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The purpose of this chapter is to provide the reader with an elementary knowledge 
of algebra that will aid in the understanding of the material in the following chapters. 
The treatment is basically descriptive, and no attempt is made to be mathematically 
rigorous. There are many good textbooks on algebra. The reader who is interested 
in more advance algebraic coding theory is referred to the textbooks listed at the 
end of the chapter, 

2.1 GROUPS 

Let G be a set of elements. A binary operation * on G is a rule that assigns to each 
pair of elements a and b a uniquely defined third element c = a * b in G. When such 
a binary operation * is defined on G, we say that G is closed under *. For example, 
let G be the set of all integers and let the binary operation on G be real addition +. 
We all know that, for any two integers i and j in G, i j is a uniquely defined integer 
in G. Hence, the set of integers is closed under real addition. A binary operation * 
on G is said to be associative if, for any a, b, and c in G, 

a * (b * c) = (a * b) * c 

Now, we introduce a useful algebraic system called a group. 

DEFINITION 2.1 A set G on which a binary operation * is defined is called a 
group if the following conditions are satisfied: 

rio The binary operation * is associative. 

Quo G contains an element e such that, for any a in G, 

a*e=e*a= a. 

This element e is called an identity element of G. 

iii. For any element a in G, there exists another element a' in G such that 

a * al = al * a = e. 

The element a' is called an inverse of a (a is also an inverse of a'). 
A group G is said to be commutative if its binary operation * also satisfies 

the following condition: For any a and b in G, 

a * b = b * a. 

THEOREM 21 The identity element in a group G is unique. 

2S 
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Proof Suppose that there exist two identity elements e and e' in G. Then 
e' = e' * e = e. This implies that e and e' are identical. Therefore, there is one 
and only one identity element. 	 Q.E. 

THEOREM 2.2 The inverse of a group element is unique. 

Proof Suppose that there exist two inverses a' and a" for a group element a. 
Then 

a' = a * e = a' * (a * a") = (a' * a) * a" = e * a" = a" . 

This implies that a' and a" are identical and there is only one inverse for a. 
Q.E.D. 

The set of all integers is a commutative group under real addition. In this 
case, the integer 0 is the identity element, and the integer —i is the inverse of 
integer i. The set of all rational numbers excluding zero is a commutative group 
under real multiplication. The integer 1 is the identity element with respect to real 
multiplication, and the rational number b/a is the multiplicative inverse of alb. The 
groups just noted contain infinite numbers of elements. Groups with finite numbers 
of elements do exist, as we shall see in the next example. 

EXAMPLE 2.1 

Consider the set of two integers G = {0, 1}. Let us define a binary operation, denoted 
by ED, on G as follows: 

0 6 0 = 0, 	0 6 1 =- 1, 16)0=1, 	1e1=o. 

This binary operation is called modulo-2 addition. The set G --= {0, 1} is a group 
under modulo-2 addition. It follows from the definition of modulo-2 addition 6 that 
G is closed under ®, and ® is commutative. We can easily check that ED is associative. 
The element 0 is the identity element. The inverse of 0 is itself, and the inverse of 1 
is also itself. Thus, G together with ® is a commutative group. 

The number of elements in a group is called the order of the group. A group 
of finite order is called a finite group. For any positive integer in, it is possible to 
construct a group of order m under a binary operation that is very similar to real 
addition, as is shown in the next example. 

EXAMPLE 2.2 

Let In be a positive integer. Consider the set of integers G = {0, 1, 2, 	, 112 — 1}. 
Let + denote real addition. Define a binary operation N on G as follows: For any 
integers i and j in G, 

j = r, 

where r is the remainder resulting from dividing i j by m. The remainder r is 
an integer between 0 and 171 — 1 (Euclid's division algorithm) and is therefore in 
G. Hence, G is closed under the binary operation 0 , which is called modulo-m 
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addition. The set G = {0, 1, - • , m — 1} is a group under modulo-in addition. First, 
we see that 0 is the identity element. For 0 < i < in, i and in - i are both in G. Since 

+ (m — i) = (m — i) i = 

it follows from the definition of modulo-m addition that 

(in — i) = (in — 1) E i = 0. 

Therefore, i and in —i are inverses of each other with respect to N. it is also clear that 
the inverse of 0 is itself. Because real addition is commutative, it follows from the 
definition of modulo-in addition that, for any i and j in G, ill j = j N i. Therefore, 
modulo-Jr/ addition is commutative. Next, we show that modulo-m addition is also 
associative. Let i, j, and k be three integers in G. Since real addition is associative, 
we have 

i 	j 	k = (i 	j) k = i 	(j 	k). 

Dividing i + j k by in, we obtain 

i + j+k=arn r, 

where q and r are the quotient and the remainder, respectively, and 0 < r < in. 
Now, dividing i + j by in, we have 

i 	= chin + 	 (2.1) 

with 0 < r1  < in. Therefore, i 	r1. Dividing r1 + k by in, we obtain 

k q2m r2 	 (2.2) 

with 0 < r2 < m. Hence, r1 N k = r2, and 

(i 	11 	= 

Combining (2.1) and (2.2), we have 

i 	k = (qi + q2)m r2. 

This implies that r2 is also the remainder when i j + k is divided by in. Because 
the remainder resulting from dividing an integer by another integer is unique, we 
must have r2 = r. As a result, we have 

Similarly, we can show that 
i0(jIk)=r.  

Therefore, (i 	j) 	k = i 	(j N k), and modulo-in addition is associative. This 
concludes our proof that the set G = {0, 1, 2, • • • , in — 1) is a group under modulo-in 
addition. We shall call this group a additive group. For in = 2, we obtain the binary 
group given in Example 2.1. 

N 
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TABLE 2.1: Modulo-5 addition. 

1111 0 1 2 3 4 

0 0 1 2 3 4 
1 1 2 3 4 0 
2 2 3 4 0 1 
3 3 4 0 1 2 
4 4 0 1 2 3 

The additive group under modulo-5 addition is given in Table 2.1. 
Finite groups with a binary operation similar to real multiplication also can be 

constructed. 

EXAMPLE 2.3 

Let p be a prime (e.g., p = 2, 3, 5, 7, 11, • • • ). Consider the set of integers, G = 
{1, 2, 3, 	, p 1}. Let • denote real multiplication. Define a binary operation El on 
G as follows: For i and j in G, 

i E j = r, 

where r is the remainder resulting from dividing i • j by p. First, we note that i • j is 
not divisible by p. Hence, 0 < r < p, and r is an element in G. Therefore, the set G is 
closed under the binary operation El, which is referred to as modulo-p multiplication. 
The set G = {1,2, • • • , p — 1} is a group under modulo-p multiplication. We can 
easily check that modulo-p multiplication is commutative and associative. The 
identity element is 1. The only thing left to be proved is that every element in G has 
an inverse. Let i be an element in G. Because p is a prime, and i < p, i and p must 
be relatively prime (i.e., i and p do not have any common factor greater than 1). It 
is well known that there exist two integers a and b such that 

a•i+b•p=1 	 (2.3) 

and a and p are relatively prime (Euclid's theorem). Rearranging (2.3), we have 

a • i = —b • p ± 1. 	 (2.4) 

This says that when a i is divided by p, the remainder is 1. If 0 < a < p, a is in G, 
and it follows from (2.4) and the definition of modulo-p multiplication that 

allili=i0a= 1. 

Therefore, a is the inverse of i. However, if a is not in G, we divide a by p, 

a = q • p r. 	 (2.5) 

Because a and p are relatively prime, the remainder r cannot be 0, and r must be 
between 1 and p —1. Therefore, r is in G. Now, combining (2.4) and (2.5), we obtain 

r • i = —(b qi)p +1. 
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TABLE 2.2: Modulo-5 multiplication. 

fl 2 3 4 

1 1 2 3 4 
2 2 4 1 3 
3 3 1 4 2 
4 4 3 2 1 

Therefore, r D i =i0r =1 and r is the inverse of i. Hence, any element i in G has 
an inverse with respect to modulo-p multiplication. The group G = {1, 2, • - • , p —1} 
under modulo-p multiplication is called a multiplicative group. For p = 2, we obtain 
a group G = {1} with only one element under modulo-2 multiplication. 

If p is not a prime, the set G = {1, 2, • , p — 1} is not a group under modulo-p 
multiplication (see Problem 2.3). Table 2.2 illustrates the group G = {1, 2, 3, 4} 
under modulo-5 multiplication. 

Let H be a nonempty subset of G. The subset H is said to be a subgroup of 
G if H is closed under the group operation of G and satisfies all the conditions of a 
group. For example, the set of all rational numbers is a group under real addition. 
The set of all integers is a subgroup of the group of rational numbers under real 
addition. A subgroup of G that is not identical to G is called a proper subgroup 
of G. 

THEOREM 2.3 Let G be a group under the binary operation *. Let H be a 
nonempty subset of G. Then H is a subgroup of G if the following conditions 
hold: 

i 	is closed under the binary operation *. 

H. For any element a in H, the inverse of a is also in H. 

Proof Condition (ii) says that every element of H has an inverse in H. 
Conditions (i) and (ii) ensure that the identity element of G is also in H. 
Because the elements in H are elements in G, the associative condition on * 
holds automatically. Hence, H satisfies all the conditions of a group and is a 
subgroup of G. 

DEFENITIION 2.2 Let H be a subgroup of a group G with binary operation *. 

Let a be an element of G. Then the set of elements a * H {a *h:hETI) is 

called a left coset of H; the set of elements H * a a {h * a : h E H} is called a 
right coset of H. 

It is clear that if the group G is commutative, then every left coset a * H 
is identical to every right coset H * a; that is, a * H = H * a for any a E G. In 
this text, we are primarily interested in commutative groups, so, we will make no 
further distinction between left and right cosets. We will simply refer to them as 
cosets. 
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EXAMPLE 2.4 

Consider the additive group G = {0, 1, 2, • • , 15} under modulo-16 addition. We 
can readily check that H = {0, 4, 8, 12) forms a subgroup of G. The coset 3 II H is 

3 H= {3 0, 3 4, 3 8, 3 12} 

= {3, 7, 11, 15}. 

