CHAPTER 3

In this chapter we introduce basic concepts of block codes. For ease of code
synthesis and implementation, we restrict our attention to a subclass of the class of
all block codes, the linear block codes. Because information in most current digital
data communication and storage systems is coded in the binary digits 0 and 1, we
discuss only the linear block codes with symbols from the binary field GF(2). It is
straightforward to generalize the theory developed for the binary codes to codes
with symbols from a nonbinary field.

First, linear block codes are defined and described in terms of generator and
parity-check matrices. The parity-check equations for a systematic code are derived.
Encoding of linear block codes is discussed. In Section 3.2 the concept of syndrome
is introduced. The use of syndrome for error detection and correction is discussed. In
Sections 3.3 and 3.4 we define the minimum distance of a block code and show that
the random-error-detecting and random-error-correcting capabilities of a code are
determined by its minimum distance. Probabilities of a decoding error are discussed.
In Section 3.5 the standard array and its application to the decoding of linear block
codes are presented. A general decoder based on the syndrome decoding scheme
is given.

References [1] through [6] contain excellent treatments of linear block codes.

3.1 INTRODUCTION TO LINEAR BLOCK CODES

We assume that the output of an information source is a sequence of the binary digits
0 and 1. In block coding, this binary information sequence is segmented into message
blocks of fixed length; each message block, denoted by u, consists of k information
digits. There are a total of 2 distinct messages. The encoder, according to certain
rules, transforms each input message w into a binary n-tuple v with n > k. This binary
n-tuple v is referred to as the codeword (or code vector) of the message u. Therefore,
corresponding to the 2¢ possible messages, there are 2% codewords. This set of 2¢
codewords is called a block code. For a block code to be useful, the 2 codewords
must be distinct. Therefore, there should be a one-to-one correspondence between
a message u and its codeword v.

For a block code with 2F codewords and length n, unless it has a certain special
structure, the encoding apparatus will be prohibitively complex for large k and n,
since it has to store the 2¢ codewords of length n in a dictionary. Therefore, we
restrict our attention to block codes that can be mechanized in a practical manner.
A desirable structure for a block code to possess is linearity, which greatly reduces
the encoding complexity, as we shall see.

DerINITION 3.1 A block code of length n and 2 codewords is called a linear
(n, k) code if and only if its 2% codewords form a k-dimensional subspace of
the vector space of all the n-tuples over the field GF(2).
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In fact, a binary block code is linear if and only if the modulo-2 sum of two
codewords is also a codeword. The block code given in Table 3.1 is a (7, 4) lincar
code. One can easily check that the sum of any two codewords in this code is also
a codeword.

Because an (n, k) linear code C is a k-dimensional subspace of the vector space
¥, of all the binary n-tuples, it is possible io find & linearly independent codewords,
20, &1, -+ . Gr—1, in C such that every codeword v in C is a linear combination of
these k codewords; that is,

v =00 + U181+ U181, (3.1)

where u; = 0or1for0 <i < k. We arrange these & linearly independent codewords
as the rows of a k x n matrix as follows:

[ &0 8§00 801 802 S 80.n—1
&1 8§10 81 g2 - 8l _
G= . = ) : : ) (3.2)
Cr—1 8k—-1.0 8k—11 &k—12 - 8k-1ln—1

where g = (gi0, &i1. - - &n—1) for 0 < i < k. M w = (up. vy, -, up-1) is the
message to be encoded, the corresponding codeword can be given as follows:

v=u-G
o
&1
= (Ug, Uy, - 1) - i (3.3)
Bi—1

=uoBo + U@+ U181

Clearly, the rows of G generate (or span) the (n, k) linear code C. For this
reason, the matrix G is called a generator matrix for C. Note that any £ linearly
independent codewords of an (n, k) linear code can be used to form a generator
matrix for the code. It follows from (3.3) that an (n, k) linear code is completely
specified by the k rows of a generator matrix G. Therefore, the encoder has only to
store the k rows of G and to form a linear combination of these k rows based on the
input message w = (g, U1, -+ . Up_1).

EXAMPLE 3.1

The (7, 4) linear code given in Table 3.1 has the following matrix as a generator
matrix:

g 1101000
c_|® |_|01 10100
e |1 110010
2 1010001
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TABLE 3.1: Linear block code
withk =4andn =7.

Messages Codewords

(0000) (0000000)
(1000) (1101000)
0100 (0110100)
(1100) (1011100)
001 0) (1110010)
(1010) 0011010)
(0110) (10060110)
(1110 0101110)
©001) (1010001)
1001) ©0111001)
©101) (1100101)
1101 0001101)
©011) ©100011)
1011) (1001011)
0111) ©0010111)
1111 1111111

Ifu= (110 1)isthe message to be encoded, its corresponding codeword, according
to (3.3), will be
v=1-g+1l-g+0-m+1-%

=1101000)+(0110100)4+(1010001)
=(@0001101D).

A desirable property for a linear block code to possess is the systematic
structure of the codewords, as shown in Figure 3.1, in which a codeword is divided
into two parts, the message part and the redundant checking part. The message
part consists of k unaltered information (or message) digits, and the redundant
checking part consists of n — k parity-check digits, which are linear sums of the
information digits. A linear block code with this structure is referred to as a linear
systematic block code. The (7, 4) code given in Table 3.1 is a linear systematic block

Redundant Message
checking part part

1«—;1 — k digits —»}«—— k digits ———

FIGURE 3.1: Systematic format of a codeword.
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code: the rightmost four digiis of each codeword are identical to the corresponding
information digits.

A linear systematic (n, k) code is compleiely specified by a k x n matrix & of
the following form: k% i

p matrix identity matiix

=

g Poo poi c Pon—i-t 1 0 0 o 07

&1 P10 pit 0 Plag-1 10 10 0
_ Fp) — . ) . e (3 4%
A I P20 pa o pra—k-1r 00 0 Y (3.4
: |
! Y
. 81 . Pe-10 Pr-11 0 Prk—in—k-100 0 0 .1
where p;; = 0 or 1. Let I; denote the & x k identity matrix. Then, G = [P I;].
Let w = (g, uy. -+ i) 02 the message io be encoded. The corresponding
codeword is
¥ == {Ug. V1. V9, <0 L Up_1) .
| (3.5)
= {ug. iy, L tpoy) - G
It foilows from (3.4) and (3.5) that the components of v are
Upetiai =1 Tor 0 <i <k (3.6a)
and
v =ugpoy Fuppi; ot Hp i Pk1 (3.6b)

for 0 < j < n — k. Equation (3.6a) shows that the rightmost k digits of a codeword
v are ideniical to the information digits ug. iy, -+ , up | 10 be encoded, and (3.6b)
shows that the leftmost n — k redundant digits are linear sums of the information
digits. The n — k equations given by (3.6b) are called parity-check equations of
the code.

LE 3.2

EXAMP

The matriz G given iﬂ FEzample 3.1 is in systematic form. Letm = (??'04 U1, Uy, U3 be
O l L

the message to be eﬂcoded.‘ andletv = (U(). Vi, V2, V3,04, U5, ¥ be the corresponding
o 6 &

codeword. th@ﬂ,

110 1 0 0 0
g 11 01 06 0
v = (ug, 11, ko, U3) - 111060 1 0
1 01 060 0 1

By matrix multiplication, we obtain the following digits of the codeword v

Vg = U3
vy = Uy
Vg =g
V3 == UG

v o= Uy U+ us
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v = ug+up +u2
v = ug -+ uy + us.

The codeword corresponding to the message (101 1)is(1 00101 1).

There is another useful matrix associated with every linear block code. As
stated in Chapter 2, for any k x n matrix G with k linearly independent rows, there
exists an (n — k) x n matrix H with n — & linearly independent rows such that any
vector in the row space of G is orthogonal to the rows of H, and any vector that is
orthogonal to the rows of H is in the row space of G. Hence, we can describe the
(n, k) linear code C generated by G in an alternative way as follows: An n-tuple v is
a codeword in the code C generated by G if and only if v-H* = 9. The code is said
to be the null space of H. This matrix H is called a parity-check matrix of the code.
The 2"~* linear combinations of the rows of matrix H form an (n, n — k) linear code
C,. This code is the null space of the (n. k) linear code C generated by matrix G (i.c.,
forany v € Candany w € Cy, v-w = 0). Cy 1s called the dual code of C. Therefore,
a parity-check matrix for a linear code C is a generator matrix for its dual code Cy.

