CHAPTER 2

Introduction to Algebra

The purpose of this chapter is to provide the reader with an elementary knowledge
of algebra that will aid in the understanding of the maierial in the following chapiers.
The treatment is basically descriptive, and no attempt is made io be mathematically
rigorous. There are many good textbooks on algebra. The reader who is interested
in more advance algebraic coding theory is referred to the textbooks listed at the
end of the chapter.

2.1 GROUPS

Let G be a set of elements. A binary operation * on G is a rule that assigns io each
pair of elements a and b a uniquely defined third element ¢ = a * b in G. When such
a binary operation x is defined on G, we say that G is closed under *. For example,
let G be the set of all integers and let the binary operation on G be real addition +.
We all know that, for any two integers i and j in G, i + j is a umiquely defined integer
in G. Hence, the set of integers is closed under real addition. A binary operation %
on G is said to be associative if, for any a, b, and ¢ in G,

ax(bxc)=(a=*b)*c.
Now, we introduce a useful algebraic system called a group.

DerFiNiTION 2.1 A set G on which a binary operation x is defined is called a
group if the following conditions are satisfied:

i. The binary operation * is associative.
fi. G contains an element e such that, for any ¢ in G,

akxe=e*xa=da.

This element e is called an identity element of G.
ifi. For any element a in G, there exists another element ¢’ in G such that

axa =d wa=e.

The element ¢’ is called an inverse of a (a is also an inverse of a').
A group G is said to be commutative if its binary operation * also satisfies
the following condition: For any g and b in G,

axb=>bxa.

TreoreM 2.1 The identity element in a group G is unique.
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26 Chapter 2 Introduction to Algebra

Proof. Suppose that there exist two identity elements ¢ and ¢ in G. Then
¢ = ¢ x ¢ = e. This implies that ¢ and ¢’ are identical. Therefore, there is one
and only one identity element. Q.E.D.

Tueorem 2.2 The inverse of a group element is unique.

Proof. Suppose that there exist two inverses a’ and a” for a group element a.
Then

d=dxe=dx@xay=@xa)xa" =exa’ =d".
This implies that ¢’ and o” are identical and there is only one inverse for a.
Q.E.D.

The set of all integers is a commutative group under real addition. In this
case, the integer 0 is the identity clement, and the integer —i is the inverse of
integer i. The set of all rational numbers excluding zero is a commutative group
under real multiplication. The integer 1 is the identity element with respect to real
multiplication, and the rational number b/a is the multiplicative inverse of a/b. The
groups just noted contain infinite numbers of elements. Groups with finite numbers
of elements do exist, as we shall see in the next example.

EXAMPLE 2.1

Consider the set of two integers G = {0, 1}. Let us define a binary operation, denoted
by &, on G as follows:

0p0=0, 0pl=1, 190=1, 191=0.

This binary operation is called modulo-2 addition. The set G = {0, 1} is a group
under modulo-2 addition. It follows from the definition of modulo-2 addition & that
G is closed under @, and & is commutative. We can easily check that @ is associative.
The element 0 is the identity element. The inverse of 0 is itself, and the inverse of 1
is also itself. Thus, G together with @ is a commutative group.

The number of elements in a group is called the order of the group. A group
of finite order is called a finite group. For any positive integer m, it is possible to
construct a group of order m under a binary operation that is very similar to real
addition, as is shown in the next example.

EXAMPLE 2.2

Let m be a positive integer. Consider the set of integers G = {0,1,2,--- ,m —1}.
Let + denote real addition. Define a binary operation on G as follows: For any
integers i and j in G,

iHj=r,
where r is the remainder resulting from dividing i + j by m. The remainder r is

an integer between 0 and m — 1 (Euclid’s division algorithm) and is therefore in
G. Hence, G is closed under the binary operation [+, which is called modulo-m
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addition. The set G = {0, 1, --- ,m — 1} is a group under modulo-m addition. First,
we see that 0 is the identity element. For 0 < i < m, { and m — i are both in G. Since

i+m—i)y=m—i)+i=m,
it follows from the definition of modulo-m addition that
iHm—i=m-i)i=0.

Therefore, i and m —i are inverses of each other with respect to [, Itis also clear that
the inverse of 0 is itself. Because real addition is commutative, it follows from the
definition of modulo-m addition that, for any ¢ and j in G, i [1]j = j[1i. Therefore,
modulo-m addition is commutative. Next, we show that modulo-m addition is also
associative. Let i, j, and k be three integers in G. Since real addition is associative,
we have

i+j+tk=0+)D+k=i+(+h.
Dividing i + j + k by m, we obtain
i+j+k=gm+r,

where ¢ and r are the quotient and the remainder, respectively, and 0 < r < m.
Now, dividing i 4+ j by m, we have

i+j=gm+nr 2.1
with 0 < ry < m. Therefore, i [¥] j = ry. Dividing r; + k by m, we obtain
rtk=qm4r (22)
with 0 < ry < m. Hence, r{ [Hk = r;, and
GCHHEE=r.
Combining (2.1) and (2.2), we have
i+ jt+k=(@+qgIm+nr.

This implies that r; is also the remainder when i + j + k is divided by m. Because
the remainder resulting from dividing an integer by another integer is unique, we
must have r, = r. As aresult, we have

G(EHHE =7
Similarly, we can show that
G EE) =7

Therefore, (i [+] j) H k = i & (j [H k), and modulo-m addition is associative. This
concludes our proof that theset G = {0, 1,2, - - - , m — 1} is a group under modulo-m
addition. We shall call this group an additive group. For m = 2, we obtain the binary
group given in Example 2.1.
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TABLE 2.1: Modulo-5 addition.
0 1 2 3

R = O
BN e O
e Y I SR
— O A W
N= O W
WO &

The additive group under modulo-5 addition is given in Table 2.1.
Finite groups with a binary operation similar to real multiplication also can be
constructed.

EXAMPLE 2.3

Let p be a prime (e.g., p = 2,3,5,7,11, ---). Consider the set of integers, G =
{1,2,3,--., p—1}. Let - denote real multiplication. Define a binary operation [J on
G as follows: For i and j in G,

iLj=r,

where r Is the remainder resulting from dividing i - j by p. First, we note thati - j is
not divisible by p. Hence, 0 < r < p,andris an element in G. Therefore, the set G is
closed under the binary operation [, which is referred to as modulo-p multiplication.
The set G = {1,2,---, p — 1} is a group under modulo-p multiplication. We can
easily check that modulo-p multiplication is commutative and associative. The
identity element is 1. The only thing left to be proved is that every element in G has
an inverse. Let i be an element in G. Because p is a prime, and i < p, i and p must
be relatively prime (i.e., i and p do not have any common factor greater than 1). It
is well known that there exist two integers a and » such that

a-i+b-p=1 (2.3)
and a and p are relatively prime (Euclid’s theorem). Rearranging (2.3), we have
a-i=—-b-p+1 (2.4)

This says that when a - i is divided by p, the remainderis 1. If 0 < a < p,aisin G,
and it follows from (2.4) and the definition of modulo-p multiplication that

alli=il0a=1.
Therefore, a is the inverse of i. However, if a is not in G, we divide a by p,
a=q-p+r. (2.5)

Because a and p are relatively prime, the remainder r cannot be 0, and r must be
between 1 and p — 1. Therefore, r is in G. Now, combining (2.4) and (2.5), we obtain

rei=—(b+gi)p+1.
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TABLE 2.2: Modulo-5 multiplication.

& 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Therefore, r i =i r =1 and r is the inverse of i. Hence, any element i in G has
an inverse with respect to modulo-p multiplication. The group G = {1,2, -+, p—1}
under modulo- p multiplication is called a multiplicative group. For p = 2, we obtain
a group G = {1} with only one element under modulo-2 multiplication.

If pis not a prime, the set G = {1,2, -- - , p — 1} is not a group under modulo-p
multiplication (see Problem 2.3). Table 2.2 illustrates the group G = {1,2,3, 4}
under modulo-5 multiplication.

Let H be a nonempty subset of G. The subset H is said to be a subgroup of
G if H is closed under the group operation of G and satisfies all the conditions of a
group. For example, the set of all rational numbers is a group under real addition.
The set of all integers is a subgroup of the group of rational numbers under real
addition. A subgroup of G that is not identical to G is called a proper subgroup
of G.

TueoreM 2.3 Let G be a group under the binary operation x. Let H be a
nonempty subset of G. Then H is a subgroup of G if the following conditions
hold:

i. H is closed under the binary operation .
i, For any element g in H, the inverse of a is alsoin H.

Proaf. Condition (ii) says that every element of H has an inverse in H.
Conditions (i) and (ii) ensure that the identity element of G is also in H.
Because the elements in H are elements in G, the associative condition on *
holds automatically. Hence, H satisfies all the conditions of a group and is a
subgroup of G. Q.E.D.

DerinITION 2.2 Let H be a subgroup of a group G with binary operation .
Let a be an element of G. Then the set of elements a * H = {faxh:he H}is

called a left coset of H; the set of elements H % a 2 {hxa:he H}iscalled a
right coset of H.