The coset 7 a H is 

7 H = {7 0,7 4,7 8, 7 U 12} 

= {7, 11, 15, 3}. 

We find that 3 H =7 H. There are only four distinct cosets of H. Besides 3 II H, 
the other three distinct cosets are 

H = {0, 4, 8, 12}, 

1 	H = {1, 5, 9, 13}, 

2 MI H = 12, 6, 10, 141. 

The four distinct cosets of H are disjoint, and their union forms the entire group G. 

a a 

U 

In the following theorems, we prove some important properties of cosets of a 
subgroup of a group. 

THEOREM 2.4 Let H be a subgroup of a group G with binary operation *. No 
two elements in a coset of H are identical. 

roof The proof is based on the fact that all the elements in the subgroup H 
are distinct. Consider the coset a * H = {a*h:hEH} with a E G. Suppose 
two elements, say a * h and a * h', in a * H are identical, where h and h' are 
two distinct elements in H. Let a-1  denote the inverse of a with respect to the 
binary operation *. Then, 

a-1  * (a * h) = a-1-  * (a * h'), 

(a-1  * a) * h = (a-1  * a) * , 

e * h = e * , 

h = . 

This result is a contradiction to the fact that all the elements of H are distinct. 
Therefore, no two elements in a coset are identical. 	 Q.E.D. 

THEOREM 2.5 No two elements in two different cosets of a subgroup H of a 
group G are identical. 
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Proof Let a * H and b * H be two distinct cosets of H, with a and b in G. 
Let a * h and b* h' be two elements in a * H and b* H, respectively. Suppose 
a*h=b*h'. Let /I-1  be the inverse of /I. Then 

(a * h)*1?-1-  = (b * h') *h-1, 

a * (h *11-1- ) = b* (h' *11-1), 

a*e=b*h", 

a = b h", 

where hil  = h' 	is an element in H. The equality a = b* h" implies that 

a * H = (b*1?")* H, 

= {(b* h") * h :1? E H), 

= lb* (h" h): E II), 

= {b* ht" : h'" E H), 

= b* H. 

This result says that a * H and b* H are identical, which is a contradiction to 
the given condition that a* H and b* H are two distinct cosets of H. Therefore, 
no two elements in two distinct cosets of H are identical. 	 Q.1E.113. 

From Theorems 2.4 and 2.5, we obtain the following properties of cosets of a 
subgroup H of a group G: 

lio Every element in G appears in one and only one coset of H: 

B. All the distinct cosets of H are disjoint; and 

ilL The union of all the distinct cosets of H forms the group G. 

I. ased on the preceding structural properties of cosets, we say that all the distinct 
cosets of a subgroup H of a group G form a partition of G, denoted by GI H. 

THEOREM 2.6 (LAGRANGE'S THEOl EM) Let G be a group of order 77, and let 
H be a subgroup of order in. Then in divides a, and the partition G/H consists 
of aim cosets of H. 

Proof It follows from Theorem 2.4 that every coset of H consists of In 
elements of G. Let i be the number of distinct cosets of H. Then, it follows 
from the preceding structural properties of cosets that a = i In. Therefore, in 
divides n, and i = 	 Q.E.1110 

2.2 HEMS 

Now, we use group concepts to introduce another algebraic system, called a field. 
oughly speaking, a field is a set of elements in which we can perform addition, 

subtraction, multiplication, and division without leaving the set. Addition and 
multiplication must satisfy the commutative, associative, and distributive laws. A 
formal definition of a field is given next. 
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EFINITI N 23 Let F be a set of elements on which two binary operations, 
called addition "+" and multiplication "•", are defined. The set F together 
with the two binary operations + and is a field if the following conditions are 
satisfied: 

is F is a commutative group under addition +. The identity element with 
respect to addition is called the zero element or the additive identity of F 
and is denoted by 0. 

ii. The set of nonzero elements in F is a commutative group under multi-
plication The identity element with respect to multiplication is called 
the unit element or the multiplicative identity of F and is denoted by 1. 

ill Multiplication is distributive over addition; that is, for any three elements 
a, b, and c in F, 

a•(b+c)=-a-12+a•c. 

It follows from the definition that a field consists of at least two elements, the 
additive identity and the multiplicative identity. Later, we will show that a field of 
two elements does exist. The number of elements in a field is called the order of the 
field. A field with a finite number of elements is called a finite field. In a field, the 
additive inverse of an element a is denoted by -a, and the multiplicative inverse 
of a is denoted by a -1, provided that a 0 0. Subtracting a field element b from 
another field element a is defined as adding the additive inverse, -b, of b to a [i.e., 

a-baa+ (-b)]. If b is a nonzero element, dividing a by b is defined as multiplying 

a by the multiplicative inverse, b-1, of b [i.e., a + b a b-1]. 
A number of basic properties of fields can be derived from the definition of a 

field. 

Property I For every element a in a field, a • 0 = 0 • a = 0. 

roof.  First, we note that 

a = a • 1 = a • (1 + 0) = a + a • O. 

Adding -a to both sides of the preceding equality, we have 

-a + a = -a + a + a 0 

0 = 0 + a • 0 

0 = a • 0. 

Similarly, we can show that 0 • a = 0. Therefore, we obtain a • 0 = 0 • a = 
0. 	 Q.E. 

Pro,li erty II For any two nonzero elements a and b in a field, a • b 0. 

Proof This is a direct consequence of the fact that the nonzero elements of a 
field are closed under multiplication. 	 Q.E.D. 

Property M a • b = 0 and a = 0 imply that b = O. 
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Proof This is a direct consequence of Property H. 

Property 11V For any two elements a and b in a field, 

-(a • b) = (-a) • b = a (-b). 

Proof 0 = 0 • b = (a + (-a)). b = a • b + (-a) • b. Therefore, (-a) • b must be 
the additive inverse of a • b, and -(a • b) = (-a) - b. Similarly, we can prove 
that -(a • b) = a - (-b). 	 Q.E.D. 

Property V For a 0, a •b=a •c implies that b = c. 

Proof Because a is a nonzero element in the field, it has a multiplicative 
inverse, a -1. Multiplying both sides of a•b=a.c by a-1, we obtain 

-1 	 1 a 	• (a • b) = a 	• (a • c) 

(a-1  • a) - b = (a-1 •a) • c 

1•b =1• c. 

Thus, b = c. 	 Q.E.D. 

We can readily verify that the set of real numbers is a field under real-number 
addition and multiplication. This field has an infinite number of elements. Fields 
with finite number of elements can be constructed and are illustrated in the next 
two examples and in Section 2.4. 

EXAMPLE 2.5 

Consider the set 10, 1) together with modulo-2 addition and multiplication, defined 
in Tables 2.3 and 2.4. In Example 2.1 we showed that (0, 1} is a commutative 
group under modulo-2 addition; and in Example 2.3, we showed that {1) is a group 
under modulo-2 multiplication. We can easily check that modulo-2 multiplication is 
distributive over modulo-2 addition by simply computing a • (b+c)anda•b+a•c 
for eight possible combinations of a, b and c(a = 0 or 1, b = 0 or 1, and c = 0 or 
1). Therefore, the set (0, 1} is a field of two elements under modulo-2 addition and 
modulo-2 multiplication. 

The field given in Example 2.5 is usually called a binary field and is denoted 
by GF(2). The binary field GF(2) plays an important role in coding theory and 
is widely used in digital computers and digital data transmission (or storage) 
systems. 

TABLE 2.3: Modulo-2 addition. TABLE 2.4: Modulo-2 multiplication. 

0 It 

0 0 1 0 0 
1 1 0 1 0 1 
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EXAMPLE 2.6 

Let p be a prime. We showed in Example 2.2 that the set of integers (0, 1, 2, • • • , p -1} 
is a commutative group under modulo-p addition. We also showed in Exam-
ple 2.3 that the nonzero elements (1, 2, • • • , p - 1) form a commutative group 
under modulo-p multiplication. Following the definitions of modulo-p addition 
and multiplication and the fact that real-number multiplication is distributive over 
real-number addition, we can show that modulo-p multiplication is distributive 
over modulo-p addition. Therefore, the set (0, 1, 2, • • • , p - 1) is a field of order p 
under modulo-p addition and multiplication. Because this field is constructed from 
a prime, p, it is called a prime field and is denoted by GF(p). For p = 2, we obtain 
the binary field GF(2). 

Let p = 7. Modulo-7 addition and multiplication are given by Tables 2.5 and 
2.6, respectively. The set of integers (0, 1, 2, 3, 4, 5, 6} is a field of seven elements, 
denoted by GF(7), under modulo-7 addition and multiplication. The addition table 
is also used for subtraction. For example, if we want to subtract 6 from 3, we 
first use the addition table to find the additive inverse of 6, which is 1. Then we 
add 1 to 3 to obtain the result [i.e., 3 - 6 = 3 + (-6) = 3 + 1 = 4]. For division, 
we use the multiplication table. Suppose that we divide 3 by 2. We first find the 
multiplicative inverse of 2, which is 4, and then we multiply 3 by 4 to obtain the 
result [i.e., 3 + 2 = 3 • (2-1) -= 3 • 4 = 5]. Here we have demonstrated that in a finite 
field, addition, subtraction, multiplication, and division can be carried out much like 
ordinary arithmetic, with which we are quite familiar. 

In Example 2.6, we showed that, for any prime p, there exists a finite field of 
p elements. In fact, for any positive integer in, it is possible to extend the prime 
field GF(p) to a field of p"' elements, which is called an extension field of GF(p) 
and is denoted by GF(pm). Furthermore, it has been proved that the order of any 
finite field is a power of a prime. Finite fields are also called Galois fields, in honor 
of their discoverer. A large portion of algebraic coding theory, code construction, 
and decoding is built around finite fields. In the rest of this section and in the next 
two sections we examine some basic structures of finite fields, their arithmetic, and 
the construction of extension fields from prime fields. Our presentation is mainly 
descriptive, and no attempt is made to be mathematically rigorous. Because finite-
field arithmetic is very similar to ordinary arithmetic, most of the rules of ordinary 

TABLE 2.5: Modulo-7 addition. 