If the generator matrix of an (n, k) linear code is in the systematic form of
(3.4), the parity-check matrix may take the following form:

I 60 .- 0 Poo P1o s Pk-1.0

01 0 .- 0 Pol Pii Pr—1.1
H = [E:z~kpl] — 0 0 1 0 POz P2 cee Pi-1.2

00 0 -+ 1 popst1 Platk—t ° Ph-ln—k-1

(3.7)

where P7 is the transpose of the matrix P. Let h; be the jth row of H. We can
readily check that the inner product of the ith row of G given by (3.4) and the jth
row of H given by (3.7) is

g by =pij+pi;=0

forO <i < kand0 < j <n — k. This implies that G - M = 0. Also, the n — k rows
of H are linearly independent. Therefore, the H matrix of (3.7) is a parity-check
matrix of the (n. k) linear code generated by the matrix G of (3.4).

The parity-check equations given by (3.6b) also can be obtained from the
parity-check matrix H of (3.7). Let w = (ug. .-+ .u;—1) be the message to be
encoded. In systematic form the corresponding codeword will be

V= (U0, Vls o U1, 10 ML o s )
Using the fact that v - H? = 0. we obtain
v +uopo; +urpy;+ o tuper; =0 (3.8)

for 0 < j < n — k. Rearranging the equations of (3.8), we obtain the same parity-
check equations of (3.6b). Therefore, an (n, k) linear code is completely specified by
its parity-check matrix.
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EXAMPLE 3.3

Consider the generator matrix of the (7, 4) linear code given in Example 3.1, The
corresponding parity-check matrix is

H =

O D =
D = O
—_0 O
O =
e OO
—_
— D =

At this point we summarize the foregoing results: For any (i, k) linear block
code C there exists a k x n mairix G whose row space gives C. Furthermore, there
exists an (n — k) x n matrix H such that an n-tuple v is a codeword in C if and only
if v-H’ = 0. If Gis of the form given by (3.4), then H may iake ihe form given by
(3.7, and vice versa.

Based on the equations of (3.6a) and (3.6b), the encoding circuit for an (n. &)
linear systematic code can easily be implemented. The encoding circuit is shown
in Figure 3.2, where —| | denotes a shift-register stage (e.g., a flip-flop), €D
denotes a modulo-2 adder, and ’ — denotes a connection if p;; = 1,
and no connection if p;; = 0. The encoding operation is very simple. The message
w = (up.uy.---.up_1) to be encoded is shified into the message register and
simultaneously into the channel. As soon as the entire message has entered the
message register the n — k parity-check digits are formed at the outputs of the n — k
modulo-Z adders. These parity-check digits are then serialized and shifted into the
channel. We see that the complexity of the encoding circuit is linearly proportional
to the block length of the code. The encoding circuit for the (7, 4) code given in
Table 3.1 is shown in Figure 3.3, where the connection is based on the parity-check
equations given in Example 3.2.

To channel
o)

e | L) o b e —k
v i

iy Uy ey ity Uy gy Uy i gy

To channel

FIGURE 3.2: Encoding circuit for a linear systematic (1. k) code.
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Input u

o
Message register
g u) Uy Uy

O~ To channel
So—s-

o~

Parity register
FIGURE 3.3: Encoding circuit for the (7, 4) systematic code given in Table 3.1.

3.2 SYNDROME AND ERROR DETECTION

Consider an (n, k) linear code with generator matrix G and parity-check matrix H.
Letv = (vg, v1. -, v,—1) be a codeword that was transmitted over a noisy channel.
Letr = (g, r1. -+, ry,—1) be the received vector at the output of the channel. Because
of the channel noise, r may be different from v. The vector sum

e=r+v
(3.9)

= (ep, €1, . ep_1)

is an n-tuple, where ¢; = 1 forr; # v;,and ¢; = Oforr; = v;. This n-tuple is called the
error vector (o1 error pattern), which simply displays the positions where the received
vector r differ from the transmitted codeword v. The 1’s in e are the transmission
errors caused by the channel noise. It follows from (3.9) that the received vector r is
the vector sum of the transmitted codeword and the error vector; that is,

Fr=v-+e.

Of course, the receiver does not know either v or e. On receiving r, the decoder must
first determine whether r contains transmission errors. If the presence of errors is
detected, the decoder will either take actions to locate the errors and correct them
(FEC) or request a retransmission of v (ARQ).

When r is received, the decoder computes the following (n — k)-tuple:

s=r-H’
(3.10)
= (50, S1, *** + Sp—k—1)-

which is called the syndrome of r. Then, s = § if and only if ris a codeword, and s = 8
if and only if r is not a codeword. Therefore, when s # 6, we know that r is not a
codeword and the presence of errors has been detected. When s = @, ris a codeword,
and the receiver accepts r as the transmitted codeword. It is possible that the errors
in certain error vectors are not detectable (i.e., r contains errors buts =r - B’ = ¢).
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This happens when the ecrror paitern e is identical to a nonzero codeword. In
this event, r is the sum of two codewords, which is a codeword, and consequently
r- HT = 0. Error patterns of this kind are called undetectable error paiterns. Because
there are 2F — 1 nonzero codewords, there are 2 — 1 undetectable error patterns.
When an undetectable error pattern occurs, the decoder makes a decoding error. In
a later section of this chapter we derive the probability of an undetected error for a
BSC and show that this error probability can be made very small.
Based on (3.7) and (3.10), the syndrome digits are as follows:

80 =10+ Fn—k P00 + Fu—k+1P10 + -+ Fn—1Pk-1,0

S} =71+ Pk POL F Fa—ir1l P11+ T -1 Pk-11

(3.11)

Sp—k—1 = Fp—f—1 + Fn—k PO.n—k—1 + Fa—k+1Pla—k—1 + 0+ 1 Pkt n—k—1-

If we examine the preceding equations carefully, we find that the syndrome sis simply
the vector sum of the received parity digits (rg, 71, - -+ , r,—r—1) and the parity-check
digits recomputed from the received information digits (r—k, F—pt1. -+« F—1)-
Therefore, the syndrome can be formed by a circuit similar to the encoding circuit.
A general syndrome circuit is shown in Figure 3.4.

Consider the (7, 4) linear code whose parity-check matrix is given in Example 3.3.
Letr = (rg, r1, 12, 13, 1a, F5, rg) be the received vector. Then, the syndrome is given by

s = (50, 51, 82)

= (rp. 11,12, 73. 74,75, 76)

= O e OO
= O O
— e = D e DD

The syndrome digits are
S0 =rg+7r3+r5+rg
S1 =71 +r3+r4+rs
$) =F +rq4 +r5+rg.

The syndrome circuit for this code is shown in Figure 3.5.

The syndrome s computed from the received vector r depends only on the
error pattern e and not on the transinitted codeword v. Because r is the vector sum
of v and e, it follows from (3.10) that

s=r- B =w+eH =v-H! +e-H;
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° - WOI@I”!;{”I@

o Tu-k Fn—fk+1 Tn—1 o Ty-k Fp—k+1 Fa—1 Tn—k—1 Tn—kc Tn—k+1 T-1

Pi—tn—k-1

FIGURE 3.4: Syndrome circuit for a linear systematic (n, k) code.

e e e el

5o 5 55

FIGURE 3.5: Syndrome circuit for the (7, 4) code given in Table 3.1.

however, v-H’ = 0. Consequently, we obtain the following relation between the
syndrome and the error pattern:

s=e-HT. (3.12)

If the parity-check matrix H is expressed in the systematic form as given by (3.7),
multiplying out e - HI? yields the following linear relationship between the syndrome
digits and the error digits:

50 = eg + en—k P00 + €n—k+1P10 + -+ €n—1Pk-1,0

s1=e1+en—rpo1 t en—p+1P11 + -t en—1Pr-11
(3.13)

Sp—k—1 = €n—k—1 + en—kPOn—k—1 T €n—k+1P1,n—k—1 + -+ €n—1Pk—1,n—k-1-
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The syndrome digits are simply linear combinations of the error digits. Clearly.
they provide information aboui the ervor digits and thevefore can be used for error
correction.