It is clear that if the group G is commutative, then every left coset a x H
is identical to every right coset H x a; that is, a x H = H xg for any a € G. In
this text, we are primarily interested in commutative groups, so, we will make no
further distinction between left and right cosets. We will simply refer to them as
cosets.
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EXAMPLE 2.4

Consider the additive group G = {0, 1,2, ---, 15} under modulo-16 addition. We
can readily check that H = {0, 4, 8, 12} forms a subgroup of G. The coset 3[+] H is

3 H = {3[+10, 314,38, 312}
={3,7,11,15}.

The coset 7] H is

T H = {700,774, 7E8, 712}
= (7,11, 15, 3}.

We find that 3 H = 7 H. There are only four distinct cosets of H. Besides 3= H,
the other three distinct cosets are

0 H = {0, 4,8, 12},
1HH =1{1,5,9,13},
2EH = {2, 6,10, 14},

The four distinct cosets of H are disjoint, and their union forms the entire group G.

In the following theorems, we prove some important properties of cosets of a
subgroup of a group.

Tueorem 2.4 Let H be a subgroup of a group G with binary operation *. No
two elements in a coset of H are identical.

Proof. The proof is based on the fact that all the elements in the subgroup H
are distinct. Consider the coseta * H = {a xh : h € H} with a € G. Suppose
two elements, say a x h and a % 4/, in a * H are identical, where h and 4’ are
two distinct elements in H. Let a~! denote the inverse of a with respect to the
binary operation . Then,

ats@sn)=alx@xh),
(@ Yxayxh=@ ' xa)xh,
exh=exh,
h="n.

This result is a contradiction to the fact that all the elements of H are distinct.
Therefore, no two elements in a coset are identical. Q.E.D.

TaeoreEM 2.5 No two elements in two different cosets of a subgroup H of a
group G are identical.
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Proof. Let a x H and b x H be two distinct cosets of H, with « and b in G.
Leta =/ and b = &' be two elements in a x H and b x H, respectively. Suppose
axh=bxh' Let h~! be the inverse of h. Then

(axhyxh P =@Gxh)yxh 1,
ax(hxh ™Yy =bx (' +h™h),
axe=hbxh",
a="hbxh",
where i = k' « k™! is an element in H. The equality ¢ = b * h” implies that

axH=®Bxh"yx H,
={(bxh"Yxh: heH),
={bx " xh):heH),
—{bxh" 1" € H),
=bxH.

This result says that a « H and b « H are identical, which is a contradiction to
the given condition that ax H and b« H are two distinct cosets of H. Therefore,
no two elements in two distinct cosets of H are identical. Q.E.D,

From Theorems 2.4 and 2.5, we obtain the following properties of coseis of a
subgroup H of a group G:

i. Everyelement in G appears in one and only one coset of H;
ii. All the distinct cosets of H are disjoint; and
ifi. The union of all the distinct cosets of H forms the group G.

Based on the preceding structural properties of cosets, we say that all the distinct
cosets of a subgroup H of a group G form a partition of G, denoted by G/H.

TaEoREM 2.6 (LAGRANGE’S THEOREM) Let G be a group of order 1, and let
H be a subgroup of order m. Then m divides #, and the partition G/H consists
of n/m cosets of H.

Proof. 1t follows from Theorem 2.4 that every coset of H consists of m
elements of G. Let i be the number of distinct cosets of H. Then, it follows
from the preceding structural properties of cosets that n = i - m. Therefore, m
divides n, and i = n/m. Q.E.D.

2.2 FIELDS

Now, we use group concepts to introduce another algebraic system, called a field.
Roughly speaking, a field is a set of elements in which we can perform addition,
subtraction, multiplication, and division without leaving the set. Addition and
multiplication must satisfy the commutative, associative, and distributive laws. A
formal definition of a field is given next.
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DerFiniTION 2.3 Let F be a set of elements on which two binary operations,

called addition ““+”" and multiplication “.”, are defined. The set F together
with the two binary operations + and - is a field if the following conditions are
satisfied:

i. F is a commutative group under addition +. The identity element with
respect to addition is called the zero element or the additive identity of F
and is denoted by 0.

ii. The set of nonzero elements in F is a commutative group under multi-
plication .. The identity element with respect to multiplication is called
the unit element or the multiplicative identity of F and is denoted by 1.

ifi. Multiplication is distributive over addition; that is, for any three elements
a,b,andcin F,
a-b+cy=a-b+a-c.

It follows from the definition that a field consists of at least two elements, the
additive identity and the multiplicative identity. Later, we will show that a field of
two elements does exist. The number of elements in a field is called the order of the
field. A field with a finite number of elements is called a finite field. In a field, the
additive inverse of an element a is denoted by —a, and the multiplicative inverse
of a is denoted by a~!, provided that a # 0. Subtracting a field element b from
another field element ¢ is defined as adding the additive inverse, —b, of b to a [i.e.,

a-b2a+ (—b)]. If b is a nonzero element, dividing a by b is defined as multiplying
a by the multiplicative inverse, b1, of b [i.e.,a + b 24. b1

A number of basic properties of fields can be derived from the definition of a
field.

Property I  For every elementainafield,a-0=0.-a =0.
Proof. First, we note that

a=a-1=a-1+0)=a+a-0.
Adding —a to both sides of the preceding equality, we have

—at+a=—a+a-+a-0
0=0+a-0
0=a-0.

Similarly, we can show that 0-a = 0. Therefore, we obtain ¢ -0 =0-a =
0. Q.E.D.

Property I For any two nonzero elements ¢ and b in a field, a - b # 0.

Proof. This is a direct consequence of the fact that the nonzero elements of a
field are closed under multiplication. Q.E.D.

Property Il a-b =0anda # 0imply that b = 0.
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Proof. Thisis a direct consequence of Property 1L Q.E.D.

Property IV For any two elements ¢ and b in a field,

—(a-b)y=(—a) -b=a-(-b).
Proof. 0=0-b=(a+(—a))-b=ua b+ (—a) b. Therefore, (—a) - b musi be
the additive inverse of a - b, and —(a - b) = (—a) - b. Similarly, we can prove
that —(a - b) = a - (—b). Q.E.D.
Property V. Fora #£0,a-b = a-cimplies that b = c.

Proof. Because a is a nonzero element in the field, it has a multiplicative
inverse, !, Multiplying both sides of a - b = a - ¢ by ™!, we obtain

a b (a-b)= a b {a-c)
(a_1 ca)y-b= (a“1 cay-c
t-b=1-c
Thus, b = c. Q.ED.

We can readily verify that the set of real numbers is a field under real-number
addition and multiplication. This field has an infinite number of elements. Fields
with finite number of clements can be constructed and are illustrated in the next
two examples and in Section 2.4,

EXAMPLE 2.5

Consider the set {0, 1} together with modulo-2 addition and multiplication, defined
in Tables 2.3 and 2.4. In Example 2.1 we showed that {0, 1} is a commutative
group under modulo-2 addition; and in Example 2.3, we showed that {1} is a group
under modulo-2 multiplication. We can easily check that modulo-2 multiplication is
distributive over modulo-2 addition by simply computinga - (b +¢) anda-b+a-c
for eight possible combinations of a, b and c(a = 0or1,b=0or 1,and ¢ =0 or
1). Therefore, the set {0, 1} is a field of two elements under modulo-2 addition and
modulo-2 multiplication.

The field given in Example 2.5 is usually called a binary field and is denoted
by GF(2). The binary field GF(2) plays an important role in coding theory and
is widely used in digital computers and digital data transmission (or storage)
systems.

TABLE 2.3: Modulo-2 addition. TABLE 2.4: Modulo-2 multiplication.
+ 0 1 . ) 1
0 0 1 0 0 0
1 1 0 1 0 1
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EXAMPLE 2.6

Let p be a prime. We showed in Example 2.2 thatthe setofintegers {0, 1,2, --- , p—1}
is a commutative group under modulo-p addition. We also showed in Exam-
ple 2.3 that the nonzero elements {1,2,---, p — 1} form a commutative group
under modulo-p multiplication. Following the definitions of modulo-p addition
and multiplication and the fact that real-number multiplication is distributive over
real-number addition, we can show that modulo-p multiplication is distributive
over modulo-p addition. Therefore, the set {0,1,2,---, p — 1} is a field of order p
under modulo-p addition and multiplication. Because this field is constructed from
a prime, p, it is called a prime field and is denoted by GF(p). For p = 2, we obtain
the binary field GF(2).

Let p = 7. Modulo-7 addition and multiplication are given by Tables 2.5 and
2.6, respectively. The set of integers {0, 1,2, 3,4, 5, 6} is a ficld of seven elements,
denoted by GF(7), under modulo-7 addition and multiplication. The addition table
is also used for subtraction. For example, if we want to subtract 6 from 3, we
first use the addition table to find the additive inverse of 6, which is 1. Then we
add 1 to 3 to obtain the result [i.e., 3—6 =3+ (—6) = 3+ 1 = 4]. For division,
we use the multiplication table. Suppose that we divide 3 by 2. We first find the
multiplicative inverse of 2, which is 4, and then we multiply 3 by 4 to obtain the
result [i.e.,3+2=3. 2H=34= 5]. Here we have demonstrated that in a finite
field, addition, subtraction, multiplication, and division can be carried out much like
ordinary arithmetic, with which we are quite familiar.