0 1 2 3 4 5 6 

1 1 2 3 4 5 6 0 
2 2 3 4 5 6 0 1 
3 3 4 5 6 0 1 2 
4 4 5 6 0 1 2 3 
5 5 6 0 1 2 3 4 
6 6 0 1 2 3 4 5 

TABLE 2.6: Modulo-7 multiplication. 

0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 
2 0 2 4 6 1 3 5 
3 0 3 6 2 5 1 4 
4 0 4 1 5 2 6 3 
5 0 5 3 1 6 4 2 
6 0 6 5 4 3 2 1 
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arithmetic apply to finite-field arithmetic. Therefore, it is possible to utilize most of 
the techniques of algebra in the computations over finite fields. 

Consider a finite field of q elements, GF(a). Let us form the following sequence 
of sums of the unit element 1 in GF(q): 

1 	 2  

721  = 1, > 1-1+1, 
i=1 	i=i i=1 

= 1 + 1 + 1, • , 

E1=1+1±..• + 1(k times ), • • 
i—t 

ecause the field is closed under addition, these sums must be elements in the field; 
and because the field has finite number of elements, these sums cannot be all distinct. 
Therefore, at some point in the sequence of sums, there must be a repetition; that 
is, there must exist two positive integers m and n such that in < n and 

771 	72 

11 721.  
 1=1 

This equality implies that EiLin  1 = 0. Therefore, there must exist a smallest positive 
integer A. such that EL].  1 = 0. This integer A is called the characteristic of the field 
GF(q). The characteristic of the binary field GF(2) is 2, since 1 + 1 = 0. The 
characteristic of the prime field GF(p) is p, since ELI  1 = k 0 for 1 < k < p and 
Li,'1  1 = 0. 

THEOREM 2.7 The characteristic A of a finite field is prime. 

Proof Suppose that A is not a prime and is equal to the product of two smaller 
integers k and in (i.e., A = kin). Because the field is closed under multiplication, 

( k 

1) 

 

1 \ 1=1 

is also a field element. It follows from the distributive law that 

i =1 

ecause Lk" 1 = 0, then either ELI  1 = 0 or Eiji' 	= 0; however, this 
contradicts the definition that A is the smallest positive integer such that 
Lx  1 = 0. Therefore, we conclude that A is prime. 

It follows from the definition of the characteristic of a finite field that for any 
two distinct positive integers k and in less than A, 

IC 	/72 

17,1 El. 

i=1 	 =1 
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Suppose that Eki=1  1 = rill  1. Then, we have 

na -k 
E 1 = 0 

i=1 

(assuming that m > k); however, this is impossible, since m — k < X. Therefore, the 
SUMS 

1 = 	1, E1, 
x_i 
i1, E 1 = 0 

i=, i=1 

are X distinct elements in GF(q). In fact, this set of sums itself is a field of X elements, 
GF(A), under the addition and multiplication of GF(q) (see Problem 2.7). Because 
GF(A) is a subset of GF(q), GF(A) is called a subfield of GF(q). Therefore, any 
finite field GF(q) of characteristic X contains a subfield of X elements. It can be 
proved that if q X, then q is a power of X. 

Now, let a be a nonzero element in GF(q). Since the set of nonzero elements 
of GF(q) is closed under multiplication, the following powers of a, 

a = a, 	a2  = a • a, 	a3  = a a • a, • • • 

must also be nonzero elements in GF(q). Because GF(q) has only a finite number 
of elements, the powers of a given cannot all be distinct. Therefore, at some point in 
the sequence of powers of a there must be a repetition; that is, there must exist two 
positive integers k and m such that M > k and ak  = am. Let a-1  be the multiplicative 
inverse of a. Then (a-1)k  — a-k  is the multiplicative inverse of ak . Multiplying both 
sides of ak  = a' by a-k  , we obtain 

1 = am—k  

This equality implies that there must exist a smallest positive integer n such that a" = 
1. This integer n is called the order of the field element a. Therefore, the sequence 
al , a2 ,  a3, 	repeats itself after a" = 1. Also, the powers a1, a2 , • • • , 	a" = 1 
are all distinct. In fact, they form a group under the multiplication of GF(q). First, 
we see that they contain the unit element 1. Consider a' • al. If i + j < n, 

a' • a 1 = a' +1 

If i + j > n, we have i+j=n+r, where 0 < r < n. Hence, 

a' • a1  = ai+J = an • a' = . 

Therefore, the powers al  , a2  , • • • , a"-1, a" = 1 are closed under the multiplication 
of GF(q). For 1 < i < n, a" —' is the multiplicative inverse of a'. Because the powers 
of a are nonzero elements in GF(q), they satisfy the associative and commutative 
laws. Therefore, we conclude that a" = 1, al , a2, • • • , a"-1-  form a commutative 
group under the multiplication of GF(q). A group is said to be cyclic if there exists 
an element in the group whose powers constitute the whole group. 

THEOREM 2.8 Let a be a nonzero element of a finite field GF(q). Then 
aq = 1. 
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There are two polynomials over GF(2) with degree 1: X and 1 + X. There are four 
polynomials over GF(2) with degree 2: X2, 1 + X2, X + X2, and 1 + X + X2. In 
general, there are 2" polynomials over GF(2) with degree n. 

Polynomials over GF(2) can be added (or subtracted), multiplied, and divided 
in the usual way. Let 

g(X) = + gt X + g? X2  + 	gw r i  

be another polynomial over GF(2). To add f (X) and g (X), we simply add the 
coefficients of the same power of X in f (X) and g(X) as follows (assuming that 
nl < n): 

	

f (X) + g( ) = (fo + go) + 	gi)X 

+(f;„ + g171)X1" + f„+1 X"'" + 	X" , 

where fi + gi is carried out in modulo-2 addition. For example, adding a(X) = 
1 + X + X3  + X' and b(X) = + X2  + X3  + X4  + X 7  , we obtain the following sum: 

a(X) + b(X) = (1 + 1) + X + X2  +(1+  1)X3  4- X4  + X5  ± X7  

	

.x2 j.r1- 	zy 7 

When e multiply f (X) and g ( X), we obtain the following product: 

f (X) g(X) = co + ciX c2X2 	c„+„, X" +"' 

where 

co = Ago, 

= fogi + fig°, 

c2 = fog2 + ig + f2g0 ,  

(2.6) 

= ogi + 	+ , f2g; —2 + • • + go. 

(Multiplication and addition of coefficients are modulo-2.) it is clear from (2.6) that 
if g (X ) = 0, then 

f ( X) • 0 = 0. 	 (2.7) 

We can readily verify that the polynomials over GF(2) satisfy the following condi-
tions: 

uo Commutative: 

a(X) b(X) = b(X) a(X), 

a(X) b(X) = b(X) a(X). 
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IL Associative: 

a(X) + [b(X) + c(X)] [a(X) + b(X)] + c(X), 

a(X) [b(X) c(X)] = [a(X) • b(X)] • c(X). 

Hi. Distributive: 

a(X) [b(X) + c(X)] = [a(X) • b(X)] + [a(X) c(X)]. 	(2.8) 

Suppose that the degree of g(X) is not zero. When f (X) is divided by g(X), we 
obtain a unique pair of polynomials over GF(2)—q(X), called the quotient, and 
r(X), called the remainder—such that 

f (X) = q(X)g(X) + r (X), 

and the degree of r(X) is less than that of g(X). This expression is known as Euclid's 

division algorithm. As an example, we divide f (X) = 1 + X + X4  + X5  + X6  by 
g(X) = 1 + X + X 3. Using the long-division technique, we have 

X3  + X2 	(quotient) 

x 3  + x + x6  + x5  + x4 
	

+ X +1 
x6 	± x4 ± x3 

x5 	+X3 	+ X + 1 
x5 	+ x3  + x2  

	

X2  + X +1 	(remainder). 

We can easily verify that 

X6  + X5  ± X4  + X + 1 = (X3  + X2)(X3  + X + 1) + X2  + X + 1. 

When f (X) is divided by g(X), if the remainder r(X) is identical to zero [r(X) = 0], 
we say that f (X) is divisible by g(X), and g(X) is a factor of f (X). 

For real numbers, if a is a root of a polynomial f (X) [i.e., f (a) = 0], 
f (X) is divisible by X — a. (This fact follows from Euclid's division algorithm.) This 
statement is still true for f (X) over GF(2). For example, let f (X) = 1+ X 2+ X 3  + X4. 

Substituting X = 1, we obtain 

f (1) = 1 + 12  + 13  + 14  = 1 + 1 + 1 + 1 = 0. 

Thus, f (X) has 1 as a root, and it should be divisible by X + 1, as shown: 

X 3 + X + 1  

X + 1)( 4  +X 3  +X 2 	+1 

X 4  +X 3  

x2 	+ 1 
x2  + x 

X + 1 
X + 1 

0. 
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For a polynomial f (X) over GF(2), if the polynomial has an even number of 
terms, it is divisible by X + 1. A polynomial p(X) over GF(2) of degree in is said 
to be irreducible over GR2) if p(X) is not divisible by any polynomial over GF(2) 
of degree less than m but greater than zero. Among the four polynomials of degree 
2, X2, X2  + 1, and X2  + X are not irreducible, since they are either divisible by X 
or X + 1: however, X2  + X + 1 does not have either 0 or 1 as a root and so is not 
divisible by any polynomial of degree 1. Therefore, X2  + H- 1 is an irreducible 
polynomial of degree 2. The polynomial X3  H- X + 1 is an irreducible polynomial 
of degree I First, we note that X3 + F -1- 1 does not have either 0 or 1 as a root. 
Therefore, X3  + X + 1 is not divisible by X or X + 1. Because the polynomial is 
not divisible by any polynomial of degree 1, it cannot be divisible by a polynomial 
of degree 2. Consequently, X3  + K + 1 is irreducible over GF(2). We may verify 
that K4  H- X + 1 is an irreducible polynomial of degree 4. It has been proved that 
for any in > 1 there exists an irreducible polynomial of degree in. An important 
theorem regarding irreducible polynomials over GF(2) is given next without a 
proof. 

THEOREM KA Any irreducible polynomial over GF(2) of degree rn divides 
1.  