At this poini, one would think thai any error correction scheme would be a
method of solving the n — k linear equations of (3.13) for the error digits. Once the
error pattern e was found, the vector ¥ + e would be taken as the actual transmitied
codeword. Unfortunately, determining the true error vector e is not a sitaple matter.
This is because the n — k linear equations of (3.13) do not have a unique solution
but have 2% solutions (this will be proved in Theorem 3.6). In other words, there
are 28 error patterns that result in the same syndrome, and the true error patiern e
is just one of them, Therefore, the decoder has to determine the true error vector
from a set of 2¥ candidates. To minimize the probability of a decoding error, the
most probable error pattern that satis ﬁ es the equations of (3.13) is chosen as the
true error vector. If the channel is a BSC ‘Li he most pr obable error pattern is the one
that has the smallest number of nonzero dig

The notion of using syndrome for e Uror correction may be clarified by an

Again, we consider the (7, 4) code whose parity-check matrix is given in Example 3.3.
Let v = (1001011) be the transmiited codeword and r = (10010Q1) be the
received vector. On receiving r, the receiver computes the syndrome:

s=r -1 = (111).

Next, the receiver attempts to determine the true error vector e = (eg, ¢1, €3, €3. €4,
es, ¢g), which yields the given syndrome. Tt follows from (3.12) or (3.13) that the
error digits are related to the syndrome digits by the following linear equations:

1T =ey+e3+es+eg

T=e +e3+es+es

l=ey)+es+es+ e

There are 2* = 16 error patierns that satisfy the preceding equations, namely,

(0000010, (101001 1),
(1101010), ©111011),
©0110110), (1100111),
(1011110), (0001111),
(1110000). ©100001).
0011000). (1001001).
(1000100), GO10101),
©101100), (1111101).

The error vector e = (000001 0) has the smallest number of nonzero components. If
the channelis a BSC, e = (00000 10) is the most probable eiror vector that satisfies
the preceding equations. Taking e = (0000010) as the true error vector, the
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receiver decodes the received vector r = (1001 001) into the following codeword:

vi=r+e
=(1001001)+(0000010)
=(1001011).

We see that v* is the actual transmitted codeword. Hence, the receiver has performed
a correct decoding. Later we show that the (7, 4) linear code considered in this
example is capable of correcting any single error over a span of seven digits; that is,
if a codeword is transmitted and if only one digit is changed by the channel noise,
the receiver will be able to determine the true error vector and to perform a correct
decoding.

More discussion on error correction based on syndrome is given in Section 3.5.
Various methods of determining the true error pattern from the n —k linear equations
of (3.13) arc presented in later chapters.

3.3 THE MINIMUM DISTANCE OF A BLOCK CODE

In this section we introduce an important parameter of a block code called the
minimum distance. This parameter determines the random-error-detecting and
random-error-correcting capabilities of a code. Let v = (vp, vy, --.v,—-1) be a
binary n-tuple. The Hamming weight (or simply weight) of v, denoted by w(v). is
defined as the number of nonzero components of v. For example, the Hamming
weight of v = (1001011) is 4. Let v and w be two n-tuples. The Hamming
distance (or simply distance) between v and w, denoted d(v, w), is defined as the
number of places where they differ. For example, the Hamming distance between
v = (1001011 and w = (0100011) is 3; they differ in the zeroth, first, and
third places. The Hamming distance is a metric function that satisfies the triangle
inequality. Let v, w, and x be three n-tuples. Then,

dv.w) +dw,x) > d(v.Xx). (3.14)

(The proof of this inequality is left as a problem.) It follows from the definition
of Hamming distance and the definition of modulo-2 addition that the Hamming
distance between two n-tuples v and w is equal to the Hamming weight of the sum
of v and w; that is,

d(v, w) = w(v + w). (3.15)

For example, the Hamming distance betweenv = (100101 )andw =(1110010)
is 4, and the weight of v+ w=(0111001) is also 4.

Given a block code C, one can compute the Hamming distance between any
two distinct codewords. The minimum distance ot C, denoted by d,,iy, is defined as

dnin 2 min{d(v.w) :v.we C,v # w}. (3.16)

If C is a linear block code, the sum of two codewords is also a codeword. It follows
from (3.15) that the Hamming distance between two codewords in C is equal to the
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Hamming weight of a third codeword in C. Then, it follows from (3.16) that
dpin = minfwvV+w):v,we C,v # w}

min{w(x) :x € C,x # 0} (3.17)

It

li>

Wmin-

A . .. . )
The parameter wpy;, = (w0 : x € C,x # 0} is called the minimum weight of the
linear code C. Summarizing the preceding result, we have the following theorem.

TuzorEM 3.8 The minimum distance of a linear block code is equal to the
minimum weight of its nonzero codewords and vice versa.

Therefore, for a linear block code, determining the minimum distance of the
code is equivalent to determining its minimum weight. The (7, 4) code given in
Table 3.1 has minimum weight 3; thus, its minimum distance is 3. Nexi, we prove
a number of theorems that relate the weight structure of a linear block code to its
parity-check matrix.

Tneoresm 3.2 Let C be an (i, k) linear code with parity-check matrix H. For
each codeword of Hamming weight /, there exist ! columns of H such that
the vector sum of these / columns is equal to the zero vector. Conversely, if
there exist [ columns of H whose vector sum is the zero vector, there exists a
codeword of Hamming weight / in C.

Proaf. We express the parity-check matrix in the following form:

H = [H)](), q, -, hn—l]*

where h; represents the ith column of H. Let v = (vg, v, -+ ,v,_1) be a
codeword of weight /. Then, v has [ nonzero components. Let v, v;,, -+, v,
be the / nonzero components of v, where 0 < i) < iy < --- < i; <n — 1. Then,
v, =V, = - =v;, = 1. Because v is a codeword, we must have

0=v. 1’

= Uoho + Ulhl + Un—lhn—l
= v,-lll‘nil -+ vizﬂniz 44 vj,h,‘,
=y, + -+,

This proves the first part of the theorem.

Now, suppose that Iy, . hy,, - - - . hy;, are ! columns of H such that
hi, +hy, + -+ hy, = 0. (3.18)
We form a binary n-tuple x = (xg. x, - -+ , X;_1) whose nonzero components

are x; . Xj,. - -+ , x;. The Hamming weight of x is /. Consider the product
x-HT = xoho + xihy + - 4 x,_1h,
= x; by, 4oy, o xg
=l +hy, +--+hy
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It follows from (3.18) that x - H! = 0. Thus, x is a codeword of weight [ in C.
This proves the second part of the theorem. Q.E.D.

The following two corollaries follow from Theorem 3.2.

CoROLLARY 3.2.1 Let C be a linear block code with parity-check matrix H.
If no d — 1 or fewer columns of H add to 8, the code has minimum weight at
least d.

CororLLary 3.2.2 Let C be a lincar code with parity-check matrix H. The
minimum weight (or the minimum distance) of C is equal to the smallest
number of columns of H that sum to 0.

Consider the (7, 4) linear code given in Table 3.1. The parity-check matrix of
this code 18

1001 011

H=| 01 01110

0 01 0 1 11
We see that all columns of H are nonzero and that no two of them are alike.
Therefore, no two or fewer columns sum to §. Hence, the minimum weight of this
code is at least 3; however, the zeroth, second, and sixth columns sum to . Thus, the
minimum weight of the code is 3. From Table 3.1 we see that the minimum weight
of the code is indeed 3. It follows from Theorem 3.1 that the minimum distance is 3.
Corollaries 3.2.1 and 3.2.2 are generally used to determine the minimum

distance or to establish a lower bound on the minimum distance of a linear
block code.