In Example 2.6, we showed that, for any prime p, there exists a finite field of
p elements. In fact, for any positive integer m, it is possible to extend the prime
field GF(p) to a field of p™ elements, which is called an extension field of GF(p)
and is denoted by GF(p™). Furthermore, it has been proved that the order of any
finite field is a power of a prime. Finite fields are also called Galois fields, in honor
of their discoverer. A large portion of algebraic coding theory, code construction,
and decoding is built around finite fields. In the rest of this section and in the next
two sections we examine some basic structures of finite fields, their arithmetic, and
the construction of extension fields from prime fields. Our presentation is mainly
descriptive, and no attempt is made to be mathematically rigorous. Because finite-
field arithmetic is very similar to ordinary arithmetic, most of the rules of ordinary

TABLE 2.5: Modulo-7 addition. TABLE 2.6: Modulo-7 multiplication.

o 1 3 4 6
+/0 1 2 3 4 5 6 2

600 ¢ 0 0 0 0 0
1171 2 3 4 5 6 0

170 1 2 3 4 5 6
212 3 4 5 6 0 1

210 2 4 6 1 3 5
313 4 5 6 0 1 2 ,

3/]0 3 6 2 5 1 4
414 5 6 0 1 2 3

410 4 1 5 2 6 3
575 6 0 1 2 3 4
6l6 0 1 2 3 4 5 s{10 5 3 1 6 4 2
_— 6|10 6 5 4 3 2 1
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arithmetic apply to finite-field arithmetic. Therefore, it is possible to utilize most of
the techniques of algebra in the computations over finite fields.

Consider a finite field of ¢ elements, GF(¢). Let us form the following sequence
of sums of the unit element 1 in GF(g):

1 2 3
Dl=1, Y 1=1+1 » 1=1+4+1+1,,
i=1 i=1 i=1
k
> =141+ +1(ktimes),- -
i=1
Because the field is closed under addition, these sums must be elements in the field;
and because the field has finite number of elements, these sums cannot be all distinct.

Therefore, at some point in the sequence of sums, there must be a repetition; that
is, there must exist two positive integers m and n such that m < » and

This equality implies that 37" 1 = 0. Therefore, there must exist a smallest positive

integer A such that Zle 1 = 0. This integer A is called the characteristic of the field
GF(q). The characteristic of the binary field GF(2) is 2, since 1 +1 = 0. The

characteristic of the prime field GF(p) is p, since Zf:l 1=k+#0forl <k < pand
P 1=0
=1 )

TrEorEM 2.7 The characteristic A of a finite field is prime.

Proof. Suppose that X is not a prime and is equal to the product of two smaller
integers k and m (i.e., . = km). Because the field is closed under multiplication,

() (&)

is also a field element. It follows from the distributive law that
k m km
(Zl> | (Zl> T
i=1 i=1 i=1

Because 37 1 = 0, then either ¥ ;1 = 0 or 3", 1 = 0; however, this

contradicts the definition that A is the smallest positive integer such that
$°_1 1 = 0. Therefore, we conclude that A is prime. Q.E.D.

It follows from the definition of the characteristic of a finite field that for any
two distinct positive integers k and m less than A,

m

k
d1#EH L
i=1 i=1
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Suppose that 3°%_; 1 = Y | 1. Then, we have

m—k

> 1=0
i=1

(assuming that m > k); however, this is impossible, since m — k < A. Therefore, the

sums 1 2 3 A—1 A
1=}:1, ZL }:1, 21, Z1=0
=1 i=1 i=1 i=1 i=1

are A distinct elements in GF(q). In fact, this set of sums itself is a field of A elements,
GF()), under the addition and multiplication of GF(g) (see Problem 2.7). Because
GF(}) is a subset of GF(q), GF()) is called a subfield of GF(g). Therefore, any
finite field GF(q) of characteristic 1 contains a subfield of A elements. It can be
proved that if g # A, then ¢ is a power of A.

Now, let a be a nonzero element in GF(g). Since the set of nonzero elements
of GF(q) is closed under multiplication, the following powers of a,

must aiso be nonzero elements in GF(q). Because GF(q) has only a finite number
of elements, the powers of a given cannot all be distinct. Therefore, at some point in
the sequence of powers of a there must be a repetition; that is, there must exist two
positive integers k and m such that m > k and a* = a™. Let a~! be the multiplicative
inverse of a. Then (a~1)*¥ = a* is the multiplicative inverse of a*. Multiplying both
sides of a* = a™ by a*, we obtain

1= am—k

This equality implies that there must exist a smallest positive integer n such that a” =
1. This integer » is called the order of the field element a. Therefore, the sequence
at,a?, a3, - repeats itself after " = 1. Also, the powers at, a?,--- ,a" 1, a" =1
are all distinct. In fact, they form a group under the multiplication of GF(q). First,
we see that they contain the unit element 1. Consider a’ - a/. If i + j < n,

a -al =ati.

Hi+j>n,wehavei+ j=n-+r,where 0 < r <n. Hence,

a-al =dv=d"d =d".

Therefore, the powers at,a?, ... ,a"1, a" =1 are closed under the multiplication
of GF(q).For1 <i < n,a" " is the multiplicative inverse of a’. Because the powers
of a are nonzero elements in GF(q), they satisfy the associative and commutative
laws. Therefore, we conclude that a" = 1,al,a?, ---,a" ! form a commutative
group under the multiplication of GF(g). A group is said to be cyclic if there exists
an element in the group whose powers constitute the whole group.

TueoreMm 2.8 Let g be a nonzero element of a finite field GF(g). Then
a?l=1.
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There are two polynomials over GF(2) with degiee 1: X and 1 + X. There are four
polynomials over GF(2) with degree 2: X>, 1+ X2 X + X% and 1 + X + X% In
general, there are 2" polynomials over GF(2) with degree n.

Polynomials over GF(2) can be added {or subtracted), multiplied, and divided
in the usual way. Let

X)) =g+ X+ @X> 4 g X"

be another polynomial over GF(2). To add f(X) and g(X), we simply add the
coefficients of the same power of X in f(X) and ¢g(X) as foliows (assuming that
m <)

SO+ X)) =(fo+g0) +(fi+gDX+ -
‘!‘(f;n + 8m Xm + .an-IXmJrl + -+ an”?

where fi + g is carried out in modulo-2 addition. For example, adding a(X) =
1+ X+ X3 +X5andb(X) =1+ X2+ X3+ x* + X7, we obtain the following sum:

a)+bO) =0+ D+ X+ X2+ A+ DX+ x* + 30 + X7
=X +XP 4+ X+ + %7
When we muliiply f(X) and g(X), we obtain the following product:
fX) - g(X)=co+ci X+ X2+ + e X,
where
co = fogo.
cr = fog1 + f1go-

Jog2 + f181 + f280.

I

&

¢ = fogi + f18i-1+ g2+ -+ figo.

Crtm = Jfu&m-

{Multiplication and addition of coefficients are modulo-2.) It is clear from (2.6) that
if g(X) =0, then
f)-0=0. 2.7

We can readily verify that the polynomials over GF(2) satisfy the following condi-
tions:

i. Commutative:
a(X) +b(X) =b(X)+ a(X),
a(X) - b(X) = b(X) - a(X).
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fi. Associative:
a(X) + [6(X) + c(0] = [a(X) + b)) + c(X),
a(X) - [b(X) - c(X)] = [a(X) - b(X)] - c(X).
fifl. Distributive:
a(X) - [b(X) + QO] = [a(X) - bCO] + [a(X) - c(X)]. (2.8)
Suppose that the degree of g(X) is not zero. When f(X) is divided by g(X), we

obtain a unique pair of polynomials over GF(2)—q(X), called the quotient, and
r(X), called the remainder—such that

f(X) = q(X)g(X) + r(X),

and the degree of r(X) is less than that of g(X). This expression is known as Euclid’s
division algorithm. As an example, we divide f(X) = 1+ X + X* + X° + X% by
g(X) =1+ X + X>. Using the long-division technique, we have
X34+ X?  (quotient)
X34 X411 x84 x5 4 x4 +X+1
X6 + X4+ x3
x> +Xx? +X+1
x5 +x 4 x?
X?FX+1 (remainder).

We can easily verify that
XX+ X+ Xx+1=X+ XX+ X+D+ X2+ X +1.

When f(X) is divided by g(X), if the remainder r(X) is identical to zero [r(X) = 0],
we say that f(X) is divisible by g(X), and g(X) is a factor of f(X).

For real numbers, if a is a root of a polynomial f(X) [ie., f(a) = 0],
f(X) is divisible by X — a. (This fact follows from Euclid’s division algorithm.) This
statement is still true for f(X) over GF(2). For example, let f(X) = 1+ X2+ X3+ X4,
Substituting X = 1, we obtain

FO=1+124+P+1%=14+1+1+1=0.
Thus, f(X) has 1 as a root, and it should be divisible by X + 1, as shown:

X+ X+ 1
X+1|x*+Xx3+%x2 41
X4_|_X3

X2 41

X4+ X
X+1
X+1

0.
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For a polynomial f(X) over GF(2), if the polynomial has an even number of
terms, it is divisible ?oy X 4+ 1. A polynomial p(X) over GF(2) of degree m is said
to be irreducibie over GF(2) if p(X) is not divisible by any polynomial over GF(2)
of degree iess than m out greater than zero. Among the four polynomials of degree
2, %% %2+ 1, and X? + X are not irreducible, since they are either divisible by X
or X + 1: however, X? + X + 1 does not have either 0 or 1 as a root and so is not
divisible by any polynomial of degree 1. Therefore, X + X + 1 is an irreducible
polynorial of degiee Z. The vwhmomial %3 4 X 4+ 1 is an irreducible polynomial
of degree 3. First, we note that X° + ¥ 4+ 1 does not have either § or 1 as a root.
Therefore, X° + X + 1 is not divisible by X or X -+ 1. Because the polynomial is
not divisible by any pols Lomia]l of degree 1, it cannot be divisible by a polynomial
of degree 2. Consequently, X3 4+ X + 1 is irreducible over GF(2). We may verify

X+1
11

that X* + 2 is an irreducible polynomial of degree 4. It has been proved that
for any m > 1 there exisis an irreducible polynomial of degree m. An important
theorem regarding irreducible polynomials over GF(2) is given next without a
proof.