As an example of Theorem 2.10, we can check that X3  + + 1 divides 
X23-1  + 1 = X7  + 1: 

X4 -1- X2  + 1C + 1 

	

X3  -F + 11 X7 
	

+1 

	

X7 	+ X 5  + X1  
x5 H_ x4 	 +1 
X5 	y3 + )(2 

x4  + x3  + x2  +1 
v4 + X2  + X 

3+ X + 1 
X3 	-I-- + 

0. 

An irreducible polynomial p(X) of degree in is said to be primitive if the 
smallest positive integer it for which p(X) divides X +1 is n = 2"' --- 1. We 
may check that p(X) = X 4  + + 1 divides X15  + 1 but does not divide any 
X" + 1 for 1 < 11 < 15. Hence, X4  + X + 1 is a primitive polynomial. The 
polynomial X4  + K3  + X2  H- Y + 1 is irreducible but it is not primitive, since 
it divides X5  + 1. It is not easy to recognize a primitive polynomial; however, 
there are tables of irreducible polynomials in which primitive polynomials are 
indicated [6, 8]. For a given in, there may be more than one primitive poly-
nomial of degree in. A list of primitive polynomials is given in Table 2.7. For 
each degree in, we list only a primitive polynomial with the smallest number of 
terms. 
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TABLE 2.7: List of primitive polynomials. 

3 
4 
5 

1 +X+X3  
1+X+X4  
1 + X2  + X5  

14 
15 
16 

1 + X + x6 + x10 + x14 

1 +X+X15  
1 +X+X3 +x12 ±x16 

6 1 +X+X6  17 1 + X3  + X17  
7 1 +X3  + X7  18 1 + X7  + X18  
8 1 + X2  + X3  + X4  + X8  19 1 + X + X2  + X 5  + X19  
9 1 +X4- +X9  20 1 + X3 + x20 

10 1 + X3 ± x10 21 1 + X2  + x21 

11 1 + X2  + xii 22 1 + X + X22  
12 1 + X + X4  + X6  + X12  23 1 + X5  + X23  
13 1 + X + X3 + x4 + x13 24 1 + X + X2 + x7 + x24 

Before leaving this section, we derive another useful property of polynomials 
over GF(2). Consider 

f 2(x) =(.fo + 	+ • • • + f„x")2  

= [fo + (fix + fix2  + • • • + fiixn )l 2  

= fc■ + fc• • (fix + f2x2  + • • • + fn  X") 

+fo • (fIX + f2X2  + • • • + fi,r) + (fiX + J2X 2  + • • + f„X")2  

= + (fiX + f2X2  + • • + f„r1 )2. 

Expanding the preceding equation repeatedly, we eventually obtain 

f 2(x) =- fc2 + (fix)2  + (f2x2)2  + • • + (1'n x")2  

Since f, = 0 or 1, f2 = f,. Hence, we have 

f 2(x) = fo + fix2  + f2(x 2)2  + • • + j;,(x2)" 

= px2). 	 (2.9) 

It follows from (2.9) that, for any i > 0, 

[f.  (X)]2'  = f (X2') 	 (2.10) 

2.4 CONSTRUCTION OF GALOIS FIELD GF(2m) 

In this section we present a method for constructing the Galois field of 2!" elements 
(in > 1) from the binary field GF(2). We begin with the two elements 0 and 1 from 
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GF(2) and a new symbol a. Then, we define a multiplication 
sequence of powers of a as follows: 

0 • 0 = 0, 

0 	1 = 1 0 = 0, 

I 	1 = 1, 

0 a = a • 0 = 

1 = a • 1 = 

2 a = a • a, 

a3 = a • a • a, 

46 .99 to introduce a 

(2.11) 

(2.12) 

a1  =a a 

 

a (j times ), 

 

It follows from the preceding definition of multiplication that 

0 • a1  = al • 0 = 0, 

1 al = 	.1= , 

ai  aj = aj • ai  = al+i 

Now, we have the following set of elements on which a multiplication operation "•" 
is defined: 

F = {0, 1, a, a2, • • , ai, • • .}. 

The element 1 is sometimes denoted by a°. 
Next, we put a condition on the element a so that the set F contains only 21" 

elements and is closed under the multiplication "•" defined by (2.11). Let p(X) be a 
primitive polynomial of degree in over GF(2). We assume that p(a) = 0 (i.e., a is a 
root of p(X)). Since p(X) divides X2'" -1-  + 1 (Theorem 2.10) we have 

+ 1 = q (X)p(X). 	 (2.13) 

If we replace X with a in (2.13), we obtain 

"' - I + = q(a)P(a)• 

ecause p(a) = 0, we have 

2"' -1 a  	± = (a) 0.  

If we regard q (a) as a polynomial of a over GF(2), it follows from (2.7) that 
q(a) . 0 = 0. As a result, we obtain the following equality: 

a2"' -1 ± 1 = 0. 
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Adding 1 to both sides of a2"'-i-  + 1 = 0 (using modulo-2 addition), we obtain the 
following equality: 

a2"' -1 	1.  (2.14) 

Therefore, under the condition that p(a) = 0, the set F becomes finite and contains 
the following elements: 

F* 	{0,  1, a,  012, 	a2"' -2}.  

The nonzero elements of F* are closed under the multiplication operation "•" 
defined by (2.11). To see this, let i and j be two integers such that 0 < i, j < 2"1  — 1. 
If i + j < 2"7  — 1, then a' al --- a'+ , which is obviously a nonzero element in 
F*. If i + j > 21" — 1, we can express i + j as follows: i + j = (2"' — 1) + r, where 
0 < r < 2"? — 1. Then, 

ai 	= 	= a (2"'-1)-hr -= a2"'-1 • ar = ar , 

which is also a nonzero element in F*. Hence, we conclude that the nonzero elements 
of F* are closed under the multiplication "•" defined by (2.11). In fact, these nonzero 
elements form a commutative group under "•". First, we see that the element 1 
is the unit element. From (2.11) and (2.12) we see readily that the multiplication 
operation "•" is commutative and associative. For 0 < i < 	— 1, a2"' -1-1  is the 
multiplicative inverse of a' , since 

a2"' — i — 1 ai = a2m--1 = 1.  

(Note that a°  = a2'"-1  = 1.) It will be clear in the discussion that follows that 
1, a, a2, • , a2!"-2  represent 2"1  — 1 distinct elements. Therefore, the nonzero 
elements of F* form a commutative group of order 2'" — 1 under the multiplication 
operation "•" defined by (2.11). 

Our next step is to define an addition operation "+" on F* so that F* forms a 
commutative group under "+". For 0 < i < 2/1' — 1, we divide the polynomial X' by 
p(X) and obtain the following: 

X' = qi (X)p(X) a, (X), 	 (2.15) 

where qi  (X) and ai (X) are the quotient and the remainder, respectively. The 
remainder ai (X) is a polynomial of degree in — 1 or less over GF(2) and is of the 
following form: 

a,(X) = aio a,iX a,2X2  + • • • + aim,_iXm  

Because X and p(X) are relatively prime (i.e., they do not have any common factor 
except 1), X' is not divisible by p(X). Therefore, for any i > 0, 

a, (X) 0 0. 	 (2.16) 

For 0 < i , j < 2"1  — 1, and i 	j, we can also show that 

a, (X) 0 a (X). 	 (2.17) 
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Suppose that ai(X) = a j(X). Then, it follows from (2.15) that 

X' +X' = [qi(X) + qi(X)1p(X) ai(X) + a j( ) 

[cp (X) + j(X)1p(X). 

This implies that p(X) divides X' + X' = X' (1Xl ) (assuming that j > i ). 
Because X' and p(X) are relatively prime, p(X) must divide X1-' + 1, however, 
this is impossible, since j - i < 21" - 1, and p(X) is a primitive polynomial of 
degree in that does not divide X" + 1 for a < 2"' - 1. Therefore, our hypothesis that 
hi (X) = ai (X) is invalid. As a result, for 0 < i, j < 2"' - 1, and i 	j, we must have 
ai (x) 	a i(X). Hence, for i = 0, 1, 2, 	2"1  2, we obtain 21" -1 distinct nonzero 
polynomials (X) of degree m -- 1 or less. Now, replacing X with a in (2.15) and 
using the equality that (I; (a) 0 = 0 [see (2.7)1, we obtain the following polynomial 
expression for a': 

	

= (a) = a 0 + ails + 01202 	° ° aim, lam I 
	

(2.18) 

From (2.16), (2.17), and (2.18), we see that the 2t" -1 nonzero elements, a0, al, 
a2'-2  in F*, are represented by 2"' -1 distinct nonzero polynomials of a over GF(2) 

with degree in - 1 or less. The zero element 0 in V' may be represented by the 
zero polynomial. As a result, the 21" elements in F" are represented by 2'" distinct 

polynomials of a over GF(2) with degree in — 1 or less and are regarded as 2'" 
distinct elements. 

Now, we define an addition "+" on F" as follows: 

	

0+0 = 0 	 (2.19a) 

and, for 0 < 	2"1  - 1, 
0 + al  = + 0 = al  , 	 (2.19b) 

ai 	=(a ± a i 	ai.„ _la' I ) + (a jo a.;  la + — + 	I al" 1 ) 

= (a10 + 0/0) + 	+ 
	

° 	(a1.177-1+ a j177-1)am-1  

(2.19c) 

where ai‘k + a j. k is carried out in modulo-2 addition for 0 < k < in. From (2.19c) we 
see that, for i = j, 

	

= 0 	 (2.20) 

and for i 	j, 

(cli() 	clit)) 	(ai 1 4- a ii)a + • 	 ± aim, -1)01m  

is nonzero and must be the polynomial expression for some ak  in F*. Hence, the 
set F" is closed under the addition "+" defined by (2.19). We can immediately 
verify that f-* is a commutative group under "+". First, we see that 0 is the additive 
identity. Because modulo-2 addition is commutative and associative, the addition 
defined on F* is also commutative and associative. From (2.19a) and (2.20) we see 
that the additive inverse of any element in F* is itself. 