3.4 ERROR-DETECTING AND ERROR-CORRECTING CAPABILITIES OF A BLOCK CODE

When a codeword v is transmitted over a noisy channel, an error pattern of /
errors will result in a received vector r that differs from the transmitted codeword
v in [ places [i.e.. d(v,r) = I]. If the minimum distance of a block code C is dp;n,
any two distinct codewords of C differ in at least d;, places. For this code C, no
error pattern of d,;, — 1 or fewer errors can change one codeword into another.
Therefore, any error pattern of dy,;; — 1 or fewer errors will result in a received
vector r that is not a codeword in C. When the receiver detects that the received
vector is not a codeword of C, we say that errors are detected. Hence, a block
code with minimum distance dy.;, is capable of detecting all the error patterns of
dmin — 1 or fewer errors. However, it cannot detect all the error patterns of dyy
errors because there exists at least one pair of codewords that differ in dy.;, places,
and there is an error pattern of d,;,; errors that will carry one into the other. The
same argument applies to error patterns of more than d,;, errors. For this reason
we say that the random-error-detecting capability of a block code with minimum
distance din is dpin — 1.

Even though a block code with minimum distance dj,;;, guarantees detection
of all the error patterns of d,;, — 1 or fewer errors, it is also capable of detecting
a large fraction of error patterns with d,,;;, or more errors. In fact, an (n, k) linear
code is capable of detecting 2" — 2F error patterns of length n. This can be shown as
follows. Among the 2" — 1 possible nonzero error patierns, there are 2¢ — 1 error
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patterns that are identical to the 2 — 1 nonzero codewords. If any of these 2¢ — 1
ervor patterns occurs, it aliers the transmitted codeword v into another codeword
w. Thus, w is received. and iis syndrome is zero. In this case, the decoder accepts w
as the transmitted codeword and thus performs an incorrect decoding. Therefore,
there are 28 — 1 undeiectable error paiterns. If an error pattern is not identical to a
nonzero codeword, the received vector r will not be a codeword and the syndrome
will not be zero. In this case, an error will be detected. There are exactly 2" — 2F
error patterns that are not identical to the codewords of an (n, k) linear code. These
2" — 2K ervor patterns are detectable ervor patterns. For large n, 2F — 1 is, in general,
much smaller than 2". Therefore, only a small fraction of error patterns pass through
ihe decoder without being detected.

Let C be an (n. k) linear code. Let A; be the number of codewords of weight
i in C. The numbers Ag, Ay, - -, A, are called the weight disiribution of C. If C is
used only for error detection on a BSC, the probability that the decoder will fail
to detect the presence of errors can be computed from the weight distribution of
C. Let P,(E) denote the probability of an undetecied error. Because an undetected
error occurs only when the error pattern is identical to a nonzero codeword of C,

P(E)y= Aip'(l—p’, (3.19)
i=1

where p is the transition probability of the BSC. If the minimum distance of C is
dnin, then Ay to Ay, _1 are zeto.

Consider the (7, 4) code given in Table 3.1. The weight distribution of this code
isAo=1,41 =4y =0, A3 =7, Aa =7, As = A¢ = 0, and A7 = 1. The probability
of an undetected error is

PAEY=Tp3A—p*+7p*A - pP +p .

If p = 1072, this probability is approximately 7 x 107°. In other words, if 1 millicn
codewords are transmitted over a BSC with p = 1072, on average seven erroneous
codewords pass through the decoder without being deiecied.

If a block code C with minimum distance d,,;, is used for random-error
correction, one would like to know how many errors the code is able to correct. The
minimum distance d,;, 15 either odd or even. Let r be a positive integer such that

204+1 <dpyy <2t +2. (3.20)

Next, we show that the code C is capable of correcting all the error patterns of
t or fewer ervors. Let v and r be the transmitted codeword and the received vector,
respectively. Let w be any other codeword in €. The Hamming distances among v,
r, and w satisty the triangle inequality:

dv, ) +d(w.t) > d{v, w). (3.21)

Suppose that an error pattern of t' errors occurs during the transmission of v. Then,
the received vector r differs from v in #’ places, and therefore d(v, r) = '. Because v
and w are codewords in C, we have

AW, w) > dypin = 2t + 1. (3.22)
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Combining (3.21) and (3.22) and using the fact that d(v,r) = ¢/, we obtain the
following inequality:

diw,r)y>2t+1—1+.
Ity <,

d{w,r) > 1.

The preceding inequality says that if an error pattern of ¢ or fewer errors occurs,
the received vector r is closer (in Hamming distance) to the transmitted codeword
v than to any other codeword w in C. For a BSC, this means that the conditional
probability P(r|v) is greater than the conditional probability P(r|w) for w # v.
Based on the maximum likelihood decoding scheme, r is decoded into v, which is
the actual transmitted codeword. The result is a correct decoding, and thus errors
are corrected.

In contrast, the code is not capable of correcting all the error patterns of /
errors with [ > ¢, for there is at least one case in which an error pattern of / errors
results in a received vector that is closer to an incorrect codeword than to the
transmitted codeword. To show this, let v and w be two codewords in C such that

d(v, W) = dpyn.
Let e and e, be two error patterns that satisfy the following conditions:

i ej+e=v+w.
ifi. e; and e, do not have nonzero components in common places.

Obviously, we have
w(er) + wiey) = w(v+ w) = d(v, w) = dpin. (3.23)

Now, suppose that v is transmitted and is corrupted by the error pattern e;. Then,
the received vector is
r=v+e.

The Hamming distance between v and r is
div,r) = w{¥+1) = wie). (3.24)

The Hamming distance between w and r is
dw, 1) = ww+r) = ww+v+e)=we). (3.25)

Now, suppose that the error pattern ey contains more than r errors (i.e., w(e) > r).
Because 2t + 1 < dyin < 21 + 2, it follows from (3.23) that

wiey) <t +1.

Combining (3.24) and (3.25) and using the fact that w(e1) > r and w(ep) <t +1, we
obtain the following inequality:

dv,r) = d(w, r).
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This inequality says that there exists an error pattern of /({ > 7) errors that
results in a received vector that is closer o an incorrect codeword than to the
transmitted codeword. Based on the maximum likelihood decoding scheme, an
incorrect decoding would be performed.

In summary, a block code with minimum distance dyy, guarantees correction
of all the error patterns of 1 = [(dmin — 1)/2] or fewer errors, where | (dynin — 1)/2]
denotes the largest integer no greater than (dy;, — 1)/2. The parameter ¢ =
L(dmin — 1) /2] is called the random-error-correcting capability of the code. The code
is referred to as a r-error-correcting code. The (7, 4) code given in Table 3.1 has
minimum distance 3 and thus r = 1. The code is capable of correcting any error
pattern of single error over a block of seven digits.

A block code with random-error-correcting capability 7 is usually capable of
correcting many error patierns of ¢ 4 1 or more errors. A i-error-correcting (i, k)
linear code is capable of correcting a total of 2"~ exror patterns, including those with
1 or fewer errors (this will be seen in the next section). If a 7-error-correcting block
code is used strictly for error correction on a BSC with transition probability p, the
probability that the decoder commits an erroneous decoding is upper bounded by

P(E)< 3 (”f )p"(l—p)”"'. (3.26)

i=t+1

In practice, a code is often used for correcting A or fewer errors and simultaneously
detecting /(I > )) or fewer errors. That is, when A or fewer errors occur, the code is
capable of correcting them; when more than A but fewer than/ + 1 errors occur, the
code is capable of detecting their presence without making a decoding error. For
this purpose, the minimuin distance dy;, of the code is at least A +17 4 1 (left as a
problem). Thus, a block code with dy,i,; = 10 is capable of correcting three or fewer
errors and simultaneously detecting six or fewer errors.

So far, we have considered only the case in which the receiver makes a hard-
decision for each received symbol: however, a receiver may be designed o declare
a symbol erased when it is received ambiguously (or unreliably). In this case, the
received sequence consists of zeros, ones, or erasures. A code can be used to correct
combinations of errors and erasures. A code with minimum distance dy,,;, is capable
of correcting any pattern of v errors and ¢ erasures provided the following condition

Apin =20 +e+1

is satisfied. To see this, delete from all the codewords the ¢ components where the
receiver has declared erasures. This deletion results in a shortened code of length
n — e. The minimum distance of this shortened code is at least dy; — e > 2v + 1.
Hence, v errors can be corrected in the unerased positions. As a result, the shortened
codeword with e components erased can be recovered. Finally, because dy;y > e+ 1,
there is one and only one codeword in the original code that agrees with the unerased
components. Consequently, the entire codeword can be recovered. This correction
of combinations of errors and erasures is often used in practice.

