows of a
rectangular array as follows:

v1.0- Vi1, -t Vin-1
v2.0, V21, -ty V251 (4 80)
U)».Oa U}\..l? T U)\,Il—-l

Then, transmit this array column by column. This interleaving of A codes results in
an (An, ki +ky+ - - -+ k) linear block code, denoted by C* = C; % Cy % - - - % C;. Each
column of the array given in (4.80) is a binary A-tuple. If each column of (4.80) is
regarded as an element in Galois field GF(2*), then C* may be regarded as a linear
block code with symbols from GF(2).

The interleaving technique presented here is called block interleaving. Other
types of interleaving will be discussed in later chapters and can be found in [26].

PROBLEMS

4.1 Form a parity-check matrix for the (15, 11) Hamming code. Devise a decoder for
the code.

4.2 Show that Hamming codes achieve the Hamming bound (see Problem 3.15).

4.3 Show that the probability of an undetected error for Hamming codes of length
2™ — 1 on a BSC with transition probability p satisfies the upper bound 27" for
p < 1/2. (Hint: Use the inequality (1 — 2p) < (1 — p)2.)
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Compute the probability of an undetected error for the (15, 11) code on a BSC
with transition probability p = 1072,

Devise a decoder for the (22, 16) SEC-DED code whose parity-check matrix is
given in Figure 4.1(a).

Form the generator matrix of the first-order RM code RM(1, 3) of length 8.
What is the minimum distance of the code? Determine its parity-check sums
and devise a majority-logic decoder for the code. Decode the received vector
r=(01000101).

Form the generator matrix of the first-order RM code RM(1, 4) of length 16.
What is the minimum distance of the code? Determine its parity-check sums
and devise a majority-logic decoder for the code. Decode the received vector
r=0011001001110011).

Find the parity-check sums for the second-order RM code RM(2, 5) of length 32.
What is the minimum distance of the code? Form the parity-check sums for the
code. Describe the decoding steps.

Prove that the (m — r — Dth-order RM code, RM{m — r — 1, m), is the dual code
of the rth-order RM code, RM(r, m).

Show that the RM(1, 3) and RM(2, 5) codes are self-dual.

Find a parity-check matrix for the RM(1, 4) code.

Construct the RM(Z, 5) code of length 32 from RM codes of length 8 using
lulu + v|-construction.

Using the |uju + v|-construction, decompose the RM(2, 5) code into component
codes that are either repetition codes of dimension 1 or even parity-check codes
of minimum distance 2.

Determine the Boolean polynomials that give the codewords of the RM(1, 3)
code.

Use Boolean representation to show that the RM(r, m) code can be constructed
from RM(r, m — 1) and RM(r — 1,m — 1) codes.

Construct the RM(2, 4) code from the RM(2, 3) and RM(1, 3) codes using
one-level squaring construction. Find its generator matrix in the form of (4.53) or
(4.68).

Using two-level squaring construction, express the generator matrix of the
RM(2, 4) code in the forms of {(4.60) and (4.61).

Prove that the (24, 12) Golay code is self-dual. (Hinr: Show that G - GT =0.)
Design an encoding circuit for the (24, 12) Golay code.

Suppose that the (24, 12) Golay code is used for error correciion. Decode the
following received sequences:

2, r=(101101110010000011000011),

b, r=(0011111100100006000000001).

Show that the digits for checking the parity-check digits of a product code array
shown in Figure 4.3 are the same no matter whether they are formed by using
the parity-check rules for C; on columns or the parity-check rules for C; on
TOWS.

Prove that the minimum distance of the incomplete product of an (nq, k1. dyp)
linear code and an (n2, ko, d2) linear code is dy +d» — 1.

The incomplete product of the (ny, ny — 1,2) and the (5. n2 — 1, 2) even parity-
check codes has a minimum distance of 3. Devise a decoding algorithm for
correcting a single error in the information part of a code array.
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