Up to this point we have shown that the set F* = {0, 1, a, a2 , 	, a2"' 	is a 
commutative group under an addition operation "+", and the nonzero elements of 
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F* form a commutative group under a multiplication operation 	Using the poly- 
nomial representation for the elements in Ft and (2.8) (polynomial multiplication 
satisfies distributive law), we readily see that the multiplication on F* is distributive 

, over the addition on F*. Therefore, the set F* = {0, 1, a, a2 , 	a2'" --2 } is a Galois 
field of 2"1  elements, G F(21"). We notice that the addition and multiplication defined 
on F' = GF(2"') imply modulo-2 addition and multiplication. Hence, the subset 
{0, 1} forms a subfield of GF(2'") [i.e., GF(2) is a subfield of GF(2m)]. The binary field 
GF(2) is usually called the ground field of GF(2'"). The characteristic of GF(2m) 

is 2. 
In our process of constructing GF(2"') from GF(2), we have developed 

two representations for the nonzero elements of G F(2"/ ): the power represen-
tation and the polynomial representation. The power representation is conve-
nient for multiplication, and the polynomial representation is convenient for 
addition. 

EXA PH 2.7 

Let 171 = 4. The polynomial p(X) = 1+ X + X 4  is a primitive polynomial over GF(2). 

Set p(a) = 1 + a + a 4  = 0. Then, a4  = 1 + a. Using this relation, we can construct 
GF(24). The elements of GF(24) are given in Table 2.8. The identity a4  = 1 + a is 
used repeatedly to form the polynomial representations for the elements of GF(24). 

For example, 

a5  = a a4  = a(1+ a) = a + a2, 

a6 = a • a5 = a (a  f a2) = 
a2 a3, 

a7 = a • a6  = a(a2 a3) = a3 a4 a3 +1+ a = 14- a + a3  . 

To multiply two elements a' and al, we simply add their exponents and use the fact 
= a l2, and a l2 	= a 19 	a4.  that a15  = 1. For example, a5  a7 	 Dividing a1  by 

ai , we simply multiply a i by the multiplicative inverse a15-i  of al . For example, 
a4/a12 = a4 a3 a7, and a  t2 /as = a12 • a10 = a22 = a7. To add a' and al, we use 
their polynomial representations given in Table 2.8. Thus, 

a5 a7 (a  + a2) + + a  + a3) 1 a2 a3 a l3,  

+ a5 al0 	+ (a  + 012) + (1 + a 1_ 012)  _ 0.  

There is another useful representation for the field elements in GF(2"'). Let 
no + nia a2a2  + • • 	a,„_1am-1  be the polynomial representation of a field 
element 16. Then, we can represent /3 by an ordered sequence of in components 
called an in-tuple, as follows: 

(ao, a1, a2, • • • , am-1), 

where the in components are simply the in coefficients of the polynomial represen-
tation of /3. Clearly, we see that there is one-to-one correspondence between this 
in-tuple and the polynomial representation of ,B. The zero element 0 of GF(2"') is 
represented by the zero m-tuple (0, 0, • • • , 0). Let (bo, b,, • • • , b,„_1) be the m-tuple 
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TABLE 2.3 Three representations for the elements 
of GF(24) generated by p(X) = 1 Jr  X H- X4. 

illowec 	NDilytacionfoil 	utp IlC  

Iceipireseirtandon irepFettenIagoiri cepiceaeigalorta 

0 0 (0000) 
1 1 (1000) 
a a (0100) 
a-9  a2   (0010) 
or' a3  (0001) 
a4  1+a (1100) 
a3  a + 012  (0110) 
a6 a2 d-a3  (0011) 
ot7 1_ + a 	+ 013  (1101) 
a8  1 	+a2 

 

(1010) 
a 9 
alb a 
a in 

a12  a 

a 	-1- as  
1+ a + ot2  

,,,,, + 0,2  + 0,3  
1+ a + a2 +013  

(0101) 
(1110) 
(0 1 1 1) 
( 111 1) 

13 CI -  1 	+ 012  + 013  (1 0 11) 
0,14 1 	+ a3  (100 1) 

representation of yin GF(2"'). Adding t3 and y, we simply add the corresponding 
components of their m-tuple representations as follows: 

(ao -F- bo, 	b1, 	, n,,, 	H- b„,_1), 

where ni + is carried out in modulo-2 addition. Obviously, the components of the 
resultant m-tople are the coefficients of the polynomial representation for (3+ y. All 
three representations for the elements of GF(24) are given in Table 2.8. 

Galois fields of 27" elements with HI = 3 to 10 are given in Appendix A. 

2.5 BASE PROPERTES OF A GALOOS MELD GI7(2m) 

In ordinary algebra we often see that a polynomial with real coefficients has roots not 
from the field of real numbers but from the field of complex numbers that contains 
the field of real numbers as a subfield. For example, the polynomial X2 +6X +25does 
not have roots from the field of real numbers but has two complex-conjugate roots, 
—3 + 4i and —3 — 4i, where i = ‘/-1. This situation is also true for polynomials 
with coefficients from GF(2). In this case, a polynomial with coefficients from GF(2) 
may not have roots from GF(2) but has roots from an extension field of GF(2). For 
example, X4  + X3 +1 is irreducible over GF(2) and therefore it does not have roots 
from GF(2) however, it has four roots from the field GF(24). If we substitute the 
elements of GF(24) given by Table 2.8 into X4  + X3  +1, we find that a7 all: a13:  

and a14  are the roots of X4  + x3 +1. We may verify this result as follows: 

	

( 7)4 H (017)3 Hi  _ 0128 + a21 +1 	d_ 012_1 _ a3) 	(a2 d_ a3) +1  _0. 
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Indeed, a7  is a root for X4  + X3  + 1. Similarly, we may verify that all  an, and a14  
,  are the other three roots. Since a7, all X13 anda14  are all roots of X4  + X3  + 1, 

al) 	a13)(x +4w1 then (X + a7  )(X 	 4)  must be equal to X4  + X3  + 1. To see this, 
we multiply out the preceding product using Table 2.8: 

ce)(x an)(x 0113)(x +a14)  

_ [X2 + (a7 a11)X a18][x2 + (a13 + a14)x a27] 

(x2 + asx a3) (X2 a2x a
12

)  

x4 ± (a8 a2)x3 (a12 al() a3)x2 (a20 a5)x al5 

= X4  + X3  + 1. 

Let f(X) be a polynomial with coefficients from GF(2). If f3, an element in 
GF(2"'), is a root of f (X), the polynomial f (X) may have other roots from GF(2'"). 
Then, what are these roots? This question is answered by the following theorem. 

THEOREM 2.11 Let f (X) be a polynomial with coefficients from GF(2). Let 
p be an element in an extension field of GF(2). If )8 is a root of f (X), then for 
any I > 0, ,8 2' is also a root of f (X). 

Proof From (2.10), we have 

[f (X)] 21  = f (X 21  ). 

Substituting p into the preceding equation, we obtain 

[f (p)]
2

1 	f  (182' ).  

Since f (e) = 0, f (0 2) = 0. Therefore, 132'  is also a root of f (X). 

The element p2' is called a conjugate of /3. Theorem 2.11 says that if 16, an 
element in GF(2"'), is a root of a polynomial f (X) over GF(2), then all the distinct 
conjugates of /3, also elements in GF(2"' ), are roots of f (X). For example, the 
polynomial f (X) = 1 + X3  + X4  + X 5  + X 6  has a4, an element in GF(24) given by 
Table 2.8, as a root. To verify this, we use Table 2.8 and the fact that a15  = 1: 

pod) 	a12 al6 a20 a24 	al2 + a  + a5 a9 

= 1 + (1 + a + a2  + a3) + a + (a + a2) +(a+ a3) = O. 

The conjugates of a4  are 

(a4)2 = a8, (a4)22 	a16 = a, (a4)23 	a32 a2.  

(a4)24 = a64 = a4.] [Note that 	 j It follows from Theorem 2.11 that as , a, and a2  
must also be roots of .f (X) = 1 + X3  + X4  + X5  + X6. We can check that a5  
and its conjugate, a10 , are roots of f (X) = 1 + X3  + X4  + X5  + X6. Therefore, 
.f (X) = 1 + X3  + X4  + X 5  + X6  has six distinct roots in GF(24). 
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Let /3 be a nonzero element in the field GF(2'"). It follows from Theo-
rem 2.8 that 

s2"" -1 

Adding 1 to both sides of )(32'"-1  = 1, we obtain 

)62R -1 + 1 = 0. 

This says that /3 is a root of the polynomial X2'"-I  + 1. Hence, every nonzero element 
of GF(2!") is a root of X2!"-1  + 1. Because the degree of X2'"-1  +1 is 2"' - 1, the 
2"' - 1 nonzero elements of GF(2'") form all the roots of X2'"-1  + 1. Summarizing 
the preceding result, we obtain Theorem 2.12. 

THEOREM 2012 The 2' - 1 nonzero elements of GF(2"') form all the roots of 
X2,,, -1 + 1.  

Since the zero element 0 of GF(2"') is the root of X, Theorem 2.12 has the 
following corollary: 

COR LRAM' 2,12.1 The elements of GF(2") form all the roots of X2'" + X. 

Because any element /3 in GF(2") is a root of the polynomial X2'" + X, )3 may 
be a root of a polynomial over GF(2) with a degree less than 2'. Let 0(X) be the 
polynomial of smallest degree over GF(2) such that '(/3) = 0. [We can easily prove 
that 0(X) is unique.] This polynomial 0(X) is called the minimal polynomial of /3. 
For example, the minimal polynomial of the zero element 0 of GF(2'") is X, and the 
minimal polynomial of the unit element 1 is X + 1. Next, we derive a number of 
properties of minimal polynomials. 

THEOREM 20113 The minimal polynomial 0(X) of a field element /3 is 
irreducible. 

Proof Suppose that 0(X) is not irreducible and that 0(X) = 01(X)02(X), 
where both 01(X) and 02(X) have degrees greater than 0 a d less than the 
degree of 0(X). Since 0(0 = 01(/3)02(3) = 0, either 01(P) = 0 or 02 (6) = 0. 
This result contradicts the hypothesis that 0(X) is a polynomial of smallest 
degree such that 0(8) = 0. Therefore, 0(X) must be irreducible. 	Q.E.D. 