From the preceding discussion we see that the random-error-detecting and
random-error-correcting capabilities of a block code are determined by the code’s
minimum distance. Clearly, for a given n and &, one would like to construct a block
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code with as large a minimum distance as possible, in addition to the implementation
considerations.

Often an (n, k) linear block code with minimum distance d,,;;, is denoted by
(n, k, dmin). The code given by Table 3.1is a (7, 4, 3) code.

3.5 STANDARD ARRAY AND SYNDROME DECODING

In this section we present a scheme for decoding linear block codes. Let C be
an (n, k) linear code. Let v, vy, -+, vox be the codewords of C. No matter which
codeword is transmitted over a noisy channel, the received vector r may be any of
the 2" n-tuples over GF(2). Any decoding scheme used at the receiver is a rule to
partition the 2" possible received vectors into 2k disjoint subsets Dy, Dy, --- . Dy
such that the codeword v; is contained in the subset D; for 1 < i < 2¥. Thus, cach
subset D; is one-to-one correspondence to a codeword v;. If the received vector r
is found in the subset D;, r is decoded into v;. Decoding is correct if and only if the
received vector v is in the subset D; that corresponds to the codeword transmitted.

A method to partition the 2" possible received vectors into 2F disjoint subsets
such that each subset contains one and only one codeword is described here. The
partition is based on the linear structure of the code. First, we place the 2% codewords
of C in a row with the all-zero codeword vi = (0,0, ---,0) as the first (Ieftmost)
element. From the remaining 2" — 2% n-tuples, we choose an n-tuple e; and place it
under the zero vector v|. Now, we form a second row by adding e; to each codeword
v; in the first row and placing the sum e; + v, under v;. Having completed the second
row, we choose an unused n-tuple es from the remaining n-tuples and place it under
vy. Then, we form a third row by adding e3 to each codeword v; in the first row and
placing ez + v; under v;. We continue this process until we have used all the n-tuples.
Then, we have an array of rows and columns, as shown in Figure 3.6. This array is
called a standard array of the given linear code C.

It follows from the construction rule of a standard array that the sum of any
two vectors in the same row is a codeword in €. Next, we prove some important
properties of a standard array.

TeeorEM 3.3 No two n-tuples in the same row of a standard array are
identical. Every n-tuple appears in one and only one row.

Proof. The first part of the theorem tollows from the fact that all the codewords
of C are distinct. Suppose that two n-tuples in the /th row are identical, say

vi=0 vy Vi Vo

ey €) + Vv €e) + v ey + Vou
es e3+ V) e3 + v; €3 + Vo
€ e +v2 e + v e + Vo
€ou—1 €u-t +Vy oo €u-i F VY oo €puk T+ Vo

FIGURE 3.6: Standard array for an (n. k) linear code.
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€ +v; = e +v; with i # j. This means that v; = v;, which is impossible.
Therefore, no two n-tuples in the same row are identical.

It follows from the construction rule of the standard array that every
n-tuple appears at least once. Now, suppose that an n-tuple appears in both the
[th row and the mth row with ! < m. Then this n-tuple must be equal to e; + v;
for some i and equal to e, + v, for some j. As aresult,e; +v; = e, +v;. From
this equality we obiain e,;, = e; 4 (v; +v;). Because v; and v; are codewords in
C,v; +v; is also a codeword in C, say v,. Then e,, = e; + v,. This implies that
the n-tuple ey, is in the /th row of the array, which contradicts the construction
rule of the array that e, the first element of the mth row, should be unused in
any previous row. Therefore, no n-tuple can appear in more than one row of
the array. This concludes the proof of the second part of the theorem. Q.E.D.

From Theorem 3.3 we see that there are 2" /28 = 27* disjoint rows in the
standard array, and that each row consists of 2 distinct elements. The 27 rows are
called the coseis of the code C, and the first n-tuple e; of each coset is called a coset
leader (or coset representative). The coset concept for a subgroup was presented in
Section 2.1. Any element in a coset can be used as its coset leader. This does not
change the elements of the coset; it simply permutes them.

EXAMPLE 3.6

Consider the (6, 3) linear code generated by the following matrix:

611100
G={101010
110001
The standard array of this code is shown in Figure 3.7.

A standard array of an (n, k) linear code C consists of 2F disjoint columns.
Fach column consists of 27 F n-tuples, with the topmost one as a codeword in C.
Let D; denote the jth column of the standard array. Then,

Di = {Wj_ € + \V./', @3 + \V]‘, sy ezufl\ + Vj}. (327)

Coset
leader
000000 | 011100 101010 110001 110110 101101 011011 000111

100000 | 111160 001010 010001 010110 001101 111011 100111
010000 | 001100 111010 100001 100110 111101 001011 010111
001000 | 010100 100010 111001 111110 100101 010011 001111
000100 | 011000 101110 110101 110010 101001 011111 000011
000010 | 011110 101000 110011 110100 101111 011001 000101
000001 } 011101 101011 110000 110111 101100 0110610 000110
100100 | 1110600 001110 010101 010010 001001 111111 100011

FIGURE 3.7: Standard array for a (6, 3) code.
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where v; is a codeword of C, and ey, e3, -- - , €« are the coset leaders. The 2k
disjoint columns Dy, D5, - - -, Dy can be used for decoding the code C as described
carlier in this section. Suppose that the codeword v; is transmitted over a noisy
channel. From (3.27) we see that the received vector r is in D; if the error pattern
caused by the channel is a coset leader. In this event, the received vector r will be
decoded correctly into the transmitted codeword v;; however, if the error pattern
caused by the channel is not a coset leader, an erroneous decoding will result.
This can be seen as follows. The error pattern x caused by the channel must be in
some coset and under some nonzero codeword, say in the /th coset and under the
codeword v; # 0. Then, x = ¢ + v;, and the received vector is

r=v; +x=e¢ +(v; +v;) = e +v,.

The received vector ris thus in D and is decoded into v, which is not the transmitted
codeword. This results in an erroneous decoding. Therefore, the decoding is correct
if and only if the error patiern caused by the channel is a coset leader. For this
reason, the 2" % coset leaders (including the zero vector 0) are called the correctable
error patterns. Summarizing the preceding results, we have the following theorem:

TueoreM 3.4 Every (n, k) linear block code is capable of correcting 2" %
error patterns.

To minimize the probability of a decoding error, the error patterns that are
most likely to occur for a given channel should be chosen as the coset leaders. For
a BSC, an error pattern of smaller weight is more probable than an error pattern of
larger weight. Therefore, when a standard array is formed, each coset leader should
be chosen to be a vector of least weight from the remaining available vectors. If
coset leaders are chosen in this manner, each coset leader has minimum weight in its
coset. As a result, the decoding based on the standard array is the minimum distance
decoding (i.e., the maximum likelihood decoding). To see this, let ¥ be the received
vector. Suppose that r is found in the ith column D; and /th coset of the standard
array. Then, r is decoded into the codeword v;. Because r = e; + v;, the distance
between r and v; is

dE, v;) = wE+v;) = wle +v; +v;) = wie). (3.28)
Now, consider the distance between r and any other codeword, say v;,
d@,v;) =wE+v;) = wle +v; +v;).