TazorEm 2,10 Any irreducible polynomial over GF(2) of degree m divides
w21
A i L.

As an example of Theorem 2.10, we can check that X° + X + 1 divides

FE RS GRS T

X4 x: 4 X + 1

Brx+1x +1
X7 + X5 4 x4
X 4+ x4 +1
X3 + x3 4+ x2
X+ X+ x 41
x4 X2+ X
X3 +X 1
x3 +X+1
0.

An irreducible polynomial p(X) of degree m 1s said to be primitive if the
smallest positive integer n for which p(X) divides X" + 1 is n = 2" — 1. We
may check that p(X) = X% + X + 1 divides X + 1 but does not divide any
X"+ 1for 1 <n < 15 Hence, X* + X 4+ 1 is a primitive polynomial. The
polynomial X* + X° + X2 4 X + 1 is irreducible but it is not primitive, since
it divides X° + 1. It is not easy to recognize a primitive polynomial; however,
there are tables of irreducible polynomials in which primitive polynomials are
indicated [6, 8]. For a given m, there may be more than one primitive poly-
nomial of degree m. A list of primitive polynomials is given in Table 2.7. For
each degree m, we list only a primitive polynomial with the smallest number of
terms.
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TABLE 2.7: List of primitive polynomials.

m mn

3 1+4Xx+Xx° 14 1+ X+ X0 4 x104 x14
4 1+4+X+x* 15 1+X+Xb

5 1+ X2+ x° 16 1+ X+ X3+ x4 xlo
6 1+ X+x6 17 1+ x3+xV

7 1+X3+X 18 1+ X7+ x18

8 1+X2+X34+x*+x% 19 14+X+Xx24+x°4+xY
9 1+x%+x° 20 14+ X3+ x20

10 1+x3+x10 21 14 x%+4 x%

11 14+ x2+x1! 2 1+X+Xx%

12 1+X+X4+Xx0+Xx12 23 14+x°+x%x%

13 14+X+X+X+Xx8 24 14Xx+X24+x"+x%

Before leaving this section, we derive another useful property of polynomials
over GF(2). Consider

fAx) =

(fot+ AX +--+ fu X2

=[fo+ (AX + LX2+ -+ f X
=24 fo (X4 HX2 4+ fX7)
Ffo (X + HX2 4ot XY (X + X2t X2
= 24 (AX+ HEP 4 fu X

Expanding the preceding equation repeatedly, we eventually obtain

Since f; =0or 1, fl.2 = fi. Hence, we have

FAX) = 4+ (X4 (XD 4+ (XD

FUX) = fo+ AXP+ XD+ + [ (XD

= f(x%.

it follows from (2.9) that, for any i > 0,

2.4 CONSTRUCTION OF GALOIS FIELD GF(2™)

[FOF = Fx?).

(2.10)

In this section we present a method for constructing the Galois field of 27 elements
(m > 1) from the binary field GF(2). We begin with the two elements 0 and 1 from
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GF(2) and a new symbol «. Then, we define a multiplication “-” to introduce a
sequence of powers of o as follows:

0-0=0,

0-1=1-0=0,

1.-1=1,

0o =a-0=0,

lo=a - 1=aqa,

o =aa, (211)

ol =aqo a (j times ),

It follows from the preceding definition of multiplication that
0.0/ =a/ . 0=0,
oo/ =a/ 1=0/, (2.12)
O[i 'Otj ZO!j 'O(i :O(H_j.

Now, we have the following set of elements on which a multiplication operation “*-”
is defined: .
F={01,a0a, -, al )

The element 1 is sometimes denoted by o,

Next, we put a condition on the element « so that the set F contains only 2"
elements and is closed under the multiplication - defined by (2.11). Let p(X) be a
primitive polynomial of degree m over GF(2). We assume that p(a) =0 (ie, o isa
root of p(X)). Since p(X) divides X2"~1 + 1 (Theorem 2.10) we have

X" 41 = g(X)p(X). (2.13)
If we replace X with « in (2.13), we obtain
o2 +1 = gla)pla).
Because p(a) = 0, we have
Ol2m_1 +1= C[(Ol) . 0.

If we regard g(«) as a polynomial of o over GF(2), it follows from (2.7) that
q(ory -0 = 0. As aresult, we obtain the following equality:

o1 =0
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Adding 1 to both sides of «>"~! 4+ 1 = 0 (using modulo-2 addition), we obtain the
following equality:
o't =1, (2.14)

Therefore, under the condition that p(«) = 0, the set F becomes finite and contains
the following elements:

F*={0,1, o, o, - ,azm"z}.

The nonzero elements of F* are closed under the multiplication operation *-”
defined by (2.11). To see this, leti and j be two integers such that 0 < i, j < 2" —1.
Ifi +j < 2™ —1, then o - &/ = &'*/, which is obviously a nonzero element in
F* If i+ j > 2™ — 1, we can express [ + j as follows: i + j = (2 — 1) + r, where
0<r <2"—1 Then,

m__ - m_ - -
@M —=1)+r :a2 1.0[/ :al’

o ol =a'T =q
which is also a nonzero element in F*. Hence, we conclude that the nonzero elements
of F* are closed under the multiplication - defined by (2.11). In fact, these nonzero
elements form a commutative group under “-”. First, we see that the element 1
is the unit element. From (2.11) and (2.12) we seec readily that the multiplication
operation “-” is commutative and associative. For 0 < i < 2™ —1,a?" =1 is the
multiplicative inverse of ', since

o . e
N bl SV A S

(Note that «® = o*"~! = 1.) It will be clear in the discussion that follows that
1o,a2, -, a2 2 represent 2" — 1 distinct elements. Therefore, the nonzero
elements of F* form a commutative group of order 2 — 1 under the multiplication
operation ““.” defined by (2.11).

Our next step is to define an addition operation “+”” on F* so that F* forms a
commutative group under “+”. For 0 < i < 2" — 1, we divide the polynomial X’ by
p(X) and obtain the following:

X' =g (X)p(X) + ai(X), (2.15)

where g;(X) and g;(X) are the quotient and the remainder, respectively. The
remainder a;(X) is a polynomial of degree m — 1 or less over GF(2) and is of the
following form:

ai(X) =ajo+ a1 X + ai2X2 4+t ai.m—lxmkl.

Because X and p(X) are relatively prime (i.e., they do not have any common factor
except 1), X' is not divisible by p(X). Therefore, for any i > 0,

a;i (X) £ 0. (2.16)
For0<i,j<2™—1,andi # j, we can also show that

a1 (X) # a;(X). (2.17)
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Suppose that a; (X} = a;(X). Then, it follows from (2.15) that

X'+ X = [qi(X) + g, ]p () + ai(X) + aj(X)
=g () + q;(X)]p(X).

This implies that p(X) divides X' + X/ = X'(1 + X/~') (assuming that j > i).
Because X' and p(X) are relatively prime, p(X) must divide X/= 4+ 1: however,
this is impossible, since j —i < 2" — 1, and p(X) is a primitive polynomial of
degree m that does not divide X" + 1 {forn < 2™ — 1. Therefore. our hypothesis that
ai(X) = a;(X)is invalid. Asaresult. for0 <i. j <2 — 1, andi # j, we must have
ai(X) # a;j(X). Hence,fori =0,1,2,---,2" — 2, we obtain 2" — 1 distinct nonzero
poiynomials a; (X) of degree m — 1 or less. Now, replacing X with « in (2.15) and
using the equality that ¢;(«) - 0 = 0 [see (2.7)]. we obtain the following polynomial
expression for o'

o = ai(a) = aig +aj10 + ane + a0 (2.18)

From (2.16). (2.17), and (2.18), we see that the 27 — 1 nonzero elements, o, o, .-
o?" =% in F*, are represented by 2 — 1 distinct nonzero polynomials of o over Gﬁ( )
with degree m — 1 or less. The zero element 0 in F™* may be represenied by the
zero polynomial. As a result, the 2 elements in F* are represented by 2™ distinct
polynomials of o over GF(2) with degree m — 1 or less and are regarded as 2"
distinct elements.
Now, we define an addition “4”" on F* as follows:

0+0=0 (2.192)

and, for 0 <i,j < 2" —1, ‘ . A
O4+a =a' +0=2¢, (2.19b)

o ol =(@otan a0 Y F @ tapat a0

= (gio +ajo)+ (g +ajdo + - 4 (a1 + a_,-_,,,*l)oz’”‘l,.
(2.19)

where a; ;. + aj is carried out in modulo-2 addition for 0 < k < m. From (2.19¢) we
see that, fori = j, . ‘
o +o' =0 (2.20)
and fori # j,
{ajp + ﬁjO) + (a1 + a_jl)O( + (ai.m—l + [‘7_/‘11)"1)0[”7_1

is nonzero and must be the polynomial expression for some of in F*. Hence, the
set F* is closed under the addition “+" defined by (2.19). We can immediately
verify that F™* is a commutative group under “+”. First, we see that 0 is the additive
identity. Because modulo-2 addition is commutative and associative, the addition
defined on F* is also commutative and associative. From (2.19a) and (2.20) we see
that the additive inverse of any element in F™* is itself.