THEOREM 2014 Let f(X) be a polynomial over GF(2). Let 0(X) be the 
minimal polynomial of a field element 13. If /3 is a root of f (X), then f (X) is 
divisible by 0 (X). 

Proof Dividing ,ff (X) by 0(X), we obtain 

f(X) = a(X)0(X) r(X), 

where the degree of the remainder r(X) is less than the degree of 0(X). 

Substituting )3 into the preceding equation and using the fact that f (p) = 

0(p) = 0, we have r(/3) = 0. If r(X) 0, r(X) would be a polynomial of lower 
degree than 0(X), which has P as a root. This is a contradiction to the fact that 
0(X) is the minimal polynomial of /3. ence, r(X) must be identical to 0 and 
0(X) divides f(X). 	 Q.E.D. 
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The following result follows from Corollary 2.12.1 and Theorem 2.14. 

THEOREM 2.15 The minimal polynomial 0(X) of an element p in GF(2"') 
divides X

2
" + X. 

Theorem 2.15 says that all the roots of 0(X) are from GF(2m). Then, what are 
the roots of 0(X)? This question is answered by the next two theorems. 

THEOREM 2.16 Let f (X) be an irreducible polynomial over GF(2). Let /3 be 
an element in GF(2"'). Let 0(X) be the minimal polynomial of /3. If f (13) = 0, 
then 0(X) = f (X). 

Proof It follows from Theorem 2.14 that 0(X) divides f (X). Since 0 (X) 0 1 
and f (X) is irreducible, we must have 0(X) . f (X). 	 Q.E.D. 

Theorem 2.16 says that if an irreducible polynomial has /3  as a root, it is 
the minimal polynomial 0(X) of p. It follows from Theorem 2.11 that /3 and its 
conjugates P2 , P22 , • • , p2'  • • • are roots of 0(X). Let e be the smallest integer 
such that P2'  = p . Then, /32 , /32  • • , P2' I  are all the distinct conjugates of p (see 
Problem 2.15). Since /32"  = /3, e < in (in fact e divides in). 

THEOREM 2.17 Let p be an element in GF(2'"), and let e be the smallest 
nonnegative integer such that p2' = p . Then, 

e-1 
f (X) = 11(X + )62' ) 

=0 

is an irreducible polynomial over GF(2). 

o f Consider 

e-1 e-1 

[ f (X)]2  = I I + ]2 = 1 1(X + p2' )2. 
=0 =0 

Since (X + p2')2  = X 2 + /32` /32' a + f32'+ i  — X2  P2'+i , 

e  —1  
[f (x)]2 	1(X2  + /32'+1) = 11(X2  + 182) 

i=0 	 i=1 

] 11(X2 + p2") (X2  + p2' ) • 
r=1 

Since 	= p , then 

-e-1 
--= 

e-1 

[f (X)]2 +13 2') = 
je(x2). 	 (2.21) 
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Let f (X) 	+ ft X + • • + fe Xe , where = 1. Expand 

[f(X)]2 = (f0 	fl 	+ 	1-  t,,X(' )2  

`—` 1,2 x2i 	+ 
<=2 
i=0 

2- 	, 
i=0 1=0 

i xi±j 	f2 2i 	(2_22) 

=0 

From 2.21 and (2.22), we obtain 

r y2i 
	

- 

• 	
2 2i 

1=0 	i=0 

Then, for 0 < < e, we must have 

fi = .1i • 

This result holds only when f) = 0 or 1. Therefore, f (1C) has coefficients from 
GF(2). 

Now, suppose that f(X) is not irreducible over GF(2), and f (X) = 

a(X)b(X). Since f(/) = 0, either ri(b) = 0 or b(/3) = 0. if 0(0) = 0, a(X) has 
8 18 2 	0211- as roots, so a(X) has degree e, and a (X) = (X). Similarly, if 
b0) = 0. b(X) = (X) Therefore, f(X) must be irreducible. 

A direct consequence of Theorems 2.16 and 2.17 is Theorem 2.18. 

THF,OIREM TIM Let (MX) be the minimal polynomial of an element 
GF(2"' ). Let e be the smallest integer such that /32' = /3. Then 

0 ( X ) Fla +02') 
	

(2.23) 

EXAMPLE 2,8 

Consider the Galois field GF(24 ) given by Table 2.8. Let = a The conjuga tes of 
,6 are 

/32  = 01c) 	_ 	= a24 

The minimal polynomial of f3  = a' is then 

0(X) = (X +a3 )(X + 06 )(X -1-a 12 )(X + a9 ), 

Multiplying out the right-hand side of the preceding equation with the aid of 
Table 2.8, we obtain 

0(x) 	[X2  + (a3  a6 )x a9][ x 2 + (a1J + 019 )x  + a 2l]  

(X2 + a2x a9)(X2  + 018 x  + a6 )  

X4 + (a2 
 + as)x3 + (a6 + a l° + 019)X2 + (ey L7 + 018)x  + a  

= X4  + 1- X 2  ± X + 1 . 
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There is another way of finding the minimal polynomial of a field element, 
which is illustrated by the following example. 

EXAMPLE 2.9 

Suppose that we want to determine the minimal polynomial 0(X) of y = a7  in 
GF(24). The distinct conjugates of y are 

y2 = a14 , 	y22  = a28 = a13 , 	y 2' = a56 = a-11.  

Hence, 0 (X) has degree 4 and must be of the following form: 

(p (X) = ao aiX a2X2  (13X 3  + X4. 

Substituting y into 0(X), we have 

cb(y) = ao aly a7y2  + a3y3  + y4  = 0. 

Using the polynomial representations for y, y2 , y3, and y4  in the preceding equation, 
we obtain the following: 

a() + (11(1+ a + a3) a2(1 a3) a3 (a2 a3)  ± + 012 a3) 0  

(ao + al a2 + 1) + aia (a3 1)a2  (a1 a2 a3 1)a3  = 0. 

For the preceding equality to be true, the coefficients must equal zero: 

a0 +01 a2 	+1 = 0, 
al 	 = 0, 

a3 + 1 =0, 
a1 +a2 a3 + 1 -= 0. 

Solving the preceding linear equations, we obtain ao = 1, al = a2 = 0, and a3 = 1. 
Therefore, the minimal polynomial of y = a7  is 0 (X) = 1+ X 3  + X4. All the minimal 
polynomials of the elements in GF(24) are given by Table 2.9. 

TABLE 2.9: Minimal polynomials of the 
elements in GF(24) generated by p(X) = 
X 4  -F- X + 1. 

Conjugate roots 	Minimal polynomials 

0 
1 

a, a-  , a4  , a8  
3 6 9 a ,a ,a ,a12  

5 a-  , a LO  
a7 , a ll , 13 ,  a14 

X +1 
X 4  + X + 1 

X4  + X 3  + X2  + X +1 
X 2  + X +1 
X 4  + X3  +1 
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A direct consequence of Theorem 2.18 is Theorem 2.19. 

THEcuralizm 219 Let 0(X) be the minimal polynomial of an element Q in 

GiF(21" ). Let e be the degree of 0(X). Then e is the smallest integer such that 

,6. MOre0Ver e < 

In particular, the degree of the minimal polynomial of any element in G F(2111 ) 
divides a,. The proof of this property is omitted here. 'Table 2.9 shows that the 

	

degree of the 	 polynomial of each element hi G.R24 ) divides by 4. li4inircial 

polynomials of the elements in GF(2"'  ) for m = 2 to 10 are given in Appendix B. 

In the construction of the Galois field GF(2'") we use a primitive polynomial 

p(X) of degree in and require that the element a be a root of p(X). Because the 

powers of a generate all the nonzero elements of 0/7(2"7 ), a is a primitive element. 

In fact, all the conjugates of a are primitive elements of 017(2"' ). To see this, let n 

be the order of a21  for / > 0. Then 

(012' )11 = an2/ = 

Also it follows from Theorem 2.9 that n divides 21"  — 1: 

211  — 1 = k•n. 	 (2.24) 

Because or is a primitive element of GF(21" ), its order is 2111  — 1. For a"7I  = 1, n21  
must be a multiple of 21"  — 1. Since 21  and 27 ' — 1 are relatively prime, n must be 

divisible by 21"  — 1, say 

n =Cf (2111  — 1). 	 (2.25) 

From (2.24) and (2.25) we conclude that n = 21"  — 1. Consequently, 
a21 

is also a 

primitive element of G192'). In general, we have the following theorem. 

ThionittuEm 20279 If ,6 is aprimitive element of Gis(2"1 ), all its conjugates 

	

,62 , )822 , 	are also primitive elements of GF(2"1). 

■ 

27:IAM 

Consider the field 0F(2-1 ) given by Table 2.8. The powers of 6 = o7  are 

,eo 1 = 0,7,  /32 	0,14, 	133 	021 = a6 ,  = a28 = a13,  

85 = 0,35 = 0(.5 = 042 = a12 , 	= a49 = 0(4 , 88 a56 a ll 

f39 = 0163 = 13 
/310= 

a  70 =
010,

/611 _ a77 = 0184 = 

813 = 91 ie 14 _ a98 = 018 	/315 	0,105 

Clearly, the powers of (3 = a7  generate all the nonzero elements of GF(24), so 

= o7  is a primitive element of GF(27 ). The conjugates of = a7  are 

2 
=

14 
	

2 	an 	/623 	all 

We may readily check that they are all primitive elements of GF(271), 
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A more general form of Theorem 2.20 is Theorem 2.21. 

THEOREM 121 If p is an element of order n in GF(2"7 ), all its conjugates have 
the same order 71. (The proof is left as an exercise.) 

EXAMPLE 2.11 

Consider the element a5  in GF(24) given by Table 2.8. Since (a5)22 = a20 = as 

the only conjugate of a5  is a10. Both a5  and al°  have order n = 3. The minimal 
polynomial of a5  and a l°  is X2  + X + 1, whose degree is a factor of in = 4. The 
conjugates of a3  are a6, a9, and a12 . They all have order n = 5. 