Because v; and v; are two different codewords, their vector sum, v; +v;, is a nonzero
codeword, say v;. Thus,

d(r,v;) = w(e + vy). (3.29)

Because ¢; and e; + v, are in the same coset and since w(e;) < w(e; + v;), it follows
from (3.28) and (3.29) that
d(R’, V,‘) < d(]l‘, V])

This says that the received vector is decoded into a closest codeword. Hence, if each
coset leader is chosen to have minimum weight in its coset, the decoding based on
the standard array is the minimum distance decoding, or MLD.
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et o; denote the number of coset leaders of weight i. The numbers
og, 1. -+, 0 are called the weight distribution of the coset leaders. Knowing
these numbers, we can compuie the probability of a2 deceding error. Because a
decoding error occurs if and only if the error pattern is not a cosei leader, the error
probability for a BSC with transition probability p is

P(Ey=1-5 aip/(1—p)"". (3.30)
i=0

EXAMPLE 3.7

Consider the (6, 3) code given in Example 3.6. The standard array for this code is
shown in Figure 3.7. The weight distribution of the coset leaders is og = 1,007 =
6,00 = 1, and a3 = a4 = a5 = ag = 0. Thus,

PEY=1—(1-p)P®—6pt—pyY —p?d—pt.

For p = 1072, we have P(E) ~ 1.37 x 1073,

An (n, k) linear code is capable of detecting 2" — 2% error patterns; however, it
is capable of correcting only 2"~F error patterns. For large n, 2% is a small fraction
of 2" — 2K Therefore, the probability of a decoding error is much higher than the
probability of an undeiected ervor.

THEOREM 3.5 For an (n, k) linear code C with minimmum distance dyy;,, all the
n-tuples of weight r = |{dpn — 1)/2] o1 less can be used as coset leaders of
a standard array of C. If all the n-tuples of weight ¢ or less are used as coset
leaders, there 15 at least one n-tuple of weight 1 + 1 that cannot be used as a
coset leader.

Proof. Because the minimum distance of C is dyy,, the minimum weight of C
is also dmin. Let x and y be two n-tuples of weight 7 or less. Clearly, the weight
ofx+yis

wE+y) < w +w@) <27 < dpin-
Suppose that x and y are in the same coset; then, x + y musi be a nonzero
codeword in C. This is impossible, because the weight of x 4 y is less than the
minimum weight of C. Therefore, no two n-tuples of weight r or less can be in

the same coset of C, and all the n-tuples of weight 7 or less can be used as coset
leaders.

Let v be a minimum weight codeword of C [i.e., w(v) = dpyin]- Let x and
y be two n-tuples that satisfy the following two conditions:

f. x+y=vw.
fi. x and y do not have nonzero components in commeon places.

It follows from the definition that x and y must be in the same coset and

w(x) + w(y) = w(v) = dmin.
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Suppose we choose y such that w(y) = + 1. Because 2r + 1 < dyjp < 21 + 2,
we have w(x) =t or r + 1. If x is used as a coset leader, then y cannot be a
coset leader. Q.E.D.

Theorem 3.5 reconfirms the fact that an (n, k) linear code with minimum
distance dp,;y 1s capable of correcting all the error patterns of | (dyin — 1)/2] or fewer
errors, but it is not capable of correcting all the error patterns of weight 1 + 1.

A standard array has an important property that can be used to simplify the
decoding process. Let H be the parity-check matrix of the given (n, k) linear code C.

TueoreEM 3.6 All the 2% n-tuples of a coset have the same syndrome. The
syndromes for different cosets are different.

Proof. Consider the coset whose coset leader is ;. A vector in this coset is the
sum of e; and some codeword v; in C. The syndrome of this vector is

(e + viH! = eH! + v;HT = ¢HT

(since v;HIT = 0). The preceding equality says that the syndrome of any vector
in a coset is equal to the syndrome of the coset leader. Therefore, all the
vectors of a coset have the same syndrome.

Let e; and e; be the coset leaders of the jth and /th cosets, respectively,
where j < [. Suppose that the syndromes of these two cosets are equal. Then,

eA]‘HT = C/HT,
(e; + en)H! = 0.

This implies that e; + ¢, is a codeword in C, say v;. Thus, e¢; + ¢, = v;, and
e; = ¢; + v;. This implies that ¢; is in the jth coset, which contradicts the
construction rule of a standard array that a coset leader should be previously
unused. Therefore, no two cosets have the same syndrome. Q.E.D.

We recall that the syndrome of an n-tuple is an (n — k)-tuple, and there are
28—k distinct (n — k)-tuples. It follows from Theorem 3.6 that there is a one-to-
one correspondence between a coset and an (n — k)-tuple syndrome; or there is
a one-to-one correspondence between a coset leader (a correctable error pattern)
and a syndrome. Using this one-to-one correspondence relationship, we can form
a decoding table, which is much simpler to use than a standard array. The table
consists of 27 coset leaders (the correctable error patterns) and their corresponding
syndromes. This table is either stored or wired in the receiver. The decoding of a
received vector consists of three steps:

1. Compute the syndrome of r, r - Hi’ .

2. Locate the coset leader e whose syndrome is equal to r-H’. Then ¢ is
assumed to be the error pattern caused by the channel.

3. Decode the received vector r into the codeword v* =r + ¢;.
The described decoding scheme is called the syndrome decoding or table-

lookup decoding. In principle, table-lookup decoding can be applied to any (n. k)
linear code. It results in minimum decoding delay and minimum error probability;
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however, for large n — k, the implementation of this decoding scheme becomes
impractical, and either a large storage or a complicated logic circuitry is needed.
Several practical decoding schemes that are variations of table-lookup decoding
are discussed in subsequent chapters. Each of these decoding schemes requires
additional properties of a code other than the linear structure.

EXAMPLE 3.8

Consider the (7, 4) linear code given in Table 3.1. The parity-check mairix, as given
in Example 3.3, is

1060 1 0 11
H=| 061 0 1 110
0 01 0111

The code has 2> = 8 cosets, and therefore there are eight correctable error patterns
(including the all-zero vector). Because the minimum distance of the code is 3, it is
capable of correcting all the error patterns of weight 1 or 0. Hence, all the 7-tuples

-
1 ) = 8 such

vectors. We see that for the (7, 4) linear code considered in this example, the number
of correctable crror patterns guaranteed by the minimum distance is equal to the
total number of correctable error patterns. The correctable error patierns and their
corresponding syndromes are given in Table 3.2.

Suppose that the codeword v = (1001011) is transmitied, and r =
(1001111) is received. For decoding r, we compute the syndrome of r:

of weight 1 or 0 can be used as coset leaders. There are < Z} ) + (

s=(1001111) —@©11).

o O e OO
O = b e D= O
= O OO

TABLE 3.2 Decoding table for
the (7, 4) linear code given in

Table 3.1.

Syndrome Coset leaders
(100) (10060000
(010) (0100000)
((LXINY (6010000
110 6001000
01D 0000100
(111 (6000010

101 ©000001)
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From Table 3.2 we find that (0 1 1) is the syndrome of the coset leader
e = (0000100). Thus, (0000100) is assumed to be the error pattern caused by
the channel, and ¢ is decoded into

v =r+e
=1001111DH+@©000100)
—(1001011),

which is the codeword transmitted. The decoding is correct, since the error pattern
caused by the channel is a coset leader.

Now, suppose that v = (0000000) is transmitted, and ¥ = (1000100) is
received. We see that two errors have occurred during the transmission of v. The
error pattern is not correctable and will cause a decoding error. When r is received,
the receiver computes the syndrome:

s=r-H =(111).

From the decoding table we find that the cosct leader e = (000001 0) corresponds
to the syndrome s = (1 11). As a result, r is decoded into the codeword

vi=r-+e
=(1000100)+@©0000010)
=(1000110).

Because v* is not the codeword transmitted, a decoding error is committed.

Using Table 3.2, we see that the code is capable of correcting any single error
over a block of seven digits. When two or more errors occur, a decoding error will
be committed.