Up to this point we have shown that the set F* = {0, 1,0, ¢?, .-« ,a”" %} isa
commutative group under an addition operation "+, and the nonzerc elements of
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F* form a commutative group under a multiplication operation ”.””. Using the poly-
nomial representation for the elements in F* and (2.8) (polynomial multiplication
satisfies distributive law), we readily see that the multiplication on F* is distributive
over the addition on F*. Therefore, the set F* = {0, 1, o, &%, - - - , @*" 2} is a Galois
field of 2™ elements, GF(2™). We notice that the addition and multiplication defined
on F* = GF(Q2™) imply modulo-2 addition and multiplication. Hence, the subset
{0, 1} forms a subficld of GF(2™) [i.e., GF(2) is a subfield of GF(2™)]. The binary field
GF(2) is usually called the ground field of GF(2™). The characteristic of GF(2™)
is 2.

In our process of constructing GF(2™) from GF(2), we have developed
two representations for the nonzero elements of GF(2™): the power represen-
tation and the polynomial representation. The power representation is conve-
nient for multiplication, and the polynomial representation is convenient for
addition.

EXAMPLE 2.7

Letm = 4. The polynomial p(X) = 14 X 4+ X% is a primitive polynomial over GF(2).
Set pla) =1+ o+ o* = 0. Then, «* = 1 + «. Using this relation, we can construct
GF(2%). The elements of GF(2%) are given in Table 2.8. The identity a* = 1 + « is
used repeatedly to form the polynomial representations for the elements of GF 2.
For example,

ozS:a~oz4:oz(1+oz):a—\—oe2,

a6:a~a5:a(a+a2):a2+a3,

a7:oz~oz6:oz(oc2—|—oz3):a3+a4:oz3+1+a:1+a+a3.

To multiply two elements o' and o/, we simply add their exponents and use the fact
that !5 = 1. For example, o° - o/ = o2, and o'? - o7 = a!? = o*. Dividing o/ by
o, we simply multiply o/ by the multiplicative inverse o>~ of «/. For example,
atja? =a* o =o', and /o’ = a'? - !0 = ¢?? = o7. To add ¢’ and o/, we use
their polynomial representations given in Table 2.8. Thus,

4o’ =@+a)+ +a+a3)=1+a2+a3:al3,
1+ +a%=1+@+eH)+ 1 +a+a?)=0.

There is another useful representation for the field elements in GF(2™). Let
ap + ara + aa® + - + a,,_10" "1 be the polynomial representation of a field
element 8. Then, we can represent 8 by an ordered sequence of m components
called an m-tuple, as follows:

(ag.ay.az, -+, am_1),

where the m components are simply the m coefficients of the polynomial represen-
tation of B. Clearly, we see that there is one-to-one correspondence between this
m-tuple and the polynomial representation of 8. The zero element 0 of GF(2™) is
represented by the zero m-tuple (0,0, --- , 0). Let (bg, by, - -+ , bjy—1) be the m-tuple
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TABLE 2.8: Three representations for the elements
P < ol
of GF(2%) generated by p(X) =14+ X 4+ X~

Povver Polynomis] 4-Tuple
representation  represemtation representation

0 0 (0000)

1 1 (16060)

o o (0100)
o? o? (0010)
o o (000 1)
ot i+a (1100)
o a o’ (0110)
o® o +a® (0011
o 1+4+o + o (1101
o I 4o (1010)
o o 4o 0101y
o0 T4o+a? (1110)
all o+ + o’ 0111)
al? 14a-ta?+o’ (111 1)
ol 1 +a? 4+t (101 1)
ol 1 +a®  (1001)

representation of y in GF(2™). Adding g and y, we simply add the corresponding
components of their m-tuple representations as follows:

(ap + by, ay + by, -+ a1+ by_1),

where a; -+ b; is carried out in modulo-2 addition. Obviously, the components of the
resultant rm-iuple are the coefficients of the polynomial representation for g+ y. All
three representations for the elements of GF(2%) are given in Table 2.8.

(Galois fields of 2" elements with m = 3 to 10 are given in Appendix A.

2.5 BASIC PROPERTIES OF A GALOIS FIELD GF(Z™)

In ordinary algebra we often see that a polynomial with real coefficients has roots not
from the field of real numbers but from the field of compiex numbers that contains
the field of real numbers as a subfield. For example, the polynomial X2 +6X +25 does
not have roots from the field of real numbers but has two complex-conjugaie roots,
—3 4+ 4i and -3 — 4i, where i = +/—1. This situation is also true for polynomials
with coefficients from GF(2). In this case, a polynomial with coefficients from GF(2)
may not have roots from GF(2) but has roots from an extension field of GF(2). For
example, X4 4+ X3 41 is irreducible over GF(2) and therefore it does not have roots
from GF(2); however, it has four roots from the field GF(2%). If we substitute the
elements of GF(2%) given by Table 2.8 into X4 4+ X3 + 1, we find that o, &'t &13,
and o'* are the roots of X* + X7 + 1. We may verify this result as follows:

@+ @ rl=aB o 1=+ +)+ @2+’ +1=0.
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Indeed, & is a root for X4 + X3 + 1. Similarly, we may verify that all o3 and a1t
are the other three roots. Since o’, all, '3, and a!* are all roots of X* + X3 + 1,
then (X +a”)(X + o)) (X + o) (X + o'*) must be equal to X*+ X3+ 1. To see this,
we multiply out the preceding product using Table 2.8:
(X + o)X + o)X + o)X + o'

= (X*+ 08X + o)X+ &*X +a'?)

=X+ @+ o)X + (@ + o + DX + @+ ®)X + ol

=x*+x3 41

Let f(X) be a polynomial with coefficients from GF(2). If 8, an element in

GF(@2™),1s aroot of f(X), the polynomial f(X) may have other roots from GF(2™).
Then, what are these roots? This question is answered by the following theorem.

TreorEM 2.11 Let f(X) be a polynomial with coefficients from GF(2). Let
B be an element in an extension field of GF(2). If 8 is a root of f(X), then for
any ! > 0, ,82, is also a root of f(X).

Proof. From (2.10), we have
[FOOP = r(x™).
Substituting g into the preceding equation, we obtain
[FBT = £
Since f(B8) =0, f(ﬂzl) = 0. Therefore, ,82' is also a root of f(X). Q.E.D.

The element ,82/ is called a conjugate of 8. Theorem 2.11 says that if 8, an
element in GF(2™), is a root of a polynomial f(X) over GF(2), then all the distinct
conjugates of B8, also elements in GF(2™), are roots of f(X). For example, the
polynomial f(X) =14 X3 + X* 4 X° + X% has o, an element in GF(2*) given by
Table 2.8, as a root. To verify this, we use Table 2.8 and the fact that ol =1

Feh=14a?+a%+a® 40 —1+aP 4o+ +d°
=1l+d+a+ea’+ad) ta+ (@+a®)+ (@ +a’) =0.
The conjugates of o* are
(@hH? = ob (@M = a!® = o (a4)2~’ S

[Note that (054)24 = ¢ = a4.] It follows from Theorem 2.11 that o, «, and «?
must also be roots of f(X) = 1+ X + X* + X° + X We can check that o
and its conjugate, o'% are roots of f(X) = 1+ X + X* + X’ + X°. Therefore,
f(X) =1+ X>+ X*+ X° + X has six distinct roots in GF(2%).
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Let B be a nonzero element in the field GFQ2™). It follows from Theo-
rem 2.8 that
/82”’71 _ 1‘

Adding 1 to both sides of ,82'”’1 =1, we obtain
B +1=0.

This says that § is a root of the polynomial X2" ~1 +1. Hence, every nonzero element
of GF(2™) is a root of X*'~! + 1. Because the degree of X2"~1 +11is 2" — 1, the
2" — 1 nonzero elements of GF(2") form all the roots of X2"~1 4+ 1. Summarizing
the preceding resull, we obtain Theorem 2.12.

TuEOREM 2,12 The 2™ — 1 nonzero elements of GF(2™) form all the roots of
X,

Since the zero element O of GF(2™) is the root of X, Theorem 2.12 has the
following corollary:

CorROLLARY 2.02.1 The elements of GF(2™) form all the roots of X2" + X.

w2

Because any element g in GF(2") is a root of the polynomial X~ + X, 8 may
be a root of a polynomial over GF(2) with a degree less than 2. Let ¢ (X) be the
polynomial of smallest degree over GF(2) such that ¢ (8) = 0. [We can easily prove
that ¢(X) is unique.] This polynomial ¢ (X) is called the minimal polynomial of B.
For example, the minimal polynomial of the zero element 0 of GF(2™) is X, and the
minimal polynomial of the unit element 1 is X + 1. Next, we derive a number of
properties of minimal polynomials.

TrEOREM 2.13 The minimal polynomial ¢(X) of a field element g is
irreducible.