2.6 COMPUTATIONS USING GALOIS FIELD GF(2'") A ITHMETIC 

Here we perform some example computations using arithmetic over GF(2'"). 
Consider the following linear equations over GF(24 ) (see Table 2.8): 

X + a7 Y = a2, 

a12x + as y a4. 	 (2.26) 

Multiplying the second equation by a3  gives 

X + a7 Y = a2 .  

X _f_ y a7.  

By adding the two preceding equations, we get 

(a7 all)y a2 a7 

a8 y a12 ,  

Y =  a4. 

Substituting Y = a4  into the first equation of (2.26), we obtain X = a9. Thus, the 
solution for the equations of (2.26) is X = a9  and Y = a4. 

Alternatively, the equations of (2.26) could be solved by using Cramer's rule: 

X = 

  

a2 a7 

a8  a4 a 

  

a l0 + a ll 1 + a3 	a14 9 	 = a , 
a8 a l9 	a  + a2 = a5 

     

  

1 a7  
a12 a8 

  

    

       

Y = 

1 a2 
a  12 a4 

1 a7  
a12 a8  

a4 + a14 a + a3  a9 	4 	 = _ = a , 
oe8 + ce  L 9 	a = a2 	a' 

As one more example, suppose that we want to solve the equation 

f (X) = X 2  + a7  X + a = 0 
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over GF(24). The quadratic formula will not work because it requires dividing by 2, 
and in this field, 2 = 0. If f (X) = 0 has any solutions in GF(24), the solutions can 
be found simply by substituting all the elements of Table 2.8 for X. By doing so, we 
would find that f (a6 ) = 0 and f  (a10) = 0, since 

(a6) (ay + a7 a6 + a 	+ a13  

paw)  _ (a10)2 a7 a10 + a = as + 	a  = 0. 

(."( a6)(x am).  Thus, a6  and a t°  are the roots of f (X), and f (X) 
The preceding computations are typical of those required for decoding codes 

such as BCH and Reed—Solomon codes, and they can be programmed quite easily 
on a general-purpose computer. It is also a simple matter to build a computer that 
can do this kind of arithmetic. 

2.7 VECTOR SPACES 

Let V be a set of elements on which a binary operation called addition, +, is defined. 
Let F be a field. A multiplication operation, denoted by •, between the elements in 
F and elements in V is also defined. The set V is called a vector space over the field 
F if it satisfies the following conditions: 

t. V is a commutative group under addition. 

N. For any element a in F and any element v in V, a • v is an element in V. 

nun. (Distributive Laws) For any elements as and v in V and any elements a and b 
in F, 

a•(u+v)=a- au -1-a•v, 

(a + b) •v=a•V+b. v. 

iv, (Associative Law) For any v in V and any a and b in F, 

(a • b) v = a • (b•v). 

v. Let 1 be the unit element of F. Then, for any as in V, 1 as = v. 

The elements of V are called vectors, and the elements of the field F are called 
scalars. The addition on V is called a vector addition, and the multiplication that 
combines a scalar in F and a vector in V into a vector in V is referred to as scalar 
multiplication (or product). The additive identity of V is denoted by 2. 

Some basic properties of a vector space V over a field F can be derived from 
the preceding definition. 

Property if Let 0 be the zero element of the field F. For any vector as in V, 
0 = 0. 

Proof. Because 1 + 0 = 1 in F, we have 1 • as = (1 + 0) as = 1 • as + 0 • v. 
Using condition (v) of the preceding definition of a vector space, we obtain 
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v = v + 0 • v. Let —v be the additive inverse of v. Adding —v to both sides of 
v = v + 0 • v, we have 

0=0+0•v 

0= 0• v. 

Pro erty II For any scalar c in F, c • 0 = 0. (The proof is left as an exercise.) 

Property III For any scalar c in F and any vector v in V. 

(—c) • v = c • (—v) = —(c • v) 

That is, (—c) • v or c • (—v) is the additive inverse of the vector c • v. (The proof is left 
as an exercise.) 

Next, we present a very useful vector space over GF(2) that plays a central 
role in coding theory. Consider an ordered sequence of a components, 

(a0, al, • • • an-1), 

where each component a; is an element from the binary field GF(2) (i.e., a; = 0 
or 1). This sequence is generally called an n-tuple over GF(2). Because there are 
two choices for each ai, we can construct 2" distinct n-tuples. Let V„ denote this 
set of 2" distinct n-tuples over GF(2). Now, we define an addition, +, on V„ as the 
following: For any u -= (tio, u1, 	• , 11-1) and v = (vo, v1, • • , v„_1) in 

+ v = (uo 	vo, tti 	vi, • • • , 	vn-1), 	 (2.27) 

where u, + v, is carried out in modulo-2 addition. Clearly, ia + v is also an n-tuple 
over GF(2). Hence, V„ is closed under the addition defined by (2.27). We can readily 
verify that V„ is a commutative group under the addition defined by (2.27). First, we 
note that the all-zero n-tuple 0 = (0, 0, • , 0) is the additive identity. For any v in V„, 

v + v = (Vo 	vo, 1/1 	7.)1, • • , 	vn _1) 

= (0, 0, • • • , 0) = 0. 

Hence, the additive inverse of each n-tuple in V„ is itself. Because modulo-2 addition 
is commutative and associative, we can easily check that the addition defined by 
(2.27) is also commutative and associative. Therefore, V„ is a commutative group 
under the addition defined by (2.27). 

Next, we define scalar multiplication of an n-tuple v in V„ by an element a 

from GF(2) as follows: 

a • (vo, v1, • • , vn-1) = (a • vo, a • v1, 	• , a • vn-1), 	(2.28) 

where a vi is carried out in modulo-2 multiplication. Clearly, a • (v0, v1, • • • , v„_1) 

is also an n-tuple in V,,. If a = 1, 

1 • (vo, v1, • • • , vn-1) = (1 • v(), 1 • v1, • • • , 1 • vn-1) 

= (Vo, VI, • • , Un_i). 
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We can easily show that the vector addition and scalar multiplication defined by 
(227) and (2.28), respectively, satisfy the distributive and associative laws. Therefore, 
the set 17„ of all ri-tuples over GF(2) forms a vector space over GF(2). 

P,XAMPLIP 2.12 

Let a = 5. The vector space V5 of all 5-tulles over GF(2) consists of the following 
32 vectors: 

(0 0 0 0 0 ) , ( 0 0 0 0 1) 	( 0 0 0 1 0 ) 	( 0 0 0 1 1 ) 
( 0 0 1 0 0), ( 0 0 1 0 1 ) 	( 0 0 1 1 0 ) 	( 0 0 1 i 1 ) , 
( 0 1 0 0 0 ) 	( 0 1 0 0 1) 	( 0 1 0 1 0) , (0 1 0 1 1). 
( 0 1 1 0 0). 	( 0 1 1 0 1 ) 	( 0 1 i 1 0 ) 	(01111), 
(10000), (10001), (10010), (10011), 
(10100), (10101). (10110). (10111). 
(11000), (11001), (11010), (11011)., 
(11100), (11101), (11110). (11111). 

The vector sum of (10111.) and (11001) is 

(10111) + (11001) ----- (1 + 1.0 + 1, + 0,1 + 0,1 + 1) = (01110). 

Using the rule of scalar multiplication defined by (2.28), we obtain 

0 ( 1 1 0 1 0 ) 	( 0 • 1. 0 • 1 , 0 • 0 0 • t 0 • 0) = ( 0 0 0 0 0 ) 

1 ( 1 1 0 1 0)=(1_ • 1. 1 • 1. 1 • 0 1 • , 1 • 0 ) = (1 1 0 1 0) . 

The vector space of all fl- uples over any field F can be constructed in a similar 
manner; however., in this text we are mostly concerned with the vector space of all 
r;-tuples over GF(2) or over an extension field of GF(2){e.g., GF(2/11 )]. 

Because V is a vector space over a field F, it may happen that a subset S of V 
is also a vector space over F. Such a subset is called a subspace of V . 

THEOREM 2.22 Let S be a nonempty subset of a vector space V over a field F. 
Then, S is a subspace of V if the following conditions are satisfied: 

10 For any two vectors an and a in S, + a is also a vector in S. 

11, For any element a in and any vector a in S. a • a is also in S. 

Proof Conditions (i) and (ii) simply say that S is closed under vector addition 
and scalar multiplication of V. Condition (ii) ensures that for any vector a in 
S its additive inverse (-1) • a is also in S. Then, w + (-1) • = 0 is also in S. 
Therefore, S is a subgroup of V. Because the vectors of S are also vectors of 
V, the associative and distributive laws must hold for S. Hence, S is a vector 
space over F and is a subspace of V. 	 0.E. D. 
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EXAMPLE 113 

Consider the vector space V5 of all 5-tuples over GF(2) given in Example 2.12. 
The set 

1(00000), (00111), (11010), (11101)1 

satisfies both conditions of Theorem 2.22, so it is a subspace of V5. 

Let v1, v2. • , vi, be k vectors in a vector space V over a field F. Let 

ai, a2, • • • , ak be k scalars from F. The sum 

a2v2 + • • • + akvk 

is called a linear combination of v1, v2, • • • , vk. Clearly, the sum of two linear 
combinations of v1, v2, • • • , 

(aivi + a2v2  .+ • • + akvk) + (b1v1  + b2v2 + • • • + bkvk) 

(a1 	+ (al + b2)v2 + • • • + (ak + bk)vk, 

is also a linear combination of v1, v2, • , vk. and the product of a scalar c in F and 
a linear combination of v1, v2, • • 	vk, 

c • (a1v1 + a2v2 + • ° + okyk)= (c 	+ (c • a2)v2 + • • + (c • ak)vk, 

is also a linear combination of v1, v2, • • • , vk. It follows from Theorem 2.22 that we 
have the following result. 

THEORIEM 2.23 Let v1, v2, • • , vk be k vectors in a vector space V over a field 
F. The set of all linear combinations of v1, v2, • • • , vk forms a subspace of V. 

EXAMPLE 2.14 

Consider the vector space V5 of all 5-tuples over GF(2) given by Example 2.12. The 
linear combinations of (00111) and (11101) are 

0•(00111)+0•(11101)=(00000), 

0 (00111) + 1 (11101) = (11101), 

1.(00111)+0•(11101)=(00111), 

1 • (00111) +1 (11101) •=- (11010). 