The table-lookup decoding of an (u, k) linear code may be implemented as
follows. The decoding table is regarded as the truth table of n switching functions:

eo = fo(so. S1, -+, Sy—k—1),
€1 = .fl(soa Siy oy SH—/(—l)'
en—t = fu_1(50,S1, -, Sn—k=1),
where sg. 51, -+, Sp—r—1 are the syndrome digits, which are regarded as switching
variables, and e, ey, - - - , e, are the estimated error digits. When these n switching

functions are derived and simplified, a combinational logic circuit with the n —k
syndrome digits as inputs and the estimated error digits as outputs can be realized.
The implementation of the syndrome circuit was discussed in Section 3.2. The
general decoder for an (n, k) linear code based on the table-lookup scheme is shown



[

ection 3.5 Standard Array and Syndrome Decoding 89
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FIGURE 3.8: General decoder for a linear block code.
in Figure 3.8. The cost of this decoder depends primarily on the complexity of the
. .

combinational log

Again, we consider the (7, 4) code given in Table 3.1. The syndrome circuit for this
code is shown in Figure 3.5. The decoding table is given by Table 3.2. From this
table we form the truth table {(Table 3.3). The swiiching expressions for ihe seven
error digits are

g = SoAS] As). e1 = syAsy Ash,
e = suAs] Asy, e3 = soAsiAsh.
e = 5uAs1452, es5 = soAs) Asa,

o6 = S()ASi Asy,

where A denotes the logic- AND operation and s’ denotes the logic-COMPLEMENT
of 5. These seven switching expressions can be realized by seven 3-input AND gates.
The complete circuit of the decoder is shown in Figure 3.9.
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TABLE 3.3: Truth table for the error digits of the
correctable error patterns of the (7, 4) linear
code given in Table 3.1.

Correctable error patterns

Syndromes (coset leaders)

M) $1 52 eo e1 [} [ €4 es €6

6 0 0|0 o0 O 0O 0 0 O

i 6 0};1 0 0 O O O O

o 1 o010 1 0 o0 0 0 O

6 0 1]0 O 1 O 0 0 O

1 1 o6 O O 1 0 0 O

0 1 Tt 16 0 0 0 1 0 O

1 1 tr 7606 0 0 0 ¢ 1 O

1 0 110 0 0 O 0O 0 1

ngsgled S S S S gy B gy SN ey SR ey B

+ + +
Sp S $2

€y € € €3 €4 :
y 4 3 3 £
>
o (o]

Corrected output

FIGURE 3.9: Decoding circuit for the (7, 4) code given in Table 3.1.

3.6 PROBABILITY OF AN UNDETECTED ERROR FOR LINEAR CODES OVER A BSC

If an (n, k) linear code is used only for error detection over a BSC, the probability
of an undetected error P, (E) can be computed from (3.19) if the weight distribution
of the code is known. There exists an interesting relationship between the weight
distribution of a linear code and the weight distribution of its dual code. This rela-
tionship often makes the computation of P,(E) much easier. Let {Ag, A1, --- , A}
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be the weight distribution of an (n, k) linear code C, and let {Bg, By, -, By} be
the weight distribution of its dual code C;. Now, we represent these two weight
distributions in polynomial form as follows:

AZ) = Ap+ A1z + -+ AnZ”,

(3.31)
B(z) = Bo+ Biz + -+ Byz".
Then, A(z) and B(z) ave related by the following identity:
_ a—(n—k) n i—z N
Alz) =12 1+2)"B| ). (3.32)
14z

This identity is known as the MacWilliams identity [13]. The polynomials A(z) and
B(z) are called the weight enumerators for the (n, k) linear code C and its dual Cy.
From the MacWilliams identity, we see¢ that if the weight disiribution of the dual of
a linear code is known, the weight distribution of the code iiself can be determined.
As a result, this gives us more flexibility in computing the weight distribution of a
linear code.

Using the MacWilliams identity, we can compute the probability of an unde-
tected error for an (n, k) linear code from the weight distribution of its dual. First,
we put the expression of (3.19) into the following form:

n
PUE)y=") Aip'(L—p)"”

= ) _ (3.33)
=1-p)" YA (—p) .
i=1

I-p
Substituting z = p/(1 — p) in A(z) of (3.31) and using the fact that Ag = 1, we obtain

the following identity:
A(~p—>—1: Af( v ) . (3.34)
1-—p - 1—-p

Combining (3.33) and (3.34), we have the following expression for the probability
of an undetected error:

P,(E)=( — p)" [A ((L>) - 1} : (3.35)
1—p

From (3.35) and the MacWilliams identity of (3.32), we finally obtain the following
expression for P, (E):

PAE)=2"""PpB1 -2p)—1 - p), (3.36)

where
I

B(1—2p) = Z Bi(1—2p).
=0
Hence, there are two ways for computing the probability of an undetected error for
a linear code; often, one is easier than the other. If n — k is smaller than £, it is much
easier to compute P, (F) from (3.36); otherwise, it is easier to use (3.35).
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EXAMPLE 3.10

Consider the (7, 4) linear code given in Table 3.1. The dual of this code is generated
by its parity-check matrix,

1001011
H=3y01 0111090
6610111

(see Example 3.3). Taking the linear combinations of the rows of H, we obtain the
following eight vectors in the dual code:

0000000, (1100101),
100101 1), (1011100),
0101110), 0111001),
0010111), (111001 0).

Thus, the weight enumerator for the dual code is B(z) = 1 + 7z*. Using (3.36), we
obtain the probability of an undetected error for the (7, 4) linear code given in
Table 3.1:

P(E)=27[1+70 -2p*" - 1 - p).

This probability was also computed in Section 3.4 using the weight distribution of
the code itself.

Theoretically, we can compute the weight distribution of an (n, k) linear code
by examining its 2¥ codewords or by examining the 2"* codewords of its dual
and then applying the MacWilliams identity; however, for large n, k, and n — £, the
computation becomes practically impossible. Except for some short linear codes
and a few small classes of linear codes, the weight distributions for many known
linear codes are still unknown. Consequently, it is very difficult, if not impossible, to
compute their probability of an undetected error.

Although it is difficult to compute the probability of an undetected error for
a specific (n, k) linear code for large n and k, it is quite easy to derive an upper
bound on the average probability of an undetected error for the ensemble of all
(n, k) linear systematic codes. As we showed earlier, an (n, k) linear systematic code
is completely specified by a matrix G of the form given by (3.4). The submatrix
P consists of k(n — k) entries. Because each entry p;; can be either a 0 or a 1,
there are 2¢(»~0 distinct matrices G's of the form given by (3.4). Let I' denote the
ensemble of codes generated by these 28¢'=%) matrices. Suppose that we choose a
code randomly from I' and use it for error detection. Let C; be the chosen code.
Then, the probability that C; will be chosen is

P(Cj) =27F0=h, (3.37)
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Let Aj; denote the number of codewords in C; with weight /. It follows from (3.19)
that the probability of an undetected error for C is given by

PUEIC) =) Ajp'd—p). (3.38)
i=1

The average probability of an undetected error for a linear code in T is defined as

I
P, (E) =) P(CHP(EIC)), (3.39)
j=1

where || denotes the number of codes in I'. Substituting (3.37) and (3.38) into
(3.39), we obtain

o
P, (E) = 27k0=H 'S pPra—p) S Ay (3.40
Lot J

i=1 ‘]Wl

A nonzero n-tuple is contained in either exactly 2¢~D=% codes in T or in none of

the codes (left as a problem). Because there are ( IZ )) n-tuples of weight i, we have

I

S Ay < ( ; )2”\'—1“”—’”. (3.41)
j=1

Substituting (3.41) into (3.40), we obtain the following upper bound on the average
probability of an undetected error for an (s, k) linear systematic code:

n
P (E) < 9-(1=k) Z ( ’,7 )} 1)i(1 _ p)nﬂ'

i=1 (3.42)
— 27('1171\')[1 —(1 - p)n].

Because [1 — (1 — p)"] < 1, it is clear that P, (E) < 2=k,

The preceding result says that there exist (n, k) linear codes with the probability
of an undetected error, P,(E), upper bounded by 2=~ In other words, there
exist (n, k) linear codes with P,(E) decreasing exponentially with the number of
parity-check digits, n — k. Even for moderate n — k, these codes have a very smail
probability of an undetected error. For example, let n — k = 30. There exist (n, k)
linear codes for which P,(E) is upper bounded by 273 ~ 107°. Many classes of
linear codes have been constructed for the past five decades; however, only a few
small classes of linear codes have been proved to have a P, (E) that satisfies the
upper bound 2770 Tt is still not known whether the other known linear codes
satisfy this upper bound.