Proof. Suppose that ¢(X) is not irreducible and that ¢(X) = ¢ (X)gr(X),
where both ¢(X) and ¢;(X) have degrees greater than ( and less than the
degree of ¢(X). Since ¢ (B) = ¢1(B)¢2(B) = 0, either ¢1(B) = 0 or ¢2(B) = 0.
This result contradicts the hypothesis that ¢(X) is a polynomial of smallest
degree such that ¢ (8) = 0. Therefore, ¢ (X) must be irreducible. Q.E.D.

TueorEM 214 Let f(X) be a polynomial over GF(2). Let ¢(X) be the
minimal polynomial of a field element 8. If B is a root of f(X), then f(X) is
divisible by ¢ (X).

Proof. Dividing f(X) by ¢ (X), we obtain
fX) =aX)e(X) +r(X),

where the degree of the remainder r(X) is less than the degree of ¢(X).
Substituting 8 into the preceding equation and using the fact that f(8) =
¢(B) =0, we have r(8) = 0. If r(X) 7 0, r(X) would be a polynomial of lower
degree than ¢ (X), which has 8 as a root. This is a contradiction to the fact that
¢ (X) is the minimal polynomial of 8. Hence, r(X) must be identical to 0 and
¢(X) divides f(X). Q.E.D.
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The following result follows from Corollary 2.12.1 and Theorem 2.14.

TueorEM 2.15 The minimal polynomial ¢(X) of an element § in GF(2™)
divides X?" + X.

Theorem 2.15 says that all the roots of ¢ (X) are from GF(2™). Then, what are

the roots of ¢ (X)? This question is answered by the next two theorems.

TuEorREM 2.16 Let f(X) be an irreducible polynomial over GF(2). Let 8 be
an element in GF(2™). Let ¢ (X) be the minimal polynomial of 5. If f(8) =0,
then ¢ (X) = f(X).

Proof. 1t follows from Theorem 2.14 that ¢ (X) divides f(X). Since ¢(X) # 1
and f(X) is irreducible, we must have ¢(X) = f(X). Q.E.D.

Theorem 2.16 says that if an irreducible polynomial has g as a root, it is

the minimal polynomial ¢ (X) of . It follows from Theorem 2.11 that 8 and its
2
conjugates g2, 8%, - ,ﬂ2', --- are roots of ¢(X). Let ¢ be the smallest integer

such that 82 = B. Then, g2, B2, -, B2 are all the distinct conjugates of 8 (see
Problem 2.15). Since 2" = B, e < m (in fact e divides m).

TueoreM 2,17 Let B be an clement in GF(2™), and let ¢ be the smallest
nonnegative integer such that 82° = 8. Then,

e—1 )
fo=1fx+8")
i=0

is an irreducible polynomial over GF(2).

Proof. Consider

=0 i=0

2
e—1 )
[fOP {ﬂ(mﬁ >} =[x+ %)%

2i i+ 21+l

Since (X + 22 = X2+ (B2 + )X + 2" =x2+ 8

[ ()P H(X2+ﬁz'+ =[x+ %)

i=0 i=1
e—1 ) )
= |1+ %) | (X2 + %),
i=1
Since % = 8, then

[FOF H(X2+ﬂ) £ (221)
=0
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Let f(X) = fo+ 11X + -+ f.X° where f, = 1. Expand
[fOOP = (fo+ fiX 4+ foX)

[ € ¢
N 252 LT Dl {2.22)
=) Jix *H]-“f/ g Bl X = fX
i=0 i=0 j=0 i=0
i#]
From (2.21) and (2.22), we obtain
¢ ¢
BN T 22
/\:4‘/,'){1 ,Z,,g"./‘{l
i=0 i=0
Then, for § <i < e, we must have
-2
fi= Ji-
This resuli holds only when f; = 0 or 1. Therefore, f(X) has coefficients from
¥ Ji .

GF(2).
Now, suppose thai f(X) is not irreducible over GF(2), and f(X) =
a(Ob(X)y, Since f(B) =0, cither a(B)y =0or B(B) =0 Ha(B) =0, a(X) has

ae=1 5 v . o e
8. ,Bzﬂ <. p°  asioots, so a(X) has degree ¢, and a(X) = f(X). Similarly, if
b(B) =0, b(X) = j(X). Therefore, f(X) must be meduuble Q...

A direct consequernce of Theorems 2.16 and 2.17 is Theorem 2.18.
TuEorEM 2.18 Let ¢(X) be the minimal polynomial of an element 8 in
GF(2™). Let ¢ be the smailest integer such that 87 = 8. Then

e—1

p0) =[x + 8. (2.23)

i=0

EXAMPLE 2.8

Consider the Galois field GF(2*) given by Table 2.8. Let # = . The conjugates of
B are .
The minimal polynomial of 8 = o is then

PX) = (X + o)X + )X +a'HX + ).

Multiplying out the right-hand side of the preceding equation with the aid of
Table 2.8, we obtain

P(X) = [X> + (& +a®X +°|[X° + (@ + oM X + o]
= X+ X o)+t X o)
—}’44—(01 +oz ){ +(a —i—oz +019)X2+(a/17+018‘)}(+a15
=X+ XXX+
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There is another way of finding the minimal polynomial of a field element,
which is illustrated by the following example.

EXAMPLE 2.9

Suppose that we want to determine the minimal polynomial ¢(X) of y = &’ in
GF(2%). The distinct conjugates of y are

N - g R ) Vz»‘ — %0 =1l
Hence, ¢ (X) has degree 4 and must be of the following form:

¢(X) =ag+ a1 X + mX* + a3 X> + X,
Substituting y into ¢(X), we have

() =ag +ary +ay* + a3y’ +y* =0.

Using the polynomial representations for y. y2, y3, and y* in the preceding equation,
we obtain the following:

a+a(l+a+a)+mdl+ed) +a@+aeH)+ A+ +a°) =0
((10+a1+az+1)+(11a+(ag+1)a2+(al+az+a3+1)a3 =0

For the preceding equality to be true, the coefficients must equal zero:

ag+ay + az +1=0,
a :0,
az+1=0,
al+a2+a3+1:0.

Solving the preceding linear equations, we obtain ag = 1, a1 = a2 = 0,and a3 = 1.
Therefore, the minimal polynomial of y = o is ¢ (X) = 1+ X3+ X*. All the minimal
polynomials of the elements in GF(2%) are given by Table 2.9.

TABLE 2.9: Minimal polynomials of the
elements in GF(2%) generated by p(X) =

X'+ X 41,
Conjugate roots Minimal polynomials
0 X
1 X+1
a,oz?,oﬂozs X+ X+ 1
o’ b al? X+ X+ X+ X +1
o, all X2+ x+1
ol ol o3 gl x4 x3 41
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A direct consequence of Theorem 2.18 is Theorem 2.19.

TerorEM 2,109 Let ¢(X) be the minimal polynomial of an element g in
et eg

et
be the degree of ¢ (X). Then e is the smallest integer such that

GF(™). Lot e

B% = B. Moreover, e < m.

Ing ﬂam the degree of the minimeal polynomial of any element in GF(2')
divides m. The proof of this property is omitted here. Table 2.9 shows that the
degree of "h nmmak polyn ommi of each e»e*nem in GF(2%) divides by 4. Minimal

polynomials of the elemenis in GF(2") for m = 2 to 10 are given in Appendiz B.

In the construction of the Galois field C F (7’”) we use a primitive polynomial
(X)) of degree m and W—\qmre that the element o be a root of p(X). Because the
powers of o generate all the nonzero elements of GF(2™), ¢ is a primitive element.
In fact, all the ¢ Hj igates of o are primitive eiementd of GF(2"). To see this. fet a
be the order ‘f 2 for i > 0. Then

(0/2/)11 — O[IIZ =1
Also, it foliows from Theorem 2.9 that n divides 2" — 1:
2" 1=k n. (2.24)

. . e . . i !
Because o is a primitive element of GF(2™), its order is 27" — 1. For o == 1, n2!
must be a muliiple of 27 — 1. Since 7 and 27 — 1 ave relatively prime, # must be
divisible by 2" — 1, say

n=gqg- 2" -1, (2.25)

o g ~ + I
From (2.24) and (2.25) we conclude that n = 2" — 1. Consequently, o is also a
imitive element of GF{Z™). In general, we have the following theorem.

element of GF(2™), all its conjugates
of GF(2™).

= 2.90

Consider the field GF(Z') given by Table 2.8. The powers of 8§ = o’ are

g1 pl = Br=alt B3 =o =ab Bt = o =gl

£ = D[35 _ ff’ N (VL VI B b
80 = o a_%n B0 = 70 _ 10 gl _ 77 02 gl _ (84 o9
813 = w B =% = ob B =05 1,

7

Clearly, the powers of § = «’ generate all the nonzero elements of GF(2%). so
7

B = o’ is 2 primitive element of GF(27). The conjugates of § = o' are
4 2 3
B2 =olt BT =ald g =gl

We may readily check that they are all primitive elements of GF2™),
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A more general form of Theorem 2.20 is Theorem 2.21.

TreoreEM 2.21  If B 1s an element of order n in GF(2™), all its conjugates have
the same order n. (The proof is left as an exercise.)