These four vectors form the same subspace given by Example 2.13. 

A set of vectors v1,  72, • • • , Ti in a vector space V over a field F is said to be 
linearly dependent if and only if there exist k scalars al, c), • • , ak from F, not all 
zero, such that 

+ a2v2 + • • • + akvk = 0. 
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The null space Sd of S consists of the following four vectors: 

(0 0 0 0 0), 	(1 0 1 0 1), 	(0 1 1 1 0), 	(1 1 0 1 1). 

Sd is spanned by (10101) and (0 11 1 0), which are linearly independent. Thus, the 
dimension of Sd is 2. 

All the res its presented in this section can be generalized in a straightforward 
manner to the vector space of all n-tuples over GF(q), where q is a power of prime 
(see Section 7.1). 

2.5 MATRICES 

A k x n matrix over GF(2) (or over any other field) is a rectangular array with k 
rows and ri columns, 

goo 

g10 

g01 

gll 

g02 

g12 

g0,/7-1 

G= (2.30) 

gk-1,0 gk-1,1 gk-1,2 gk-1,11— 

where each entry gi j  with 0 < i < k and 0 < j < a is an element from the binary 
field GF(2). Observe that the first index, i, indicates the row containing gij, and 
the second index, j, tells which column gij  is in. We shall sometimes abbreviate the 
matrix of (2.30) by the notation [gij]. We also observe that each row of 0 is an 
n-tuple over GF(2), and each column is a k-tuple over GF(2). The matrix 0 can also 
be represented by its k rows go, gi , 	, 	as follows: 

= 

 

go 

51 

gk—i 

   

If the k(k < n) rows of CC are linearly independent, then the 2k  linear combinations 
of these rows form a k-dimensional subspace of the vector space V„ of all the n-tuples 
over GF(2). This subspace is called the row space of G. We may interchange any two 
rows of CC or add one row to another. These are called elementary row operations. 
Performing elementary row operations on 0, we obtain another matrix 0' over 
GF(2); however, both C and G' give the same row space. 

EXAMPLE 2.17 

Consider a 3 x 6 matrix G over GF(2), 

1 1 0 1 1 0 
= 0 0 1 1 1 0 

0 1 0 0 1 1 
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Adding the third row to the first row and interchanging the second and third rows, 
we obtain the following matrix: 

1 0 0 1 0 1 
= 0 1 0 0 1 1 

0 0 1 1 1 0 

Both G and G' give the following row space: 

(000000), (100101), (010011), (001110), 

(110110), (101011), (011101), (111000). 

This is a three-dimensional subspace of the vector space V6 of all the 6-tuples over 
GF(2). 

Let S be the row space of a k x n matrix G over GF(2) whose k rows 
go, gi , • • , gk_i are linearly independent. Let Sd be the null space of S. Then, the 
dimension of Sd is n - k. Let h0, h1, • • h,1-k-1 be n - k linearly independent vectors 
in Sd. Clearly, these vectors span Sd. We may form an (n - k) x n matrix using 
h0, h1, 	• • , 	as rows: 

ho hoo hot hooi-1 
hi hio h11 h1,17-1 

H = 

hn-k-1 h 17 —k-1,0 h —k-1,1 "' hn-k-1,12-1 

The row space of I I is Sd. ecause each row g, of G is a vector in S, and each 
row hj  of I i is a vector of Sd, the inner product of g, and h j  must be zero (i.e., 
g, • h j  = 0). Because the row space S of G is the null space of the row space Sd of I I, 
we call S the null (or dual) space of H. Summarizing the preceding results, we have 
Theorem 2.25. 

THEOREM 2.25 For any k x n matrix G over GF(2) with k linearly independent 
rows, there exists an (n - k) x n matrix H over GF(2) with n - k linearly 
independent rows such that for any row g, in G and any hj  in H, gi  • hj  = 0. 
The row space of G is the null space of H, and vice versa. 

EXAMPLE 2.1 

Consider the following 3 x 6 matrix over GF(2): 

1 1 0 1 1 0 - 
G = 0 0 1 1 1 0 

0 1 0 0 1 1 

The row space of this matrix is the null space 

1 0 1 1 0 0 
H = 0 1 1 0 1 0 

1 1 0 0 0 1 

We can easily check that each row of G is orthogonal to each row of H. 
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Two matrices can be added if they have the same number of rows and the 
same number of columns. To add two /c x a matrices A = [aid and a = 1 ], we 
simply add their corresponding entries a1j and b1.1  as follows: 

(aiiii + [h11] 	[aij 

Hence, the resultant matrix is also akxn matrix. Two matrices on be multiplied 
provided that the number of columns in the first matrix is equal to the number of 
rows in the second matrix. Multiplying ak xa rivatrix A 	[011] by an a x / matrix 

= [kJ], we obtain the product 

C = A x 0= { I' 

in the resultant k x 1 matrix the entry cij is equal, to the inner product of the ith row 
a1 in A and the nth column h1 in 	that is, 

n-1 

h • - -  Cji = 	/ .2 c• 20 . 

f=0 

Let C-; be akxa matrix over. GR2). The transpose of D. denoted by ST  , is 

an n x k matrix whose rows are columns of D and whose columns are rows of G. 
Akxk matrix is called an identity matrix if it has Ifs on the main diagonal and 
O's elsewhere. This matrix is usually denoted by i[k. A submatrix of a matrix Cl is a 
matrix that is obtained by striking out given rows or columns of G, 

ft is straightforward to generalize the concepts and results presented in this 
section to matrices with entries from GF(q) with as a power of a prime. 

PROBLEMS 

2.1 Construct the group under modulo-6 addition. 
202 Construct the group under modulo-3 multiplication. 
203 Let in be a positive integer. If in is not a prime, prove that the set {1, 2, • , rn —1} 

is not a group under modulo-m multiplication. 
204 Construct the prime field GF(l1) with modulo-11 addition and multiplication. 

Find all the primitive elements, and determine the orders of other elements. 
2Z Let rn he a positive integer. If in is not prime, prove that the set (0, 1, 2, • • • , rn —1} 

is not a field under modulo-m addition and multiplication. 
2,6 Consider the integer group G 	(0, 1, 2, • • • , 31} under modulo-32 addition. Show 

that H = {0, 4, 8, 12, 16, 20, 24, 28} forms a subgroup of G. Decompose G into 
cosets with respect to H (or modulo II). 

2.7 Let A be the characteristic of a Galois field GF(q). Let 1 be the unit element of 
GF(q). Show that the sums 

2 	3 	 A-1 	A 

2_1, >71=0 
,=i 

form a subfield of GF(q). 
2.8 Prove that every finite field has a primitive element. 
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2.9 Solve the following simultaneous equations of X. Y, Z, and W with modulo-2 
arithmetic: 

X + Y 	+ 14/ = 1, 
X 	+ Z + W =0, 
X±Y + Z±W= 1, 

Y + Z + W = O. 

2.10 Show that X 5  + X 3  +1 is irreducible over GF(2). 
2.11 Let f (X) be a polynomial of degree /7 over GF(2). The reciprocal of f (X) is 

defined as 

f*(X) = Xll  f (I) . 

a. Prove that f*(X) is irreducible over GF(2) if and only if f (X) is irreducible 
over GF(2). 

b. Prove that f * (X) is primitive if and only if f (X) is primitive. 
2.12 Find all the irreducible polynomials of degree 5 over GF(2). 
2.13 Construct a table for GF(23) based on the primitive polynomial p(X) = 1+ X + X 3  . 

Display the power, polynomial, and vector representations of each element. 
Determine the order of each element. 

2.14 Construct a table for GF(25 ) based on the primitive polynomial p(X) = 1 + X 2  + 
X 5. Let a be a primitive element of GF(25). Find the minimal polynomials of a3  
and a7. 

2.15 Let 	be be an element in GF(2'"). Let e be the smallest nonnegative integer 
such that /32' = 13. Prove that /32 , 	, p2", are all the distinct conjugates 
of 

2.16 Prove Theorem 2.21. 
2.17 Let a be a primitive element in GF(24). Use Table 2.8 to find the roots of 

f (X) = X 3  + a6X2  + a9  X + a9. 
2.18 Let a be a primitive element in GF(24). Divide the polynomial f (X) = 

a3X7  + aX6  + a7  X 4  + a2  X 2  + all  X + 1 over GF(24) by the polynomial g(X) = 
X 4  + a3X2  + a5X + 1 over GF(24). Find the quotient and the remainder (use 
Table 2.8). 

2.19 Let a be a primitive element in GF(24). Use Table 2.8 to solve the following 
simultaneous equations for X, Y, and Z: 

X + a5 Y + Z =a7. 
X + aY + Z = a9, 

a2x Y a6z  a.  

2.20 Let V be a vector space over a field F. For any element c in F, prove that c • 0 = 0. 
2.21 Let V be a vector space over a field F. Prove that, for any c in F and any v in 

V, (-c) v = c (-v) 	-(c v). 
2.22 Let S be a subset of the vector space V„ of all n-tuples over GF(2). Prove that S 

is a subspace of V„ if for any u and v in S, a + v is in S. 
2.23 Prove that the set of polynomials over GF(2) with degree n - 1 or less forms a 

vector space GF(2) with dimension n. 
2.24 Prove that G F(2"' ) is a vector space over GF(2). 
2.25 Construct the vector space V5 of all 5-tuples over GF(2). Find a three-dimensional 

subspace and determine its null space. 
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2026 Given the matrices 

   

   

1 0 0 0 1 1 0 
0 1 0 0 1 1 1 
0 0 1 0 0 1 1 
0 0 0 1 1 0 1 

ri 1 0 1 1 0 0 
c-,- 1 1 1 0 0 1 0 

L0 1 1 1 0 0 1 

  

, 1E = 

 

  

    

show that the row space of is the null space of YriI, and vice versa. 
2,27 Let S1  and S2 be two subspaces of a vector V. Show that the intersection of 

and S2 is also a subspace in V. 
2.28 Construct the vector space of all 3-tuples over GF(3). Form a two-dimensional 

subspace and its dual space. 
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