Good codes for error detection and their applications in error control will be
presented in later chapters. An excellent treatment of error-detecting codes can be
found in [12].
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3.7 SINGLE-PARITY-CHECK CODES, REPETITION CODES, AND SELF-DUAL CODES

A single-parity-check (SPC) code is a linear block code with a single parity-
check digit. Let w = (up, ug, ..., up-1) be the message to be encoded. The single
parity-check digit is given by

p=ug+tu+--+uq (3.43)

which is simply the modulo-2 sum of all the message digits. Adding this parity-check
digit to each k-digit message results in a (k -+ 1, k) linear block code. Each codeword
is of the form

V= (p,Ug, U, ..., Up_1).

From (3.43), we readily see that p = 1 if the weight of message wis odd, and p =0
if the weight of message u is even. Therefore, all the codewords of a SPC code have
even weights, and the minimum weight (or minimum distance) of the code is 2. The
generator of the code in systematic form is given by

110000 | [ 1]
150100.-‘0 1
G = 1;0010...0 = 1511,( : (3.44)
| 1:0000--.1 ] | 1 |
From (3.44) we find that the parity-check matrix of the code is
H=[11--1]. (3.45)

Because all the codewords have even weights, a SPC code is also called an even-
parity-check code. SPC codes are often used for simple error detection. Any error
pattern with an odd number of errors will change a codeword into a received vector
of odd weight that is not a codeword. Hence, the syndrome of the received vector is
not equal to zero. Consequently, all the error patterns of odd weight are detectable.

A repetition code of length n is an (#, 1) linear block code that consists of

only two codewords, the all-zero codeword (0 0 --- 0) and the all-one codeword
(11 --- 1). This code is obtained by simply repeating a single message bit n times.
The generator matrix of the code is

G=[11---1]. (3.46)

From (3.44) through (3.46), we readily see that the (n, 1) repetition code and the
(n,n — 1) SPC code are dual codes to each other.

SPC and repetition codes are often used as component codes for constructing
long, powerful codes as will be seen in later chapters.

A linear block code C that is equal to its dual code C, is called a self-dual code.
For a self-dual code, the code length n must be even, and the dimension k of the
code must be equal to n/2. Therefore, its rate R is equal to % Let G be a generator
matrix of a self-dual code C. Then, G is also a generator matrix of its dual code Cy
and hence is a parity-check matrix of C. Consequently,

G-GT=0 (3.47)
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Suppose G is in systematic form, G = [P I, 2}. From (3.47), we can easily sec that
PP =1,p. (3.48)

¥ ai@m; (n, n/2) linear block code C satisfies the condition of (3.47)
self-dual code (the proof is ef@ as a problem),

m.
mde
)
fa¥)

Consider the (8, 4) linear block code generated by the matrix
11111111
o 60001111
T 00110011
010106101
The code h ate R = % It is easy to check that G - GT = 0. Therefore, it is a

self-dual code.

There are many good self-dual codes but the most well known self-dual code
is the (24, 12) Golay code, which will be discussed in Chapter 4.

PROBLEMS
3.1 Consider a systematic (8, 4) code whose parity-check equations are

vo = U1+ Uy + uz,

(
{

VU1 g -1+ Uy,

1%

i

o ity +us,
vy = ug + up + u3.

where g, 11, u2, and u3, are message digits, and vg, vy, vp, and v3 are parity-
check digits. Find the generator and parity-check mairices for this code. Show
analytically that the minimum distance of this code is 4.

3.2 Construct an encoder for the code given in Problem 3.1.

3.3 Construct a syndrome circuit for the code given in Problem 3.1.

3.4 Let H be the parity-check matriz of an (n, k) linear code C that has both odd-
and even-weight codewords. Construct a new linear code C; with the following
parity-check matrix:

Hy=1 :» HW

(Mote that the last row of H; consists of all I's.)
a. Show that Cqis an (n 4 1, k) linear code. Cy is called an extension of C.
lo. Show that every codeword of € has even weight.
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3.5

3.6

3.7

3.8

3.9

3.16

3.11

3.12

3.13

3.4
3.15

¢. Show that C; can be obtained from C by adding an extra parity-check digit,
denoted by v, to the left of each codeword v as follows: (1) if v has odd weight,
then ve = 1, and (2) if v has even weight, then v, = 0. The parity-check digit
Voo 1S called an overall parity-check digit.

Let C be a linear code with both even- and odd-weight codewords. Show that

the number of even-weight codewords is equal to the number of odd-weight

codewords.

Consider an (n, k) linear code C whose generator matrix G contains no zero

column. Arrange all the codewords of C as rows of a 2%-by-n array.

a. Show that no column of the array contains only zeros.

b. Show that each column of the array consists of 2¢~! zeros and 2¢~1 ones.

¢. Show that the set of all codewords with zeros in a particular component
position forms a subspace of C. What is the dimension of this subspace?

Prove that the Hamming distance satisfies the triangle inequality: that is, let X, y,

and z be three n-tuples over GF(2), and show that

d(x,y) +d(y,z) = d(x,2).

Prove that a linear code is capable of correcting X or fewer errors and simultane-
ously detecting /(! > A) or fewer errors if its minimum distance dpyin > A +17 + 1.
Determine the weight distribution of the (8, 4) linear code given in Problem 3.1.
Let the transition probability of a BSC be p = 1072. Compute the probability of
an undetected error of this code.

Because the (8, 4) linear code given in Problem 3.1 has minimum distance 4, it
is capable of correcting all the single-error patterns and simultaneously detecting
any combination of double errors. Construct a decoder for this code. The decoder
must be capable of correcting any single error and detecting any double errors.
Let I" be the ensemble of all the binary systematic (n, k) linear codes. Prove that
a nonzero binary n-tuple v is contained in either exactly 2¢~D@=% codes in I or
in none of the codesin I

The (8, 4) linear code given in Problem 3.1 is capable of correcting 16 error
patterns (the coset leaders of a standard array). Suppose that this code is used
for a BSC. Devise a decoder for this code based on the table-lookup decoding
scheme. The decoder is designed to correct the 16 most probable error patterns.
Let C; be an (n1,k) linear systematic code with minimum distance d; and
generator matrix G) = [Py I;]. Let C; be an (ny, k) linear systematic code with
minimum distance d, and generator matrix G, = [P, I;]. Consider an (ny + n2, k)
linear code with the following parity-check matrix:

P
H= KnlJrnsz: Ek
P!
Show that this code has a minimum distance of at least d; + dy.
Show that the (8, 4) linear code C given in Problem 3.1 is self-dual.

For any binary (1, k) linear code with minimum distance (or minimum weight)
2t+1 or greater, show that the number of parity-check digits satisfies the following

inequality:
n—kZlng[l—i-(I; >+< 3 >+---+(’; )}

The preceding inequality gives an upper bound on the random-error-correcting
capability ¢ of an (n, k) linear code. This bound is known as the Hamiming
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bound [14]. (Hint: For an (n,k) linear code with minimum distance 2r + 1 or
greater, all the n-tuples of weight r or less can be used as coset leaders in a
standard array.)

Show that the minimum distance dpy, of an (i, k) linear code satisfies the following
inequality:
n. 2kt
dmin T ]

(Hint: Use the result of Problem 3.6(b). This bound is known as the Plotkin
bound [1-3])

Show that there exists an (n, k) linear code with a minimum distance of at least
dif

d-1 N

Z( R REL

i=1

(Hint: Use the result of Problem 3.11 and the fact that the nonzero n-tuples of
weight d — 1 or less can be at most in

d—1
AN 1 k—1)(n—k
{L(WQU o

i=1

(n, k) systematic linear codes.)
Show that there exists an (n, k) linear code with a minimum distance of at least
dmin that satisties the following inequality:

dmin—1 . dimin n
% n—k N
) < Z

i=1

i=1

(Hint: See Problem 3.17. The second inequality provides a lower bound on the
minimuin distance attainable with an (1, k) linear code. This bound is known as
the Varsharmov—Gilbert bound [1-3].)

Consider a rate—% (n, n/2) linear block code C with a generator matrix G. Prove
that C is self-dual if G - GT = 0.

Devise an encoder for the (1, 7 — 1) SPC code with only one memory element (or
flip-flop) and one X-OR gate (or modulo-2 adder).
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