EXAMPLE 2.11

Consider the element o in GF(2%) given by Table 2.8. Since (¢)%" = a0 = o,
the only conjugate of o is «'%. Both ¢ and «!? have order n = 3. The minimal
polynomial of & and «'0 is X2 + X + 1, whose degree is a factor of m = 4. The
conjugates of o are «®, ¢°, and «!2. They all have order n = 5.

COMPUTATIONS USING GALOIS FIELD GF(2™) ARITHMETIC

Here we perform some example computations using arithmetic over GF(2").
Consider the following linear equations over GF(2%) (see Table 2.8):

X+a'y =d?,
a?X +a¥Y = o’ (2.26)
Multiplying the second equation by « gives
X+a'Y =a’
X+ally =d.
By adding the two preceding equations, we get
@ 4oy =a? +d,
a®y = o2,
Y =a

Substituting ¥ = o* into the first equation of (2.26), we obtain X = «°. Thus, the
solution for the equations of (2.26) is X = «” and ¥ = o™

Alternatively. the equations of (2.26) could be solved by using Cramer’s rule:

R
R R
~

8 O(10_‘_0(11 1~|—Ol3 alél 9
X: pusag = — = —= =,

()(7 058+O(19 ~0{+O[2 015
0112 0(8
1 o?
2
Oll" 0(4 (X4+O[]4 Ol+0(3 9 4
Y - 7 el 3 9 = 3 = — = .
1 « a® +a oa+at o
alz (XS

As one more example, suppose that we want to solve the equation

fFX=X+ad'X+a=0
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over GF(2"). The quadratic formula will not work because it requires dividing by 2,
and in this field, 2 = 0. If f(X) = 0 has any solutions in GF(2*, the solutions can
be found simply by substituting all the elements of Table 2.8 for X. By doing so, we
would find that f (@) = 0 and f (%) = 0, since

%)

F@® =@ +a’ a®+a=a?+al

+

a =0,
f(otlo) =@ 1o’ o=’ +at+a=0
Thus, «® and «!0 are the roots of F0),and F(X) = (X + o (X + 10y,

The preceding computations are typical of those required for decoding codes
such as BCH and Reed—Solomon codes, and they can be programined quite easily
on a general-purpose computer. It is also a simple matter to build a computer that
can do this kind of arithmetic.

2.7 YECTOR SPACES

Let V be a set of elements on which a binary operation called addition, +, is defined.
Let F be a field. A multiplication operation, denoted by -, between the elements in
F and elements in V is also defined. The set V is called a vecror space over the field
F if it satisfies the following conditions:

. V is a commutative group under addition.
fl. For any element ¢ in F and any element vin V,a - vis an element in V.
iff. (Distributive Laws) For any elements w and v in V and any elements ¢ and b

nF,
a-(@+v)y=a-u+a-v,

(a+by - v=a -v+b-v.
fiv. (Associative Law) Forany vin V and any g and b in F,
(a-by-v=a-(b v).

v. Let 1 be the unit element of F. Then, foranyvin vV, 1.v=wv.

The elements of V are called vectors, and the elements of the field F are called
scalars. The addition on V is called a vector addition, and the multiplication that
combines a scalar in F and a vector in V into a vector in V is referred to as scalar
muldtiplication (or product). The additive identity of V is denoted by §.

Some basic properties of a vector space V over a field F can be derived from
the preceding definition.

Property I Let 0 be the zero element of the field . For any vector vin V,
0-v=0.

Proof. Because 1+0 =1in F,wehave 1 .v=014+0 -v=1-v+0.v.
Using condition (v) of the preceding definition of a vector space, we obtain
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v =v - 0-v. Let —v be the additive inverse of v. Adding —v to both sides of
v=v+0. v, we have

0=0+0-v
0=0-v.

Property Il For any scalar cin F, ¢ - = 0. (The proof is left as an exercise.)
Property 11§  For any scalar c in F' and any vectorvin V,
(=) v=c (V) =—(c-V)

That is, (—c) - v or ¢ - (—v) is the additive inverse of the vector ¢ - v. (The proof is left
as an exercise.)

Next, we present a very useful vector space over GF(2) that plays a central
role in coding theory. Consider an ordered sequence of n components,

(ag, ay, - ap—1),

where each component ¢; is an element from the binary field GF(2) (ie, a = 0
or 1). This sequence is generally called an n-tuple over GF(2). Because there are
two choices for each a;, we can construct 2" distinct n-tuples. Let V,, denote this
set of 2" distinct n-tuples over GF(2). Now, we define an addition, +, on V), as the
following: For any w = (ug, uy, - -, uy—1) and v = (ug, vy, -+, v,-1) In V,,,

u+ V= (uo+vp, U1+ V1, Up—1 + V1), (2.27)

where u; + v; is carried out in modulo-2 addition. Clearly, u + v is also an n-tuple
over GF(2). Hence, V,, is closed under the addition defined by (2.27). We can readily
verify that V, is a commutative group under the addition defined by (2.27). First, we

note that the all-zero n-tuple ¢ = (0, 0, - - - , 0) is the additive identity. For any vin V,,,
v+ v ={(vg+vg, 1+ V1, ",V 17T V1)
=(,0,---,0) =0.

Hence, the additive inverse of each n-tuple in V,, is itself. Because modulo-2 addition
is commutative and associative, we can easily check that the addition defined by
(2.27) is also commutative and associative. Therefore, V,, is a commutative group
under the addition defined by (2.27).

Next, we define scalar multiplication of an n-tuple v in V,, by an element a
from GF(2) as follows:

a-(o,vi, V1) =(a-vg,a vy, - ,d- V1), (228)

where a - v; is carried out in modulo-2 multiplication. Clearly, a - (vp, v1, -+ , vy_1)
is also an n-tuple in V,,. If a =1,

(o, vt, -+ vp) =L -vp, 1ovg, -+ 1 0,9)

= (Uov Vi, oy vl‘l*l)'
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We can easily show that the vector addition and scalar multiplication defined by
(2.273 and (2.28), respectively, satisty the distributive and associative laws. Therefore,
the set V;, of all n-tuples over GF(2) forms a vector space over GF(2).

Let n = 5. The vector space Vs of all 5-tuples over GF(Z) consists of the following
32 vectors:

(00000). (06001, (00010). (UODLL).

(0100, (MG10DL, (©2110). (CO1iD,

(01000). (01001, (©1010)., (1011,

(01160), (110D, ©1110). (01111,

(10000). (10001), 10010y, (10011,

(10100). (1016D. A0t10y. (106111,

(11000). (100D, (Q1010), (11011).

(11100, (11100). Q111dy, (11111

The vectorsumof (1011 and (11001 is
(011 H+ 1100 =0 +1.04+L1+0.14+061+1D)=(01110).
Using the rule of scalar multiplication defined by (2.28), we obtain

0- (11010 =¢0-1.6-1,0.0.0.-1,0-0) =(0000.
1-11010) =1 -1.1-1.1-0,1- 1,1 -0y =(11010).

The vector space of all n-tuples over any field F can be constructed in a similar
manner; however, in this text we are mostly concerned with the vector space of all
n-tuples over GF(2) or over an extension field of GF(2} [e.g.. GF(2™)].

Because V is a vector space over a field F, it may happen that a subset Sof V
is also a vector space over £. Such a subset is called a subspace of V.

Tueorem 2.22 Let § be a nonempty subset of a vecior space V over a field F.
Then, § is a subspace of V if the following conditions are satisfied:

. Tor any two vectorswand vin S, u + v is also a vectorin S.
i, For any element a in F and any vector win &, « - uis also in S.

Proof. Conditions (1) and (ii) simply say that S is closed under vector addition
and scalar multiplication of V. Condition (ii) ensures that for any vector v in
S its additive inverse (—1) -vis also in §. Then, v+ (—=1) - v = 0 is also in S.
Therefore, 5 is a subgroup of V. Because the vectors of § are also veciors of
V. the associative and distributive laws must hold for 5. Hence, § is a vector
space over F and is a subspace of V. Q.E.D.



58 Chapter2 Introduction to Algebra

EXAMPLE 2.13

Consider the vector space Vs of all 5-tuples over GF(2) given in Example 2.12.
The set
{(00000),(00111).(11010), (11101}

satisfies both conditions of Theorem 2.22, so it is a subspace of Vs.

Let vi,v3,---,v be k vectors in a vector space V over a field F. Let
aj,az, - -, a; be k scalars from F. The sum

amvy+axvo+- -+ apvg

is called a linear combination of v, vy, - ,vx. Clearly, the sum of iwo linear
combinations of v1, vp, - -+, vp,

(a1vy +avy + - Farvi) + (v + bvo + -+ vy
= (a1 + b)vy + (a1 +b)vy + - -+ {a + bp) vy,

is also a linear combination of vy, v3, - - - , v¢. and the product of a scalar ¢ in F and
a linear combination of v, vo, - - - , vy,

c- (v +avy+ -+ avp) = (c-a)vy +(c-apva + -+ (c-ar)vg,

is also a linear combination of v{, vp, - - - , v;. It follows from Theorem 2.22 that we
have the following result.

TueoreEM 2.23 Letvy, vy, -+, Vi be k vectors in a vector space V over a field
F.The set of all linear combinations of vq, v3, -- - , v; forms a subspace of V.

EXAMPLE 2.14

Consider the vector space Vs of all 5-tuples over GF(2) given by Example 2.12. The
linear combinations of (0011 1) and (11101) are

0-(00111DH+0-(11101) =(00000),
0.(00111)+1-(111061)=(11101),
1-.(0011DH+0-(1110H) =011 D),
1-(0011H)+1-(11101)=(11010).

These four vectors form the same subspace given by Example 2.13.

A set of vectors vy, vo. .-+, ¥ in a vector space V over a field F is said to be
linearly dependent if and only if there exist k scalars aq, az, - -+ , ar from F, not all
zero, such that

a1vy + apvy + - +apve = 0.
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The null space S; of S consists of the following four vectors:
(00000), (10101, (©1110), @A101D).

Sq is spanned by (10101) and (0111 0), which are linearly independent. Thus, the
dimension of Sy is 2.

All the results presented in this section can be generalized in a straightforward
manner to the vector space of all n-tuples over GF(g), wherte ¢ is a power of prime
(see Section 7.1).

2.8 MATRICES

A k x n matrix over GF(2) (or over any other field) is a rectangular array with &
rows and n columns,

800 £01 802 cc 80.n—1
810 811 812 co 81.n-1
G= ) : (2.30)
8k-1.0 8k-11 k12 - 8k—-1n-1

where cach entry g;; with 0 </ <k and 0 < j < n is an element from the binary
field GF(2). Observe that the first index, i, indicates the row containing g;;, and
the second index, j, tells which column g;; is in. We shall sometimes abbreviaie the
matrix of (2.30) by the notation [g;;]. We also observe that each row of G is an
n-tuple over GF(2), and each column is a k-tuple over GF(2). The matrix G can also
be represented by its k rows gp, g1, - -, @—1 as follows:

2o

&1
G = .
Bk—1

If the k(k < n) rows of & are linearly independent, then the 2% linear combinations
of these rows form a k-dimensional subspace of the vector space V,, of all the n-tuples
over GF(2). This subspace is called the row space of G. We may interchange any two
rows of G or add one row to another. These are called elementary row operations.
Performing elementary row operations on G, we obtain another matrix G’ over
GF(2); however, both G and G’ give the same row space.

EXAMPLE 2.17
Consider a 3 x 6 matrix G over GF(2),

G =

O D =
— O
D O
S =
=
-0 O
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Adding the third row to the first row and interchanging the second and third rows,
we obtain the following matrix:

100101
G=|010011|[.
0 0111090

Both G and G’ give the following row space:
000000y, (100101), (010011), (001110,
(110110), (101011, (011101), (1110600).

This is a three-dimensional subspace of the vector space Vs of all the 6-tuples over
GF(2).

Let S be the row space of a k x n matrix G over GF(2) whose k rows
2o, €1, -+ , Br—1 are linearly independent. Let S; be the null space of S. Then, the
dimension of Sy isn —k. Lethg, by, - -+ , h,_r_1 be n — k linearly independent vectors
in S;. Clearly, these vectors span Sy. We may form an (n — k) x n matrix H using
ho, ty, --- , h,_r_1 as Tows:

ho hoo ho1 e hon—1
i3} h1o h11 e hin-1
H= i = ) :
E'ankfl hn—k—l,O hn—k~1,1 T hn—k—l,n—l

The row space of H is S;. Because each row g of G is a vector in §, and each
row h; of H is a vector of S, the inner product of g and h; must be zero (ie.,
g; -h; = 0). Because the row space S of G is the null space of the row space S; of H,
we call § the null (or dual) space of H. Summarizing the preceding results, we have
Theorem 2.25.

THEOREM 2,25 For any k x n matrix G over GF(2) with k linearly independent
rows, there exists an (n — k) x n matrix H over GF(2) with n — k linearly
independent rows such that for any row g; in G and any h; in H, g, -h; = 0.
The row space of G is the null space of Hl, and vice versa.

EXAMPLE 2.18
Consider the following 3 x 6 matrix over GF(2):

1 1 0 1
G={0 01110
101 00 1 1
The row space of this matrix is the null space

10110 0
H=|[0 11010
1100 01

We can easily check that each row of G is orthogonal to each row of H.

o
o)
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Two matrices can be added if they have the same number of rows and the
same number of columsns. To add two k x n matrices A = [¢;;] and B = [b;;], we
simply add their corresponding entries a;; and b;; as foliows:

{azlj U?z;] = [@'ij -+ bij]b

Hence, the resuliant matrix is also a & x 7 matriz. Two matrices can be multiplied
provided that the number of columns in ¢ I irix i equal to the number of
rows in the second matrix., Multiplying a & x { matrix
= [b;;], we obtain the product

@3

(“)

= A X B o= {ij]‘

In the resultant & x { matrix the entry ¢;; is equal to the inner product of the ith row
g; in A and the jth column b; in B; that is,

n—1

)
cij =@ by = } dirhy;.
=0

Let G be a k x n matrix over GF(2). The transpose of G, denoted by G7, is
an n x k matrix whose rows are columns of G and WHOQC columns are rows of C
Ak x k matrix is called an identiry matrix if it has 1’s on the main diagonal and
(s elsewhere. This matrix is usually denoted by I, A submatrix of a matrix G is a
matrix that is obtained by striking out given rows or columns of G

It is straightforward to generalize the concepts and results presented in this
section to matrices with entries from GF(g) with ¢ as a power of a prime.

PROBLEMS

1 Construct the group under modulo-6 addition.

2.2 Construct the group under modulo-3 multiplication.

3 Letm be a positive integer. If 1 is not a prime, prove that theset {1.2,--- .m —1}
is not a group under modulo-m multiplication.

2.4 Construct the prime field GF(11) with modulo-11 addition and muliiplication.
Find all the primitive elements, and determine the orders of other elements.

2.5 Letm be a positive integer. If m is not prime, prove thatthe set {0, 1,2, .-+ ,m —1}
is not a field under modulo-m addition and multiplication.

2.6 Consider the integer group G = {0, 1.2, -+ , 31} under modulo-32 addition. Show
that 7 = 10,4, 8,12, 16, 20, 24, 28} forms a subgroup of G. Decompose G inio
cosets with respect to 7 (or modulo 7).

2.7 Let A be the characteristic of a Galois field GF(g). Let 1 be the unit element of

GF(g). Show that the sums

2 3 r—1 X
LS L L e 31 1=0
=1 =1 i=1 =1
form a subfield of GF(q).

2.8 Prove that every finite field has a primitive element.
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2.9

2.10
2.11

2.12
2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20
221

2.22

2.23

2.24
2.25

Solve the following simultaneous equations of X, Y, Z, and W with modulo-2
arithmetic:
X+Y +W=1,
X + Z 4+ W =0,
X4+Y +Z+W=1,
Y+ Z+W=0.

Show that X + X* 4 1 is irreducible over GF(2).
Let f(X) be a polynomial of degree n over GF(2). The reciprocal of f(X) is

defined as
-k oy i
) =X"f (X)

a. Prove that f*(X) is irreducible over GF(2) if and only if f(X) is irreducible
over GF(2).

b. Prove that f*(X) is primitive if and only if f(X) is primitive.

Find all the irreducible polynomials of degree 5 over GF(2).

Construct a table for GF(2?) based on the primitive polynomial p(X) = 1+X+X3.

Display the power, polynomial, and vector representations of each element.

Determine the order of each element.

Construct a table for GF(2°) based on the primitive polynomial p(X) =1+ X* +

X, Lst o be a primitive element of GF(2°). Find the minimal polynomials of o

ando’.

Let 8 be an element in GF(2"). Let ¢ be the smallest nonnegative integer
such that g2° = B. Prove that g2, ,822. e ,/32"71, are all the distinct conjugates
of B.

Prove Theorem 2.21.

Let o be a primitive element in GF(2%. Use Table 2.8 to find the roots of
FX) =X +aX>+°X +o°.

Let o be a primitive element in GF(2%). Divide the polynomial f(X) =
X +aXC + o’ X + o2 X% + ot X + 1 over GF(2%) by the polynomial g(X) =
X* + o®X? + o°X + 1 over GF(2*). Find the quotient and the remainder (use
Table 2.8).

Let o be a primitive element in GF(2*). Use Table 2.8 to solve the following
simultaneous equations for X, Y, and Z:

X +o°Y+ Z =o',
X + oY +0(7Z:019,
?X+ Y 4a°Z= a.

Let V be a vector space over a field F. For any element ¢ in F, prove thatc¢-0 = 0.
Let V be a vector space over a field F. Prove that, for any ¢ in F and any v in
V. (—¢) v=oc-(—V) = —(c- V).

Let S be a subset of the vector space V, of all n-tuples over GF(2). Prove that §
is a subspace of V, if foranywandvin S,m+visin S.

Prove that the set of polynomials over GF(2) with degree n — 1 or less forms a
vector space G F(2) with dimension .

Prove that GF(2™) is a vector space over GF(2).

Construct the vector space Vs of all 5-tuples over GF(2). Find a three-dimensional
subspace and determine its null space.
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2.26 Given the matrices

(1101100 1000 1 10
01001 11

G=11110010] H=
01110001 00100 11
0001101

show that the row space of G is the null space of H, and vice versa.

2.27 Let S; and §; be two subspaces of a vector V. Show that the intersection of §;
and $; is also a subspace in V.

2.28 Construct the vector space of all 3-tuples over GF(3). Form a two-dimensional
subspace and its dual space.
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